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PREFACE 

The area of power electronics encompasses all engineering and scientific fields that 
deal with the conversion of electrical power. Each of these power electronics fields has 
its own theoretical frameworks, underlying principles, analytical methodologies, and 
engineering disciplines. Accordingly, each power electronics field requires specific 
knowledge, skill, and expertise dedicated to that field, as well as a solid background 
in electrical engineering in general. It is the purpose of this book to provide such 
requirements for students, researchers, and engineers working on one specific field of 
power electronics — the pulsewidth modulated (PWM) dc-to-dc power conversion. 

This book is primarily intended to be a textbook for undergraduate students who 
are beginning to study power electronics focusing on the PWM dc-to-dc power con-
version. This book supplements existing textbooks with more dedicated treatments 
on the PWM dc-to-dc power conversion. This book is also written as a reference book 
for postgraduate students and engineers working in the area of modeling, analysis, 
and control of PWM dc-to-dc converters. 

This book is divided into three parts based on technical contents and targeted 
readers. The first four chapters cover the static characteristics of PWM dc-to-dc 
converters, concentrating on the steady-state time-domain operation. This part is 
mainly for undergraduate students exposed to power electronics for the first time. 
Experienced engineers or postgraduate students may quickly review or skip some 
sections in this part. 

vii 
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The next five chapters constitute the second part of this book. This part treats 
the dynamic characteristics of PWM dc-to-dc converters. The second part covers 
the modeling, dynamic analysis, and control design of PWM dc-to-dc converters. 
While most of the materials are adequate for junior or senior students with a reason-
able academic background, some advanced topics can be omitted for inexperienced 
undergraduate students. This part can be a reference for engineers working on the 
modeling and control of PWM dc-to-dc converters. 

The last two chapters are devoted to one very important topic of PWM dc-to-
dc converters — current mode control. This part presents the functional basics, 
dynamic modeling and analysis, compensation design, and applications of current 
mode control. One chapter fully investigates the sampling effects of current mode 
control. This last part of the book is aimed towards experienced engineers and 
postgraduate students. Engineers may acquire in-depth knowledge about current 
mode control. For postgraduate students, this part could serve as a foundation to start 
out their research on relevant topics. 

This book is suited for a textbook for one-semester power electronics classes for 
undergraduate or postgraduate students. A typical syllabus for an undergraduate class 
and postgraduate class will consist of as the following. 

Undergraduate Class 
Chapter 1: PWM Dc-to-Dc Power Conversion 
Chapter 2: Power Stage Components 
Chapter 3: Buck Converter 
Chapter 4: Dc-to-Dc Power Converter Circuits 
Chapter 5: Modeling PWM Dc-to-Dc Converters 
Chapter 6: Power Stage Transfer Functions 
Chapter 8: Closed-Loop Performance and Feedback Compensation 

Postgraduate Class 
Chapter 3: Buck Converter 
Chapter 5: Modeling PWM Dc-to-Dc Converters 
Chapter 7: Dynamic Performance of PWM Dc-to-Dc Converters 
Chapter 8: Closed-Loop Performance and Feedback Compensation 
Chapter 9: Practical Considerations in Modeling, Analysis, and Design of PWM 

Converters 
Chapter 10: Current Mode Control - Functional Basics and Classical Analysis 
Chapter 11: Current Mode Control - Sampling Effects and New Control Design 

Procedures 

In writing this book, special efforts have been made in the following two as-
pects. 

1) Computer simulations are used as much as possible, as an instrumental tool 
to demonstrate the validity of the theoretical developments and accuracy of 
analytical predictions. 
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2) Technical contents are presented in a format directly adaptable to practical 
applications. Converter design examples are given with all engineering details 
so that each design can immediately be transformed into working hardware. 

The following materials are prepared to assist students and lecturers who will 
study and teach the PWM dc-to-dc power conversion using this book. 

End-of-Chapter Problems: Each chapter contains a number of problems to rein-
force the technical contents of the text. The problems are rated differently based 
on the their importance and significance, not necessarily on the degree of difficulty. 
The problems with one asterisk ' *' are important problems, while the problems 
with two asterisks ' **' are more important and essential problems. Solutions to the 
End-of-Chapter Problems are available from the publisher. 

On-Line Teaching and Learning Aids: Power Point® files for lecture slides are 
available at http://booksupport.wiley.com. PSpice® codes used for illustrative sim-
ulations are also accessible at the same site. 

The author is deeply indebted to many individuals who helped to improve the 
technical contents of this book. In particular, the chapters on current mode control are 
strongly influenced from the author's learning and research experiences at Virginia 
Polytechnic Institute and State University, Blacksburg, VA. The author expresses 
special gratitude to the persons associated with the preceding works that were used 
as valuable references in writing this book. A list of those references is shown at the 
end of each chapter. 

The author's warmest appreciation goes to Jieyeon, the author's eldest daughter, 
for being successfully enticed to become a competent power electronics engineer, as 
well as providing numerous technical and editorial help in finalizing this book. 

This book evolved from the class materials taught by the author over the last 10 
years at the Kyungpook National University (KNU) in Daegu, Korea. The author ex-
presses affection and thanks to the former and current students at KNU who inspired 
the author to undertake the task of writing this book. Some materials in this book 
were presented by the author in short courses at several power electronics industries. 
The author is also grateful for the engineers who participated in the short courses and 
provided valuable feedback. 

BYUNGCHO CHOI 

Daegu, Korea 

April 2013 
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CHAPTER 1 

PWM DC-TO-DC POWER CONVERSION 

The dc-to-dc power conversion is broadly referred to as the process of generating a 
desired dc voltage using a dc source whose voltage level is different from the desired 
value: namely, changing the voltage level of a dc source into another value. The 
dc-to-dc conversion is performed in many different ways, each with a distinctive 
circuit technique. The most popular scheme among them is the dc-to-dc conver-
sion circuit employing the pulsewidth modulation (PWM) technique. The dc-to-dc 
power conversion based on the PWM technique is called the PWM dc-to-dc power 
conversion. 

This book deals with broad aspects of the PWM dc-to-dc power conversion, 
covering both academic and engineering perspectives. This introductory chapter 
presents an overview of the PWM dc-to-dc power conversion. The current chapter 
discusses basic principles and unique natures of dc-to-dc power conversion circuits, 
along with the concept of the PWM technique. This chapter also presents the 
features and issues of PWM dc-to-dc power conversion systems employed to modern 
electronic equipment and systems. Finally, this chapter outlines the contents of the 
forthcoming chapters. 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 3 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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(3©** 

Figure 1.1 Conventional approach to lighting electric bulb. 

1.1 PWM DC-TO-DC POWER CONVERSION 

The PWM dc-to-dc power conversion is described as the process of changing the 
voltage level of a dc source using the PWM technique. However, a more definitive 
and precise description is necessary to comprehend the natures and features of the 
PWM dc-to-dc power conversion circuit. 

1.1.1 Dc-to-Dc Power Conversion 

To formulate an accurate description of the dc-to-dc power conversion, this section 
discusses two different approaches to operating an electric bulb using a dc voltage 
sourced from a battery. It is presumed that the electric bulb requires a strict 12 V 
for operation, while the battery voltage is varied between 18V and 30 V depending 
on its charging status. Figure 1.1 shows the first approach where a variable resistor 
and controller are employed between the battery and electric bulb. The controller is 
assumed to only draw a negligible current. 

In Fig. 1.1, the controller adjusts the resistance of the variable resistor Rx to meet 
the following relationship 

Vn = 
Ro 

Rr+Rn 
12V (1-1) 

where Vo is the voltage across the electric bulb, R0 denotes the resistance of the 
bulb, and VB is the battery voltage that varies between 18 V < VB < 30 V. Figure 
1.1 certainly fulfills the goal of providing a fixed dc voltage from a variable voltage 
source, however, it has one critical problem that makes this approach impractical. 

The variable resistor is accompanied by an ohmic power loss 

loss Pout = IoVB - IoVo = Io(VB - Vo) (1.2) 

where Pin is the input power drawn from the battery, Pout is the output power delivered 
to the electric bulb, and /<? is the current flowing from the battery to the electric 
bulb. The power loss is given by the product of the load current and the difference 
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Figure 1.2 Dc-to-dc power conversion applied to power electric bulb, (a) Circuit diagram. 
(b) Input and output waveforms of LC filter. 

between the battery voltage and bulb voltage. This power loss easily becomes 
significant. For example, when an electric bulb that consumes a 60 W power at 
12 V voltage level is connected to a 30 V battery, the power loss is as large as 
Pioss = (60/12) (30 - 12) = 90 W. This loss is even larger than the power consumed 
in the bulb, Pout = 60 W. 

The power loss is always transformed into heat and the resulting heat must be 
removed using an appropriate cooling system. The cooling system usually employs 
bulky heat sinks and noisy fans, consequently increasing the size and weight of 
the entire system. Accordingly, Fig. 1.1 cannot be used for applications where the 
dimension and weight should be limited, which is usually the case for most modern 
electronic equipment and systems. 

Figure 1.2 shows an alternative approach where a switch network and LC filter 
are inserted between the battery and electric bulb. The switch network periodically 
changes its connection. Within each switching period Ts, the switch network main-
tains position a for Ton and position p for the remaining part of the switching period, 
Ts - Ton. This switch network is called the single-pole double-throw (SPDT) switch 
because it contains one pole which is always connected to one of the two contacts, 
the throw a and the throw p. With the switching action of the SPDT switch, the 
battery voltage is transformed into a rectangular waveform at the output of the SPDT 
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switch, vx in Fig. 1.2. The rectangular waveform is then applied to the LC filter. The 
LC filter alters the rectangular waveform into a smoothly-filtered continuous voltage 
waveform, vo in Fig. 1.2. 

If the LC filter provides sufficient filtering, the output voltage nearly becomes a 
dc waveform corresponding to the average value of νχ 

vo(t)*V0 = vx(t) = ^VB (1.3) 
■* s 

To maintain Vo = 12 V at the presence of the battery voltage variation, the controller 
adjusts the ratio Ton to Ts. With a fixed Ts, the controller changes Ton to meet the 
condition 

^vB = uv (1.4) 
* s 

For example, with a battery voltage VB = 24 V and switching period Ts = 10//s, the 
controller generates Ton = 5 //s to produce V0 = (5 x 10_6/10 x 10-6) 24 = 12 V. 
If the battery voltage is increased to VB = 30 V, the controller reduces Ton to 4 //s to 
regulate V0 at 12 V: V0 = (4x 10"6/10 x 10~6) 30 = 12 V. 

Although Figs. 1.1 and 1.2 both achieve the same goal, a crucial difference exists 
between them. Figure 1.2 presumes a lossless operation because the SPDT switch 
and reactive components in the LC filter do not consume any power. The lossless 
operation eliminates all the problems associated with the power loss. Because no 
heat management is required, the circuit can be packaged with a smaller size and 
lighter weight, thereby making it fully compatible with modern electronic systems. 

A more definitive description of the dc-to-dc power conversion is now established 
as the process of changing the voltage level of a dc source, while eliminating or 
minimizing power loss. In this perspective, Fig. 1.2 is a typical example of the 
dc-to-dc power conversion circuit, while the conventional circuit illustrated in Fig. 
1.1 is not classified so. 

1.1.2 PWM Technique 

The concept of PWM technique can be envisaged from the operation of Fig. 1.2, 
where the ratio Ton to Ts of the SPDT switch is adjusted to keep the output voltage 
constant. By changing the Ton/Ts ratio, the pulsewidth of the rectangular voltage 
waveform, which passes through the LC filter to yield its average value as the output 
voltage, is adaptively modulated so that the output voltage remains constant despite 
the input voltage variation. This control scheme is called the pulsewidth modulation 
(PWM) technique and the dc-to-dc conversion circuit based on the PWM scheme 
is known as the PWM dc-to-dc converter. The PWM dc-to-dc converter is widely 
adapted to modern industrial and consumer electronics, thereby becoming the most 
prevailing dc-to-dc power conversion circuit. 
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Figure 1.3 Dc-to-dc power conversion system. 

1.2 DC-TO-DC POWER CONVERSION SYSTEM 

The basic concept illustrated in Fig. 1.2 is generalized into dc-to-dc power conversion 
systems whose block diagram representation is shown in Fig. 1.3. The system consists 
of the dc source, dc-to-dc converter, and load. The dc source provides an arbitrary 
dc voltage to the dc-to-dc converter. The dc-to-dc converter then converts the given 
dc voltage to the value required by the load and delivers it to the load. The load 
is an application system that operates with a fixed voltage and eventually consumes 
electrical power. This section presents the characteristic features of the dc source, 
dc-to-dc converter, and load. 

Dc Source with Non-Ideal Characteristics 

The practical dc source falls short of the characteristics of an ideal voltage source in 
many aspects. First, the voltage level of the dc source could vary with time, as is 
the case with batteries, fuel cells, and other standalone dc sources. The change in 
the voltage could occur either gradually or abruptly, depending on the characteristics 
and condition of the dc source. 

Second, a rectified ac source is often used as a substitute for the dc source. For this 
case, the rectified ac source could contain a considerable amount of ac components, 
known as ac ripple. In addition, the output of the rectified ac source could be 
corrupted with various noises. Accordingly, the dc source represents any non-ideal 
source whose voltage can be varied, polluted with ac ripple and noises, and switched 
from one value to another. 

Dc-to-Dc Converter as Voltage Source 

The dc-to-dc converter receives an arbitrary voltage from the non-ideal source and 
is required to provide a fixed dc voltage for the load. Thus, in addition to altering 
the voltage level, the dc-to-dc converter should have the capacity of maintaining 
its output constant at the presence of the variation, ac ripple component, and abrupt 
change in the input voltage. Ideally, the dc-to-dc converter should function as an ideal 
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voltage source, powered by a non-ideal voltage source and programmed to produce 
the required dc voltage for the load, regardless of the condition of the voltage source. 

Although practical dc-to-dc converters are more complicated in their structures 
and operations than those of Fig. 1.2, they still can be divided into two functional 
blocks: the power stage and controller. The power stage alters the level of the input 
voltage into a desired value using various circuit components, while the controller 
provides the necessary signals for the power stage to execute its function. 

Dc-to-dc converters come with numerous variations in their power stage con-
figurations and each dc-to-dc converter is named differently after its power stage 
structure. In spite of the wide diversity in structure, all the power stages employ 
the common electronic components to perform the dc-to-dc power conversion. The 
power stage utilizes semiconductor devices to implement the function of the SPDT 
switch, energy storage components to perform filtering, and transformers to change 
the voltage and current levels of circuit variables while transferring electrical energy. 

The controller also varies widely in its structure and functionality. Nonetheless, all 
the controllers perform the same role of providing the control signals that are required 
for the power stage to generate a fixed output voltage, regardless of variations in the 
input voltage and other operating conditions. In PWM dc-to-dc converters, this 
important function is executed in a closed-loop fashion using the PWM technique. 
The closed-loop PWM controller uses various analog and digital ICs, as well as 
discrete circuit components, to generate the required control signals. 

Load as Dynamic Current Sink 

The load of a dc-to-dc converter can be any electronic equipment or system operating 
with a fixed dc voltage. The load draws the current from the dc-to-dc converter 
to meet its power requirement. Thus, the load current could fluctuate depending 
on operational conditions of the load system. In particular, when high-frequency 
digital systems are connected to a dc-to-dc converter, the current change could occur 
frequently and rapidly, including step changes between two different values. Ac-
cordingly, the load system presents a dynamic current sink to the dc-to-dc converter, 
whose current level could change widely and abruptly. 

1.3 FEATURES AND ISSUES OF PWM DC-TO-DC CONVERTER 

The PWM dc-to-dc converter is a dc-to-dc converter that operates based on the 
principle of PWM. The PWM dc-to-dc converter is intended to function as an efficient 
and reliable voltage source, interfacing with the non-ideal dc source and dynamic 
load system. Accordingly, there are specific features demanded for the dc-to-dc 
converter and issues involved with implementing such features in a PWM dc-to-dc 
converter. 
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Power Stage Components 

A dc-to-dc converter employs semiconductor devices, reactive components such as 
inductors and capacitors, and transformers in the power stage; in contrast, the power 
stage never contains any resistive component in order to avoid power loss. The 
semiconductor devices are employed as the switches that losslessly alternate on-state 
and off-state at very high frequency, up to several MHz range in some applications. 
Due to this switching action, all the power stage components are subjected to periodic 
voltage and current excitations. The switching action and periodic operation are 
the characteristic features of the power stage components employed in dc-to-dc 
converters. Circuit analysis skills beyond the standard linear circuit theory are 
required for understanding the operations of the power stage components under 
periodic switching operations. 

Power Stage Configuration 

A dc-to-dc converter is required to accept an arbitrary voltage as the input and to 
generate a predetermined output voltage. The ratio between the input voltage and 
output voltage could be either very large or considerably small. Also, a dc-to-dc 
converter should provide an arbitrary load current, as required by the load. Accord-
ingly, there are demanding requirements for the converter power stage in voltage and 
current ratings, input-to-output voltage ratio, and power handling capacity. In addi-
tion, dc-to-dc converters are frequently needed to provide galvanic isolation between 
the source and load. To meet these demands, numerous power stage configurations 
have been developed, each with a different complexity and functionality. The power 
stage configuration occupies a large and important portion of the dc-to-dc power 
conversion technology. 

Dynamic Modeling and Analysis 

A dc-to-dc converter should function as a voltage source which holds its output 
voltage constant at the desired value, irrespective of any possible changes in the input 
voltage, load current, and other operational conditions. This vital function is achieved 
by the closed-loop feedback controller operating under the principle of PWM. 

It is well known that a closed-loop controlled system becomes unstable if the sys-
tem is not properly designed. Stability can be assessed by investigating the dynamic 
characteristics of the closed-loop controlled system. There are many analytical meth-
ods to determine whether a closed-loop controlled system is stable or not. However, 
these methods are mainly intended for linear time-invariant systems. As will be 
discussed in Chapter 5, the PWM dc-to-dc converter falls into the category of the 
nonlinear time-variant system to which the aforementioned stability analysis methods 
cannot be directly applied. 

The dynamic modeling refers to the analytical process of describing the dynamic 
characteristics of the nonlinear PWM dc-to-dc converter in a special format to which 
all the classical analysis methods, originally aimed to linear systems, can be applied. 
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Accordingly, the dynamic modeling allows us to investigate the stability and perfor-
mance of the nonlinear PWM dc-to-dc converter using the familiar classical control 
theory. The dynamic modeling and ensuing analysis using the resultant model are 
collectively referred to as the dynamic modeling and analysis. The dynamic model-
ing and analysis plays an important role in the PWM power conversion technology 
and deserves rigorous treatment. 

Dynamic Performance and Control Design 

The performance of a dc-to-dc converter will be divided into two categories in 
this book: the static performance and dynamic performance. The static performance 
characterizes the dc-to-dc converter as a static voltage source. The static performance 
includes the input-to-output voltage conversion ratio and power handling capacity. 
The static performance is solely determined by the power stage and is irrelevant to 
the feedback controller. 

The second category is the dynamic performance which depicts the dc-to-dc 
converter as a closed-loop controlled dynamic system. The most important dynamic 
performance is stability. The dc-to-dc converter should establish a periodic steady-
state operation to produce the desired output voltage. When a certain disturbance is 
introduced, the converter could temporarily deviate from its steady-state operation. 
However, the converter should always return to the original operating point as the 
disturbance disappears. This essential feature is possible only when the converter 
meets the stability criterion. 

Another important dynamic performance is the step load response. A stable dc-to-
dc converter provides a fixed steady-state output voltage, regardless of any changes in 
the load current. When a step change occurs in the load current, the output voltage of 
the converter would show a transitional excursion before it returns to its steady-state 
value. The transitional output voltage response is called the step load response in 
this book. The step load response is of particular concern when digital logic circuits 
are employed as the load. Modern logic circuits operate with a very tightly-regulated 
low voltage, for example 2.1 ±0.02 V, and draw a large pulsating current. These logic 
circuits naturally and frequently incur substantial step changes in the load current. 
For this case, the output voltage excursion should be minimized, in order to avoid the 
potential failure of digital logic circuits due to an excessive transitional overshoot or 
undershoot in the supply voltage. 

The dynamic performance is solely determined by the design of the feedback 
controller. For a given power stage configuration, the controller should be designed 
for stability and good dynamic performance. While the controller design is primarily 
based on the dynamic modeling and analysis, it also requires extensive knowledge 
about the control theory, linear system theory, and feedback compensation design. 
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1.4 CHAPTER HIGHLIGHTS 

This book is aimed to cover the PWM dc-to-dc power conversion, while focusing on 
the features and issues addressed in the previous section. Chapter 2 deals with the 
power stage components. This chapter presents the circuit behavior of semiconductor 
switches, inductors, capacitors, and transformers, all operating under periodic exci-
tations. First, Chapter 2 describes the operation of MOSFETs as an active switch, 
diodes as a passive switch, and MOSFET-diode pairs as a single-pole double-throw 
(SPDT) switch. Then, this chapter discusses the basic circuit equations of inductors 
and capacitors. Chapter 2 also presents important circuit theorems pertinent to in-
ductors and capacitors under periodic excitations. Lastly, this chapter describes the 
operation of transformers and introduces a circuit model for practical transformers. 

Chapter 3 presents the simplest dc-to-dc power conversion circuit, known as the 
buck converter. Theoretical basics and operational details of the buck converter 
are both presented. This chapter also illustrates circuit analysis techniques that are 
commonly applicable to all other forthcoming PWM dc-to-dc converters. In addition, 
Chapter 3 discusses the underlying basics of the PWM technique and closed-loop 
control of dc-to-dc converters. Chapter 4 deals with the topology and operation of 
an important class of PWM dc-to-dc converters. For each converter, the origin of the 
circuit topology is first illustrated and the steady-state operation is then investigated, 
using the analysis techniques established in Chapter 3. 

Dc-to-dc converters employ semiconductor switches in their power stage to 
achieve efficient power conversion. Depending on the status of switches, the structure 
of converters' power stage changes over time, thus becoming nonlinear time-variant 
systems. Conventional linear analysis techniques cannot be directly applied to non-
linear time-variant dc-to-dc converters. To circumvent this obstacle, the dynamic 
modeling has been developed for PWM dc-to-dc converters. 

Chapter 5 covers the dynamic modeling of PWM dc-to-dc converters. This chapter 
illustrates the procedures of describing the dynamic characteristics of nonlinear time-
variant dc-to-dc converters, using the terms and formats that have been used for linear 
time-invariant systems. As the ultimate outcome of the dynamic modeling, this 
chapter provides a linear circuit model for PWM dc-to-dc converters, which allows 
us to investigate the nonlinear converter dynamics using conventional linear analysis 
techniques. Chapter 6 presents the dynamic analysis of PWM dc-to-dc converters 
using the linear circuit model developed in Chapter 5. This chapter describes the 
dynamic characteristics of an important class of PWM dc-to-dc converters, thus 
providing theoretical foundations for the control design and closed-loop analysis. 

In Chapter 7, the dynamic performance of the closed-loop controlled dc-to-dc 
converter is discussed. The implication and significance of the performance criteria 
are demonstrated with practical examples. Chapter 8 is devoted to the closed-loop 
performance analysis and feedback controller design. This chapter first introduces a 
graphical analysis method which greatly facilitates the dynamic analysis and control 
design. Using this method, this chapter presents detailed controller design proce-
dures. Impacts of the control design on the dynamic performance are discussed. 
Chapter 9 addresses the practical considerations in modeling, analysis, and design of 
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PWM converters. This chapter illustrates how the outcomes of the earlier chapters, 
developed for the PWM converters under ideal operational conditions, can be adapted 
to all practical dc-to-dc converters with non-ideal operational conditions. 

The last two chapters of this book address theoretical and technical details of one 
very important topic of PWM dc-to-dc converters — current mode control. Current 
mode control, which distinguishes itself from the conventional control scheme cov-
ered in Chapter 8 by employing an additional current feedback, is the most prevailing 
control scheme for modern PWM dc-to-dc converters. Chapter 10 presents functional 
basics and dynamic analysis of current mode control. The motivation and benefits 
of current mode control are described. The converter dynamics under current mode 
control are investigated, leading to general procedures for the closed-loop analysis. 

Chapter 11 deals with the sampling effects of current mode control. The origin and 
consequence of the sampling effects are discussed. This chapter extensively analyzes 
the sampling effects with focuses on the converter dynamics and performance. Based 
on the analysis results, systematic design procedures for current mode control are 
established. This chapter also presents applications of current mode control to 
practical PWM dc-to-dc converters. Several design examples are given to substantiate 
theoretical discussions. 
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CHAPTER 2 

POWER STAGE COMPONENTS 

Power stages of PWM dc-to-dc converters contain semiconductor switches, inductors, 
capacitors, and transformers. This chapter describes the operations of these power 
stage components under periodic excitations. The current chapter also presents 
several important circuit theorems that will be used in later chapters for the analysis 
of dc-to-dc power conversion circuits. Finally, this chapter analyzes two practical 
switching circuits, the solenoid drive circuit and capacitor charging circuit, in order 
to demonstrate the functions of power stage components in real applications. 

2.1 SEMICONDUCTOR SWITCHES 

Dc-to-dc power conversion circuits extensively use active and passive semiconductor 
switches. The active switch usually refers to the three-terminal semiconductor device 
whose on/off status is actively controlled by exciting one of the device terminals. 
On the other hand, the passive switch is the two-terminal device whose on/off status 
is passively determined by the conditions of the application circuit. The switching 
action of active and passive semiconductor switches allows the voltage and current 
waveforms of the application circuit to be altered, as required to perform the desired 
dc-to-dc power conversion. 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 13 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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Figure 2.1 MOSFET. (a) Circuit symbol, (b) Circuit representations. 

As illustrated in Fig. 1.2 in Section 1.1.1, the dc-to-dc power conversion is per-
formed by converting the dc voltage into a rectangular waveform and filtering the 
resulting rectangular voltage into another dc voltage. The conversion from the dc 
input to the intermediate rectangular waveform is performed using the single-pole 
double-throw (SPDT) switch. It will be shown that the SPDT switch is implemented 
with a pair of active and passive semiconductor switches. 

There are numerous semiconductor switches available for dc-to-dc conversion 
circuits. The selection of switching devices depends on both how well the existing 
devices perform and what the application circuits require. In many dc-to-dc con-
version circuits, MOSFETs are commonly used for active switches because of their 
fast switching characteristics compared with other alternatives. For passive switches, 
fast recovery diodes or Schottky diodes are used due to their excellent switching 
characteristics. This section describes the function of MOSFETs as an active switch, 
diodes as a passive switch, and MOSFET-diode pairs as an SPDT switch. Emphases 
are placed on the functional behavior of these devices in dc-to-dc power conversion 
circuits, rather than on their physical or operational principles. 

2.1.1 MOSFETs 

When employed as an active switch, MOSFETs can only have either an off-state 
or on-state. Figure 2.1 shows the symbol of an n-channel MOSFET and its circuit 
representations for the off-state and on-state. When the gate drive signal, denoted 
by VGS in Fig. 2.1(a), is below the threshold voltage, the MOSFET is turned-off. At 
the off-state, the drain-source terminal simply behaves open-circuited because the 
conduction channel is not created. When the gate drive signal is larger than the 
threshold voltage, the conduction channel is formed and the MOSFET is turned-on. 
Once turned-on, the drain and source terminals are connected through the resistance 
of the conduction channel, denoted by Ros in Fig. 2.1(b). While the resistance Rps 
varies with the voltage and current ratings of MOSFETs, it is usually so small that a 
turned-on MOSFET can be viewed as a short circuit. 
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Figure 2.2 Diode, (a) Circuit symbol, (b) Circuit representations. 

2.1.2 Diodes 

Diodes always presume one of two possible states, the off-state or on-state. Figure 
2.2 depicts the symbol of a diode and its circuit representations for off-state and on-
state. At an off-state, the diode becomes open-circuited. At an on-state, a practical 
diode can be viewed as a series connection of a voltage source Vo, resistor, and ideal 
diode. The voltage source and resistor are necessary to approximate the nonlinear v 
- i characteristics of the diode to a piecewise linear function. The ideal diode ensures 
the unidirectional current flow from the anode terminal to cathode terminal. While 
the values of the voltage source and resistor vary with types of diodes, they are usually 
negligibly small. Accordingly, the on-state circuit representation is approximated to 
a short circuit for practical circuit analyses. 

The state of a diode is determined by the condition of the application circuit. When 
the application circuit forces a positive voltage from the anode to cathode terminal, 
the diode establishes the on-state. Conversely, when the application circuit imposes 
a negative voltage, the diode is turned-off. As an illustration, Fig. 2.3(a) shows a 

+ 2V 
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-2V 

VD 
- 2 V 

+ 2V 

VR 

(a) (b) 

Figure 2.3 Diode switching with voltage source, (a) Circuit diagram, (b) Voltage waveforms. 
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Figure 2.4 Diode switching with current source, (a) Circuit diagram, (b) Current waveforms. 

simple circuit consisting of a diode, resistor, and time-varying voltage source, vs. 
The diode is turned-off when vs is negative and turned-on when v^ is positive. The 
transition from the off-state to on-state occurs at the moment the negative voltage vs 
increases to hit the zero voltage. The voltage waveforms across the diode and resistor 
are determined as shown in Fig. 2.3(b), based on the circuit behavior of the diode at 
the on-state and off-state. 

The state of a diode can also be judged based on the direction of the current flow. 
When the application circuit forces a positive current flow from the anode to cathode 
terminal, the diode is turned-on and retains the on-state as long as the current remains 
positive. On the other hand, when the application circuit forces a negative current 
flow from the cathode to anode terminal, the diode becomes open-circuited. Figure 
2.4 is a simple circuit which illustrates the diode switching using a time-varying 
current source, is. When is is positive, the diode is turned-on and carries the entire 
current. Conversely, when is becomes negative, the diode is turned-off and the 
current diverts to the resistor. The transition from the on-state to off-state happens at 
the instant the positive current is reduces to the zero current. 

2.1.3 MOSFET-Diode Pair as SPDT Switch 

Figure 2.5(a) shows a simple switching circuit where a voltage source is connected 
to a current source via an SPDT switch. The SPDT switch toggles its position 
periodically as illustrated in Fig. 2.5(a). Figure 2.5(b) shows representations of the 
switching circuit with two different switch positions: one is at the a position and the 
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Figure 2.5 Simple switching circuit, (a) Original circuit with SPDT switch, (b) Equivalent 
circuits, (c) Implementation of SPDT switch using semiconductor switches. 

other is at the p position. Finally, Fig. 2.5(c) depicts an implementation of the SPDT 
switch using MOSFET and diode. 

The MOSFET is turned-on/off by the gate drive signal VQS · When the MOSFET is 
turned-on by the on signal, the diode is turned-off because the voltage source forces 
a negative voltage across the diode. Conversely, when the MOSFET is turned-off by 
the off signal, the current source forces the diode to turn on. The equivalence between 
Fig. 2.5(a) and Fig. 2.5(c) now becomes apparent. As shown in this example, the 
SPDT switch can readily be implemented using the MOSFET-diode pair. 

2.2 ENERGY STORAGE AND TRANSFER DEVICES 

Dc-to-dc power conversion circuits utilize energy storage devices to perform filtering 
and energy transfer devices to transfer electrical energy while altering the magnitude 
of voltage and current waveforms. Energy storage and transfer devices include 
inductors, capacitors, and transformers. This section analyzes the circuit behavior of 
such devices under periodic excitations. 
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Figure 2.6 Inductor and terminal properties, (a) Electro-magnetic process within inductor. 
(b) Polarity/direction of inductor voltage/current waveform. 

2.2.1 Inductors 

This section deals with circuit properties of inductors. In addition to basic circuit 
equations, the current section discusses the operations of inductors under periodic 
excitations. This section also presents important circuit theorems for inductors. 

Circuit Equations 

An inductor is typically constructed by winding a copper wire on a magnetic core. 
When the inductor is excited by a current source ii as shown in Fig. 2.6(a), a 
series of electro-magnetic phenomena occur inside the magnetic core. First, the 
current passing through the copper winding creates magnetic field intensity H. The 
magnetic field intensity in turn produces magnetic flux density: B = μΗ with μ 
representing the permeability of the core. The total magnetic flux inside the core is 
then calculated as φ = BS where S is the cross-sectional area of the core. Finally, 
the magnetic flux linkage is given by A = ηφ where n is the number of the copper 
winding turns. The cause-and-effect of the aforementioned process is summarized as 
iL(t) => H{t) =» B(t) => φ(ί) => A(t). When the current ii is considered as the input 
of the electro-magnetic process, the magnetic flux linkage A becomes the output of 
the process. The ratio of the output variable, A , to the input variable of the process, 
ii, is defined as the inductance of the inductor 

L = 
kit) 

(2.1) 

According to Faraday's law, the time-varying magnetic flux linkage induces a 
voltage across the inductor terminals 

vat) = 
dA(t) 
~d(t) 

(2.2) 
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Using the definition of the inductance, Faraday's law is rewritten as 

vdt) = L-
di 

(2.3) 

thus establishing the v - i relationship of the inductor. The polarity of the induced 
voltage is defined as shown in Fig. 2.6(b). 

Equation (2.3) is integrated to yield an alternative circuit equation for the inductor 

idt)=ifvdt)dt (2.4) 

When a dc voltage Vs is applied across the inductor, the inductor current is given by 

(2.5) Vs 
idt) = —t 

Expression (2.5) indicates that the inductor current continues to increase linearly 
without bounds, as long as the dc voltage is present. In practice, however, a real 
inductor cannot sustain an excessively large current and eventually becomes saturated. 
The saturation of an inductor will be discussed later in this section. 

EXAMPLE 2.1 Inductance of Toroidal Inductor 

This example illustrates the inductance of an inductor fabricated using a toroidal 
core, as depicted in Fig. 2.7. Referring to Fig. 2.7(a), the magnetic flux linkage 
of the inductor is given by 

Ä(t) = ηφ(ί) = nSB{f) = ηΞμΗ{ί) = μΓμ0η8Η{ί) (2.6) 

where μΓ is the relative permeability of the core material, μ0 is the permeability 
of free space, n denotes the turns of the inductor winding, and S is the cross-
sectional area of the core. On the other hand, Ampere's law leads to the 
relationship 

H(t) lm = n idt) => W) = ^γ^- (2.7) 

(a) (b) 

Figure 2.7 Toroidal inductor, (a) Inductor structure, (b) Geometry of toroidal core. 
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Figure 2.8 Inductive switching circuit, (a) Circuit diagram, (b) Circuit waveforms. 

where lm is the length of the magnetic path along the toroidal core 
and (2.7), it follows that 

S 9 

A(t) = μΓμ() —rriL(t) 

Finally, the inductance of the toroidal inductor is given by 

τ m s 2 
l dt) lm 

■ EXAMPLE 2.2 Inductive Switching Circuit 

This example illustrates the circuit behavior of the inductor excited by a pulse 
voltage waveform. Figure 2.8 shows a simple switching circuit along with 
its circuit waveforms. Assume that the inductor is initially unenergized and 
the switch is opened. When the switch is closed at t - 0, a dc voltage Vs is 
applied across the inductor and iL starts to increase linearly with a slope Vs /L. 
The switch is then opened at t - t\, thereby forcing the inductor current to 
collapse. The change in the inductor current in turn induces a voltage across 
the inductor. Equation (2.3) indicates that a negative voltage, whose magnitude 
is proportional to the decaying slope of the inductor current, will be induced 
across the inductor. 

When the switch is assumed to open instantaneously, the magnitude of the 
induced voltage is infinite. In practice, however, the magnitude of the negative 

From (2.6) 

(2.8) 
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Figure 2.9 Inductive switching circuit, (a) Circuit diagram, (b) Circuit waveforms. 

voltage is finite because a real switch can only react with finite response 
time. Even so, the magnitude is still large enough to destroy any practical 
semiconductor switch. 

The behavior of the inductor in this example can also be explained using 
the energy conservation principle. As the inductor current ramps up, the 
magnetic energy stored inside the inductor continues to increase. When the 

inductor current is collapsed at t - t\, the total energy Em = 0.5 L(ii(t\)) 
is instantaneously released in the shape of a voltage spike. As illustrated in 
this example, a sudden interruption of the inductor current incurs a destructive 
voltage spike and therefore should be avoided, unless the circuit is intentionally 
designed to operate so. 

■ EXAMPLE 2.3 Inductive Switching Circuit 

This example shows the operation of another inductive switching circuit. In the 
circuit depicted in Fig. 2.9(a), a dc voltage source is connected to an inductor 
through an active-passive switch pair. In Fig. 2.9, the on/off status of the 
active switch is controlled by the switch drive signal shown in Fig. 2.9(b). As 
explained earlier, the active-passive switch pair functions as an SPDT switch. 
When the active switch turns on, the passive switch is turned-off; conversely, 
when the active switch turns off, the passive switch is turned-on. With the 
active switch turned-on, the dc voltage Vs is applied across the inductor L and 
the inductor current thus ramps up with a slope Vs /L. 

When the active switch turns off, the diode is turned-on because the current-
carrying inductor behaves as a current source. Once the diode is turned-on, 
the voltage across the inductor becomes zero. According to (2.3), the inductor 

Active switch 
lL 

+ V , H v i 
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Figure 2.10 iL-A characteristics of inductor. 

current remains constant when its voltage is zero; the inductor current thus 
maintains the value that appeared before the switch is turned-off. When the 
switch is turned-on in the next operational cycle, the inductor current again 
starts to increase. By repeating this process, the inductor current proceeds as 
depicted in Fig. 2.9(b). 

Saturation of Inductor 

Figure 2.10 illustrates the relationship between the inductor current ii and magnetic 
flux linkage A. As ii is increased from zero, so is Λ. However, the linear relationship 
between iL and A is valid only within a limited range. When the inductor current 
exceeds the critical values, ± iicrit in Fig. 2.10, the magnetic flux linkage remains the 
same at + AsaU regardless of the magnitude of the inductor current; this phenomenon is 
referred to as magnetic saturation. Because the slope of the ii-A curve represents the 
inductance as shown in (2.1), the saturation implies a zero inductance for the inductor. 
Thus, the saturation causes a profound impact on the circuit operation. For example, 
when a dc voltage Vs is applied to an inductance L, the current increases towards 
hcrit by the equation iL(t) = (Vs/L)t. When the inductor current reaches in-nt, 
magnetic saturation occurs. Upon magnetic saturation, the inductor current shoots 
up boundlessly because the inductance becomes null at the instant of saturation. 
Because a real circuit cannot support such an excessive inductor current, magnetic 
saturation should be avoided to prevent a catastrophic failure of the circuit. 

Magnetic saturation is attributed to the properties of the core material of the 
inductor. Numerous magnetic dipoles exist inside the core material. When no 
external current is present, the magnetic dipoles are randomly oriented. For this 
case, the core material does not exhibit any magnetic properties because the effects 
of individual magnetic dipoles are canceled by each other. 

When the inductor current begins to flow, the magnetic field is developed inside 
the core and some magnetic dipoles start to align in parallel with the magnetic field, 



ENERGY STORAGE AND TRANSFER DEVICES 2 3 

thereby generating additional magnetic flux; this effect is known as the magnetic 
induction. As the current continues to grow, more magnetic dipoles align with the 
magnetic field, thereby increasing the magnetic flux. When the inductor current 
reaches the critical value iicriu all the magnetic dipoles line up in parallel with the 
magnetic field and the magnetic flux attains its maximum value, Asat. The core now 
becomes saturated and the magnetic flux remains at Asat even if the inductor current 
is further increased. 

Flux Balance Condition or Volt-Sec Balance Condition 

In most switching circuits, inductors are operated in such a way that the magnetic 
flux is increased during one part of a switching period and then decreased during 
the other part of the same switching period. The flux balance condition asserts that 
the flux increase in one switching period should be equal to the flux decrease in 
that switching period, or equivalently the net change in the magnetic flux over one 
switching period must be zero. 

The justification for the flux balance condition is self-explanatory. If the net flux 
change within each switching period is not balanced at zero, the flux will continue 
to grow towards the positive direction or negative direction, eventually encountering 
the magnetic saturation. Therefore, all the inductors in a properly-designed inductive 
switching circuit should satisfy the flux balance condition. 

The flux balance condition can also be paraphrased into an alternative form, which 
is more convenient for circuit analysis purposes. Faraday's law states that 

do(t) 
at 

where vi is the instantaneous voltage across the inductor, n is the number of turns of 
the inductor winding, and φ denotes the magnetic flux inside the inductor. Equation 
(2.10) is rearranged as 

d 0 ( i ) = — at (2.11) 
n 

to express the flux change as a function of the inductor voltage. Now assume that 
the inductor is excited by a rectangular voltage waveform in Fig. 2.11. The positive 
voltage V\ increases the magnetic flux, whereas the negative voltage -V2 decreases 
the flux. The flux increase during T\ is given by 

A<f>inc = ^Tx (2.12) 
n 

and the flux decrease during T2 becomes 

tydee = —T2 (2.13) 

n 

By equating (2.12) and (2.13) based on the flux balance condition, it follows that 
Δφύιε = tydec => Vi Γι = V2T2 (2.14) 
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VL 

Figure 2.11 Volt-sec balance condition: V\T\ = V2T2. 

which states that the product of the voltage and time interval during which the inductor 
voltage is positive should be equal to that calculated when the inductor voltage is 
negative, or equivalently the average value of the inductor voltage over one switching 
period must be zero. This principle is referred to as the volt-sec balance condition. 
The volt-sec balance condition is generalized as follows. The average value of the 
inductor voltage calculated over integer multiples of the switching period is zero. 
Furthermore, the average value of the inductor voltage in general can be considered 
to be zero, assuming that the averaging is performed over a sufficiently longer period 
than the switching period. 

An inductive switching circuit will establish the steady-state equilibrium where all 
the circuit variables are settled down into the values that satisfy the volt-sec balance 
condition on inductors. Thus, the volt-sec balance condition can be used as a circuit 
theorem in evaluating steady-state values of circuit waveforms. 

Freewheeling Path and Freewheeling Diode 

The inductor current should not be discontinued abruptly because a sudden interrup-
tion of the inductor current generates a destructive high voltage spike. Therefore, 
the circuit path, which is connected to an inductor and will be open-circuited during 
the circuit operation, should always be accompanied by an alternative circuit path, 
which becomes operative only when the original inductor current path is broken. 
This alternative path for the inductor current is called the freewheeling path. The 
freewheeling path is usually constructed with a diode which is normally turned-off 
and only becomes turned-on when the original inductor current path is disrupted. 
The diode employed to provide a freewheeling path is called ^freewheeling diode. 

■ EXAMPLE 2.4 Inductive Switching Circuit with Freewheeling Path 

This example illustrates the operation of an inductive switching circuit with a 
freewheeling path. Figure 2.12 shows the circuit diagram and waveforms of 
an inductive switching circuit. If the freewheeling diode located in the middle 
of Fig. 2.12(a) is not present, a high voltage spike will be generated when the 
switch is opened. The freewheeling diode prevents the occurrence of such 
a voltage spike. When the switch turns off, the freewheeling diode is now 
turned-on, thereby creating a freewheeling path for the inductor current. 
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Figure 2.12 Inductive switching circuit with freewheeling path, (a) Circuit diagram, (b) 
Inductor current waveforms. 

When the switch is turned-on, the inductor current increases according to 
the equation 

ίΜ = ψ = Υ^ι( (2.15) 
On the other hand, when the switch is turned-off and the freewheeling diode 
conducts, the inductor current decreases as 

kit) = ~ p i (2.16) 

Now, it is assumed that the active switch is turned-on for half the switching 
period and turned-off for the remaining switching period, as shown in Fig. 
2.12(b). With this assumption, the following three different cases are consid-
ered: 

. Case 1: VS2 = -jVs\ 

. Case 2: VS2 > -VS\ 

. Case 3: VS2<^Vsi 

The inductor current waveforms, iL, for these three cases are shown in Fig. 
2.12(b). For Case 1, the increasing slope of the inductor current is identical 
to the decreasing slope, resulting in a periodic triangular waveform. For Case 
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2, the falling rate is faster than the rising rate, as such, the inductor current iL 

is reduced to zero before the onset of the next operational period. When ii is 
reduced to zero, the diode turns off and remains off for the remaining switching 
period because the diode cannot carry the current in the reverse direction. 

Finally, for Case 3, the rate of the inductor current falling is slower than the 
rate of the inductor current rising. At each switching period, the final value 
of the inductor current will be larger than the initial value. Accordingly, the 
inductor current will respond as shown in Fig. 2.12(b). Case 3 violates the 
flux balance condition and the circuit never reaches steady state. This circuit 
will eventually encounter inductor saturation and ensuing catastrophic failure. 
Readers are urged to sketch the inductor voltage waveforms for the three cases, 
in order to confirm the compliance with or violation of the volt-sec balance 
condition on the inductor, particularly to understand how Case 2 meets the 
volt-sec balance condition. 

2.2.2 Capacitors 

Along with inductors, capacitors are widely used in dc-to-dc power conversion cir-
cuits as an energy storage component. This section discusses the circuit properties 
of capacitors and investigates their operation under periodic excitations. The current 
section also presents important circuit theorems for capacitors. 

Circuit Equations 

Capacitors are typically fabricated by placing a pair of conductor plates in parallel 
and filling the gap with a dielectric material. When a voltage source is applied across 
the parallel plates, the capacitor accumulates electric charge inside the dielectric 
material, as shown in Fig. 2.13. The capacitance C of a capacitor is defined as the 
ratio of the accumulated electric charge q to the applied voltage vc 

C4 (2.17) 
vc(0 

On the other hand, the current through the capacitor is defined as 

ic(t)=*g> (2.18) 
at 

Using the definition of the capacitance in (2.17), (2.18) is rearranged as 

ίΜ = €ά-ψ (2.19) 
at 

leading to the v-i relationship for capacitors. Equation (2.19) is integrated to yield 
an alternative circuit equation for capacitors 

■l· 
vc(t) = ^ I icWdf (2.20) 
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Figure 2.13 Capacitor and polarity/direction of terminal voltage/current waveforms. 
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Figure 2.14 Capacitive switching circuit, (a) Circuit diagram, (b) Circuit waveforms. 

The polarity/direction of the voltage/current waveform associated with a capacitor is 
defined as shown in Fig. 2.13. 

When a capacitor is connected to a dc current Is, the voltage across the capacitor 
rises linearly 

vcW = I ' (2.21) 

Equation (2.21) indicates that the capacitor voltage continues to increase boundlessly 
at the presence of the dc current. However, a practical capacitor will be damaged or 
destroyed when the capacitor voltage is increased excessively. 

EXAMPLE 2.5 Capacitive Switching Circuit 

This example illustrates the operation of a simple capacitive switching circuit. 
Figure 2.14(a) shows a capacitive switching circuit where an ideal current 
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source is connected to an uncharged capacitor. The switch in the middle of 
the circuit is initially closed. When the switch is opened at t = 0, the dc 
current Is flows into the capacitance C, thereby raising the capacitor voltage 
as vc(t) = (Is /C)t. When the switch is closed at t = t\, the capacitor voltage is 
forced to collapse. A sudden collapse of the capacitor voltage in turn induces 
an infinitely large current according to (2.19). 

Certainly, a real semiconductor switch cannot carry such a large current and 
will be permanently damaged. In terms of the energy conservation principle, 
the energy accumulated in the capacitor at t = t\, Ee = 0.5C(vc(/i))? is in-
stantaneously released when the switch is closed. This instantaneous energy 
discharge will destroy the semiconductor switch. 

■ EXAMPLE 2.6 Capacitive Switching Circuit 

This example shows the operation of another capacitive switching circuit. 
Figure 2.15(a) shows a capacitive switching circuit in which the current source 
is connected to a capacitor through a diode. The switch in the middle of 
the circuit is initially closed. When the switch is opened, the current source 
turns on the diode and charges the capacitor, thereby raising the capacitor 
voltage by the equation vc(t) = (JslC)t. When the switch is closed, the diode 
is reverse-biased by the elevated capacitor voltage. The capacitor voltage 
remains constant because the capacitor is isolated from the current source by 
the turned-off diode. The diode, which isolates the charged capacitor from the 
current source, is called an isolation diode. When the switch is opened in the 
next switching period, the capacitor voltage starts to rise again. By repeating 
this process, the circuit produces the waveforms shown in Fig. 2.15(b). 

Insulation Breakdown 

As the capacitor voltage continues to rise, it eventually reaches the critical value that 
breaks the insulation of the dielectric material inside the capacitor. This insulation 
breakdown causes permanent damage to the capacitor and application circuit. Ac-
cordingly, all capacitors are specified with the highest voltage they can sustain. The 
circuit shown in Fig. 2.15 is not practical because the capacitor voltage will eventually 
rise to the critical value that triggers the insulation to break down. 

Charge Balance Condition or Amp-Sec Balance Condition 

The charge balance condition states that the net change in the charge accumulation 
in a capacitor should be balanced at zero for each switching period. As with the 
case of the flux balance condition, the charge balance condition is a prerequisite 
to assume steady-state operation for a capacitive switching circuit. Because the 
incremental charge in a capacitor, Aq, is given by the product of the capacitance C 
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Figure 2.15 Capacitive switching circuit, (a) Circuit diagram, (b) Circuit waveforms. 

and incremental capacitor voltage, Avc 

Aq = CAvc (2.22) 

the violation of the charge balance condition implies that the capacitor voltage will 
continue to rise in the positive or negative polarity until the capacitor encounters 
insulation breakdown. Because this is unacceptable to any application circuits, all 
capacitors should meet the charge balance condition. 

The incremental charge over one switching period Ts is given by 

Δ # τ = ic(t)Ts Ts (2.23) 

where TciOr, represents the averaged capacitor current over one switching period 
Ts. The charge balance condition asserts that AqTs in (2.23) should be zero, thereby 
indicating that Fc(0r, is zero as well. Accordingly, the charge balance condition is 
rephrased as the average capacitor current should be zero for each switching period. 
When a capacitor is excited by a periodic rectangular current shown in Fig. 2.16, the 

-h 

Figure 2.16 Amp-sec balance condition: 1{Γ\ = I2T2. 
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charge balance condition implies 

I\T\ =hT2 (2.24) 

because the positive current I\ accumulates the electric charge, whereas the negative 
current -I2 depletes the electric charge. Equation (2.24) is referred to as the amp-sec 
balance condition as it places a constraint on the product of the magnitude and the 
period of the capacitor current. 

As a generalization of the charge balance condition, the average value of the 
capacitor current in general can be considered zero. This generalized charge balance 
condition could simplify the analysis of capacitive switching circuits. 

■ EXAMPLE 2.7 Capacitive Switching Circuit 

The operation of another capacitive switch circuit is illustrated in this example. 
Figure 2.17(a) shows a capacitive switching circuit, consisting of two current 
sources, active switch, diode, and capacitor. As initial conditions, the capacitor 
is uncharged and the active switch is closed. Under this situation, /$ \ flows 
through the active switch while Ig2 circulates via the diode. For this case, the 
capacitor current ic is zero, as shown in Fig. 2.17(a). Now, the circuit begins 
its operation by opening the active switch. 

When the active switch is opened, Is \ flows into the capacitor while Is2 still 
runs through the diode, as shown in Fig. 2.17(b). Accordingly, the capacitor 
voltage increases linearly. When the active switch is closed, the diode is 
reverse-biased by the elevated capacitor voltage and Is2 now flows into the 
capacitor, in the opposite direction to Is\, as shown in Fig. 2.17(c). Now it 
is assumed that the switch is periodically opened and closed, with an equal 
time length for the open and closed periods. The following three cases are 
considered: 

. Case 1: 751 = IS2 

. Case 2: IS\ < IS2 

. Case 3: IS\ > IS2 

The capacitor voltage waveforms, vc, for these three cases are shown in Fig. 
2.17(d). For Case 1, the capacitor voltage vc becomes a symmetric triangular 
waveform with the identical rising and falling slopes. For Case 2, the falling 
slope is steeper than the rising slope. Thus, vc reduces to zero before the onset 
of the next operational period. When vc becomes zero, the diode is turned-on. 
Under this condition, Is2 diverts from the capacitor to the diode and vc is thus 
held zero for the remaining operational period. 

For Case 3, the rate of the capacitor voltage decreasing is slower than the 
rate of the capacitor voltage increasing. Accordingly, the capacitor voltage 
vc will increase cycle-by-cycle, as illustrated in Fig. 2.17(d). In fact, Case 3 
breaks the charge balance condition and the circuit never reaches steady state. 
It would be informative to sketch the capacitor current waveform ic, in order 
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Figure 2.17 Capacitive switching circuit, (a) Circuit diagram, (b) Current flow with switch 
open, (c) Current flow with switch closed, (d) Capacitor voltage waveforms. 

to comprehend how each of the three cases does or does not meet the amp-sec 
balance condition. 

2.2.3 Transformers 

Transformers are widely used in dc-to-dc power conversion circuits to change the 
levels of voltage and current waveforms while transferring electrical energy. Al-
though the electro-magnetic process inside the transformer is rather complicated, the 
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Figure 2.18 Symbol and polarity/direction of voltage/current waveforms of ideal 
transformer. 

external circuit properties can readily be described by a simple circuit model. This 
section discusses the circuit model for practical transformers and illustrates its use. 

First, the concept of the ideal transformer is discussed. Then, the electro-magnetic 
process of practical transformers is described using the equations of the ideal trans-
former and inductor, leading to the circuit model of practical transformers. 

Ideal Transformer 

The ideal transformer is a conceptual device that satisfies predefined relationships 
among its circuit variables. Figure 2.18 shows the symbol and polarity/direction of 
terminal voltage/current waveforms of an ideal transformer. The following terms are 
defined for the circuit variables and parameter associated with the ideal transformer: 

• vp{t)\ primary voltage ip(t): primary current 
• vs(t): secondary voltage is(t)' secondary current 
• n: turns ratio 

The symbol dot ' · ' in Fig. 2.18 is involved with the definitions for the po-
larity/direction of the primary and secondary voltage/current waveforms. In other 
words, the polarity and direction of the circuit variables are determined in reference 
to the position of · . Descriptions about · will be given in the next section which 
deals with non-ideal practical transformers. The turns ratio n is the key parameter 
that establishes the relationships between the terminal voltage and current waveforms 
of the ideal transformer 

vs(t) = nvP(t) (2.25) 

ip(t) = nis(t) (2.26) 

The ideal transformer is an imaginary device whose terminal circuit variables are 
always governed by (2.25) and (2.26). For example, if a dc value vp = V\ is applied 
as the primary voltage, the secondary voltage is also a dc, given by vs = riV\. It 
can be inferred from (2.25) and (2.26) that, when one port of an ideal transformer is 
short-circuited or open-circuited, the other port becomes the same. Although defined 
as a conceptual device, the ideal transformer plays a critical role in characterizing the 

lP 
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(a) (b) 

Figure 2.19 Structure, symbol, and polarity of practical transformer, (a) Structure and dot 
convention, (b) Symbol and polarity of practical transformer. 

circuit properties of practical transformers. In fact, the ideal transformer is conceived 
as a means of describing the circuit properties of non-ideal practical transformers. 
Now, we start the discussions about practical transformers. 

Practical Transformers 

Practical transformers are fabricated by wrapping two or more copper windings 
around a magnetic core. Figure 2.19(a) shows a simplified structure of a two-winding 
transformer built on a toroidal magnetic core. If one winding is referred to as the 
primary winding, the other winding becomes the secondary winding. To determine 
the terminal circuit characteristics of the practical transformer, it is necessary to 
know how the primary and secondary windings are wound. In other words, the 
polarity/direction of the terminal circuit waveforms depends on the internal pattern 
of the transformer windings. The following dot convention has been used to specify 
the winding pattern of transformers. 

Dot Convention: For both primary and secondary windings, one end of the winding 
is marked with a dot · as a means of indicating the polarity of the transformer. 
The location of · is determined as follows. When the primary current flows 
into the dotted end of the winding and the secondary current also enters the 
dotted end of the winding, two magnetic fluxes, generated by the two currents 
running into the respective windings, are directed to be additive, as illustrated 
in Fig. 2.19(a). Namely, the primary and secondary currents flowing into the 
winding terminals marked · produce mutually additive magnetic flux. Readers 
are urged to refer to Fig. 2.19(a) to confirm the dot convention, pattern of the 
transformer windings, and direction of the magnetic flux, as all illustrated in 
Fig. 2.19(a). 

The operation of the transformer is based on the coupling between the primary 
winding and the secondary winding via the electro-magnetic induction. According 
to Lenz's law, the electro-magnetic induction always occurs in such a way that the 
magnetic flux, produced as the outcome of the induction, opposes the magnetic 
flux that initiated the induction process. In conjunction with the dot convention, 
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Lenz's law is reiterated as follows. When the initiating current enters the dotted 
end of the primary winding, the induced current should leave from the dotted end 
of the secondary winding. The two magnetic fluxes then oppose each other, thereby 
complying with Lenz's law. 

Figure 2.19(b) shows the symbol of a practical transformer together with the 
polarity/direction of its terminal voltage/current waveforms. The directions of the 
terminal currents are defined by Lenz's law and dot convention. The polarities 
of the winding voltages accord with the directions of the winding currents. The 
polarity/direction of the terminal circuit variables, along with the location of · in Fig. 
2.19(b), is consistent with that of the ideal transformer in Fig. 2.18. The vertical 
bars between the primary and secondary windings signify the presence of a magnetic 
core in the practical transformer. The vertical bars also symbolically differentiate the 
practical transformer from the ideal transformer. 

The polarity of the transformer can be defined in other way around. In other 
words, the position of · on each winding can be swapped, along with the reversal 
of the polarity/direction of voltage/current waveforms associated with each winding. 
This, of course, does not alter the circuit properties of the transformer. 

Circuit Model for Practical Transformers 

A circuit model for practical transformers can be created based on Faraday's law, 
Ampere's law, and properties of the magnetic core. Figure 2.20 shows the circuit 
configuration that is used in developing a circuit model for the practical transformer. 
To simplify the model derivation, perfect magnetic coupling is presumed for the 
practical transformer. In other words, the common magnetic flux, φ€ in Fig. 2.20(a), 
entirely passes through both the primary and secondary windings without any leakage 
component. According to Faraday's law, the terminal voltage of each winding is given 
by 

at at 

dÄs(t) AT άφΜ 
vs(0 = —7— = Ns —7— (2·28) 

at at 
where Ap and As represent the magnetic flux linkages across the primary and sec-
ondary windings due to the common magnetic flux 0O while Np and Ns denote the 
number of the primary and secondary winding turns. From (2.27) and (2.28), the 
relationship between the terminal voltages is given as 

vs(t)=^fMt) (2.29) 
NP 

The connection between the terminal currents is formulated by applying Ampere's 
law along the magnetic path of the transformer 

Npip(t)-Nsis(t) = Hclm (2.30) 
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Figure 2.20 Simple circuit using practical transformer, (a) Circuit configuration, (b) 
Geometry of toroidal core. 

where Hc is the magnetic field intensity associated with 0C, and lm is the length of the 
magnetic path. Equation (2.30) is rearranged as 

NP NP 

The last term in (2.31) is referred to as the magnetizing current 

im{t) = 
NP 

The magnetic flux linkage at the primary winding is given by 

ÄP(t) = ΝρφΜ = ΝΡμΓμ0Η€Ξ 

(2.31) 

(2.32) 

(2.33) 

with μτ the relative permeability of the core material, μ0 the permeability of free 
space, and S the cross-sectional area of the core. The inductance, associated with 
the magnetizing current of (2.32) and flux linkage of (2.33), is now defined as 

^ m — 
MO = ΝΡμκμ0Ηε5 

NP 

= μΓμ0—ΝΡ (2.34) 

This inductance is termed as the magnetizing inductance because it is associated with 
the magnetizing current. Equation (2.34) indicates that the magnetizing inductance 
corresponds to the inductance that is evaluated at the primary side of the transformer 
with the secondary winding removed or unaccounted for, as confirmed by referring 
to Example 2.1. 

The circuit behavior of Fig. 2.20, given by (2.29) and (2.31), can be represented 
by the circuit model in which the practical transformer is replaced with an ideal 
transformer plus magnetizing inductance. Figure 2.21 shows such a circuit model, 
where the turns ratio of the ideal transformer is determined as 

NP 
(2.35) 
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Figure 2.21 Equivalent circuit representation of Fig 2.20. 

and the magnetizing inductance Lm is given by (2.34). The validity of Fig. 2.21 is 
confirmed by showing that the circuit model reproduces the original equations of 
(2.29) and (2.31). Referring to Fig. 2.21 and the circuit equation of the 1 : n ideal 
transformer, the relationship between the terminal voltages is given as 

vs(t) = nvP(t) 

and the terminal currents are related as 

ip(f) = nis(t) + im(t) 

The magnetizing current im is evaluated as 

AP(t) ΝΡμΓμ0ΗεΞ 
im(t) 

μΓμ()—Ν2
ρ 

Hclm 
NP 

(2.36) 

(2.37) 

(2.38) 

Now, the current equation (2.37) becomes 

NP NP 
(2.39) 

which is the original current equation of (2.31). 
To summarize the model derivation, Fig. 2.22 shows the symbol and circuit model 

of the practical transformer. The turns ratio of the ideal transformer is given by 

n = NP 
(2.40) 

and the magnetizing inductance is determined as 

:μΓμ„ -Νί (2.41) 

The magnetizing inductance represents the non-ideality of practical transformers. 
Thus, it is good engineering practice to maximize the magnetizing inductance while 
complying with other design constraints. The larger the magnetizing inductance, 
the closer the practical transformer is to the ideal transformer. The magnetizing 
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Figure 2.22 Symbol and circuit model for practical transformer, (a) Symbol, (b) Circuit 
model. 

inductance becomes infinitely large when the permeability of the core material is 
assumed to be infinite. For such a case, the magnetizing inductance disappears and 
the circuit model reduces to the ideal transformer. 

Figure 2.22(b) is the simplest circuit model for practical transformers. The model 
becomes more complex when the imperfect magnetic coupling, parasitic circuit com-
ponents, and detailed core properties are incorporated. However, the operations of 
most dc-to-dc power conversion circuits can duly be described using the transformer 
model shown in Fig. 2.22(b). 

EXAMPLE 2.8 Simple Circuit with Practical Transformer 

This example illustrates the use of the previous circuit model for practical trans-
formers. Figure 2.23(a) shows a simple circuit in which a practical transformer 
is connected to a voltage source v/> and current source is. The waveforms for 
the voltage source v/> and current source is are shown in Fig. 2.23(a). The 
transformer is built using a toroidal core with μΓ = 5000, 5 = 1 cm2, and 
lm = 4πχ 10"1 cm. The turns of the primary winding are Np = 10 and that of 
the secondary winding are Ns = 20. Figure 2.23(b) shows the circuit model of 
Fig. 2.23(a). The magnetizing inductance is evaluated as 

Lm = μΓμ0—ΝΡ 

= 5χ1034πχ10 -7 10" 

4πχ10~ 
102 = 5mH 

and the turns ratio is 
Ns ^ - 2 
NP 10 

The circuit variables are evaluated as 

and 

vs(t) = nvP(t) = 2vp(t) 

iP(t) = nis(i) + im(t) = 2 is(t) + im(t) 

(2.42) 

(2.43) 
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Figure 2.23 Simple transformer circuit, (a) Circuit configuration, (b) Circuit model, (c) 
Circuit waveforms. 
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with 

Mt)=-}- fvP(t)dt (2A4) 

Figure 2.23(c) shows the steps of constructing vs and iP, based on the ex-
pressions (2.42) through (2.44) along with vP and is waveforms given in Fig. 
2.23(a). The average value of im is assumed zero in this example. 

2.3 SWITCHING CIRCUITS IN PRACTICE 

Switching circuits, constructed with the power stage components discussed in this 
chapter, have been used in many industrial and consumer electronics. In these applica-
tions, semiconductor switches and energy storage/transfer elements are appropriately 
combined to operate as a functional switching circuit. This section presents a couple 
of such examples. 

2.3.1 Solenoid Drive Circuits 

An inductor fabricated by winding a copper coil around an iron rod is called a 
solenoid. The solenoid is often used as an actuator in industrial applications. When 
a solenoid is connected to a voltage source by turning on a semiconductor switch, 
a linearly-increasing current is established in the solenoid inductance and energy is 
thus accumulated inside the solenoid. Although some energy is dissipated during 
the operation as an actuator, most of the accumulated energy will still remain in the 
solenoid after operation. The solenoid drive circuit must be designed so that the 
remnant energy is safely removed from the solenoid inductance without damaging 
the semiconductor switch. In this section, different solenoid drive circuits are an-
alyzed focusing on their efficiencies. To simplify ensuing discussions, the energy 
consumed during the actuator operation is assumed negligible and the solenoid is 
thus represented by a pure inductor. 

First, a conceptual solenoid drive circuit is shown in Fig. 2.24. It becomes 
immediately apparent that this drive circuit is not workable due to the lack of the 
freewheeling path. When the switch is closed, the inductor current increases linearly, 
thereby storing energy in the solenoid. When the switch is opened, the inductor 
current suddenly loses its path and the stored energy is instantaneously released in an 
uncontrolled manner. This abrupt energy discharge, occurring in the form of a high 
voltage spike, would destroy the semiconductor switch. This section discusses two 
different solenoid drive circuits that operate without damaging the semiconductor 
switch. 

Dissipative Solenoid Drive Circuit 

Figure 2.25(a) shows the first solenoid drive circuit where a freewheeling path, 
consisting of a diode and resistor, is employed in parallel with the solenoid. When 
the switch is opened, the diode conducts to create a freewheeling path for the inductor 
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Figure 2.24 Conceptual solenoid drive scheme. 
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Figure 2.25 Dissipative solenoid drive circuit, (a) Circuit diagram, (b) Energy build-up 
period, (c) Energy removal period. 

current. This prevents the instantaneous energy discharge and protects the switch. 
Detailed circuit operations are explained below. 

Energy Build-up Period: When the switch is closed, the freewheeling diode is 
turned-off and the circuit is represented by Fig. 2.25(b). The inductor current 
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increases linearly 

kit) = j-t (2.45) 

thereby piling up energy in the solenoid inductance. 

Energy Removal Period: When the switch is opened at t = DTS, the diode is turned-
on and the freewheeling path is closed. The equivalent circuit in this period is 
shown in Fig. 2.25(c). The freewheeling current is given by 

iD(t) = iL(t) = iL(DTs) e'1^ (2.46) 

with r = L/R. As the freewheeling current circulates through the resistor, the 
energy stored in the solenoid inductance is gradually dissipated at the resistor. 
As the freewheeling current reduces to a negligible value, the stored energy 
is practically all removed by dissipation. Although the solenoid drive circuit 
functions properly without damaging the switch, efficiency of the drive circuit 
will be low because the stored energy is dissipated in the resistor. Figure 
2.25(a) is referred to as the dissipative solenoid drive circuit. 

EXAMPLE 2.9 Dissipative Solenoid Drive Circuit 

In this example, the operation of the dissipative solenoid drive circuit is illus-
trated using PSpice® simulations. Figure 2.26(a) is the circuit diagram of a 
dissipative solenoid drive circuit. Figure 2.26(b) illustrates the major circuit 
waveforms with Vs = 90 V, L = 180 mH, R = 20 Ω, Ts = 50 ms, and D = 0.2. 
When the switch is closed, the inductor current grows linearly and reaches the 
peak value at t = DTS = 0.2 · 50 x 10-3 s 

^ = T D r ^ T 8 ö ^ a 2 - 5 0 x l 0 _ 3 = 5 A 

The total energy 

Em = \L{iLpeakf = ^lSOxlO"3 52 = 2.25 J 

is stored in the inductor. When the switch is opened, the energy removal 
period starts and the inductor current ii freewheels through the loop created 
by the diode, resistor, and solenoid inductor. The diode current io decays 
exponentially while dissipating the energy at the resistor. When the stored 
energy is all dissipated in the resistor, iD converges to zero. The waveforms of 
the source current is and inductor voltage vi show the operational details of 
the circuit. 
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Figure 2.26 Dissipative solenoid drive circuit, (a) Circuit diagram, (b) Circuit waveforms. 

Non-Dissipative Solenoid Drive Circuit 

Efficiency of the solenoid drive circuit will be improved if the stored energy is re-
covered by the drive circuit, rather than wasted in the resistor. Figure 2.27(a) shows 
a non-dissipative solenoid drive circuit. The circuit employs a pair of synchronized 
switches and two diodes. The synchronized switches are turned-on and off simulta-
neously, while the two diodes are used to create a freewheeling path for the inductor 
current. When the synchronized switches are turned-off, the inductor current flows 
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Figure 2.27 Non-dissipative solenoid drive circuit, (a) Circuit diagram, (b) Energy build-up 
period, (c) Energy recovery period, (d) Recess period. 

through the two diodes and the stored energy is transferred back to the voltage source. 
Operational details of the drive circuit are described below. 

Energy Build-up Period: When the synchronized switches are closed, the two 
diodes are individually reverse-biased by Vs. The equivalent circuit in this 
period is shown in Fig. 2.27(b). During this period, the solenoid inductor 
current increases linearly 

kit) = j-t (2.47) 

and energy is delivered from the source to solenoid. 

Energy Recovery Period: When the switches are opened at t = DTS, the two diodes 
conduct simultaneously and a freewheeling path is created as shown in Fig. 
2.27(c). The solenoid voltage now becomes -Vs and the freewheeling current 
ramps down from the peak with a slope -Vs /L 

iD(f) = iL{t) = iL{DTs) - ^-t (2.48) 
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Figure 2.28 Non-dissipative solenoid drive circuit, (a) Circuit diagram, (b) Circuit 
waveforms. 

During this period, the freewheeling current runs into the voltage source and 
the energy stored in the solenoid is transferred back to the voltage source. The 
stored energy is thus recovered by the drive circuit, rather than dissipated in 
the circuit. 

Recess Period: When the freewheeling current is reduced to zero, the two diodes 
are turned-off and remain off thereafter. Because the solenoid is isolated from 
the source, all the circuit variables are zero, as shown in Fig. 2.27(d). 
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EXAMPLE 2.10 Non-Dissipative Solenoid Drive Circuit 

This example illustrates the operation of the non-dissipative solenoid drive 
circuit. Figure 2.28 shows the circuit diagram and simulated waveforms of a 
non-dissipative solenoid drive circuit. The operational conditions and circuit 
parameters are Vs = 90 V, L = 180 mH, Ts = 50 ms, and D = 0.2. 

Referring to Fig. 2.28(b), the circuit operation is explained as follows. 
During the energy build-up period, the circuit waveforms are the same as the 
previous dissipative case. However, during the energy recovery period, the 
inductor current ii flows back to the source through the freewheeling diodes, 
thereby returning the accumulated energy to the source. The source current is 
becomes negative in this period: is = -ID = -IL- The negative current signifies 
the retrieval of the energy transferred to the solenoid drive circuit during the 
energy build-up period. 

2.3.2 Capacitor Charging Circuit 

As the second example of industrial applications, Fig. 2.29(a) shows a switching 
circuit consisting of a practical transformer, active switch, diode, and capacitor. This 
circuit is capable of charging the capacitor to a desired voltage level. A simple 
application will be a high voltage generator which is used in flash lamp driving 

vsQ 

\:n -M-
+ 

(b) 

Figure 2.29 Capacitor charging circuit and its circuit model, (a) Capacitor charging circuit. 
(b) Circuit model: Lm is magnetizing inductance and n = Ns /NP is turns ratio of transformer. 
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Figure 2.30 Operation of capacitor charging circuit, (a) Energy build-up period, (b) Energy 
transfer period, (c) Recess period. 

circuits for cameras. Figure 2.29(b) shows the circuit model of Fig. 2.29(a), where 
the practical transformer is replaced with a 1 : n ideal transformer and magnetizing 
inductance Lm. The operation of the capacitor charging circuit is explained using the 
circuit model in Fig. 2.29(b). 

Energy Build-up Period: When the switch is closed, the energy build-up period 
starts. The circuit model for this period is shown in Fig. 2.30(a). The source 
voltage Vs is applied across the magnetizing inductance and primary winding 
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of the ideal transformer. Due to the polarity of the transformer windings, 
the diode is turned-off by the reverse voltage of nVs + vc where vc is the 
voltage across the capacitor. A linearly-increasing current flows through the 
magnetizing inductance and active switch 

im(t) = iQit) = % (2.49) 

In this period, the primary winding does not carry any current because the 
secondary winding is open-circuited. The primary and secondary winding 
currents are both zero to meet the current equation of the 1 : n ideal transformer. 
With the increasing magnetizing current, energy is piled up in the magnetizing 
inductance of the transformer. 

Energy Transfer Period: When the switch is opened ait = DTS, the energy transfer 
period begins. As shown in Fig. 2.30(b), the magnetizing current now diverts 
from the active switch to the primary winding of the ideal transformer, and 
circulates through the loop formed by the magnetizing inductance and the 
primary winding. This current in turn forces the diode to conduct, thereby 
complying with the current equation of the 1 : n ideal transformer. Under this 
situation, the capacitor voltage is reflected to the primary winding and applied 
across the magnetizing inductance in the negative polarity. The magnetizing 
current now declines as 

Mt) = ~ f-vc(t)dt (2.50) 
Lm J n 

As the magnetizing current im continues to decrease, the accumulated energy 
is transferred to the capacitor, thereby increasing the capacitor voltage. The 
diode current is determined by the circuit equation of the 1 : n ideal transformer 

/D(0 = -im(t) (2.51) 
n 

Recess Period: When im is reduced to zero, so is the diode current and the accu-
mulated energy is completely transferred to the capacitor. Now, the diode is 
turned-off and the capacitor voltage is held constant. The circuit model in this 
recess period is shown in Fig. 2.30(c). 

By repeating the above operational cycle, the charge storage in the capacitor will 
be gradually increased, along with the elevation in the capacitor voltage. 

■ EXAMPLE 2.11 Capacitor Charging Circuit 

Operational details of the capacitor charging circuit are illustrated in this ex-
ample. Figure 2.31 shows the circuit diagram and simulated waveforms of a 
capacitor charging circuit with Vs = 24 V, Lm = 120 μΗ, C = 5 μ¥, n - 1, 
Ts = 100//s, and D = 0.4. 
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Figure 2.31 Capacitor charging circuit, (a) Circuit diagram, (b) Circuit waveforms. 

Referring to Fig. 2.31(b), the circuit operation is explained as follows. The 
magnetizing current im, which is identical to the switch current ig during the 
energy build-up period, increases up to the peak value 

Vc 24 
impeak = —DTS = -0.4 · lOOxlO"6 = 8 A 
mpeak 120xl0~6 

thereby accumulating the total energy 

1 1 -6o2 Em = ^LmdrnpeakY = ^ 120 x 10"° 8Z = 3.84 mJ (2.52) 
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in the transformer. This energy is delivered to the capacitor by the diode 
current during the energy transfer period. Thus, Em represents the amount of 
the energy transfer from the voltage source to capacitor during one operational 
period. The capacitor voltage VQ continues to increase in the period when the 
diode current iß exists. When ip reduces to zero, the recess period starts and 
vc is held constant until the next energy transfer period. 

Figure 2.31(b) reveals important details of the circuit operation. First, 
although the magnetizing current im increases linearly during the energy build-
up period, it decays in a nonlinear fashion in the energy transfer period. The 
voltage across the magnetizing inductance is a constant Vs during the energy 
build-up period. However, in the energy transfer period, the time-varying 
capacitor voltage is reflected by the ideal transformer and applied to the mag-
netizing inductor in the negative polarity. Accordingly, the magnetizing current 
declines in a nonlinear manner. 

Second, the duration of the energy transfer period successively diminishes as 
the operational cycle proceeds. The decaying slope of the magnetizing current 
is proportional to the magnitude of the capacitor voltage, which increases cycle-
by-cycle. Consequently, the rate of the energy transfer becomes progressively 
faster, resulting in a continuous reduction in the energy transfer period. 

Finally, the incremental growth in the capacitor voltage becomes smaller as 
the operational cycle proceeds. For each operational period, a fixed amount of 
energy is transferred to the capacitor, resulting in the cycle-by-cycle growth in 
the capacitor voltage. Since the energy stored in the capacitor is a quadratic 
function of the capacitor voltage, the increase in the capacitor voltage becomes 
smaller in proportion to the initial voltage at each operational cycle. 

The capacitor voltage at the end of the kth operational period, vc(kTs), is 
found from the energy balance relationship 

1 2 2E 
kEm = -C(vc(kTs)) => vc(kTs) = y - ^ t (2.53) 

For example, the capacitor voltage at the end of the 5th operational period is 
given by 

V2 · 3 84x10-3 

5x10-6 5 = 8 7 - 6 V 

Figure 2.32 shows the capacitor voltage vc for a longer time period. The 
time interval required to charge the capacitor at a fixed Vc is determined as 
follows. First, the required number of the charing operation, k, is found from 

l-CV2
c = kEm => k=\cv2

c±- (2.54) 
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Figure 2.32 Capacitor voltage waveform. 

10 

where Em given by (2.52). Now the total time required for charging Vc is given 
by 

Tcharge=kTs = \cV2
c^Ts (2.55) 

where Ts is the switching period. As an example, the time needed to charge 
Vc = 300 V is given by 

' charge lcV2
r—T< 

^5xl0" 6 300 2 —— ] —- - r 
2 3.84 x 10"3 100 x 10"6 

= 5.86 ms 

Figure 2.32 shows close agreement with the analytical prediction. 

2.4 SUMMARY 

This chapter investigated the circuit behavior of power stage circuit components. 
Operations of semiconductor switches, inductors, capacitors, and transformers were 
presented using several examples. One critical functional component in dc-to-dc 
power conversion circuits is the single-pole double-throw (SPDT) switch. In all the 
switching circuits covered in this chapter and other dc-to-dc conversion circuits to be 
studied in later chapters, the SPDT switch is implemented using the MOSFET-diode 
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pair. In particular, in the capacitor charging circuit in Section 2.3.2, the MOSFET 
and diode collectively function as an SPDT switch even though they are physically 
separated by the transformer. 

The energy storage and transfer devices include inductors, capacitors, and trans-
formers. The freewheeling path and flux balance condition are critical to understand-
ing operations of inductive switching circuits. For capacitive switching circuits, the 
charge balance condition can be used to analyze the circuit waveforms. The practical 
transformer is modeled as a combination of the ideal transformer and magnetizing 
inductance. The operation of the practical transformer is then analyzed using the 
circuit equations of the ideal transformer and inductor. 

This chapter analyzed two practical switching circuits — the solenoid drive circuit 
and capacitor charging circuit. Computer simulations are given to illustrate the 
operations of the switching circuits. PSpice® codes for these simulations are available 
at http://booksupport.wiley.com, along with those of other forthcoming simulation 
examples. 
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PROBLEMS 

2.1* Assume that the inductor and capacitor in Fig. P2.1 are initially unenergized. 

5V 

vs * Af\ * 

40 ms 
ov 

20 ms 40 ms 

-10V 

(a) 

6A 

20 ms 

10ms 

0A 

40 ms 

-4A 

(b) 

Fig. P2.1 

a) For Circuit (a), sketch the inductor current iL for 0 < t < 100 ms. 
b) For Circuit (b), sketch the capacitor voltage vc for 0 < t < 70 ms. 

2.2* Figure P2.2 shows four different switching circuits along with their respective 
inductor voltage or capacitor current waveform. 

Circuit A 

6V 

VL 
OV 

Circuit B 

6V 

\VL 

VL 2V 

(a) (b) 

Circuit C 
' 'C 

6A 

C 0A 

Circuit D 
' lC 

6A 

lC 2A 

Fig. P2.2 

(c) (d) 

a) Construct Circuit (a) using a 4 V voltage source, 2 V voltage source, MOS-
FET switch, and diode so that the circuit generates the given inductor 
voltage waveform vi. 
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b) Build Circuit (b) using the same circuit components as those of a) so that 
the circuit produces the given inductor voltage waveform vL. 

c) Construct Circuit (c) using a 4 A current source, 2 A current source, MOS-
FET switch, and diode so that the circuit generates the given capacitor 
current waveform ic. 

d) Build Circuit (d) using the same circuit components as those of c) so that 
the circuit produces the given capacitor current waveform ic. 

Consider the circuit in Fig. P2.3(a) and answer the questions. 

Closed 

0 2 -

Fig. P2.3 

2 ms Open 

4 ms 

(b) 

Closed 

Open 

(c) 

a) Referring to the switch drive signals shown in Fig. P2.3(b), sketch iL for 
the first two operational periods. Assume ii(0) - 0. 

b) Repeat a) for the switch drive signals in Fig. P2.3(c). 

Figure P2.4 shows a switching circuit, along with the switch drive signal and 
ii-λ curve of the inductor L. 
a) Find the inductance of L. 
b) Assume Vx = 16 V and sketch iL for the first three operational periods. 

Show the peak value of iL. 
c) Find the time instant at which the inductor would saturate. 
d) Find the minimum value for the Vx that avoids the inductor saturation. 
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32V 
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50 ms 

Fig. P2.4 

In the circuits shown in Fig. P2.5, the SPDT switch holds position x for DTS 

and position y for (1 - D)TS. 

ί ) ν 2 vx(± 

(a) 

©v> 'ΊΦ 

(c) DT, 

(l-D)Ts 

(d) 

Fig. P2.5 

a) For Circuits (a), (b), and (c), find the expression of V2/V1. 
b) For Circuit (d), find the relationship of 1*2/11. 

Consider the circuits shown in Fig. P2.6 and answer the questions. 
a) For Circuit (a), assume that the inductor is initially unenergized. Sketch 

the iL waveform for the first two operational periods for the following two 
cases. Show the maximum and minimum values of ii. 
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Fig. P2.6 

i) vsl = 4 V a n d V 5 2 = 6 V 
ii) V5i = 2 V a n d V 5 2 = 6 V 

b) Assume that the capacitor is initially uncharged in Circuit (b). Draw the vc 
waveform for the first two operational periods for the following two cases. 
Show the maximum and minimum values of vc . 
i ) / 5 1 = 4 A a n d / i S 2 = 2 A 
ii)/<n = 2 A a n d / 5 2 = 4 A 

2.7 Assume that all components are ideal in the circuits shown in Fig. P2.7. 
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20//F t 
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Fig. P2.7 
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2.8* 

a) For Circuits (a) and (b), sketch the ii waveform for the first two switching 
periods. Assume that the inductor is initially unenergized. Show the 
maximum and minimum values of ii. 

b) For Circuits (c) and (d), draw the VQ waveform for the first two switching 
periods. Assume the capacitor is initially uncharged. Show the maximum 
and minimum values of ve-

in the four switching circuits shown in Fig. P2.8, the SPDT switch holds 
position a for DTS and position p for (1 -D)TS. Answer the following questions. 

4V( 

+ v c 

(a) 

a P 
-o» o -

100/iH 

(C) 

Fig. P2.8 

DTV 

6A 

-̂ v 
Φ 

P? 
100 μ¥: 

P 

+ Q : 

>vc 
Q > A 

(b) 

a lL 

IJ1V 4V 

(d) 

(\-D)Ts 

2.9 

a) For Circuits (a) and (b), determine the values for D and Ts so that each circuit 
settles in a steady-state operation with a 1.8 V peak value of the capacitor 
voltage, vcpeak = 1.8 V. Assume the capacitor is initially uncharged. 

b) For Circuits (c) and (d), determine the values for D and Ts so that each circuit 
establishes a steady-state operation with iLpeak = 12 A. The inductor is 
initially unenergized. 

A switching circuit shown in Fig. P2.9 is configured using an SPDT switch and 
other circuit components. The SPDT switch periodically changes its position, 
as illustrated in Fig. P2.9. Assume the average value of /̂ 2 is 2 A and answer 
the questions. 
a) Use the flux balance condition on L\ to evaluate the average value of vc-
b) Apply the flux balance condition to L^ to find the value for V2· 
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40 μβ 

100/iS 

Fig. P2.9 

c) Use the charge balance condition on C to evaluate the average value of in. 
The average value of /̂ 2 is 2 A. 

d) Assume L\ = 4.8 mH, L2 = 1.2 mH, and C = 120 μ¥. Sketch in, 112, ic, 
and vc for the two operational periods. Show the maximum and minimum 
values of each waveform. 

2.10* The switching circuit shown in Fig. P2.10 is fabricated using an SPDT switch 
and other circuit components. The SPDT switch periodically changes its 
structure as illustrated in Fig. P2.10. 

15mH 

© 

lc 
^ 

2.25mF 

a p 

15mH 

© 15V 

3 ms 

6 ms 

Fig. P2.10 

a) Evaluate the average value of vc and find the value of the dc source V\. 
b) Assume that the average value of in is zero. Evaluate the average value of 

*L2-

c) Using the results of a)-b), sketch in, iui, *c> and VQ for the two operational 
periods. Show the maximum and minimum values of each waveform. 
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2.11**The common switch drive signal is applied to four switching circuits shown 
in Fig. P2.11. For each circuit, sketch /$·, VT, and ioi for the two operational 
periods. 

(a) (b) 

Closed 

30//s 

(c) 

Open 

(d) 

50/is 

Fig. P2.11 

2.12 Find the expressions for the current and voltage waveforms labeled in the two 
circuits shown in Fig. P2.12. 

1 : 2 

4 sin/ Φ 4sin/ < 2 Ω 

(a) 
lS 

Φ 
1 : 2 

4 sin/ Φ 4sinf < 2 Ω 

(b) 

Fig. P2.12 

2.13* A transformer is built using a toroidal core with μτ - 5000, S = 2 cm2, and 
lm - 4πχ 10"1 cm. The turns of the primary winding are 200 and the turns of 
the secondary winding are 400. 
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smt 

smt 

Fig. P2.13 

(b) 

Π cost 

a) A simple circuit shown in Fig. P2.13(a) is constructed using the transformer 
discussed above. Find the expressions for iP and vs. 

b) Now assume that the circuit is modified as shown in Fig. P2.13(b) in which 
the two identical transformers, each constructed as described above, are 
used. Find the expressions for iP, im, vm, and vo· 

2.14* An inductor is built using a toroidal core with μΓ = 5000, S = 2 cm2, and 
L = 4πχ 10-1 cm. 

-12 

A[Wb] 

0.03 

-0.03 

■UA] 

(?) 

(b) 

Fig. P2.14 
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a) Figure P2.14(a) shows the ii-λ curve of the inductor. 
i) Evaluate the inductance of the inductor. 
ii) Find the number of the turns of the inductor winding. 

b) A switching circuit shown in Fig. P2.14(b) is constructed using the inductor 
discussed above. In the following problems, the average value of ip is zero: 
lP(t) = 0. 
i) Assume Ts = 1 ms and find the maximum value of Vs for proper operation 
of the circuit. 
ii) Now assume Vs = 30 V and find the maximum value for Ts. 
iii) For the case with Ts = 1 ms and Vs = 30 V, sketch ip for the two 
operational periods. Show the maximum and minimum values of the 
waveform. 

c) A secondary winding is added to the inductor discussed above, thereby 
yielding a two-winding transformer with the turns ratio of 1 : 0.5. As shown 
in Fig. P2.14(c), a 3.75 mH inductor is terminated across the secondary 
winding of the transformer. For the case with 7^ = 1 ms, Vs = 30 V, 
and Tp(t) = 0, sketch is and ip for the two operational periods. Show the 
maximum and minimum values of the waveforms. 

A transformer is fabricated using a toroidal core with μκ = 5000, 5 = 2 cm2, 
and lm = 4πχ 10"1 cm. The turns of the primary winding are 10 and the turns 
of the secondary winding are 30. 

(a) 
Closed 

0 1ms 2ms 3ms 4ms 

(b) 
Closed 

Q i \ I I I 
0 1ms 2ms 3ms 4ms 

(c) 

Fig. P2.15 
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a) Evaluate the magnetizing inductance of the transformer. 
b) Draw a circuit model of the transformer. 
c) A simple circuit shown in Fig. P2.15(a) is constructed using the transformer 

discussed above. 
i) For the switch drive signals shown in Fig. 2.15(b), sketch ip and vs for 
0 < t < 4 ms. Assume the transformer does not saturate for this operation. 
Show the maximum and minimum values of the waveforms. 
ii) Repeat i) for the switch drive signals shown in Fig. P2.15(c). 

2.16 Consider the switching circuit shown in Fig. P2.16. Referring to the switch 
drive signals, answer the questions. 
a) Assume D = 0.5 for the switch drive signal and find the average values of 

vc and ii. 
b) Repeat a) for D = 0.25. 

80 V @ 02 ' 

+ v c -

Ö1Ö31 

Ö2Ö4 

Closed 

| DTS 1 Open Γ 

Q-D)TS 

Fig. P2.16 

2.17* Figure P2.17 shows a conceptual circuit configured with two inductors and one 
ideal transformer. The following experiments are performed to determine the 
values of the inductances and the turns ratio of the ideal transformer. 

• A 2 mH inductance is measured at the terminal x-x' with the terminal 
y-y' short-circuited. 

• A 7 mH inductance is measured at the terminal x-x' with the terminal 
y-y' open-circuited. 

• When a voltage source vs (t) = sin t is applied across the terminal x-x', the 
same voltage v0(t) = sin t is measured across the terminal y-y'. 

a) Find the values for the inductances, L\ and L2, and the turns ratio n of the 
ideal transformer. 

b) Find the expression for i'p when a voltage source vs (t) = sin t is connected 
across the x-x' terminal and the y-y' terminal is shorted. 
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Fig. P2.17 

2.18** A couple of experiments are performed to extract the circuit parameters of a 
practical transformer. 

• A 0.5 H inductance is measured at the primary winding with the secondary 
winding open-circuited. 

• When vs (t) = 20 sin t is connected to the primary winding, vo(t) = 5 sin t 
is measured at the open-circuited secondary winding. 

a) Draw the circuit model for the transformer. Show all the circuit parameters 
in your model. 

b) Five different circuits in Fig. P2.18 are configured using the transformer 
discussed above. For each circuit, find an expression for the primary 
winding current, ip. 

Fig. P2.18 

(d) (e) 
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2.19* Referring to the two circuits shown in Fig. P2.19, answer the following ques-
tions. The transformer is built using a toroidal core with μν - 5000, S =2 cm2, 
and lm = 4πχ 10"1 cm. The turns of the primary winding are 10 and the turns 
of the secondary winding are 20. 

Φ ^ ° ' f S l tO-̂  © 

t 5V 
lms 

2 ms 

(a) 

Fig. P2.19 

a) For Circuit (a), sketch the steady-state waveforms of ip and is for the 
two switching periods. Show the maximum and minimum values of each 
waveform. Assume that the average values of ip and 1*5 are zero. 

b) Repeat a) for Circuit (b). 

2.20* Consider a solenoid drive circuit shown in Fig. P2.20 and answer the questions. 

ls 

40 V © 

Ψ 

Ϊ 

Vz =20V I 

I 

γ 

Ϊ 

Vz = 2ov ; 

k 

1 

& ■ I 
200 mH: 

K V Ö 2 1 
Closed 

Q\Qi 
Open 

10ms 20ms 30ms 40ms 

Fig. P2.20 

a) Sketch the waveforms of is and vi for 0 < t < 40 ms. Show the maximum 
and minimum values on your sketch. 

b) Calculate the following items evaluated during 0 < t < 20 ms: 
i) the energy transferred from the source to the solenoid drive circuit, 
ii) the energy returned from the solenoid drive circuit to the source, and 
iii) the energy dissipated in the solenoid drive circuit. 
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2.21**Figure P2.21 shows two solenoid drive circuits, along with their switch drive 
signal and inductor current waveform. 

60 ms 

© 

lL 

15V 

T 

Fig. P2.21 

Z = 40mH 

Closed 

Open 

20 ms 

(b) 

a) Referring to Fig. P2.21(a), find the inductance L of the solenoid and the 
resistance of RD. 

b) Use the results of a) to calculate 
i) the peak energy stored in the solenoid, 
ii) the energy consumed at the resistor in each switching period, and 
iii) the average power supplied by the source. 

c) An alternative solenoid drive circuit is configured as shown in Fig. P2.21 (b). 
Referring to the solenoid drive circuit in Fig. P2.21(b), answer the ques-
tions. 
i) Assuming Vz = 25 V for the Zener diode, sketch iL and vi for the two 
operational periods. Label for the maximum and minimum values of each 
waveform. 
ii) Assuming Vz = 20 V for the Zener diode, sketch iL for the two opera-
tional periods. Show the maximum value and the final value of iL. Do you 
think this circuit is workable? Justify your answer. 
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2.22 Shown in Fig. P2.22 is a solenoid drive circuit along with its switch drive 
signal. Assume that the inductor is initially unenergized. 

© 
XF Z =20V ^60mH 

Closed 

Open 

2ms 3ms 4 ms 

Fig. P2.22 

a) Sketch ii for 0 < t < 4 ms. Show the maximum value on your sketch. 
b) Calculate the energy extracted from the voltage source Vs i during 0 < t < 

1 ms. 
c) Calculate the energy stored in the inductor at t = 2 ms. 
d) Calculate the energy consumed at the Zener diode during 1 < t < 2 ms. 
e) Calculate the energy transferred to V$2 during 1 < t < 2 ms. 

2.23 The non-dissipative solenoid drive circuit discussed in Section 2.3.1 is modified 
as shown in Fig. P2.23. Referring to the switch drive signal, sketch iL, io\, IDI, 
IQ\ , and νχ for 0 < t < 6 ms. Label the maximum and minimum values of each 
waveform. 

0 lms 3ms 4ms 6ms 

Fig. P2.23 
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2.24* Consider the capacitor charging circuit and its major circuit waveforms shown 
in Fig. P2.24(a). 

12A 

tv24A 

\ 
\ 1 

\ 

/ 
1 

80 V / 
Γ 

\\n 

© 60 V 

Time [yi/s] 

(a) 

t 
Circuit A 

Fig. P2.24 

\:n 

φ6 0 νί -M-

/ 
Circuit B 

(b) 

\\n 

QoOVr 1 #L_^ 

Circuit C 

a) Referring to the circuit waveforms, calculate the following circuit parame-
ters and operational conditions of the solenoid driving circuit: 
i) Lm: magnetizing inductance of the transformer, 
ii) n: turns ratio of the transformer, 
iii) D: duty ratio of the switch, and 
iv) C: capacitance of the output capacitor. 

b) Evaluate the following items based on the circuit waveforms: 
i) the energy transferred from the voltage source to the capacitor during the 
first 10 switching periods, 
ii) the capacitor voltage at the end of the 10th switching period, and 
iii) the time instant when the capacitor voltage elevates approximately to 
300 V. 

c) Suggest a new switch drive scheme that would minimize the total time 
required to charge the capacitor to a desired voltage. 
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d) Now assume that the capacitor charging circuit is modified into three dif-
ferent circuits, as shown in Fig. P2.24(b). For each circuit, explain its 
operation or describe the expected response of the circuit. 

2.25**Three different solenoid drive circuits are shown in Fig. P2.25. Referring to 
the common switch drive signal, answer the questions. 

© 

= 20Ω 
200mH-

rc,=80V 

Closed n_ 
0 10ms 

(a) 

Open 

a)"*·. 
© 

40VI 
200 mH : 

(b) 

100 ms 

x = 200 μ¥ 
200 mH-

© 
Kc,=80V 

(C) 

200 ms 

Fig. P2.25 

2.26" 

a) Circuit (a) uses a diode-resistor branch as a freewheeling path. 
i) Find the expression for iL for 10 ms < t < 100 ms. 
ii) Find the power consumed at the resistor R = 20 Ω. 

b) Circuit (b) employs two independent voltages sources: Vs\ = 80 V and 
VS2 = 40 V. 
i) Sketch ii for 0 < t < 100 ms. Label the value of ii at t = 20 ms on your 
sketch. 
ii) When the switch is turned-off, what would happen to the energy stored 
in the inductor? 

c) Circuit (c) uses a practical capacitor C = 200//F in place of Vsi-
i) Find the value of vc at t = 99 ms. Assume the capacitor is initially 
uncharged and iL = 0 at t = 99 ms. 
ii) Under the same assumptions used in i), sketch the general shapes of ii 
and vc for 0 < t < 200 ms. 
iii) What would eventually happen to the circuit as time elapses? 

A transformer is built using a toroidal core with μΓ = 5000, 5 = 2 cm2, and 
lm = 4πχ 10"1 cm. The turns of the primary winding are 10 and the turns of 
the secondary winding are 20. Two different switching circuits shown in Fig. 
P2.26 are built using the transformer. Referring to the common switch drive 
signal, sketch is and ij of each circuit for the first two operational periods. 
Show the maximum and minimum values on your sketch. 
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'S is 
—►—f 1 I * -

(a) (b) 

Fig. P2.26 

2.27* Consider the circuit shown in Fig. P2.27 along with its switch drive signal. 
Assume that the inductor and capacitor are initially unenergized. 

H Π 
* 20//s * 

Fig. P2.27 

a) Sketch ig and vc for the first two operational periods. Show all the charac-
teristic features of the waveforms including their maximum and minimum 
values. 

b) Evaluate VQ at t = 2.0 ms. 

2.28**Figure P2.28 shows the two switching circuits along with their switch drive 
signals. 
a) For Circuit (a), evaluate the following items based on the circuit operation: 

i) the energy transferred from the 24 V voltage source to the application 
circuit during one operational period, 
ii) the energy delivered to the capacitor during one operational period, 
iii) the energy dissipated in the application circuit during one operational 
period, and 
iv) the capacitor voltage vc at the end of the first five operational periods. 

b) For Circuit (b), evaluate the following items: 
i) the energy transferred from the 24 V voltage source to the application 
circuit during one operational period, 
ii) the energy delivered to the capacitor during one operational period, 
iii) the energy returned from the application circuit to the 24 V voltage 
source during one operational period, and 

20V 
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iv) the capacitor voltage vc at the end of the first five operational periods. 

2.29**A transformer is built using a toroidal core with μκ = 5000, S = 2 cm2, 
and lm = 4πχ 10_1 cm. The turns of the primary winding are 5 and that of 
the secondary winding are 10. The switching circuit shown in Fig. P2.29 is 
fabricated using the transformer described above. 

40 V 

50ms 60ms 100η 

__n n_ 
0 10ms 

02 

Fig. P2.29 

a) Referring to the switch drive signals, sketch the waveforms vc and ic for 
0 < t < 100 ms. Show all the important information on your sketch so that 
your knowledge about the circuit operation is fully exposed. 

b) Calculate the average power consumed in the circuit. 



CHAPTER 3 

BUCK CONVERTER 

There are numerous PWM dc-to-dc converters with different power processing func-
tions and respective application areas. Among these, the buck converter has a very 
simple structure and is straightforward in operation, while also possessing all the 
essential features commonly found in other PWM dc-to-dc converters. The output 
voltage of the buck converter is always lower than the input voltage. For this reason, 
the buck converter is also called the step-down converter. 

There is another type of dc-to-dc converter that invariably provides a higher 
output voltage than the input voltage, called the boost converter or step-up converter. 
Furthermore, a dc-to-dc converter that either steps down or steps up the input voltage 
can be synthesized by combining the step-down converter and step-up converter. The 
resulting converter is called the buck/boost converter or up-down converter. 

This chapter deals with the buck converter, while the succeeding chapter covers 
the boost and buck/boost converters, as well as other PWM dc-to-dc converters. 
Although focused on the buck converter, theoretical basis and analysis techniques 
presented in this chapter can readily be extended to other PWM dc-to-dc converters 
including the boost and buck/boost converters. 

As discussed in Chapter 1, the source of a PWM dc-to-dc converter can be any 
practical standalone dc source or non-ideal dc source obtained by rectifying an ac 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 71 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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Figure 3.1 Ideal step-down dc-to-dc power conversion, (a) Block diagram representation. 
(b) Time-domain description, (c) Frequency-domain interpretation. 

source. In addition, the load can be any electrical device, equipment, or system 
operating with a constant voltage. In this book, however, an ideal dc source and 
resistive load will be initially assumed to concentrate on the study of the dc-to-dc 
power conversion itself. The issues involved with the non-ideal characteristics of the 
source and load systems will be addressed in Chapter 9. 

This chapter discusses the functional basics and operational details of the buck 
converter. Several important analysis techniques are introduced and used to reveal 
the operation and properties of the buck converter. This chapter also illustrates the 
closed-loop control of the buck converter using the PWM scheme. 

3.1 IDEAL STEP-DOWN DC-TO-DC POWER CONVERSION 

The buck converter is the simplest circuit configuration that can perform the step-
down dc-to-dc power conversion. The concept of the step-down dc-to-dc conversion 
was introduced in Section 1.1.1 in conjunction with the electric bulb driving circuit 



IDEAL STEP-DOWN DC-TO-DC POWER CONVERSION 73 

in Fig. 1.2. The current section now presents the theoretical aspects of the step-down 
power conversion. 

The step-down dc-to-dc power conversion can be explained using a conceptual 
diagram, as shown in Fig. 3.1(a), consisting of two functional blocks: a single-pole 
double-throw (SPDT) switch and ideal low pass filter. Within one switching period 
Ts, the SPDT switch holds position a for Ton and position p for T0/f = Ts - Ton. The 
time period Ton is defined as the on-time period, while T0ff is denoted as the off-time 
period. The ratio Ton to Ts is defined as the duty ratio or duty cycle D of the SPDT 
switch 

D=^ (3.1) 
-* S 

Similarly, the ratio T0ff to Ts is defined as 

* s *s 

The SPDT switch transforms the input voltage V$ into a rectangular waveform νχ, as 
shown in Fig. 3.1. The rectangular waveform νχ is then applied to the input of the 
ideal low pass filter. 

Using Fourier series expansion, νχ is expressed as the sum of dc component and 
harmonic sinusoids 

oo 

vx(f) = c0 + ^ cn sin(«aV + θη) (3.3) 
n=\ 

where c$ represents the dc component and ω8 = 2π/Τ5 is the fundamental frequency 
of νχ. The dc component Co is simply the average value of νχ 

co = vx(t)=^Vs=DVs (3.4) 

If the cut-off frequency of the ideal low pass filter, OJC, is lower than the fundamental 
frequency of νχ, ω£ < ω8, all the harmonic components will be completely blocked 
and only the dc component will appear as the output of the low pass filter 

v0it) = c0 = DVS (3.5) 

Figure 3.1(b) shows the time-domain input-to-output description of the ideal low pass 
filter, while Fig. 3.1(c) depicts the frequency-domain interpretation. 

The dc-to-dc power conversion illustrated in Fig. 3.1 has the following properties. 

1) The circuit provides a pure dc voltage for the load, due to the ideal character-
istics of the low pass filter. 

2) The voltage gain of the circuit, the ratio v<j to Vs, is simply the duty ratio of 
the SPDT switch. Thus, the output voltage can be adjusted by controlling the 
duty ratio of the SPDT switch. 

3) Because 0 < D < 1, the output voltage is always lower than the input voltage. 

For these reasons, the power conversion illustrated in Fig. 3.1 is called the ideal 
step-down dc-to-dc power conversion. 
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Figure 3.2 Buck converter and major waveforms. 

3.2 BUCK CONVERTER: STEP-DOWN DC-TO-DC CONVERTER 

Although the block diagram in Fig. 3.1 is a conceptual illustration of the ideal step-
down dc-to-dc power conversion, there exists a practical converter that is very similar 
to Fig. 3.1 in structure and operation. This converter is called the buck converter 
and is one of most widely-used dc-to-dc converters. This section explains the circuit 
configuration and theoretical basics of the buck converter, while succeeding sections 
describe operational details. 

3.2.1 Evolution to Buck Converter 

The functional diagram in Fig. 3.1 is transformed into the buck converter by im-
plementing the SPDT switch with semiconductor switches and replacing the ideal 
low pass filter with an LC filter. Figure 3.2 shows the circuit diagram of the buck 
converter along with its major waveforms. The SPDT switch is implemented with 
the MOSFET-diode pair. The MOSFET switch is turned-on/off by the gate drive 
signal VQS , meanwhile the status of the diode is determined by the condition of the 
MOSFET switch. When the MOSFET switch is turned-on by VGS, the diode is 
turned-off because the input voltage Vs reverse-biases the pn junction. Conversely, 
when the MOSFET switch is turned-off, the inductor current forces the diode to 
conduct, thereby creating a freewheeling path. 

A second-order LC filter is used as a functional substitute for the ideal low pass 
filter. The LC filter, despite its far from ideal characteristics, provides more than 
adequate filtering for most applications. It will be shown later that the consequences 
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of the non-ideal filtering property of the LC filter are indeed negligible. A pure 
resistor is assumed for the load to simplify ensuing discussions. 

3.2.2 Frequency-Domain Analysis 

The LC filter shown in Fig. 3.2 is unable to completely remove the high-frequency 
harmonics from νχ and the output voltage vo invariably contains an ac component, as 
illustrated in Fig. 3.2. The ac component contained in the output voltage is referred 
to as the output (voltage) ripple or switching ripple. 

A simple frequency-domain analysis is performed to determine the output ripple 
due to the non-ideal characteristics of the LC filter. The input-to-output transfer 
function of the LC filter with a load resistor R is given by 

Ff(s) = 

_1_ 
vo0) Ĉ II* 1 
V x ^ rT _u l II P 1 S S 

sL+ — \\R 1 + _ _ + — 
SC QCJ0 ω2 

where ω0 is the pole frequency 

wo — , 

Vic 
and Q is the damping ratio of the filter circuit 

Q = R 

(3.6) 

(3.7) 

(3.8) 

Figure 3.3 shows the asymptotic plot of |F/|, drawn with the assumptions that the 
LC filter has a complex pole pair, Q > 0.5, and the switching frequency is higher 
than the pole frequency of the filter: ω8 > ω0. The LC filter passes the dc component 
unchanged, yet attenuates the harmonic components of νχ. The input of the LC filter 
is represented by Fourier series 

-40 log 

-40 log 

Figure 3.3 Asymptotic plot for transfer function of second-order LC filter. 
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vx(t) = c0 + ^ cn sm(na)st + θη) (3.9) 
n=\ 

The coefficients for the harmonic sinusoids are determined as 

λίϊν? , 
cn = -—- V1 " c o s (ηΐπϋ) (3.10) 

ηπ 

from the Fourier series expansion. Referring to Fig. 3.3, the nth order harmonic 
is attenuated by -40\og(ncusl<jL)o) with the low pass filter, while the dc component 
remains unaltered. Accordingly, the output of the LC filter is expressed as 

oo 

v0(t) = c0 + ]T c'n sm(n(ust + ffn) (3.11) 
n=\ 

- 4 0 1 o g ( ^ ) 

= c„10 20 

-40 log ( ^ ) 

where 

V2V-
Vl - cos (ήΐπϋ) 10 20 (3.12) 

The second term on the right-hand side of (3.11), representing the total sum of the 
harmonic sinusoids, collectively constitutes the output ripple. Equation (3.12) shows 
that the output ripple is reduced to a negligible level if the condition ω8 » ω() is 
met. This can be achieved by either lowering the pole frequency with larger filter 
components or increasing the switching frequency. 

■ EXAMPLE 3.1 Estimation of Output Ripple 

This example demonstrates the accuracy of the previous frequency-domain 
ripple analysis. A buck converter operating with Vs = 16 V, L = 40 μΗ, 
C = 470 /iF, R = 1 Ω, Ts = 20 /is, and D = 0.25 is considered. The pole 
frequency of the filter is given by 

ω() = -4= = l = 7.293 x 103 rad/s 
VZC V40xl0" 6 470x 10"6 

and the switching frequency of the converter is 

2π 2π = 3.142 x 105 rad/s 
Ts 20x l0" 6 

The dc component of the output is determined as 

c0 = DVs =0.25· 16 = 4 V 
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and the magnitude of the fundamental sinusoid is calculated as 

Ci = 
1 ·π 

V 1 - C O S ( 1 - 2 T T D ) 10 

-401og(5) 
20 

V2 16 
1 - 7 Γ 

Vl - cos (1·2π 0.25) 10 20 

= 3.880 x 10"3 

Similarly, the magnitudes of the higher-order harmonics are determined as 
c'2 = 6.860 x 10"4, c'3 = 1.439 x 10~4, c'A = 0, and c'5 = 3.104 x 10"5 

Two important observations on the output voltage waveform of the buck 
converter are made from the previous analysis. 

1) The coefficients of the harmonic components of the output voltage are 
negligibly small compared to the dc component. This indicates that the LC 
filter provides sufficient filtering and the output of the converter is practically 
co = 4 V. 

2) Because the coefficient of the fundamental harmonic sinusoid, c\, is much 
larger than the coefficients of the higher-order harmonics, the amplitude of 
the output ripple is estimated as Δνο(0 « 2c\ = 2-3.880xl0-3 = 7.76 mV. 

Figure 3.4 shows the output voltage of the buck converter obtained from 
PSpice® simulation. The magnitude of the output ripple is very close to the 
analytical prediction of 7.76 mV. 

4.004 

3.994 

Figure 3.4 Output voltage waveform of buck converter. 
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As demonstrated in Example 3.1, a simple second-order LC filter readily attenuates 
the output ripple to a negligible level. The second-order LC filter is just one specific 
example among many possible filter configurations. If a larger output ripple is 
allowed, the capacitor can be removed from the second-order filter, resulting in a 
first-order LR filter. Conversely, if further ripple attenuation is required, a higher-
order filter or multi-stage filter can be employed. 

3.3 BUCK CONVERTER IN START-UP TRANSIENT 

This section explains the operation of the buck converter during the start-up process. 
The concept of piecewise linear analysis is first introduced and the start-up response 
is then explained using the piecewise linear analysis method. 

3.3.1 Piecewise Linear Analysis 

The time-domain analysis of a dc-to-dc converter is not straightforward mainly 
because the switching action of the semiconductor devices forces the converter to 
periodically change its topological structure. One standard approach to analyzing the 
time-domain behavior of dc-to-dc converters is the piecewise linear analysis, where 
a dc-to-dc converter is considered as a combination of several linear circuits, each of 
which is valid for a specific time interval within one switching period. 

The circuit that is effective when its switch drive signal is on (thus, the active 
switch is turned-on and the diode is turned-off) is defined as the on-time subcircuit. 
Likewise, the effective circuit when the switch drive signal is off (thus, with the active 
switch off and diode on) is denoted as the off-time subcircuit. The operation of a 
dc-to-dc converter is analyzed by first examining each subcircuit individually and 
later taking into account of the circuit behavior of the two subcircuits collectively. 
Figure 3.5 shows a buck converter and its on-time and off-time subcircuits. The 
piecewise linear analysis using these subcircuits simplifies the analysis process and, 
more importantly, provides significant insights on the converter operation. 

3.3.2 Start-up Response 

The time-domain response of dc-to-dc converters can be analyzed by solving the 
circuit equations for the on-time and off-time subcircuits successively. For example, 
the response of the inductor current during the start-up process can be calculated as 
outlined below. First, the circuit equations for the on-time subcircuit are solved for 
0 < t < DTS with zero initial conditions. The expression for the inductor current 
is found from the resulting solutions. Second, the circuit equations for the off-time 
subcircuit are solved for DTS < t < Ts considering the circuit variables evaluated 
at t = DTS as the new initial conditions. By repeating this process, the transient 
response of the inductor current for the entire start-up period is obtained. 

As an alternative to the previous iterative analysis, a qualitative method can be 
used to predict the behavior of the inductor current. For the time period 0 < t < DTS 
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Figure 3.5 Buck converter and on-time and off-time subcircuits. (a) Buck converter, (b) 
On-time and off-time subcircuits. 

during which the converter retains the on-time subcircuit, the voltage source transfers 
energy to the inductor. As a result, the inductor current is increased as illustrated in 
Fig. 3.6. For the time interval DTS < t < Ts in which the converter holds the off-time 
subcircuit, the energy stored in the inductor is released to the load, and consequently 
the inductor current is decreased. 

During the early stage of the start-up process, the energy transferred from the 
source is larger than the energy released to the load. Accordingly, the net change in 
the energy storage in the inductor at each switching period is positive. This implies 
that the inductor current progresses as illustrated in Fig. 3.6. As time passes, the 
difference between the amounts of the transferred energy and the released energy 

DTVT< 

Figure 3.6 Qualitative behavior of inductor current. 
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Figure 3.7 Start-up response of inductor current. 

becomes smaller. When the on-time energy transfer becomes the same as the off-
time energy release, the converter establishes steady state and the inductor current 
settles into a periodic triangular waveform. 

■ EXAMPLE 3.2 Start-up Response of Inductor Current 

This example illustrates the start-up response of the buck converter. Figure 3.7 
shows the inductor current during the start-up process of the buck converter 
introduced in Example 3.1. A load resistance R = 0.1 Ω is used in this 
simulation, while other parameters are the same as those of Example 3.1. 

3.4 BUCK CONVERTER IN STEADY STATE 

A properly designed dc-to-dc converter should eventually reach steady state. When 
a dc-to-dc converter is in a steady state, the inductor current settles into a periodic 
triangular waveform and the output voltage becomes nearly constant with a small 
ripple component. This section first introduces several circuit analysis techniques 
and later analyzes the circuit waveforms of the buck converter in steady state. 

3.4.1 Circuit Analysis Techniques 

In addition to standard circuit equations, several specific analysis techniques are used 
for dc-to-dc power conversion circuits. These include the piecewise linear analysis, 
small-ripple approximation, flux balance condition on inductors, and charge balance 
condition on capacitors. 
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Piecewise Linear Analysis 

The piecewise linear analysis technique is a very efficient method to analyze time-
variant dc-to-dc power conversion circuits. When coupled with the forthcoming 
small-ripple approximation, the piecewise linear analysis allows us to study dc-to-dc 
converters only using very simple circuit equations. In most cases, the circuit wave-
forms are accurately predicted by quick graphical constructions based on fundamental 
circuit equations. 

Small-Ripple Approximation 

Another useful technique for the steady-state analysis of dc-to-dc converters is the 
small-ripple approximation. This analysis postulates that the ripple component con-
tained in the output of a converter is so small that the output voltage can be considered 
a pure dc. This assumption greatly simplifies the circuit analysis without compro-
mising accuracy. 

In practice, the ripple component in the output voltage is actually very small com-
pared to the dc component, and its effects on the converter operation are negligible. 
Consequently, an exact circuit analysis including the ripple component is usually 
unnecessary and the simplified analysis assuming a constant output is fully adequate 
for most cases. The streamlined analysis based on the small-ripple approximation 
quickly yields simple circuit equations, and the resulting solutions retain sufficient 
accuracy for all engineering purposes. 

The small-ripple approximation can be justified from at least two different per-
spectives. First, because the circuit components of a dc-to-dc converter are selected to 
minimize the output voltage ripple, the errors caused by the small-ripple approxima-
tion are indeed negligible. Second, the output voltage ripple can always be accurately 
estimated from the results of the simplified analysis based on the small-ripple ap-
proximation. Consequently, the small-ripple approximation does not bring in any 
real loss in the analysis accuracy. Discussions about the output ripple estimation are 
given in Section 3.4.3. 

Flux Balance Condition and Charge Balance Condition 

Inductors used in dc-to-dc conversion circuits should satisfy the flux balance con-
dition; the flux increase during an on-time period should be the same as the flux 
decrease during an off-time period. As demonstrated in Section 2.2.1, the flux bal-
ance condition can be transformed into the volt-sec balance condition. The volt-sec 
balance condition states that the product of the voltage level and time interval, evalu-
ated over the period when the inductor voltage is positive, should be the same as the 
voltage-time product calculated when the inductor voltage is negative. Furthermore, 
as the generation of the volt-sec balance condition, the average value of the inductor 
voltage is considered to be zero. 

Capacitors are subjected to the charge balance condition; the net change in the 
charge storage in a capacitor should be balanced at zero for each switching period. 
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The charge balance condition can be converted into the amp-sec balance condition. 
The amp-sec balance condition indicates that the product of the positive current 
value (coming into the capacitor) and the current-flowing period should be the 
same as the product of the negative current value (leaving from the capacitor) and 
the corresponding current-flowing time. More generally, the average value of the 
capacitor current is considered to be zero, as is the case for the inductor voltage. 

The volt-sec balance condition and amp-sec balance condition place constraints 
on the circuit variables of inductors and capacitors in dc-to-dc power conversion 
circuits. When dc-to-dc converters reach steady state, the circuit variables settle 
down to the values that satisfy the volt-sec and amp-sec balance conditions. Thus, 
these conditions can be considered as the circuit theorems that facilitate the steady-
state analysis of dc-to-dc converters. 

3.4.2 Steady-State Analysis 

The steady-state analysis of the buck converter is now performed based on the 
piecewise linear analysis, along with the small-ripple approximation, volt-sec balance 
condition, amp-sec balance condition, and other standard circuit analysis techniques. 
Figure 3.8 shows a buck converter, on-time and off-time subcircuits, and major circuit 
waveforms. Based on the small-ripple approximation, the output of the converter is 
considered as a constant Vo for both on-time and off-time subcircuits. From Fig. 
3.8(b), the voltage across the inductor is determined as 

M _ ί Vs ~ Vo for on-time subcircuit 
1 \ -Vo for off-time subcircuit 

By applying the volt-sec balance condition to the inductor, it follows that 

(VS-V0)DTS = V0(l-D)Ts (3.14) 

which is simplified to 
Vo = DVs (3.15) 

yielding the voltage gain expression. This voltage gain is identical, as it should be, 
to the result of the previous frequency-domain analysis. 

The circuit equation for the inductor current is given by 

. ίΛ vL(t) Vs-Vo , _ , . 
iL(t) = ——t = 1 (3.16) 

for on-time period DTS and 
Vo idt) = ~ t (3.17) 

for off-time period (1 - D)TS. It is evident from (3.16) and (3.17) that the inductor 
current ramps up during on-time period and ramps down during off-time period, 
resulting in a periodic triangular waveform shown in Fig. 3.8(c). 

The average value of the inductor current can be determined as follows. The 
charge balance condition assures that the average value of the current flow through 
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Figure 3.8 Steady-state analysis of buck converter, (a) Buck converter, (b) On-time and 
off-time subcircuits. (c) Major waveforms. 
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the capacitor is zero. This implies that the average value of the inductor current 
should be identical to the dc current passing through the load resistor 

h(t) = h = ^ (3.18) 
K 

It can also be inferred from (3.16) and (3.17) that the difference between the 
maximum and minimum values of the inductor current is given by 

Vj Vs - Vn Vn 
ML = -j-M = °DTS = - ^ (1 - D)TS (3.19) 

The maximum and minimum values of the inductor current then become 

and 

kmin = h- 2Αίί (3·21) 
The inductor current flows through the active switch during on-time period, and 

then freewheels through the diode during off-time period. Figure 3.8(c) also shows 
the switch current IQ and diode current /#, whose average values are given by 

TQ(t) = IQ = DIL (3.22) 

and 
TD(t) = ID = (I - D)IL (3.23) 

EXAMPLE 3.3 Steady-State Analysis of Buck Converter 

This example illustrates the accuracy of the steady-state analysis based on the 
small-ripple approximation. The important values for the voltage and current 
waveforms of the buck converter in Example 3.1 are evaluated in Table 3.1. 
The parameters of the buck converter are Vs = 16 V, L = 40 μΗ, C = 470 μ¥, 
R = 1 Ω, Ts = 20 )L/s, and D = 0.25. Figure 3.9 shows the simulated converter 
waveforms. 

3.4.3 Estimation of Output Voltage Ripple 

The output of the buck converter contains a ripple component due to the non-ideal 
filtering characteristics of an LC filter. An exhaustive analysis can be performed to 
yield an accurate expression for the output voltage including the ripple component. 
In practice, however, a quick estimation of the magnitude of the output ripple is more 
functional and useful than the exact analysis. This section presents a simple output 
ripple analysis. 
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Table 3.1 Steady-State Analysis of Buck Converter 

Circuit variable Expression 

Vo 

VLmax 

VLmin 

h 

Mr 

VSD= 16-0.25 = 4 V 

vs-

-Vo 

Vo 
R 

1 

-V0 

4 
~ T 

-Vo 
L 

1 , 

= 1 6 -

4V 

= 4 A 

DTS = 

4 = 1 

16 
40 x 

1.5 

[2 V 

- 4 
0.25 · 20 x 10"6 = 1.5 A 

h + 2A'L = 4 + -γ = 4 · 7 5 A 

h - \ML = 4 - H = 3.25 A 

5 
n 

5 
0 
-s 

6 

4 

2 Ί / | /I A 

40 
Time [//s] 

Figure 3.9 Buck converter circuit waveforms. 
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(a) (b) 

Figure 3.10 Estimation of output ripple, (a) Circuit diagram, (b) Current waveforms and 
output ripple. 

Estimation with Ideal Capacitor 

Figure 3.10 shows the circuit diagram and waveforms, associated with the ripple 
analysis. As shown in the earlier analysis, the inductor current is a triangular wave-
form consisting of dc and ac components. The dc component passes entirely through 
the load resistor because the capacitor presents an infinitely large impedance to the 
dc current. 

On the other hand, the ac component, the triangular portion of the inductor current, 
would flow through both the capacitor and the load resistor. However, a practical 
converter usually employs a large capacitor to provide sufficient filtering. As a result, 
the reactance of the capacitor evaluated at the switching frequency is much smaller 
than the load resistance, and therefore it is highly realistic to assume that the triangular 
portion of the inductor current fully flows through the capacitor. This situation is 
illustrated in Fig. 3.10(b). 

The triangular current passing through the capacitor develops an ac voltage, 
thereby creating a ripple component on top of the dc output voltage. The ac voltage 
across the capacitor is given by 

vac(t) = ^fic(t)dt (3.24) 

where ic represents the capacitor current. It can be deduced from (3.24) that vac 

grows during the period the capacitor current ic is positive and then decays when ic 
is negative, as illustrated in Fig. 3.10(b). The peak-to-peak value of vac is then found 
by integrating ic over the time period during which ic remains positive 

Avac = ̂ J2ic(T)dr (3.25) 
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The integration on the right-hand side of (3.25) in effect corresponds to the area 
of the triangle enclosed by the positive inductor current and time axis, as highlighted 
in Fig. 3.10(b). By evaluating the area of the shaded triangle with the incorporation 
of the fact \t2 - t\\ = Ts/2, the expression (3.25) becomes 

--έ(ϊ)Η(Η (3.26) 

Combining (3.19) into (3.26) leads to the expression for the peak-to-peak variation 
Of Vnr 

Av« = 5 i£ ( 1 - D ) 7 , ? (3.27) 

The voltage swing Avac, given by (3.27), corresponds to the magnitude of the ripple 
component, Av0, superimposed on the dc value of the output voltage, V0. 

■ EXAMPLE 3.4 Current Waveforms and Output Ripple 

This example illustrates the accuracy of the preceding output ripple analysis. 
Figure 3.11 shows the simulated waveforms for the inductor current iL, capaci-
tor current i'c, and output voltage VQ of the buck converter used in the previous 

Time [//s] 

Figure 3.11 Current waveforms and output ripple of buck converter. 
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Figure 3.12 Buck converter with practical capacitor. 

examples. Based on (3.27), the amplitude of the output ripple is estimated as 

-( l -0.25)(20x 10"6)2 

8 4 0 x l 0 " 6 4 7 0 x l 0 - 6 

= 7.98 mV 

It is informative to note that the result of this time-domain analysis is very 
close to the outcome of the previous frequency-domain analysis in Example 3.1. 
The current analysis shows Δν<? = 7.98 mV, whereas the previous frequency-
domain analysis predicted Δνο = 7.76 mV. 

Effects of Parasitic Resistance of Capacitor 

Earlier discussions on the steady-state operation of the buck converter are based 
on the assumption that all the circuit components are ideal. In practice, however, 
the performance of the converter is influenced by non-ideal characteristics of real 
circuit components. The most noticeable among these is the impact of the parasitic 
resistance of a real capacitor. 

Real capacitors contain an internal parasitic resistance, referred to as the equivalent 
series resistance (esr), due to the non-ideal characteristics of the dielectric material. 
Consequently, the circuit model of a real capacitor should include the esr, labeled as 
Rc in Fig. 3.12. With the presence of the esr, the voltage ripple within a practical 
capacitor, vcriPPie, is divided into two components - the ripple voltage produced by 
the current-carrying capacitance, vac, and the ripple voltage due to the voltage drop 
at the esr, vesr, as shown in Fig. 3.12 

VCrippleiO = Vac(t) + Vesr(t) Lcl· 
ic(t)dt + ic(t)Rc (3.28) 

where ic denotes the capacitor current, which corresponds to the triangular portion 
of the inductor current. From (3.28), the magnitude of the output voltage ripple can 
be expressed as 

1 Ch 

Av0 = Avcrippie * ^ I ic(r) άτ + MCRC (3.29) 
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Now, using the fact Aic = A/L, the magnitude of the output ripple is given by 

1 f2 . 
Δ ν 0 * - ic{r)ar + MLRc (3.30) 

Λ, 

The effect of the esr on the output voltage ripple is rather substantial. The 
magnitude of the ripple component at the esr is usually much larger than the ripple 
component produced by the capacitance itself. Accordingly, the magnitude of the 
output voltage ripple can be approximated as 

Δν0 * - I k(r) dr + MLRC * MLRC (3.31) 
1 f2 

because 

^ J2/c(r)dr«A/L/?c (3.32) 

■ EXAMPLE 3.5 Output Ripple with Capacitor Esr 

This example illustrates the effects of the capacitor esr on the output voltage 
ripple. The esr of the 470 μ¥ output capacitor used in the buck converter 
examples is assumed as Rc = 0.05 Ω. Figure 3.13 shows the simulated 
waveforms of the voltage across the esr, vesr, and the output voltage, ν#, of the 
buck converter. As predicted, the output ripple is very similar to the triangular-
shaped voltage drop at the capacitor esr. The amplitude of the output ripple is 
also very close to the analytical prediction of (3.31): Avo ~ AiLRc = 1.5-0.05 = 
0.075 V. 

As illustrated above, the ripple component due to the current-carrying capacitance 
is nearly undetectable and the output voltage ripple is practically determined by the 
esr of the output capacitor. However, this does not imply that the previous ripple 
analysis with an ideal capacitor is pointless. The method of ripple calculation in 
(3.26) is still useful in the sense that the method itself can be applied to many other 
cases of dc-to-dc converter analyses. 

3.5 BUCK CONVERTER IN DISCONTINUOUS CONDUCTION MODE 

The operation of the buck converter is relatively simple and easy to understand. The 
piecewise linear analysis, based on the small-ripple approximation and flux/charge 
balance conditions, yields an accurate solution for the steady-state operation. How-
ever, there are also cases where the buck converter does not follow the aforementioned 
operational principles and exhibits complicated circuit behavior. This section deals 
with a new operational mode, known as the discontinuous conduction mode operation. 
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Figure 3.13 Capacitor esr voltage vesr and output voltage v0. 

3.5.1 Origin of Discontinuous Conduction Mode Operation 

The existence of the new operational mode can be explained using Fig. 3.14 which 
shows a series of inductor currents for a buck converter, each with a different value 
for the load resistance but with the same duty ratio. As the load resistance becomes 
larger, the inductor current shifts downwards while retaining the same shape. This 
is because the average value of the inductor current is inversely proportional to the 
load resistance 

IL~T (3.33) 

yet the slope of the inductor current remains the same regardless of the change in the 
load resistance - the inductor voltage that determines the slope of the inductor current 
will not change as long as the duty ratio remains unaltered. As the load resistance 
continues to increase, an instant emerges where the minimum value of the inductor 
current becomes zero. This situation occurs when 

II 
Vo 
R 

1 
-Δ// (3.34) 

If the load resistance is further increased beyond the value that satisfies (3.34), while 
the converter obeys the same operational principles, the inductor current will shift 
further down, thereby becoming negative for a certain interval in the switching period. 
This situation implies that the inductor current should change its direction. However, 
the current reversal is impossible because the inductor current flows through the diode 
which is unable to deliver current in the opposite direction. 

In reality, when the load resistance becomes large enough to push the average 
inductor current below the critical value, li = AiL/2, the converter no longer follows 
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Figure 3.14 Inductor current of buck converter as load resistance increases. 

Larger R 

lL 
DT< IT, 

Figure 3.15 Inductor current in DCM operation. 

the operational principles discussed earlier and enters a new operational mode. This 
new operational mode is called the discontinuous conduction mode (DCM) where 
the inductor current vanishes for a certain time interval within each switching period, 
thereby becoming discontinuous. 

The inductor current in DCM operation is illustrated in Fig. 3.15. The qualitative 
behavior of the inductor current is explained below. 

1) During an on-time period, the inductor voltage, vi = Vs-Vo, is always positive 
and this forces the inductor current to grow linearly. However, as illustrated 
in Fig. 3.15, the slope of the on-time inductor current varies when the load 
resistance is changed-the larger the load resistance, the more gradual the 
slope. The reason for this behavior is that the voltage gain in DCM operation 
depends on not only the duty ratio but also the load resistance. As will be 
demonstrated in Section 3.5.3, the DCM voltage gain is proportional to the load 
resistance; namely, as the load resistance becomes larger, so does the voltage 
gain. Accordingly, a greater load resistance produces a larger output voltage, 
thereby lowering the ascending slope of the inductor current, (Vs - V0)/L. 

2) During an off-time period, the negative inductor voltage, vL = - V0, forces the 
inductor current to decay linearly. The condition for DCM is IL < AiL/2, and 
this condition implies that the inductor current reduces to zero before the next 
switching period begins. When the inductor current becomes zero, the diode 
is turned-off and remains off for the remaining part of the switching period. 
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As mentioned above, the output voltage in DCM increases in proportion to the 
load resistance. Accordingly, as the load resistance grows larger, the decaying 
slope becomes steeper. As the decaying slope becomes steeper, the period 
during which the inductor current is absent grows wider, as illustrated in Fig. 
3.15. 

In contrast to the DCM operation, the case where the inductor current is present 
all the time is called continuous conduction mode (CCM) operation. We implicitly 
assumed CCM operations in the converter analyses of the previous sections. It is 
important to realize that the DCM operation is as equally important and practical 
as the CCM operation, because all the dc-to-dc converters, even intended for CCM 
operation at normal conditions, will encounter DCM operation when the load current 
becomes smaller than the critical value: Ii = AiL/2. 

3.5.2 Conditions for DCM Operation 

It is evident from the previous analysis that the operational mode of the converter is 
determined as 

lL > l-ML: CCM 

IL = -ML: borderline between CCM and DCM (3.35) 

IL < -ML : DCM 

Referring to (3.18) and (3.19), the condition for the borderline between CCM and 
DCM operations is expressed as 

1L =
 l-ML =* ^ = 1 ^ ( 1 - D)TS (3.36) 

Equation (3.36) is used to find the critical value for the load resistance or filter 
inductance that places the converter at the CCM/DCM borderline 

R„„ = j j ^ - ,337, 

itrtl = ÜZip (3.3S, 

Equations (3.37) and (3.38) enable us to determine the operational mode based on the 
value of the specific circuit component. When the load resistance is larger than Rcrit, 
the converter establishes DCM operation. Likewise, when the inductance is reduced 
to a value smaller than Lcn·,, the converter enters DCM operation. 
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Figure 3.16 Inductor current waveforms with different load resistances. 

EXAMPLE 3.6 Operational Mode Change with Resistance Variation 

This example illustrates the change in the operational mode as the load re-
sistance is varied. The critical resistance Rcrit of the buck converter in the 
preceding examples is evaluated as 

2L 2 · 40 x 10"6 

R = cnt (1 - D)TS ~ (1 - 0.25) 20 x 10"6 = 5.33 Ω 

The inductor current waveforms of the buck converter, whose load resistance 
is varied between 0.2Rcrit < R < 2%Rcrit, are shown in Fig. 3.16. The converter 
is on the boundary of CCM and DCM operations when R = 5.33 Ω = Rcrit and 
enters DCM when the load resistance is further increased. 

EXAMPLE 3.7 Operational Mode Change with Inductance Variation 

This example shows the operational mode change when the inductance is 
altered. The critical inductance Lcrit of the previous buck converter with a load 
resistance R = 1 Ω is given by 

L>rrit — 
(1 - D)RTS (1 - 0.25)1 · 20 x 10~6 

= 7.5 μΗ 

Figure 3.17 shows the inductor current waveforms of the converter where 
the inductance is varied between 0.53Lcni < L < 5.3Lcrit. As the inductance 
becomes smaller, the current swing A//, increases, thereby causing the converter 
to operate on the borderline when L = 7.5 μΗ = Lcrit, and in DCM when 
L < Lcrit. 
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Figure 3.17 Inductor current waveforms with different filter inductances. 

3.5.3 Steady-State Operation in DCM 

In DCM operation, three topological modes exist within one switching period, as 
illustrated in Fig. 3.18. In addition to the on-time and off-time subcircuits found in 
CCM operation, a new subcircuit appears as the inductor current disappears during 
an off-time period. This third subcircuit is referred to as the DCM subcircuit in Fig. 
3.18(a). 

Figure 3.18(b) depicts typical DCM waveforms for the inductor current and in-
ductor voltage. The notation D\ used in Fig. 3.18(b) is defined as 

£>i = 
a part of off-time period in which inductor current exists 

switching period 

When the converter is reduced to the DCM subcircuit, the inductor voltage and 
inductor current both become zero, as shown in Fig. 3.18(b): ii = 0 => Aii = 0 => 
vi = L(Aii/At) = 0. By applying the volt-sec balance condition to the inductor, it 
follows that 

(Vs-V0)DTs = V0DlTs (3.39) 

which is simplified to 

Vo = D 
Vs D + Dx 

(3.40) 

The unknown variable D\ should be eliminated from (3.40) to result in the com-
plete DCM voltage gain. The additional equation, needed for the elimination of D\, 
can be formulated as follows. The average value of the inductor current should be 
the same as the load current, because the average capacitor current is zero due to the 
charge balance condition. From the geometry of the inductor current, the average 



BUCK CONVERTER IN DISCONTINUOUS CONDUCTION MODE 9 5 

lL 

+ vL 

Φ 
+ 

Vn 

On-time subcircuit 

Off-time subcircuit 

(a) 

_/ΎΥΥΥ_ 
+ vL - + 

Vo: 

DCM subcircuit 

VL 

vs-v0 

(b) 

Figure 3.18 Operation of buck converter in DCM. (a) Three subcircuits. (b) Inductor current 
iL and inductor voltage vL. 

inductor current is given by 

1 
{D + DX)TS 

h = (3.41) 

Based on the facts that 

h = Io = 
R 

and 

- Y2.n T 
iLmax ~ j L>\ 1 s 

(3.42) 

(3.43) 
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the expression (3.41) is rewritten as 

which is simplified to 

By solving (3.45) for Dx 

^ = \Y^DXTS(D + DX) (3.44) 
K 

£>2 + DD, - - ^ = 0 (3.45) 
Kl s 

^-\{-D+r2+w) (i46) 

and finally incorporating (3.46) into (3.40), the DCM voltage gain is determined as 

Vo 2D 

Vs ^ ΓΖ 8Γ 
D + Λ D2 + 

RTS 

(3.47) 

The voltage gain is a nonlinear function of the circuit parameters and operational 
conditions. 

Three informative observations can be made from the previous analysis. First, it 
is evident from (3.47) that the voltage gain increases as the load resistance grows 
larger, as addressed earlier in conjunction with the behavior of the inductor current 
in DCM. Second, when the borderline condition given by (3.36) is incorporated 
into (3.46), it follows that D\ = 1 - D , indicating that the converter is indeed on 
the boundary between CCM and DCM. Finally, for most converter parameters, the 
following relationship holds 

2D 
> D (3.48) 

RTS 

which indicates that the DCM voltage gain is larger than the CCM counterpart when 
the same duty ratio is assumed. 

■ EXAMPLE 3.8 Steady-State Analysis in DCM 

This example illustrates the circuit waveforms of a buck converter in DCM. 
The load resistance of the buck converter used in the previous examples is 
reduced to R = 12 Ω, while the other parameters retain the original values: 
Vs = 16 V, L = 40 μΗ, C = 470 //F, Ts = 20 μϊ, and D = 0.25. Because 
R = 12 Ω > Rcrit = 5.33 Ω, the converter is in DCM region. Theoretical 
predictions for the steady-state response of the converter are listed in Table 3.2. 
The accuracy of the theoretical predictions is confirmed with the simulated 
waveforms in Fig. 3.19. 
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Table 3.2 Steady-State Analysis in DCM 

Circuit variable Expression 

£>, 
8L 

RTX 

2 5 2 + i
8 / ! X l ^ h 0 . 4 7 

12 · 20 x 10" 

2£> 

V tfrs 

2 ■ 0.25 

0.25+Λ/θ.25> + | - 4 ^ 
V 12·20χ 

IQ-6 

lO"6 

16 = 5.59 V 

fD'r*=4Ö^°-47-20Xl(r6 = L31A 

40 
Time [//s] 

Figure 3.19 Output voltage v0 and inductor current iL of buck converter in DCM. 

The operational mode of a dc-to-dc converter can also go through the CCM/DCM 
transition when its duty ratio is varied. The condition for the DCM operation 

Vo lV0i 

R<2T(l-D)T^ 
(3.49) 
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v0/vs 

Figure 3.20 Voltage gain of buck converter as function of duty ratio. 

is rearranged as 

D< 1 -
2L_ 

By defining the right-hand side of (3.50) as 

2L 
1 RT-Vcnt 

(3.50) 

(3.51) 

it can be concluded that the converter operates in DCM when 0 < D < Dcrit and in 
CCM with Dcrit < D < 1. Figure 3.20 depicts the voltage gain of a buck converter. 
The gain curve follows the DCM gain formula given by (3.47) until the duty ratio 
increases to Dcrit, and tracks the CCM formula, Vo/Vs - A thereafter. 

It is worthwhile to note that the converter remains in CCM operation for all 
0 < D < 1, if the condition 

2L 
w,>l ( 3 · 5 2 ) 

is satisfied. This condition is derived from 

2L 
Dcrit = 1 " — < 0 (3.53) 

which negates the existence of Dcrit > 0. 

EXAMPLE 3.9 Buck Converter Example 

This example shows the case where the converter retains the CCM operation 
for 0 < D < 1. For the buck converter used in the previous examples with the 
circuit parameters of L = 40 μΗ, R = 1 Ω, and Ts = 20 jus, it follows that 

2L_ 

Rfl 
2-4ÖX1Q-6 

1 - 2 0 x l 0 - 6 4 > 1 

indicating that the converter will remain in CCM for all 0 < D < 1. 
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As demonstrated in this section, the DCM operation causes significant changes 
in the operational principles and steady-state characteristics of the buck converter. 
Furthermore, the DCM operation also alters the dynamic characteristics of the con-
verter. While a detailed analysis of DCM dynamics will be covered later in Chapter 
9, it should be reminded that dc-to-dc converters frequently cross the CCM/DCM 
boundary and therefore should be designed with both CCM and DCM operations in 
consideration. 

3.6 CLOSED-LOOP CONTROL OF BUCK CONVERTER 

In real applications, dc-to-dc converters are powered by a non-ideal voltage source 
rather than a constant dc source. In addition, converters are loaded with general 
electrical applications, not a resistor. Accordingly, dc-to-dc converters experience 
certain variations in the input voltage and load current. 

As addressed in Chapter 1, a dc-to-dc converter is intended to be a voltage source 
and, as such, the converter should maintain its output voltage at the desired value, 
regardless of any changes in the input voltage or load current. This feature is referred 
to as the output voltage regulation or simply dc regulation. The term dc regulation 
implies regulating the output voltage of a converter at a fixed dc value in steady state. 

To implement the dc regulation, a functional connection must be created between 
the output voltage and duty ratio of the converter. More specifically, a closed-loop 
feedback control should be employed around the dc-to-dc converter, which adaptively 
changes the duty ratio of the active switch at the presence of the input voltage and 
load current variations. This section deals with the dc regulation of a closed-loop 
controlled buck converter. 

Closing a feedback loop is not an easy task and thus requires comprehensive 
knowledge about modeling, analysis, and control design of dynamic systems. Yet, 
because the interest of the current section is limited to issues related to the dc 
regulation, the dynamic modeling, analysis, and control design of dc-to-dc converters 
are postponed to later chapters. 

3.6.1 Closed-Loop Feedback Controller 

Figure 3.21 shows a simplified diagram of the buck converter equipped with a closed-
loop feedback controller. The feedback controller consists of two functional blocks: 
the pulsewidth modulation (PWM) block and voltage feedback circuit. The PWM 
block controls the duty ratio of the active switch using the output of the voltage 
feedback circuit, labeled as the control voltage vcon in Fig. 3.21, and the ramp signal 
Vramp generated inside the feedback controller. The output of the PWM block is 
denoted as vq in Fig. 3.21. 

The voltage feedback circuit utilizes the output voltage v# and reference voltage, 
denoted as Vref in Fig. 3.21, to generate the control voltage vcon. The voltage feedback 
circuit and PWM block collectively enforce the output of the converter to track the 
reference voltage in steady state, thereby achieving dc regulation. 
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Figure 3.21 Closed-loop controlled buck converter. 

Pulsewidth Modulation 

The output of the PWM block is the switch drive signal, vq, whose pulsewidth is 
modulated to yield the desired duty ratio for the active switch. As shown in Fig. 
3.22(a), the PWM block utilizes the control voltage vcon and ramp signal Vram/7, in 
order to issue the switch drive signal vq. 

Figure 3.22(b) shows a timing diagram for the PWM waveforms, where the control 
voltage is assumed to remain constant at vcon = Vcon. First, a periodic ramp signal 
Vramp is generated inside the feedback controller. The period of the ramp signal 
is in fact the switching period of the converter. The switch drive signal becomes 
on at the instant the ramp signal starts ramping up and resets ojf when the ramp 
signal intersects with the control voltage. By repeating this process, the PWM block 

ΑΎΥ\_ 

(a) 

'ramp 

On 

Off 

(b) 

Figure 3.22 PWM block, (a) Block diagram, (b) Timing diagram. 
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Figure 3.23 Constant-frequency trailing edge modulation. 

generates a periodic switch drive signal whose pulsewidth is modulated in proportion 
to the magnitude of the control voltage, Vcon. 

Figure 3.23 shows the outputs of the PWM block for two different control voltage 
values, Vcon and V'con. The modulation scheme generates a switch drive signal whose 
trailing edge is modulated to change the duty ratio within a fixed switching period. As 
such, the modulation scheme is called a constant-frequency trailing edge modulation. 
While many alternative modulation schemes are also available for PWM dc-to-dc 
converters, this scheme is most widely used and thus adopted as the standard PWM 
in this book. 

Voltage Feedback Circuit 

Figure 3.24 shows a simplified diagram of a closed-loop controlled buck converter. 
The output voltage Vo is fed to a voltage feedback circuit, consisting of an op amp, 
reference voltage Vref, and two impedance blocks, Z\ (s) and Z2(s). The output of the 
voltage feedback circuit is the control voltage, vcon, which is used as the input signal 
for the PWM block. 

The voltage feedback circuit operates based on the principle of the negative feed-
back. When the output voltage V0 grows larger than the nominal value, the output 
of the op amp, vcon, becomes lower than the previous value. With a lowered vcon, the 
PWM block produces the switch drive signal vq whose duty ratio is reduced. The 
reduced duty ratio in turn brings down the output voltage to the nominal value. 

The mechanism of the dc regulation is explained using the node equation formu-
lated at the inverting terminal of the op amp. Using the virtual short between the two 
input terminals of the op amp, the node equation is written as 

Vp ~ Vref _ Vref ~ Vcon 

Zi(s) ~ Z2(s) 
(3.54) 
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Figure 3.24 Voltage feedback circuit and closed-loop control. 

which can be rearranged as 

|>-M-v. ref ~ VCl 

The nature of the dc regulation is deduced from (3.55) as follows. 

(3.55) 

1) For a proper operation of the converter, the output of the feedback circuit, vcon, 
should have a finite value within the lower and upper bounds of the op amp 
output voltage. 

2) Because both the two variables in the right-hand side of (3.55), Vref and vcon, 
are finite in their magnitude, the term \Z2\/\Z\\(Yo - Vref) in the left-hand side 
of the equation should be also finite. Otherwise, the expression (3.55) becomes 
inconsistent. 

3) The steady state is an equilibrium where all the time-varying components 
of circuit variables settle down to zero and the circuit responds only to dc 
components. As such, the impedance evaluated at dc, Z(y0), is the factor that 
determines the steady-state operation of the voltage feedback circuit. 

4) If the impedance ratio IZ2(j"0)| / |Ζι (7Ό)| is selected to be infinite, the variable 
(Vref - Vo) should converge to zero in order to make their product finite 

1Z2QO)1 

|Ζ,0Ό)| 
( V 0 - V „ / ) = oo.O a finite constant 

This condition implies Vo = Vref in steady state, thereby achieving the dc 
regulation. 
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Figure 3.25 Voltage feedback circuits, (a) Miller integrator, (b) Three-pole two-zero circuit. 

In conclusion, a voltage feedback circuit that satisfies the following condition 

|Z2QO)| 
|ΖιΟΌ)| 

(3.56) 

forces the output voltage to track the reference voltage in steady state. Accordingly, 
any circuit that meets the condition (3.56) provides dc regulation, thus eligible for 
a voltage feedback circuit. The simplest among these is Miller integrator shown in 
Fig. 3.25(a). However, a voltage feedback circuit employing Miller integrator in its 
original form does not provide good dynamic performance for reasons that will be 
discussed in Chapter 8. Consequently, a simple Miller integrator is rarely used for 
high performance designs. 

As will be demonstrated in Chapter 8, it has been established from the past 
researches that a three-pole two-zero circuit shown in Fig. 3.25(b) is the optimal 
feedback circuit for the buck converter. The three-pole two-zero circuit, named 
so after its transfer function, provides excellent dynamic performance as well as 
tight dc regulation. It is easy to confirm that the three-pole two-zero circuit meets 
the requirement of (3.56). Because the design of voltage feedback circuit requires 
comprehensive knowledge about dynamic modeling and frequency-domain analysis, 
this topic will be treated separately in Chapter 8. 

3.6.2 Responses of Closed-Loop Controlled Buck Converter 

This section presents the time-domain response of a closed-loop controlled buck 
converter obtained from PSpice® simulations. Figure 3.26 shows the schematic 
diagram of a closed-loop controlled buck converter. The power stage parameters are 
identical to those of the buck converter used in the previous examples, however, the 
input voltage Vs and load resistance R are allowed to change during the converter 
operation, in order to investigate transient responses. 

The output of the converter is regulated at V0 = Vref = 4 V, and the switching 
frequency is fs = 1/20 x 10"6 = 50 kHz. The ramp signal varies from 0 to 3.8 V. 
A three-pole two-zero circuit is employed as the voltage feedback circuit. The 
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Figure 3.26 Closed-loop controlled buck converter. 

circuit parameters for the voltage feedback circuit are optimally selected for good 
closed-loop performance, as will be demonstrated in Chapter 8. 

Step Input Response 

The buck converter undergoes a series of step changes in its input voltage, whereas 
the load resistance is fixed at R = 1 Ω. As shown in Fig. 3.27, the input voltage is 
changed asVs = 1 6 V = > 8 V => 16 V during the converter operation. First, the 
steady-state waveforms of the converter with Vs = 16 V are analyzed. The output 
voltage vo is regulated at 4 V with a small ripple component. The inductor current 
ii is a triangular waveform. The average value of the inductor current equals to the 
load current 

h = = - = 4 A Y° 
R 1 

The ripple component of the inductor current is given by 
Vs-Vo 1 6 - 4 4 . 

ML = — -DTS = — 20 x 10"6 = 1.5 A 
L 40 x 10-6 16 

The control voltage vcon and ramp signal Vramp are simultaneously shown in the third 
plot in Fig. 3.27, while the switch drive signal vq is displayed in the bottom plot. 

The average value for the control voltage can be evaluated from the PWM wave-
forms shown in Fig. 3.28. From the PWM waveforms, it can be seen that 

Ts : DTS = Vn (3.57) 
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Figure 3.27 Step input response of buck converter: output voltage vö, inductor current iL, 
control voltage vcon and ramp signal Vramp, and switch drive signal vq. 

ramp 

Figure 3.28 PWM block waveforms. 
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where Vm represents the magnitude of the ramp signal and Vcon is the steady-state 
control voltage. The above expression is simplified to Vcon = DVm. With the given 
operational conditions, the initial value for the control voltage is evaluated as 

Vcon = DVm = ^Vm = -^3.8 = 0.95 V 
Vs 16 

The control voltage contains a ripple component on top of the dc value evaluated 
above. The switch drive signal vq shows the duty ratio of the active switch. The ramp 
signal, control voltage, and switch drive signal altogether demonstrate the principles 
of the PWM control. 

When the input voltage steps down from 16 V to 8 V at t = 0.6 ms, several changes 
occur in the converter waveforms. First, the output voltage exhibits a transitional 
undershoot before it returns to the nominal value Vo = 4 V. Upon a sudden decrease 
in Vs, the feedback controller responds to the change with a certain response time. 
Before the feedback controller establishes a new steady state, the change in the input 
voltage influences the output voltage as follows. When the input voltage is reduced, 
the energy delivered from the input source to the output capacitor is also reduced, 
incurring an energy deficit in the output capacitor. This energy deficit causes the 
capacitor voltage to drop, resulting in a transitional undershoot in the output voltage. 
As time elapses, the feedback controller establishes a new steady state and the output 
voltage tracks back to the nominal value. The behavior of the inductor current can 
be similarly explained. 

With the reduced input voltage Vs = 8 V, the ripple component of the inductor 
current is decreased to 

Vs - Vn 8 - 4 4 . 
ML = — -DTS = - 20 x 10"6 = 1 A 

L 40 x 10"6 8 

The control voltage gradually increases to produce a larger duty ratio, required to 
regulate the output voltage with the reduced input voltage. The new value for the 
control voltage is determined as 

Vn 4 
V = —V = - 3 8 = 1 9 V 
v con T /

 v m o 
VS O 

The duty ratio of the switch drive signal also gradually grows based on the PWM 
principle. 

The transient behavior of the converter due to a step increase in the input voltage 
can be interpreted in the opposite way to the step-down case. The instantaneous 
increase of the input voltage causes the output voltage and inductor current to go 
through a transitional overshoot until the feedback controller settles into a new 
steady-state equilibrium. As the control signal gradually decreases, thereby reducing 
the duty ratio to D = 4/16 = 0.25, the output voltage returns to the nominal value. 

The buck converter exhibits very stable and well-controlled transient behavior. 
In fact, the feedback circuit parameters are carefully selected to result in optimal 
transient behavior. Detailed discussions about the feedback circuit parameters will 
be given in Chapter 8. 
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Figure 3.29 Step load response of buck converter. 

Step Load Response 

Now the converter goes through a series of step changes in the load resistance, 
# = 1 Ω = > 2 Ω = » 1 Ω , while the input voltage is fixed at Vs = 16 V. The 
pattern of the step changes and the simulated waveforms are shown in Fig. 3.29. 
With a step load change from R = 1 Ω to 2 Ω at t = 0.6 ms, the energy release 
from the capacitor to the load resistor suddenly becomes smaller than the previous 
value, thereby resulting in an energy surplus at the output capacitor. Accordingly, 
the capacitor voltage momentarily exceeds the nominal value, thereby producing 
an output voltage overshoot. The inductor current clearly shows a decrease in the 
load current. The inductor current indicates that the converter still remains in CCM 
operation with R = 2 Ω. The resistance that places the converter on the borderline 
between CCM and DCM operations is given by 

Rr 
2L 2 · 40 x 10-

(\-D)Ts ( l - 0 . 2 5 ) 2 0 x l 0 " 6 5.33 Ω 
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Figure 3.29 also shows the transient waveforms of the control voltage and switch 
drive signal. After passing through a short transition period, the control voltage and 
switch drive signal return to their original waveforms - the duty ratio is invariant to 
the load resistance value, as far as the converter operates in CCM while retaining the 
output voltage regulation. 

The transient behavior in response to the step load change from R = 2 Ω to 1 Ω 
can be understood in the opposite way to the previous case. In this case, the output 
voltage exhibits an undershoot due to the transitional energy deficit. 

Operational Mode Change Response 

For this case, the load resistance temporarily steps up to a higher value, R = 8 Ω, well 
above the critical value of Rcrit = 5.3 Ω, while the input voltage remains constant at 
Vs = 16 V. The converter is expected to undergo transitions in the operational mode 
because it crosses the CCM/DCM boundary. The simulated transient responses of 
the converter are shown in Fig. 3.30. 
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Figure 3.30 Operational mode change response of buck converter. 
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With the step increase from R = 1 Ω to 8 Ω at t = 0.6 ms, the output voltage 
exhibits an overshoot, and at the same time the converter enters a DCM operation 
within a few switching cycles, as demonstrated by the inductor current waveform. The 
output voltage then gradually settles to the target value V0 = 4 V because the feedback 
controller guarantees dc regulation regardless of the change in the operational mode. 
It is important to notice that, unlike the previous step load response case where the 
converter remains in CCM operation all the time and the control voltage retains the 
same value in steady state, the values of both the control voltage and duty ratio 
decrease when the converter enters DCM operation. This is because the gain formula 
in DCM operation differs from the CCM case. As such, the converter must settle in 
a new duty ratio pertinent to the DCM operation. In fact, the DCM gain is larger 
than the CCM gain for the same duty ratio. Thus, when the converter enters DCM 
operation, the duty ratio should be lessened to produce the same output voltage, as 
shown in Fig. 3.30. With the step decrease in the load resistance from 8 Ω to 1 Ω at 
t = 1.6 ms, the converter returns to CCM operation after a short transition period. 

3.7 SUMMARY 

A step-down dc-to-dc power conversion is achieved by altering a dc input into a 
rectangular waveform and filtering the resulting rectangular waveform into a dc 
output. The buck converter is the simplest circuit that can perform the step-down 
dc-to-dc power conversion. 

The buck converter employs an active-passive switch pair and LC low pass filter. 
The output of a buck converter contains a ripple component. However, the magnitude 
of the ripple component is so small that the output voltage can be considered as a 
pure dc, given by the product of the input voltage and the duty ratio of the active 
switch-this presumption is called the small-ripple approximation. The small-ripple 
approximation is very useful for the steady-state analysis. 

The piecewise linear analysis is adapted to describe the circuit behavior of the buck 
converter during the start-up transient period and in steady state. In the piecewise 
linear analysis, the converter is decomposed into the on-time and off-time subcircuits. 
The operation of the converter is investigated by studying each subcircuit individually 
and later considering the behavior of the two subcircuits collectively. The piecewise 
linear analysis, when applied along with the small-ripple approximation, readily 
offers accurate predictions for the steady-state converter waveforms. Readers will 
further appreciate the usefulness of this analysis method in the next chapter which 
deals with various dc-to-dc converter circuits. 

The performance of a dc-to-dc converter is influenced by the non-ideal character-
istics of the circuit components. In particular, the equivalent series resistance (esr) of 
the output capacitor determines the magnitude of the output ripple. Furthermore, it 
will be shown in Chapter 6 that the esr of the output capacitor has rather significant 
impacts on the dynamic characteristics of the converter. 

Most dc-to-dc converters employ unidirectional switches which only deliver the 
current in one direction. Accordingly, the switch current cannot alter its direction 
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regardless of any changes in operational conditions. This constraint forces dc-to-
dc converters to move into a new operational mode, referred to as a discontinuous 
conduction mode (DCM), when the operational conditions cross certain boundaries. 
In DCM operation, there exists a time interval in which the inductor current stays at 
zero value. The converter operation in DCM differs from the continuous conduction 
mode (CCM) operation in which the inductor current is present all the time. This 
operational difference causes notable changes in the steady-state characteristics and 
transient response of the converter. 

A dc-to-dc converter should provide a fixed output voltage for all the operational 
conditions. For this purpose, the feedback control is employed to adaptively adjust 
the duty ratio so that the converter produces a desired output voltage regardless of the 
changes in the input voltage, load current, or operational mode-CCM or DCM. The 
feedback controller consists of the PWM block and voltage feedback circuit. The 
PWM block generates a pulsewidth-modulated switch drive signal, using the control 
voltage provided by the voltage feedback circuit. To regulate the output voltage at a 
fixed value, the voltage feedback circuit should satisfy the specific condition given 
by (3.56), |Ζ2θ'0)|/|Ζι (7*0)| = oo, as is the case with the three-pole two-zero circuit 
shown in Fig. 3.25(b). 

PSpice® simulations have proved very useful in visualizing converter operations 
and substantiating theoretical predictions. The simulations shown in Section 3.6.2 
provide valuable insights on both steady-state and transient responses of a closed-loop 
controlled PWM dc-to-dc converter. 
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PROBLEMS 

3.1* Listed below are some useful circuit theorems or analysis techniques that are 
frequently applied to dc-to-dc power conversion circuits. For each item, give 
a brief description, mathematical expression, or illustrative example. 

i) volt-sec balance condition ii) amp-sec balance condition 
iii) small-ripple approximation iv) piecewise linear analysis 
v) flux balance condition vi) charge balance condition 

3.2** A secondary filter stage is added to a conventional buck converter, yielding a 
buck converter with a two-stage output filter. The resulting buck converter is 
shown in Fig. P3.2. Circuit analyses reveal that the transfer function of the 
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two-stage filter can be approximated as 
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Fig. P3.2 

3.3* 

a) Perform the frequency-domain analysis to predict the magnitude of the 
output voltage ripple at the presence of the two-stage output filter. Consider 
only the first harmonic component of the output voltage. 

b) Now assume that the secondary filter stage is removed, L2-C2- 0. For 
this case, find new values for L\ and C\ so that the converter produces the 
same output voltage ripple as that of a). Assume Q\ = R ^C\/L\ = 1 for 
this problem. 

c) Based on the results of a) and b), state the advantage of using a two-stage 
output filter rather than a single-stage output filter. 

Shown in Fig. P3.3 is the generic structure of a buck converter. A variety of 
low-pass filter circuits can be placed inside the Box to accomplish the desired 
step-down dc-to-dc power conversion. Typical examples are also shown in 
Fig. P3.3(b). For each low-pass filter circuit, estimate the magnitude of the 
output voltage ripple by performing the frequency-domain analysis. Consider 
only the first harmonic component of the output voltage. 
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Figure P3.4 shows a buck converter along with its switch drive signal. 
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a) Perform the frequency-domain analysis illustrated in Example 3.1, in order 
to predict the magnitude of the output voltage ripple. 

b) Use the equation (3.27) to estimate the size of the output voltage ripple. 
Compare the result with the outcome of a). 

Consider the circuit diagram of a buck converter and its inductor current wave-
form, shown in Fig. P3.5. 
a) Evaluate the output voltage Vo> 
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b) Sketch the steady-state waveforms of the inductor voltage vL and diode cur-
rent io for the two operational periods. Label the maximum and minimum 
values on your sketch. 

c) Evaluate the inductance L and the load resistance R. 

3.6** Consider the dc-to-dc conversion system shown in Fig. P3.6. Referring to the 
switch drive signals for Q\ and Q2, answer the questions. 

/YYW 

2 Ω 

Oil 2//s L J L 
5//s 

Qi\ 6//s 

10/zs 

Fig. P3.6 

a) First assume that all the circuit components are ideal and the power conver-
sion is performed losslessly. Evaluate the average current flowing through 
each semiconductor switch, JQ\, TO\, TQ2, and Jm-

b) Now, assume the following practical devices for the semiconductor switches 
Q\ and Q2: MOSFET with the channel resistance of RDS(on) = 0.5 Ω 
D\ and D2: Schottky diode with the turn-on voltage of VD(ori) = 0.5 V 

Calculate the average power dissipated at each practical switch. 
c) Lastly, estimate the overall efficiency of the system using the following 

formula 
^ Pout 

1out ' *loss 
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where Pout is the power delivered to the output resistors and Pioss is the 
sum of the power losses, each evaluated in b) for the respective practical 
switch. 

3.7 Figure P3.7 shows two buck converters. Referring to the circuit diagrams, 
answer the questions. 

2 Ω ξ ν 0 

Closed 

I 7.0/is I ° P e n 

Closed 
I ?0„< I Ope" Γ 

40//s 40//s 

(a) (b) 

Fig. P3.7 

a) For Converter (a), determine the values for L and C to meet the design 
specifications of AiL/IL = 0.2 and Avo/Vo = 0.02. 

b) For Converter (b), determine the value for L to comply with the design 
specification of Avo/Vo = 0.02. 

3.8** Shown in Fig. P3.8(a) are a buck converter and the Bode plot of its output filter 
transfer function, \Ff\ = |νσ|/|ν*|. 
a) Estimate the magnitude of the output voltage ripple when the buck converter 

operates at 30 kHz with D = 0.5. Use the information given in the Bode 
plot. 

b) Now assume the buck converter is modified into two converter circuits 
shown in Fig. P3.8(b). For each of these two converter circuits, repeat a). 

3.9** Figure P3.9 shows the inductor current of a buck converter that operates at the 
boundary between CCM and DCM. 
a) Assume that the converter operates in an open-loop condition with a fixed 

duty ratio. The load resistance is increased beyond the critical value that 
places the converter at the CCM/DCM borderline, while the input voltage 
remains the same. Sketch a family of inductor currents, each with a different 
load resistance, to illustrate the transition pattern of the inductor current as 
the load resistance is increased. 

b) The converter is now closed-loop controlled, thereby achieving output volt-
age regulation, and again operates at the CCM/DCM boundary. Assuming 
the load resistance is increased beyond the critical value, while the input 
voltage remains the same, sketch a family of inductor currents to show the 
change in the inductor current. 
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c) Again assume the closed-loop control and the borderline operation for the 
converter. For this case, the input voltage is increased beyond the critical 
value for the CCM/DCM boundary, while the load resistance remains the 
same. Sketch a family of the inductor currents that exhibits the transition 
of the inductor current as the input voltage is increased. 
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3.10* Consider the three buck converters shown in Fig. P3.10 and answer the ques-
tions. The common switch signal is applied to the three converters. 
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Fig. P3.10 

a) For each converter circuit, perform the frequency-domain analysis to predict 
the magnitude of the output voltage ripple. 

b) Now, perform the time-domain analysis to estimate the magnitude of the 
output voltage ripple of each converter. 

3.11 Referring to the buck converter in Fig. P3.11, answer the following questions. 
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Fig. P3.11 

a) Determine the inductance L so that the converter operates at the CCM/DCM 
borderline with D = 0.6. 

b) Find the minimum inductance L that ensures CCM operation of the con-
verter for all 0 < D < 1. 

c) Now assume L = 60 μΗ and sketch the general shape of the dc voltage gain 
curve, V0/Vs vs. D, for all 0 < D < 1. 

3.12 Figure P3.12 shows a family of voltage conversion curves of a buck converter, 
as a function of the duty ratio D and dimensionless parameter τ = 2L/(RTS). 
The converter operates with Ts = 20 //s. 
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vö/vs 

0.25 0.5 

Fig. P3.12 

6//H 

a) Sketch the steady-state waveform of ii when the operational condition of 
the converter is located at Point A. Show the maximum, minimum, and 
average values of the waveform on your sketch. 

b) Assume that the operational condition is located at Point B, and repeat a). 
c) Repeat a) for Point C. 

3.13* Shown in Fig. P3.13 are the circuit diagram of a buck converter and its inductor 
current waveform. 

R>v0 

-+< X-
60 //s 20 //s 20 //s 

Fig. P3.13 

a) Referring to the inductor current //,, sketch the inductor voltage vi for the 
two switching periods. Show the maximum and minimum values on your 
sketch. 

b) Find values for the inductance L and resistance R. 
c) Sketch the capacitor current ic for the two switching periods. Show the 

maximum and minimum values. 
d) Evaluate the output voltage ripple Av# when Rc = 0.12 Ω. Assume C -

2500 μ¥ is sufficiently large. 
e) Evaluate Avo when Rc - 0. 
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3.14* Figure P3.14 shows two different buck converters. Converter (a) operates in 
an open-loop fashion while Converter (b) operates with a closed-loop control. 

(i;i6V 
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 vcon ^ 1 L 

20 //s 

(b) 

Fig. P3.14 

a) For Converter (a), answer the following questions. 
i) Assume Rx = oo and sketch the steady-state waveforms of ii and vcon for 
the two operational periods. 
ii) Now assume Rx = 10 kH and repeat i). 

b) Repeat a) for Converter (b). 

3.15* Consider the closed-loop controlled buck converter shown in Fig. P3.15 and 
answer the questions. Assume R] = oo for Problems a) and b). 

25//H 

Vref = 5V 

20 //s 

Fig. P3.15 
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a) With Vs = 20 V, R = 1 Ω, and R\ = oo, sketch the steady-state waveforms 
of the inductor current iL and control voltage vcon for the two switching 
periods. Label the maximum and minimum values on your sketches. 

b) When the operational conditions of the converter are varied as 15 V < Vs < 
25 V and 0.5 Ω <R < 2 Ω with R\ = oo, find the range of the control voltage 
vcon for the entire operating range: ( ) < vcon < ( ). 

Now assume R\ = 10 kΩ for Problems c) and d). 
c) With R\ = 10 kΩ, the converter fails to achieve dc regulation. Explain the 

reason for this. 
d) When Vs = 20 V and R = 1Ω with R{ = ^ Ω , find the steady-state values 

of the output voltage vo and control voltage vcon. 

3.16 Figure P3.16 shows a closed-loop controlled buck converter and its voltage 
gain curve. Answer the following questions. 

l . U 
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0.7 

0.6 

0.5 
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100//s 0.4 0.6 

Duty ratio, D 

Fig. P3.16 

a) Find the ranges for the duty ratio D and control voltage vcon, when the input 
voltage is varied between 20 V < Vs < 60 V. 

b) Find the inductance of the filter inductor L. 
c) Sketch the inductor current iL for the two switching periods for the three 

cases of Vs = 20 V, Vs = 22.5 V, and Vs = 60 V. Show the maximum and 
minimum values of ii. 

3.17**Consider the buck converter shown in Fig. P3.17 and answer the following 
questions. 
a) Assume that the input voltage is varied between 8 V < Vs < 20 V. For this 

condition, the converter could operate in either CCM or DCM, depending 
on the input voltage range. Fill in the blanks in the following descriptions 
which summarize the operation of the closed-loop controlled buck con-
verter. 
i) The converter operates in CCM for ( ) < Vs < ( ) and the control 
voltage varies between ( ) < vcon < ( ) in this CCM operation. 
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3.18 

ii) The converter operates in DCM for ( ) < Vs < ( ) and the control 
voltage varies between ( ) < vcon < ( ) in this DCM operation. 

b) Now assume Vs = 10 V and answer the questions. 
i) Find the steady-state values of the output voltage vo and control voltage 
Vcon -

ii) Assume that the capacitor C\ is accidentally open-circuited. Do you 
expect any change in the steady-state waveform of vo or vconl If you do 
not expect any change, give the reason for your claim. If you do predict 
a change in vo or vcon, evaluate the average value of the corresponding 
waveform in the new steady state. 
iii) Assume the compensation capacitor C\ is accidentally short-circuited 
and repeat ii). 

Shown in Fig. P3.18 are the transient responses of the major circuit waveforms 
of a closed-loop controlled buck converter. Case (a) is the transient response of 
the inductor current iL and control voltage vcon in response to the step changes 
in the input voltage, Vs i => Vsi => Vs i with V51 > V52· Case (b) is the transient 
responses due to the step changes in the load resistor, R\ => R2 => R\ with 
R{<R2. 

Table P3.18 summarizes 1) the prominent behavior of the inductor current 
ii and control voltage vcon, observed in the period circled on the corresponding 
circuit waveform, and 2) a brief explanation for the cause/origin of the respec-
tive circuit behavior. Based on the given information and operational principle 
of the converter, fill in the blanks in Table P3.18. 
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(a) 

Table P3.18 

(b) 

Circled period 

A 
B 
C 
D 
E 
F 

Observed behavior 

undershoot in iL 

decrease in the ripple 
overshoot in iL 

increase in vcon 

discontinuity in iL 

decrease in vcon 

of iL 

Cause/origin of behavior 

( ) 
( ) 
( ) 
( ) 

DCM operation with R > Rcrit 

( ) 

3.19* Figure P3.19 shows a closed-loop controlled buck converter and its inductor 
current waveform. 
a) Referring to the information given in the circuit diagram and inductor 

current ii in Fig. P3.19(a), find values for the inductance L, control voltage 
vcon, input voltage Vs, and output voltage ripple Avo. 

b) Shown in Fig. P3.19(b) is the inductor current of the converter with R = 
10 Ω. Assume that the load resistance is increased to R = 40 Ω while 
the other circuit parameters retain the values you found in a). Under this 
assumption, sketch the inductor current iL. Use Fig. P3.19(b) as a reference 
to show the steps of constructing the new inductor current waveform. 

c) Repeat b) for R = 90 Ω. 
d) Now assume that the input voltage is increased to Vs = 16 V while the 

load resistor retains the original value of R = 10 Ω. Under this assumption, 
sketch the inductor iL using Fig. P3.19(b) as a reference. 
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CHAPTER 4 

DC-TO-DC POWER CONVERTER 
CIRCUITS 

Numerous dc-to-dc converters are currently being employed in various electronic 
equipment and systems. These converters outwardly look so varied in their topologies 
and operations that the diversity of dc-to-dc converters is seemingly amazing, even 
mysterious. Despite the variety and dissimilarity in topological structures, most 
dc-to-dc converters have evolved from the three basic converters known as the buck 
converter, boost converter, and buck/boost converter. Furthermore, among these three 
basic converters, the buck converter is the forerunner of the other two converters -
specifically, the boost converter is derived, at least in its functional abstraction, from 
the buck converter and the buck/boost converter is created by combining the buck 
converter and boost converter. The buck converter was studied in the previous chapter. 

In this chapter, we study an important class of dc-to-dc converters including the 
boost converter, buck/boost converter, and other converters derived from the three ba-
sic converters. For each converter, the origin of the circuit topology is first illustrated 
by showing how the converter circuit has evolved from its respective forerunning 
converter. This chapter then investigates the operational details of the converter and 
presents steady-state waveforms for both continuous conduction mode (CCM) and 
discontinuous conduction mode (DCM) operations. Because the feedback controller 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 123 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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covered in Section 3.6.1 is commonly applicable to all the PWM dc-to-dc converters, 
the current chapter only deals with the power stage operation. 

There are many ways to classify dc-to-dc converters, each with a different criterion 
for classification. One way is to divide PWM dc-to-dc converters into non-isolated 
converters and isolated converters. In a non-isolated converter, the input port of 
the converter shares a common ground with the output port of the converter. The 
buck converter is an example of the non-isolated converter. On the other hand, in an 
isolated converter, the input and output ports of the converter are electrically isolated. 
A transformer is commonly used to provide the galvanic isolation. In this chapter, 
we study the important classes of non-isolated and isolated dc-to-dc converters. 

4.1 BOOST CONVERTER 

The boost converter is a step-up dc-to-dc power conversion circuit that invariably 
produces a higher output voltage than the input voltage. In this section, the topological 
structure of the boost converter is first analyzed. The steady-state operation in both 
CCM and DCM is then investigated using the analysis techniques established in 
Chapter 3. 

4.1.1 Evolution to Boost Converter 

The boost converter can be viewed as a modification of the buck converter, specially 
configured to offer a larger output voltage than the input voltage. Figure 4.1 illustrates 
the procedure of transforming the buck converter into the boost converter through 
steps of circuit manipulations. The buck converter is shown in Fig. 4.1(a) where a 
represents the node to which the active switch is connected, while p is the node where 
the passive switch is present. Figure 4.1(a) is transformed to Fig. 4.1(b) by replacing 
the active-passive switch pair with a single-pole double-throw (SPDT) switch. The 
SPDT switch is connected to a for DTS and p for (1 - D)TS. As shown in Fig. 4.1(b), 
the circuit is partitioned into the source section, middle section, and load section. 
The middle section includes the SPDT switch and inductor. Referring to the voltage 
across the left-hand side of the middle section as v\ and that of the right-hand side as 
V2, the volt-sec balance condition is applied to the inductor 

(vl-v2)DTs = v2(l-D)Ts (4.1) 

resulting in 
v2 = vxD (4.2) 

As the first step of the circuit manipulation, one can interchange the location of 
the source section and load section, while keeping the middle section unchanged, as 
shown in Fig. 4.1(c). With this modification, v2 can be viewed as the input voltage 
associated with the source section, while vi becomes the output voltage across the 
load section. Now, the following two facts need to be kept in mind before continuing 
the circuit manipulation. 
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Figure 4.1 Derivation of boost converter, (a) Buck converter, (b) Alternative representation. 
(c) Interchange of source section and load section, (d) Interchange of passive switch and active 
switch, (e) Realization of SPDT switch, (f) Boost converter. 

1) The relation (4.2), derived from the volt-sec balance condition on the inductor, 
is also valid in Fig. 4.1(c), regardless of the position change between the source 
and load sections. 

2) The parameter D in (4.2) denotes the fraction of the switching period in which 
the SPDT switch is connected to the positive side of vi. 

As the second step, for the purpose of allowing energy flow from the source section 
to load section, the locations of the active and passive switches are interchanged^ 
resulting in the circuit shown in Fig. 4.1 (d). Here, the fraction of the switching period 

^ o r proper operation as a dc-to-dc converter, the circuit should transfer energy from the source section 
to the inductor when the active switch is turned-on, and release the transferred energy to the load section 
when the active switch is turned-off. Although the on-time energy transfer is achieved in Fig. 4.1(c), 
the off-time energy release is not feasible. The on-time energy transfer and off-time energy release both 
become possible when the locations of the active and passive switches are interchanged, as shown in Fig. 
4.1(d). Additional discussions about this feature are given in Section 4.3. 
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in which the SPDT switch resides on the positive side of vi is (1 - D) rather than D. 
Accordingly, the parameter D in (4.2) should be replaced with (1 - D), resulting in a 
new relationship 

v2 = v , ( l - D ) (4.3) 

Figure 4.1(d) is then transformed to Fig. 4.1(e), where the SPDT switch is represented 
by an active-passive switch pair, v\ is renamed as vo for the output voltage, and V2 
is renamed as vs for the input voltage. Finally, Fig. 4.1(e) is rearranged into the 
standard form shown in Fig. 4.1(f). This new converter circuit is called the boost 
converter because its voltage gain vo/vs = 1/0 - D)is always larger than unity for 
all 0 < D < 1, thereby boosting the input voltage to a higher value. 

As illustrated above, the boost converter can be viewed as an evolution from 
the buck converter, created by interchanging the source and load connections and 
rearranging the switches in such a way that allows energy flow from the source 
section to the load section. During this modification, the step-up feature of the boost 
converter has naturally arisen. 

4.1.2 Steady-State Analysis in CCM 

The steady-state analysis of the boost converter in CCM operation is now performed 
using the analysis techniques established in Chapter 3. 

Steady-State Operation in CCM 

Figure 4.2 shows the boost converter, on-time and off-time subcircuits, and major 
circuit waveforms in CCM operation. The standard techniques used in Chapter 3, 
such as the small-ripple approximation, flux balance condition, and charge balance 
condition, are employed in Fig. 4.2. This figure also incorporates that the output 
voltage is always larger than the input voltage, Vo > Vs. The volt-sec balance 
condition is now applied to the inductor 

VsDTs = (Vo-Vs)(l-D)Ts (4.4) 

resulting in the voltage gain expression 

Vo 1 
Vs \-D 

(4.5) 

The gain expression indicates that the voltage gain increases from unity to infinity 
when the duty ratio is varied between 0 < D < 1. 

During an on-time period, the inductor current ramps up with a slope Vs/L. 
Meanwhile, during an off-time period, the inductor current ramps down with a slope 
(Vs - Vo)/L. The excursion of the inductor current is thus determined as 

Vs V0 - Vs 

ML = -j-DTs = ° S(l - D)TS (4.6) 
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Figure 4.2 Steady-state analysis of boost converter in CCM. (a) Boost converter, (b) On-time 
and off-time subcircuits. (c) Major waveforms. 



128 DC-TO-DC POWER CONVERTER CIRCUITS 

As illustrated in Fig. 4.2(c), the inductor current flows through the active switch 
during the on-time period and freewheels through the diode during the off-time 
period. Accordingly, the following relationships hold among the average value of 
the switch current, IQ, average value of the diode current, Ip, and average value of 
the inductor current, Ii 

IQ = DIL (4.7) 

7D = ( 1 - D ) / L (4.8) 

In the boost converter, the diode is connected to the load, whereas the inductor is 
located at the source side. For this case, the average value of the inductor current 
is determined as explained below. Due to the charge balance condition, the average 
value of the capacitor current is zero. Accordingly, the average value of the diode 
current is to be equal to the load current, which is given by the ratio of the output 
voltage to load resistance 

Vo 
b = Io = -jr (4.9) 

K 
Using (4.8) and (4.9), the average value of the inductor current is found as 

iL = ThlD = rhT (410) 

The maximum and minimum values of the inductor current are expressed as 

kmax = /L+ 2A /L ( 4 J 1 ) 

and 

kmin =IL~2AiL ( 4 · 1 2 ) 

where IL is given by (4.10) and AiL is determined by (4.6). 

EXAMPLE 4.1 Steady-State Operation of Boost Converter 

This example shows the steady-state analysis and circuit waveforms of the boost 
converter. The operational conditions and circuit parameters are Vs = 12 V, 
L = 160 μΗ, C = 400 μ¥, Ts = 20 μϊ, and D = 0.4. The steady-state values of 
the major voltage and current waveforms are evaluated as shown in Table 4.1. 
The simulated steady-state circuit waveforms are given in Fig. 4.3. 

Estimation of Output Voltage Ripple 

The magnitude of the output voltage ripple is evaluated from the waveforms shown 
in Fig. 4.4. The diode current io is split into the capacitor current ic and load current 
Io- As discussed in Section 3.4.3, the load current Io carries the dc component 
of io while the capacitor current ic absorbs the ac component of iD: I0 = ID and 
ic = iD - ID. This situation is illustrated in Fig. 4.4(b). 
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Table 4.1 Steady-State Analysis of Boost Converter 

Circuit variable Expression 

Vo 
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Figure 4.3 Circuit waveforms of boost converter. 
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Figure 4.4 Estimation of output ripple, (a) Circuit diagram, (b) Current waveforms and 
output ripple. 

The peak-to-peak value of the capacitor voltage, Avac, or the magnitude of the 
output voltage ripple, Δν#, can be found by integrating ic over the time period in 
which ic remains negative and by dividing the resulting value by the capacitance 

Avnr = AV( -1 f2 
k(r) άτ (4.13) 

The operation of (4.13) is equivalent to evaluating the area of the highlighted rectangle 
in Fig. 4.4(b) and dividing the area by the capacitance. By noting that \t2 -t\\ = DTS, 
the magnitude of the output voltage ripple is given by 

AVo = ±I0DTs = ^ D T s (4.14) 

It should be noted that (4.14) is only valid when the boost converter is operating in 
CCM and the output capacitor does not contain an equivalent series resistance (esr). 
When the esr Rc is present in the capacitor, the output ripple is given by 

Avr AioRc - lD max Rc ~ iLn (4.15) 

for the boost converter operating in either CCM or DCM. The output ripple of the 
boost converter, given by Δν^ « iLmaxRc m (4.15), is significantly larger than that of 
the buck converter, given by Av0 ~ AiiRc in (3.31). 

4.1.3 Steady-State Analysis in DCM 

The boost converter operates at the borderline between CCM and DCM when the 
condition Ii = AiL/2 is satisfied. The CCM/DCM boundary condition is expressed 
in terms of circuit parameters and operating conditions 

1 

D R 2 L 
(4.16) 
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Figure 4.5 Circuit waveforms of boost converter in DCM operation. 

based on (4.10) and (4.6). The expression (4.16) is used to find the critical value for 
the load resistance 

R°'=T*rm, < 4 1 7 ) 

that determines the operational mode. When the load resistance is larger than Rcrit, 
the converter enters DCM operation. Otherwise, the converter remains in CCM 
operation. 

Figure 4.5 shows the major circuit waveforms of a boost converter operating in 
DCM. Application of the volt-sec balance condition to the inductor yields 

which indicates that 

VsDTs = (Vo-Vs)DlTs 

V0 D + Dx 

(4.18) 

(4.19) 
Vs Dx 

The unknown variable D\ should be removed from (4.19) to yield a complete voltage 
gain expression. 

For the boost converter, the average value of the diode current should be the same 
as the load current, ID = I0, because the diode is connected to the output of the 
converter. From the waveform of the diode current iD, the following equation is set 
forth 

~iLmaxD\Ts 

- = = Io (4.20) 

By incorporating the fact 
_ ys (4.21) 



132 DC-TO-DC POWER CONVERTER CIRCUITS 

and 
Vo 

Ιο = γ (4.22) 

the equation (4.20) is rearranged as 

to yield the expression for Di 

1 Vs Vn 
_JLDTsDx = Jl (4.23) 

D1 = * 2 - ^ - (4.24) 
Vs RDTS 

Now, the expressions (4.19) and (4.24) are combined together, resulting in a quadratic 
equation for Vo/Vs 

M 2 (Vo\ *ΚΓ,=0 (4_25) 

Vs) \VS) 2L 

The solution to (4.25) becomes the DCM gain of the boost converter 

The DCM voltage gain is a nonlinear function of circuit parameters and operational 
conditions. The following two observations, previously found in the buck converter 
case, also hold true for the boost converter. 

1) The voltage gain grows larger as the load resistance is increased. 

2) For most practical converter parameters, the DCM voltage gain is larger than 
the CCM counterpart when the same duty ratio is assumed. 

4.1.4 Effects of Parasitic Resistance on Voltage Gain 

The voltage gain of the ideal boost converter in CCM operation, Vo/Vs = 1/(1 -
D), predicts that the output voltage increases without limits as the duty ratio D 
approaches unity, thereby yielding an infinite output voltage with D = 1. However, 
the operational principle of the boost converter contradicts this scenario. With D = 1, 
the active switch remains closed all the time and the diode never conducts. This 
implies that the output section of the converter is isolated from the source. For this 
case, the output voltage is zero because no energy is delivered from source to load. 

The conflict between the ideal voltage gain and the operational principle of the 
converter can be resolved when the non-ideal characteristics of the circuit compo-
nents are incorporated. Figure 4.6 shows a boost converter along with its on-time 
and off-time subcircuits, where the winding resistance Ri is included to a practical 
inductor, while the other circuit components are still assumed ideal. The voltage gain 
expression of the converter with the presence of Ri is now derived to investigate the 
behavior of the non-ideal boost converter. 
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Figure 4.6 Boost converter with inductor winding resistance, (a) Circuit diagram, (b) 
On-time and off-time subcircuits. 

The volt-sec balance condition of the inductor is formulated as 

(Vs - hWi)DTs = -(Vs - hWi ~ Vo)d - D)TS (4.27) 

where Ji represents the average value of the inductor current: TL = h- The average 
inductor current Ti has the same effect as the original inductor current ii, as far as the 
volt-sec balance condition is concerned. The expression (4.27) is simplified to 

Vs = Iifli + (1 - D)V0 (4.28) 

On the other hand, the amp-sec balance condition on the output capacitor is written 

as 
J?-DTs = (TL(t)-Y)(l-D)Ts 

which is simplified to 
Vo 
R 

= ( 1 - D ) / L 

(4.29) 

(4.30) 

The desired expression for the voltage gain is now obtained by simultaneously 
solving (4.28) and (4.30) to eliminate IL. The resulting voltage gain is arranged as 
the product of the voltage gain of the ideal boost converter and the correction factor 
that accounts for the effect of the winding resistor Ri 

Vo 
Vs 

1 

\-D 
1 

1 + 
1 Ri 

( 1 - D ) 2 R 

(4.31) 

The key parameter in the correction factor is the ratio of the winding resistance to 
the load resistance, Ri/R. Figure 4.7 shows the voltage gain curves, calculated using 



134 DC-TO-DC POWER CONVERTER CIRCUITS 

Figure 4.7 Voltage gain of non-ideal boost converter. 

(4.31) with different values for Ri/R. The voltage gain curves reveal substantial 
deviations from the ideal case. The deviation intensifies as the Ri/R ratio increases, 
showing a wide gap between the actual voltage gain and the ideal voltage gain when 
the duty ratio is large. In particular, all the voltage gain curves merge to zero as 
the duty ratio approaches unity, rather than growing boundlessly. This phenomenon 
is actually consistent with the operation of the boost converter. With D = 1, the 
output of the converter is never connected to the source, and the output capacitor thus 
remains uncharged producing zero output voltage. 

It is noteworthy that the Ri/R ratio limits the maximum voltage gain that a boost 
converter can produce. For example, with Ri/R = 0.02, Fig. 4.7 indicates that the 
maximum voltage gain is approximately 3.5 at the duty ratio of D = 0.875. If a 
voltage gain larger than 3.5 is required, Ri/R should be reduced to be smaller than 
0.02. 

■ EXAMPLE 4.2 Output Voltage with Inductor Winding Resistance 

This example substantiates the results of the preceding gain analysis. The 
boost converter introduced in Example 4.1 has the parameters of V$ = 12 V, 
L = 160 μΗ, C = 400//F, and R = 5 Ω. Now, a 0.1 Ω winding resistance 
is included in the inductor, resulting in Ri/R = 0.1/5 = 0.02. Under this 
condition, a series of simulations is performed with four different values for 
the duty ratio: D = 0.875, 0.900, 0.925, and 0.950. The output voltage 
waveforms of the boost converter are shown in Fig. 4.8. As expected from Fig. 
4.7, the output voltage attains its peak value at D - 0.875 and decreases as the 
duty ratio is further increased. The theoretical predictions of the output voltage 
based on (4.31) are given in Table 4.2. 
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Figure 4.8 Output voltage waveforms of boost converter with Rt/R = 0.02. 

Table 4.2 Output Voltage Analysis 

Duty ratio Output voltage 

D = 0.875 

D = 0.900 

D = 0.925 

D = 0.950 

Vn = 
1 -D 

1 

1 + ^ ^ 
(1-D)2 R 

1 - 0.875 
1 + 

1 0.1 

(1-0.875)2 5 

12 = 42 V 

40 V 

35 V 

27 V 

4.2 BUCK/BOOST CONVERTER 

The buck/boost converter is a dc-to-dc power conversion circuit that can either step-up 
or step-down the input voltage. In this sense, the buck/boost converter is also called 
the up-down converter. This section discusses the circuit topology and steady-state 
operation of the buck/boost converter. 
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Figure 4.9 Derivation of buck/boost converter, (a) Cascaded connection of buck converter 
and boost converter, (b) Alternative representation using two synchronized SPDT switches. 
(c) Non-inverting buck/boost converter, (d) Subcircuits of non-inverting buck/boost converter. 
(e) Modification of subcircuits. (f) Buck/boost converter. 
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4.2.1 Evolution to Buck/Boost Converter 

The buck/boost converter is created by cascading a buck converter and boost con-
verter and simplifying the cascaded circuit. Figure 4.9(a) shows the buck converter 
connected to a boost converter downstream. Figure 4.9(a) is changed to Fig. 4.9(b) 
by replacing the active-passive switch pairs with SPDT switches. It is now assumed 
that the two SPDT switches are synchronized so that both SPDT switches are held at 
position a for DTS and position p for (1 - D)TS. 

It should be noted that the upstream buck converter in Fig. 4.9(b) will be function-
ing even if its output filter capacitor is removed. The output filter capacitor, employed 
to enhance the filtering performance in a standalone buck converter, becomes redun-
dant when the buck converter is connected to a boost converter which has its own 
output capacitor. 

Once the output capacitor of the buck converter is removed, the inductor of the 
buck converter and that of the boost converter can be merged together, resulting in the 
circuit shown in Fig. 4.9(c). In Fig. 4.9(c), the left-hand side of the inductor terminal 
is marked · to highlight the polarity of the inductor voltage. This circuit is referred to 
as the non-inverting buck/boost converter for reasons that will become clear shortly. 

Application of the volt-sec balance condition to the inductor in Fig. 4.9(c) yields 

VsDTs = V0(l-D)Ts (4.32) 

which is simplified to result in the voltage gain of the buck/boost converter 

Ts=
DTr5 (433) 

The first term D originates from the buck converter upstream, while the second term 
1/(1 - D) comes from the boost converter downstream. 

The on-time and off-time subcircuits of the non-inverting buck/boost converter 
are shown in Fig. 4.9(d). The subcircuits in Fig. 4.9(d) are redrawn into Fig. 4.9(e) 
keeping the circuit properties unchanged. A new circuit is now synthesized from the 
two subcircuits in Fig. 4.9(e). The resulting circuit is shown in Fig. 4.9(f) in two 
different forms; one is with the SPDT switch and the other is with an active-passive 
switch pair. It is easy to see that the new circuit reduces to the two subcircuits in Fig. 
4.9(e) with the two different conditions of the SPDT switch. 

The converter circuit shown in Fig. 4.9(f) is named as the buck/boost converter 
because the converter is derived from the connection of the buck converter and the 
boost converter. The polarity of the output voltage of the buck/boost converter is 
opposite to that of the input voltage. Meanwhile, in the converter circuit in Fig. 
4.9(c), the output voltage has the same polarity as the input voltage, as such, the 
converter is referred to as the non-inverting buck/boost converter. 

4.2.2 Steady-State Analysis in CCM 

The steady-state analysis of the buck/boost converter is performed in the same manner 
as that of the buck converter and boost converter cases. 
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Figure 4.10 Steady-state analysis of buck/boost converter in CCM. (a) Buck/boost converter. 
(b) On-time and off-time subcircuits. (c) Major circuit waveforms. 

Steady-State Operation in CCM 

Figure 4.10 shows the buck/boost converter, on-time and off-time subcircuits, and 
major circuit waveforms. The steady-state operation of the converter is illustrated 
with the circuit waveforms in Fig. 4.10(c). Application of the volt-sec balance 
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condition to the inductor 
VsDTs = V0(l-D)Ts (4.34) 

yields the voltage gain of the buck/boost converter 

Vo = D 
Vs \-D 

(4.35) 

The gain formula predicts that the output voltage varies from zero to infinity when 
the duty ratio is varied between 0 < D < 1. However, as is the case with the 
boost converter, the voltage gain deviates from the ideal one when non-ideal circuit 
components are considered. It can be shown that the voltage gain is modified as 

Vo D 
Vs \-D i + — ! _ * 

(l-D)2 R 

(4.36) 

at the presence of the inductor winding resistance Ri. The structure of (4.36) is the 
same as that of the voltage gain of the practical boost converter given in (4.31). Ac-
cordingly, the actual buck/boost converter will resemble the behavior of the practical 
boost converter discussed in Section 4.1.4. 

The excursion of the inductor current is given by 

Vs Vn 
ML = -j-DTs = - ^ (1 - D)TS (4.37) 

The average values of the switch current and diode current are determined as 

IQ = DIL 

ID = (l-D)IL (4.38) 

Same as the boost converter case, the load current is supported by the diode cur-
rent. Thus, the average diode current becomes the load current: ID = I0 = VolR> 
Accordingly, the average value of the inductor current is given as 

The maximum value of the inductor current then becomes 

iLmax = L· + ^L (4.40) 

The minimum value is given by 

hmin = h - -zkiL (4.41) 
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Figure 4.11 Estimation of output ripple, (a) Circuit diagram, (b) Current waveforms and 
output ripple. 

Estimation of Output Voltage Ripple 

Figure 4.11 shows the circuit diagram and waveforms that are used in predicting the 
magnitude of the output voltage ripple. The waveforms are identical to those of the 
boost converter shown in Fig. 4.4. This is because the output stage of the buck/boost 
converter retains the circuit properties of the boost converter. Consequently, the 
output voltage ripple of the buck/boost converter is the same as the boost converter 
case 

Avac = Av0 = --^DTS (4.42) 

This expression only holds true when the converter is in CCM operation and no esr 
is present in the output capacitor. When the esr of the output capacitor is considered, 
the output ripple is approximated to 

AVQ ~ AlßRc - iDmaxRc ~ iLmax^c (4.43) 

for the converter operating in either CCM or DCM. 

EXAMPLE 4.3 Steady-State Operation of Buck/Boost Converter 

This example demonstrates the circuit waveforms of a buck/boost converter. 
The circuit parameters of the buck/boost converter are Vs = 12 V, L = 160μΗ, 
C = 400 μ¥, R = 5 Ω, Ts = 20 ^s, and D = 0.4. Table 4.3 summarizes the 
steady-state values of major circuit variables. Figure 4.12 shows the simulated 
waveforms of important circuit variables. 
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Table 4.3 Steady-State Analysis of Buck/Boost Converter 

Circuit variable Expression 

D 0.4 

VLmax Vs = 12 V 

vLmm -Vo = - 8 V 

ML iiOT,.._Ji_o.4.20xlO--0.6A 

AiV 0.6 
kma* h + ~γ = 2.67 + — = 2.97 A 

kmin Ιΐ~ψ= 2 · 6 7 ~T= 2'37 A 

4.2.3 Steady-State Analysis in DCM 

For the buck/boost converter, the C C M / D C M borderl ine condit ion, IL = AiL/2, is 
writ ten as 

I V0 IVS 
0 ~ ~DTS (4.44) \-D R 2 L 

using (4.39) and (4.37). F rom (4.44) and (4.35), the critical value for the load resistor 
is given by 

"""ITWF, (4A5) 

The converter enters D C M operat ion with the load resis tance larger than R c r i t . 
Figure 4 .13 shows the major D C M waveforms of the buck/boost converter. A p -

plication of the volt-sec ba lance condi t ion to the inductor yields 

VSDTS = V0DXTS (4.46) 

which is simplified to 
Vo D 

By equating the average diode current ID to the load current, it follows that 

1 Vs V0 

_ _ L D 7 y ) l = _J> (4<48) 
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Figure 4.12 Circuit waveforms of buck/boost converter. 
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Figure 4.13 Circuit waveforms of buck/boost converter in DCM operation. 

which provides an expression for D\ 

Dy = 
Vo 2L 

Vs RDTS 

(4.49) 
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(a) (b) 

(c) (d) 

Figure 4.14 Three-terminal cell and basic converters, (a) Three-terminal cell, (b) Buck 
converter, (c) Boost converter, (d) Buck/boost converter. 

Finally, by combining (4.47) and (4.49), the DCM voltage gain is given by 

As is the case with the buck and boost converters, the voltage gain is proportional 
to the load resistance. Also, the DCM voltage gain is usually larger than the CCM 
counterpart when the same duty ratio is assumed. 

4.3 STRUCTURE AND VOLTAGE GAIN OF THREE BASIC 
CONVERTERS 

We have studied the three basic dc-to-dc converter topologies: the buck converter, 
the boost converter, and the buck/boost converter. The structure and voltage gain of 
these three converters are now reviewed from a more general perspective. 

Structure of Three Basic Converters 

The three basic converters contain a common circuit block, consisting of an SPDT 
switch and inductor. This common circuit block is shown in Fig. 4.14(a). This 
circuit block is referred to as the three-terminal cell. The node a denotes the active 
switch terminal and p indicates the passive switch terminal. The node c stands for 
the common terminal to which the filter inductor is connected. The other end of the 
filter inductor is denoted as the inductor terminal, i. 

The three-terminal cell is inserted between the source and load in three different 
ways for the three basic converters. As shown in Fig. 4.14, the inductor terminal i is 
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directed to the output port in the buck converter, while the inductor terminal is linked 
to the input port in the boost converter. In the buck/boost converter, the inductor 
terminal is connected to the ground. 

Despite the different configurations, the three converters have a common aspect 
that enables each circuit to function as a dc-to-dc power converter. In each converter, 
energy is transferred from the source to inductor when the common terminal is 
connected to the active terminal. On the other hand, when the common terminal is 
tied to the passive terminal, energy is released from the inductor to load. Thus, the 
switching action of the SPDT switch provides an energy transfer from the source to 
load. The amount of the energy transfer is determined by the duty ratio of the active 
switch. The inductor is used as an intermediate energy storage component. 

To summarize, in the three basic converters, the three-terminal cell is positioned to 
link the source and the load, while allowing a controlled energy transfer between them 
by using the inductor as the transitional energy reservoir. In fact, the buck converter, 
boost converter, and buck/boost converter are the only three possible topological 
structures that can perform the dc-to-dc power conversion using the three-terminal 
cell shown in Fig. 4.14(a). 

Voltage Gain of Three Basic Converters 

The three basic dc-to-dc converters offer the different input-to-output voltage gains. 
Figure 4.15 shows the voltage gain characteristics of the three converters. For each 
converter, the voltage gain is displayed for both CCM and DCM operations using 

Duty ratio D 

Figure 4.15 Voltage gain curves of three basic converters. 
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Table 4.4 DCM Voltage Gain and Dcrit of Three Basic Converters 

DCM voltage gain Dcrit 

ID 1 L 
Buck converter π - - ( 1 - Dcrit) ■ 

V RTS 

2V t m ' RTS 

2D2RTS Boost converter ^ 11 + Λ /1 + ;—- | ^Dcrit{\ - Dcrit)
z = -^-

Buck/boost converter D \l ^T~ ~U ~~ Dcrit)2 

2 /?7\ 

D c n i as the borderl ine. T h e converter operates in D C M when its duty ratio is less 
than Dcrit and moves to C C M operat ion when the duty ratio grows larger than Dcrit. 
T h e express ions for the D C M voltage gain and Dcrit of the three converters are 
summar ized in Table 4 .4. 

4.4 FLYBACK CONVERTER: TRANSFORMER-ISOLATED 
BUCK/BOOST CONVERTER 

For many dc- to-dc converter appl icat ions, electrical isolation be tween the input and 
output ports is required by law for practical reasons such as safety. O n e simple way 
to provide such an input-output isolation is to insert an isolation transformer in the 
middle section of dc-to-dc converters . Indeed, numerous isolated converter topologies 
are proliferated by adding a transformer to the three basic dc-to-dc converters . The 
flyback converter is a typical example of them. 

T h e flyback converter is evolved from the buck/boost converter by adding an 
isolation t ransformer and simplifying the result ing circuit. The flyback converter 
has a very s imple structure with a minimal componen t count , whi le providing the 
desired input-output isolation. Accordingly, the flyback converter is widely used as 
a cost-effective dc-to-dc conversion circuit for consumer electronics. This section 
presents the topological origin and steady-state operat ion of the flyback converter. 

4.4.1 Evolution to Flyback Converter 

Figure 4.16 shows the evolution of the flyback converter from the forerunning 
buck/boost converter. The buck/boost converter is shown in Fig. 4.16(a). A practical 
transformer is now inserted in the middle section of the buck/boost converter, result-
ing in the circuit shown in Fig. 4.16(b). After replacing the practical transformer with 
a combination of the magnetizing inductance Lm and ideal transformer, as shown in 
Fig. 4.16(c), the active switch and diode are relocated without affecting the operation 



146 DC-TO-DC POWER CONVERTER CIRCUITS 

-M-

yo 

+ 

(a) (b) 

(c) (d) 

(e) (0 

Figure 4.16 Evolution to flyback converter, (a) Buck/boost converter, (b) Insertion of 
isolation transformer, (c) Circuit model, (d) Equivalent circuit model, (e) Modified circuit 
model, (f) Flyback converter. 

of the converter, as shown in Fig. 4.16(d). Figure 4.16(d) is now changed to Fig. 
4.16(e) by combining the inductor of the buck/boost converter and the magnetizing 
inductance of the transformer, and vertically flipping the circuitry located in the 
secondary side of the ideal transformer. The final form of the flyback converter is 
shown in Fig. 4.16(f), where the composite inductance, L || Lm, is considered as the 
magnetizing inductance of the practical transformer. 

The flyback converter utilizes the magnetizing inductance of the isolation trans-
former as its functional inductance. Therefore, the isolation transformer should be 
fabricated in such a way that could offer a controllable magnetizing inductance. 
One easy method to achieve this goal is to create a gap in the magnetic path of 
the transformer. This is commonly implemented by introducing an air gap between 
the magnetic cores, which effectively determines the magnetizing inductance of the 
isolation transformer. 
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4.4.2 Steady-State Analysis in CCM 

Functionally speaking, the flyback converter is a buck/boost converter with trans-
former isolation. Thus, the flyback converter closely mimics the buck/boost converter 
in its operation. Figure 4.17 illustrates the operation of the flyback converter in CCM, 
where a 1: n turns ratio is assumed for the transformer. The transformer is represented 
by the parallel connection of magnetizing inductance and ideal transformer. 

During an on-time period in which the active switch is closed, the diode is reverse-
biased by the sum of the output voltage and the voltage across the secondary trans-
former winding: Vo + nVs. Accordingly, the on-time subcircuit for DTS is resulted 
as shown in Fig. 4.17(b). 

The operation of the converter during the on-time period DTS is explained as 
follows. The voltage across the magnetizing inductance, vm in Fig. 4.17, is the input 
voltage Vs. The current through the magnetizing inductance, im, thus ramps up with 
a slope Vs/Lm. The magnetizing current im flows through the switch, im = IQ, while 
both the primary and secondary currents of the ideal transformer are zero, thereby 
meeting the current equation of the ideal transformer. During this period, energy is 
transferred from the source to the magnetizing inductance of the transformer. As the 
magnetizing current im increases linearly, so does the energy stored in the transformer. 
As im reaches its maximum value, the energy stored in the transformer attains its peak 
value. 

When the active switch is turned-off, the magnetizing current im directs towards 
the primary winding of the transformer and this in turn pushes a positive current 
into the diode at the secondary side. Accordingly, the diode is turned-on and the 
circuit presents the off-time subcircuit for (1 - D)TS, as shown in Fig. 4.17(b). In 
this period, the magnetizing current im runs into the undotted terminal of the primary 
winding, while the diode current io leaves from the undotted terminal of the secondary 
winding. The diode current in this period is given by io = im/n, according to the 
current equation of the 1 : n ideal transformer. 

During the off-time period, the output voltage V0 is reflected through the 1 : n 
transformer and applied to the magnetizing inductance Lm in the negative polarity. 
Thus, the magnetizing current im ramps down with a slope (-Vo/n)/Lm. As im 

linearly decreases, the energy piled up in the transformer during the on-time period 
is delivered to the load resistor and output capacitor. Figure 4.17(c) shows the circuit 
waveforms of the flyback converter, constructed based on the operational principles 
explained above. 

Application of the volt-sec balance condition to the magnetizing inductance Lm 

yields 

VsDTs = ^(l-D)Ts (4.51) 
n 

which leads to the voltage gain for the flyback converter 

The voltage gain is given by the product of the voltage gain of the buck/boost converter 
and the turns ratio of the transformer. 
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Figure 4.17 Steady-state analysis of flyback converter with 1 : n transformer, (a) Flyback 
converter, (b) On-time and off-time subcircuits. (c) Major circuit waveforms. 
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The excursion of the magnetizing current is given by 

V? Vn/n 
Mm = -±DTS = -ψ-(\ - D)TS (4.53) 

The average value of the magnetizing current is found as follows. The average value 
of the diode current is equal to the load current because the diode is connected to the 
load 

Vo h = -£ (4.54) 
K 

The average diode current ID is related to the average magnetizing current IM by the 
following equation 

ID = (\-D)IM- (4.55) 
n 

From (4.54) and (4.55), the average magnetizing current is given by 

IM = j^nlo = - ^ η ^ - (4.56) 

The maximum value of the magnetizing current is determined as 

im max = IM + ~ A / m (4.57) 

and the minimum value is given by 

(4.58) 

The voltage across the active switch, VQ in Fig. 4.17(a), is zero during the on-time 
period. During the off-time period, VQ is given by the sum of the input voltage and 
the reflected output voltage 

VQ = Vs + — (4.59) 

EXAMPLE 4.4 Steady-State Operation of Flyback Converter 

This example shows the results of the steady-state analysis and circuit wave-
forms of a flyback converter. The operational conditions and power stage 
parameters of the flyback converter are Vs = 24 V, Lm = 160 μΗ, η = 0.5, 
C = 400/iF, R = 2.5 Ω, Ts = 20)us, and D = 0.4. The results of the steady-state 
analysis are summarized in Table 4.5. The simulated circuit waveforms are 
shown in Fig. 4.18. 
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Table 4.5 Steady-State Analysis of Flyback Converter 

Circuit variable Expression 

Vo 
D 0.4 

nVs = -——0.5-24 = 8 V 1 - D 1-0.4 

V5 = 24 V 

AL 

iQmax 

iDn 

vQmax 

Vo = _ _ 8 _ 
' n 0.5 

1 Vo -n 

= -16V 

1 
0 .5— =2.67 A 

1 - D R 1-0.4 2.5 

— DTS = —-^—-0.4 · 20 x 10~6 = 1.2 A 
Lm 160 x 10"6 

1 1.2 
IM + -Mm = 2.67 + — = 3.27 A 

1.2 
/ * - - A i m = 2.67- — =2.07 A 

: 3.27 A 

3 27 
= ^ = — = 6 . 5 4 A 
n 0.5 

V5 + ^ = 2 4 + - £ - = 4 0 V 
n 0.5 

4.4.3 Steady-State Analysis in DCM 

For the flyback converter, the CCM/DCM borderline condition IM = Aim/2 is ex-
pressed as 

1 V0 IVs 
\-D R 2Ln 

DTS (4.60) 

based on (4.56) and (4.53). By incorporating (4.52) into (4.60), the critical load 
resistance is found as 

Lm (4.61) Rrrit = In 2 ^m 

d-D)2Ts 

If the load resistance is increased beyond Rcriu the converter encounters DCM oper-
ation. 

Figure 4.19 shows the major waveforms of the flyback converter in DCM operation. 
When im becomes zero, the diode at the secondary side of the transformer is turned-off. 
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Figure 4.18 Circuit waveforms of flyback converter. 

Under this condition, im remains at zero and thus vm also becomes zero. Accordingly, 
the voltage across the active switch equals to the input voltage, VQ = Vs. 

Application of the volt-sec balance condition to the magnetizing inductance yields 

which leads to 

Vo VSDTS = ^DXTS 
n 

D Yo=_n 
Vs Dx

n 

By equating the average value of the diode current to the load current 

\(imma,)
l-DlTs \\&r)\DxT, 

Vo 
R 

an expression for D\ is obtained 

n Vo 2Lm 

Vs RDTS 

(4.62) 

(4.63) 

(4.64) 

(4.65) 
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Figure 4.19 Steady-state analysis of flyback converter in DCM. (a) Circuit diagram, (b) 
Major circuit waveforms. 

Finally, by combining (4.63) and (4.65), the DCM voltage gain is given by 

Vs V 2Lm 
(4.66) 

The voltage gain expression is independent of the transformer turns ratio n, and in 
fact is the same as the DCM gain of the buck/boost converter. 
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Figure 4.20 Derivation of isolated dc-to-dc converter from buck converter, (a) Buck 
converter, (b) Buck-derived isolated dc-to-dc converter and switch network waveforms. 

4.5 BRIDGE-TYPE BUCK-DERIVED ISOLATED DC-TO-DC 
CONVERTERS 

Most isolated dc-to-dc converters evolved from the three basic converters. We studied 
the flyback converter which was derived from the buck/boost converter by adding an 
isolation transformer. 

Among isolated converter topologies, the dc-to-dc converters derived from the 
buck converter are widely used in medium-to-high power applications. In this section, 
a family of buck-derived isolated dc-to-dc converters, called bridge-type converters 
due to their circuit structures, will be studied. Another family of buck-derived 
isolated converters will be studied in the next section, which is referred to as forward 
converters based on their operational principles. 

The derivation of an isolated dc-to-dc converter from the buck converter is illus-
trated in Fig. 4.20, where the buck converter is divided into three functional blocks: 
the source, SPDT switch, and low pass filter circuit in Fig. 4.20(a). The functions of 
the SPDT switch and low pass filter were explained in Section 3.2.1. 

Switch 
network 

„ nm 
+ 

VN 

r\ . 
+ 

Vn 
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Isolated dc-to-dc converters are derived from the buck converter shown in Fig. 
4.20(a), by replacing the SPDT switch with a switch network which performs the 
same function while providing an input-output isolation. This concept is illustrated 
in Fig. 4.20(b). The requirements of the switch network are summarized below. 

1) The switch network should provide a rectangular voltage waveform, ν# in Fig. 
4.20(b), as the input voltage to the low-pass filter circuit. The top value vyv 
is proportionate to the source voltage Vs and the bottom value is zero. The 
low-pass filter circuit smooths vyv, thereby producing the average value of v^ 
as the output voltage of the converter: v#(0 = Vo-

2) The switch network should deliver a triangular current waveform, /# in Fig. 
4.20(b), to the input terminal of the low-pass filter circuit. In particular, the 
switch network should provide a freewheeling path for /# when vyy is zero. The 
average value of /# is the output current of the converter: TN(t) = Io-

3) The switch network should provide the input-output isolation. Most switch 
networks employ a transformer for the input-output isolation. 

In this section, we first investigate the circuit configurations of the switch network. 
Then, this section reviews the circuit models for multi-winding transformers which 
are frequently employed as an isolation transformer in the switch network. Finally, 
we study the operation of three important buck-derived isolated converters: the full-
bridge converter, half-bridge converter, and push-pull converter. It will be shown 
that, although named differently due to the difference in the switch network, the 
operation of these three buck-derived converters is all functionally equivalent to that 
of the buck converter. 

4.5.1 Switch Network and Multi-Winding Transformer 

This section introduces circuit configurations for the switch network. Because most 
switch networks contain a multi-winding transformer, the circuit models for multi-
winding transformers are also discussed. 

Switch Network Structure 

Figure 4.21 shows the generic structure of the switch network. The switch network 
is divided into two circuits using the isolation boundary as the borderline. The circuit 
located at the left-hand side of the isolation boundary is referred to as the primary 
circuit, while the circuit appearing at the other side is denoted as the rectification 
circuit. 

There are numerous circuit configurations that can be employed as the primary 
circuit or rectification circuit for the switch network. If a particular circuit config-
uration is selected each for the primary circuit and rectification circuit, a specific 
switch network will be created. This concept is illustrated in Fig. 4.21, where three 
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Figure 4.21 Structure of switch network. 

primary circuits and two rectification circuits are shown across the isolation bound-
ary. An arbitrary pair of these circuits, one from the primary circuits and the other 
from the rectification circuits, can be merged to function as a switch network for a 
transformer-isolated buck-derived dc-to-dc converter. 

The primary circuits are named as the full-bridge circuit, half-bridge circuit, and 
push-pull circuit. The name full-bridge stems from the structure of the circuit, which 
has a pair of vertical legs configured with two active switches connected in series. 
In the half-bridge circuit, only one active switch leg exists while the other leg is 
replaced with two capacitors connected in series. On the other hand, the push-pull 
circuit is named after its operational principle; one switch pushes the current into 
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Figure 4.22 Practical transformers and circuit models, (a) Two-winding transformer, (b) 
Three-winding transformer. 

the transformer, while the other switch pulls the current out of the transformer. The 
two rectifications circuits in Fig. 4.21 are called the center-tapped rectifier and bridge 
rectifier. It will be shown that these two rectifiers are equivalent in their function and 
thus can be used interchangeably. A switch network could employ a two-, three-, or 
four-winding transformer depending on the topologies of the primary and rectification 
circuits. 

Circuit Models for Multi-Winding Transformers 

The switch network usually contains a multi-winding transformer. Thus, it is neces-
sary to review the circuit models for transformers before investigating the operations 
of transformer-isolated dc-to-dc converters. Figure 4.22(a) shows a two-winding 
transformer and its circuit model. The circuit model contains the magnetizing induc-
tance and ideal transformer. Details about the transformer model were covered in 
Section 2.2.3. Using the transformer circuit model, the following relationships can 
be written 

vp(t):vs(t)= 1 :n (4.67) 

ip(t) = im(t) + nis(t) (4.68) 

with 
Ns n=~r (4.69) 
NP 
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where NP is the turns of the primary winding and Ns is that of the secondary winding. 
The magnetizing current im is given by 

Lm J im(t) = — vP(t)at (4.70) 
Lm J 

The magnetizing inductance Lm is expressed as 

Lm=^o^-N2
P (4.71) 

in terms of the transformer parameters shown in Fig. 4.22(a). 
Figure 4.22(b) shows a three-winding transformer and its circuit model. The 

circuit model consists of the magnetizing inductance and ideal three-winding trans-
former. While the circuit model can be considered as an extension of the two-winding 
transformer model, the model can also be derived based on the electro-magnetic 
phenomena inside the three-winding transformer. Equations (4.67) and (4.68) are 
modified for the three-winding transformer 

VP(0 : v5iW : vS2(t) =l:rn:n2 (4.72) 

ip{t) = imif) + nxiS\{t) + n2iS2(t) (4.73) 

with 

n\ = — and n2 = — - (4.74) 
NP NP 

where NP, NS\, and Ns2 represent the respective turns of each transformer wind-
ing. Expressions for the magnetizing current im and magnetizing inductance Lm are 
the same as those of the previous two-winding transformer. Polarity/direction of 
the winding voltage/current is consistent with Lenz's law and the dot convention dis-
cussed in Section 2.2.3. The circuit model and circuit equations for the three-winding 
transformer can readily be extended for the transformers with four or more windings. 

When the magnetizing inductance Lm is assumed to be infinite, the circuit model 
reduces to the ideal three-winding transformer. The voltage equation of the ideal 
three-winding transformer is the same as (4.72). On the other hand, the current 
equation is modified to 

iP(t) = niisi(f) + n2iS2(t) (4.75) 

because im in (4.70) becomes zero with Lm = 00. 

4.5.2 Full-Bridge Converter 

As the first example of bridge-type isolated converters, Fig. 4.23 shows a circuit 
diagram of the full-bridge converter along with its major waveforms. The full-bridge 
circuit is employed as the primary circuit, as its name indicates. For the rectification 
circuit, the center-tapped rectifier is selected in this specific example. 
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Figure 4.23 Full-bridge converter, (a) Circuit diagram, (b) Major circuit waveforms. 



BRIDGE-TYPE BUCK-DERIVED ISOLATED DC-TO-DC CONVERTERS 159 

Operation with Ideal Transformer 

The three-winding transformer in the middle of the switch network is assumed to 
be an ideal three-winding transformer with an NP : Ns\ : NS2 = l:n:n turns ratio. 
This assumption simplifies the description of the converter operation. The effects of 
non-ideal characteristics of a practical transformer will be later discussed. With the 
assumption of the 1: n: n turns ratio, the transformer equations are expressed as 

MO : v5i(0 : -vS2(t) = l:n:n (4.76) 

ip(t) = n(iDl(t)-iD2(t)) (4.77) 

based on the polarity/direction of the voltage/current waveforms shown in Fig. 4.23. 
Four active switches in the primary circuit, Q\-QA, are grouped into the two 

switch pairs, {Qi Qi\ and {Q3Q4}. Two individual switches in each switch pair 
are driven synchronously while the two switch pairs are operated alternatively, as 
illustrated by the switch drive signals in Fig. 4.23(b). The time interval in which 
either the switches [Q\ Q2] or (03 QA) are closed is referred to as the on-time period, 
while the time interval in which none of the switches is conducting is called the 
off-time period. 

During an on-time period, the primary winding of the transformer is connected 
to the source, and the other two windings develop their terminal voltages according 
to the circuit equation of the ideal three-winding transformer. During an off-time 
period, the primary winding is isolated from the source, thereby making the terminal 
voltages of the three transformer windings identically zero. 

The rectification circuit performs a full-wave rectification, thus providing the 
desired switch network voltage waveform, v#, for the low pass filter circuit. The 
on-time value of v# is given by the product of the input voltage and transformer turns 
ratio. The width of v# is determined by the effective duty ratio of the active switches, 
represented by D in the switch drive signals. Accordingly, the output voltage of the 
converter is given by 

Vo = vN(t) = nDVs (4.78) 

During an on-time period, the output current of the switch network, /#> linearly 
increases with a slope (nVs - V0)/L. When {Q\ Q2} are closed, the primary current 
ip flows into the dotted end of the primary winding and the secondary current i# 
circulates through the upper diode D\, while the lower diode D2 is reverse-biased by 
the voltage of 2nVs. Conversely, when {Q3Q4} are closed, ip reverses its direction and 
iN now circulates through D2, while D\ is reverse-biased. The specific diode, which 
is conducting during the respective operational period, is labeled on the waveform of 
IN-

During an off-time period in which all four switches are open and the primary 
current ip is zero, the filter inductor current /# turns on D\ and D2 simultaneously 
to create a freewheeling path. The transformer winding voltages are zero during the 
off-time period. Accordingly, iN ramps down with a slope -V0/L. The declining 
freewheeling current i^ is equally divided into io\ and io2· Because io\ comes out 
of the dotted terminal and iD2 enters the dotted terminal while iP remains zero, the 
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current equation for the ideal three-winding transformer, given by (4.77), is satisfied. 
The current waveforms are shown in Fig. 4.23(b). 

The switch network produces the desired waveforms for vyy and /#, and the ideal 
three-winding transformer satisfies the circuit equations defined by (4.72) and (4.75). 
The average value of iN becomes the load current 

h = ΪΝ(0 = ^ (4.79) 

Two underlying assumptions are employed in the previous analysis. First, CCM 
operation is assumed, which is true only when the condition IQ > Ai^/2 is satisfied. 
Yet, Fig. 4.23(b) can readily be modified to yield the circuit waveforms for DCM 
operation. In fact, the DCM operation of the buck converter, covered in Section 3.5.3, 
can be extended to the full-bridge converter with minor modifications. The second 
assumption is the ideal characteristics of the three-winding transformer. When a 
practical transformer is employed, the converter operation will be altered due to 
the presence of the magnetizing inductance. The operation with a magnetizing 
inductance is covered in the next section. 

Effects of Magnetizing Inductance 

Figure 4.24(a) shows the circuit model of a practical three-winding transformer. 
The practical transformer is modeled as a parallel connection of the magnetizing 
inductance Lm and an ideal three-winding transformer. The primary winding current 
of the ideal transformer is renamed as i'p. The current ip now denotes the input current 
to the practical transformer. It can easily be deduced that the filter inductor current 
IN remains the same because the switch network voltage v# is the same as that of 
the ideal transformer case. On the other hand, the other current waveforms will be 
altered due to the magnetizing current im running through Lm. 

The voltage waveform across the magnetizing inductance Lm naturally meets 
the volt-sec balance condition and the magnetizing current im thus is symmetrical. 
During an on-time period, im increases or decreases depending on the polarity of the 
voltage across Lm. The magnetizing current, commutating via the closed primary-
side switches, runs through Lm and does not enter the primary winding of the ideal 
transformer. Accordingly, during the on-time period, the winding currents of the 
ideal transformer, i'p, ip\, and im, a r e identical to those of the previous case. 

During an off-time period in which all the active switches are open, the magnetizing 
current im now circulates through the primary winding of the ideal transformer. In this 
period, im remains constant because the voltage across the magnetizing inductance 
is clamped at zero. With the presence of im in the primary winding, the secondary 
currents, ip>\ and iD2, are altered to meet the current equation of the ideal three-winding 
transformer 

i'p{t) = -imit) = n(iDl(t) - im(f)) (4.80) 

while maintaining their sum unchanged 

iN(i) = iD\(t) + im(t) (4.81) 
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Figure 4.24 Switch network with practical transformer, (a) Practical three-winding 
transformer, (b) Major waveforms. 

Figure 4.24(b) illustrates the current waveforms under this situation. The diode 
currents, io\ and //>2, are unevenly distributed during the off-time period to satisfy the 
equations (4.80) and (4.81) at the presence of the magnetizing current. The dashed 
lines show the original im and im. waveforms at the absence of the magnetizing 
current. The effects of the magnetizing current can readily be seen by comparing 
the original and redistributed diode currents. The current waveform i'p is constructed 
using the fact ip = niD\ or ϊρ - nioi for the on-time period, and i'p - -im for the 
off-time period. The iP is obtained using the fact iP = i'p + im for the on-time period 
and ip = 0 for the off-time period. 
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Table 4.6 Steady-State Analysis of Full-Bridge Converter 

Circuit variable Expression 

Vo 

VN max 

AiN 

IN max 

*N min 

1 Dl max 

lD2 max 

nDVs = 0.5 · 0.25 · 64 = 8 V 

nVs - 32 V 

nVs-Vo^^ 0 . 5 - 6 4 - 8 
-DTS 40 x 10-6 0.25 · 20 x 10~6 = 3 A 

^ + I ^ = ? + i 3 . 0 = 9.5A 

^-l-AiN = \-l-3.0 = 6.5A 

IN max — "·-> A 

iNmax = ^-^ A 

When the magnetizing inductance Lm approaches infinity, im reduces to zero and 
the current waveforms return to those of the previous ideal transformer case. For most 
transformer fabrications, the magnetizing inductance is maximized within practical 
limits to enhance efficiency and performance of transformers. Accordingly, the 
magnetizing inductance is sufficiently large and the magnetizing current is negligibly 
small. For this reason, it is common practice to assume the ideal characteristics for 
transformers employed in bridge-type isolated dc-to-dc converters. 

Another justification for not considering the magnetizing inductance is that the 
input voltage of the switch network automatically meets the volt-sec balance condition 
on Lm. If this is not the case, the magnetizing inductance Lm, however large it might 
be, will eventually saturate to cause a fatal failure of the converter. This transformer 
saturation will not happen to the bridge-type isolated converters. The assumption 
of the ideal transformer will be implicitly used in the upcoming discussions about 
bridge-type isolated converters. 

EXAMPLE 4.5 Steady-State Operation of Full-Bridge Converter 

This example shows the steady-state analysis and circuit waveforms of a full-
bridge converter. The operational conditions and circuit parameters of the 
full-bridge converter are Vs = 64 V, n = 0.5, L = 40μΗ, C = 400 μΈ, R=IQ, 
Ts - 20 ^s , and D - 0.25. For the given operational conditions, the steady-
state values for major circuit variables are calculated in Table 4.6, while the 
corresponding PSpice® simulations are shown in Fig. 4.25. 
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4.5.3 Half-Bridge Converter 

The half-bridge converter can be configured by combining the half-bridge circuit with 
either the bridge rectifier or center-tapped rectifier. The bridge rectifier is employed 
in the half-bridge converter in Fig. 4.26(a). The two capacitors, C\ and C2 in Fig. 
4.26(a), function as a voltage divider and each capacitor develops a dc voltage Vs /2 
at its terminals. 

The switch drive signals and voltage waveforms across the primary and secondary 
windings of the two-winding transformer are shown in Fig. 4.26(b). When ßi is 
turned-on, vp and vs both become positive. Conversely, when Q2 is closed, vp and 
vs are negative. During an off-time period in which both Q\ and Ö2 are open, the 
transformer is functionally isolated from the switch network, thereby yielding the 
conditions vP = vs = 0 and iP = is = 0. 

As shown in Fig. 4.26(b), the bridge rectifier circuit generates vN that alternates 
between nVs /2 and zero. The output voltage of the converter then becomes 

nDVs 
Vo = vN(t) = —^- (4.82) 

The shape of /# is the same as the previous full-bridge converter case, yet the 
commutation of the diodes is different. When Q\ is closed, D\ and D2 carry /#. 
Conversely, when Q2 is closed, D3 and D4 conduct. During an off-time period in 
which the transformer is functionally separated from the other part of the circuit, 
IN turns on all the four diodes simultaneously and freewheels through them. It is 
apparent that the converter could employ a center-tapped rectifier instead of the bridge 
rectifier. When a center tapped rectifier is used, the current waveforms are identical 
to those of Fig. 4.23. 

4.5.4 Push-Pull Converter 

Another variation of the bridge-type converter is the push-pull converter shown in 
Fig. 4.27. The converter uses two active switches and one four-winding transformer. 
While a center-tapped rectifier is used in Fig. 4.27, the bridge rectifier can be used as 
an alternative, provided that the four-winding transformer is replaced with a three-
winding transformer. 

When the switch Q\ is closed, vp\ and vs\ become positive while vpi and vsi 
are negative. Conversely, when Q2 is turned-on, v/>2 and vsi now become positive 
while the other two windings develop a negative voltage. The terminal voltages of 
the four windings are shown in Fig. 4.27. The rectification circuit performs a full-
wave rectification, thus yielding the desired ν# waveform. The current waveforms 
associated with the four-winding transformer are also shown in Fig. 4.27. It can 
be confirmed that the voltage and current waveforms in Fig. 4.27 satisfy the circuit 
equations for the four-winding transformer. 

The operation of the push-pull converter is functionally the same as that of the 
full-bridge converter. In fact, the push-pull converter replicates the operation of 
the full-bridge converter using two active switches and a transformer two primary 
windings. 
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Figure 4.26 Half-bridge converter, (a) Circuit diagram, (b) Major circuit waveforms. 
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4.6 FORWARD CONVERTERS 

The forward converter is another class of buck-derived isolated dc-to-dc converters. 
While also derived from the buck converter, the forward converter has unique circuit 
characteristics, not found in the previous bridge-type converters. Distinctive features 
of the forward converter will become apparent as we study the operation of the 
converter. 

4.6.1 Basic Operational Principles 

Functional basics of the forward converter are first explained using a conceptual 
converter configured with an ideal transformer. Figure 4.28(a) shows the circuit 
diagram of a conceptual forward converter that employs a 1 : 1 ideal transformer. 
The converter also has the configuration of the buck-derived isolated converter shown 
in Fig. 4.20(b). However, the structure of the switch network differs from that of the 
previous bridge-type converters. The switch network contains one active switch, one 
ideal two-winding transformer, and two diodes. This switch network is the simplest 
among all the switch networks used in buck-derived isolated converters. 

The operation of the conceptual forward converter is illustrated in Fig. 4.28(b). 
When the switch is closed, the positive voltage appears at the dotted terminal of 
the secondary transformer winding. During this period, D\ is turned-on and D2 is 
reverse-biased by the secondary winding voltage vs. Therefore, the switch network 
current, i#, flows through D\ and the switch network voltage, v#, equals to the input 
voltage Vs. During this period, energy is delivered in the forward direction through 
the ideal transformer. 

When the switch is opened, both the primary current and secondary current are 
identically zero according to the current equation of the ideal two-winding trans-
former. In this period, the ideal transformer is functionally isolated from the con-
verter circuit. The switch network current /# now freewheels through D2 and v# thus 
becomes zero. The switch network produces the required waveforms for v# and iN, 
and the output voltage is given by 

V0 = vN(t) = DVS (4.83) 

and the output current is given by 

h = Mt) = Y (4.84) 

The operation of the conceptual forward converter is identical to that of the buck 
converter. 
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Figure 4.28 Conceptual forward converter with ideal transformer, (a) Circuit diagram, (b) 
Major circuit waveforms. 

Reset Problem and Reset Circuit 

When the ideal transformer is replaced with a practical transformer, the conceptual 
forward converter in Fig. 4.28 immediately becomes inoperative. Figure 4.29(a) 
shows the switch network including the magnetizing inductance of a practical trans-
former. Now, the problem of the converter can readily be seen with the presence 
of the magnetizing inductance Lm. As shown in Fig. 4.29(b), the voltage across the 
magnetizing inductance, vm, does not meet the volt-sec balance requirement. More 
seriously, the magnetizing current, elevated by the equation im(f) = (Vs/Lm)t during 
an on-time period, instantly loses its path when the active switch is opened. The only 
way for im to maintain its continuity is to divert into the undotted terminal of the 
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Figure 4.29 Switch network with practical transformer, (a) Circuit diagram, (b) Reset 
problem. 

primary winding of the ideal transformer. If this is the case, the secondary current 
then must run into the dotted terminal of the secondary winding. However, this 
current flow is not possible because the diode cannot deliver the current from cathode 
to anode. 

As emphasized in Chapter 2, a sudden interruption of im incurs a large voltage 
spike that will destroy the semiconductor switch and other circuit components. The 
problem associated with the volt-sec balance condition on Lm or the continuity in im 

is termed as the reset problem, indicating the problem of resetting the magnetic flux 
inside the core to its original state. 

A variety of auxiliary circuits are employed as a means of meeting the volt-sec 
balance condition on Lm while providing a continuous path for im. The auxiliary 
circuits, applied to practical forward converters to solve the reset problem, are called 
reset circuits. 

Switch Network with Zener Diode Reset 

A Zener diode is often employed to meet the volt-sec balance condition on Lm, while 
providing the freewheeling path for im. Figure 4.30 shows the Zener diode reset 
circuit which utilizes a pair of Zener and regular diodes across the primary winding 
of the transformer. During an on-time period, the regular diode is reverse-biased 
and the Zener diode reset circuit does not interfere with the circuit operation. The 
magnetizing current linearly increases with a slope Vs /Lm during this period. 

During an off-time period, the magnetizing current im activates the Zener diode 
and circulates through the loop formed by the magnetizing inductance, Zener diode, 
and regular diode. In this period, the primary and secondary currents of the ideal 
transformer are both zero: i'p = iD\ - 0. The breakdown voltage of the Zener diode, 
Vz, is applied to Lm in the negative polarity and im thus linearly decreases with a slope 
-Vz/Lm. When im is reduced to zero, the regular diode turns off and remains off until 
the onset of the next off-time period. The waveforms for vm and im are shown in Fig. 
4.30(b). The volt-sec balance condition on Lm implies 

(a) 
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Figure 4.30 Switch network with Zener diode reset, (a) Circuit diagram, (b) Major circuit 
waveforms. 

VSDTS = VZDXTS (4.85) 

where D\ Ts is the fraction of the off-time period in which the magnetizing current is 
present. The magnetizing current im attains its peak value at the end of the on-time 
period and returns to zero during the off-time period, thus resetting the magnetic flux 
to its initial state. 

While the Zener diode reset circuit is simple in structure and operation, it provides 
a lossy reset. The energy transferred to Lm during the on-time period is dissipated 
at the Zener diode during the off-time period. Accordingly, the Zener diode reset 
circuit is rarely used for applications where efficiency is an important consideration. 

Many alternative reset circuits are available for forward converters. Some reset 
circuits offer a lossy reset while others operate losslessly. All these reset circuits do 
not alter the basic operation of the forward converter, yet only function during the 
off-time period to meet the volt-sec balance condition on Lm while maintaining the 
continuity in im. In other words, the forward converter follows the simple operation 
of the conceptual converter shown in Fig. 4.28, while bypassing the reset problem 
with an appropriate reset circuit. 

Switch Network with Tertiary Winding Reset 

It is also possible to reset the transformer using an additional winding. This alternative 
reset scheme is shown in Fig. 4.31. The reset is performed by the tertiary winding 
wound on the same magnetic core on which the original transformer is built. Figure 
4.31(a) shows a switch network employing the tertiary winding reset. The structure 
of the three-winding transformer is also shown. For simplicity of discussions, a turns 
ratio of Np'.Ns :NT = 1:1:1 is assumed for the three-winding transformer. Figure 
4.31(b) shows the major circuit waveforms of the switch network. Referring to Fig. 
4.31, the operational cycle of the switch network is divided into three periods. 
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Figure 4.31 Switch network with tertiary winding reset, (a) Circuit diagram, (b) Major 
circuit waveforms. 

On-Time Period DTS: This period corresponds to the interval in which the active 
switch Q is closed. The input voltage Vs appears at all the three transformer 
windings in a positive polarity (with the positive voltage at the dotted winding 
terminal). Accordingly, the diode D\ is forward-biased while other two diodes 
are reverse-biased. In particular, the diode at the tertiary winding, the reset 
diode Dc, is reversed-biased by 2Vs -the input voltage Vs plus the voltage 
across the tertiary winding, which is Vs for the 1:1:1 transformer turns ratio. 
The output current of the switch network, iN, flows out of D\ while the same 
current runs into the dotted terminal of the primary winding. The magnetizing 
current im increases linearly with a slope Vs/Lm. The sum of the magnetizing 
current and primary winding current passes through Q\. The energy in the 
magnetizing inductance gradually increases and reaches the peak value at the 
end of this period. 
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Reset Period D\TS: This period starts when the active switch is opened, and ends 
when the magnetizing current im is reduced to zero. Opening the active switch 
triggers the reset diode Dc to conduct and deliver ic through the tertiary wind-
ing. The tertiary winding current ic flows into the voltage source Vs connected 
across the left-hand side of the switch network. This enables the magnetizing 
current im to run continuously while satisfying the current equation of the 1:1:1 
ideal transformer. The magnetizing current im now circulates through the loop 
formed by the magnetizing inductance and primary transformer winding. This 
current is coming out of the dotted terminal of the primary winding. The 
continuous flow of im is possible because the same current flows into the dotted 
terminal of the tertiary winding, ic = im, while the secondary winding carries 
zero current, as illustrated in Fig. 4.31(b). The turn-on of Dc also forces all the 
three windings to take V$ in a negative polarity (with the negative voltage at 
the dotted terminal). Accordingly, D\ is reverse-biased and i^ now freewheels 
through D2. 

The input voltage Vs is applied to the magnetizing inductance Lm in the 
negative polarity and im thus decreases linearly with a slope -Vs/Lm. As im 

decays from its peak, the energy stored in Lm is transferred back to the voltage 
source located at the left-hand side of the switch network. Thus, the circuit 
provides a lossless reset-all the energy delivered to the magnetizing induc-
tance Lm during the on-time period is fully recovered by the voltage source 
during the reset period. 

Recess Period DiTs\ When the condition ic - im = 0 is reached, the reset diode 
Dc turns off and remains off until the next reset period. All the currents and 
voltages associated with the switch network are zero in this period. 

With the 1 : 1 : 1 transformer turns ratio, the rising slope of im during the on-time 
period is the same as the decaying slope during the reset period. This implies that the 
maximum duty ratio of the active switch should be limited to 0.5 (0 < D < 0.5) for 
proper operation of the converter. When the duty ratio exceeds 0.5, the magnetizing 
current will increase cycle-by-cycle, and the magnetizing inductance will eventually 
saturate, leading to a fatal circuit failure. 

4.6.2 Tertiary-Winding Reset Forward Converter 

A forward converter is configured by combining the switch network discussed in 
the previous section and low-pass filter circuit. The resulting converter is shown in 
Fig. 4.32, which is referred to as the tertiary-winding reset forward converter. In 
the tertiary-winding reset circuit in Fig. 4.32(a), the primary and tertiary windings 
retain the Np : NT = 1 : 1 turns ratio, yet the primary and secondary windings have 
an Np:Ns = 1 : n turns ratio. The tertiary winding is also called the reset winding. 
Figure 4.32(a) also shows the typical magnetizing current im. Figure 4.32(b) depicts 
three subcircuits of the converter, each representing the converter circuit during the 
on-time, reset, or recess period. Expressions of major circuit waveforms, derived 
from these three subcircuits, are listed in Table 4.7. 
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Figure 4.32 Tertiary-winding reset forward converter, (a) Circuit diagram and magnetizing 
current, (b) Three subcircuits. 
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Figure 4.33 Waveforms of tertiary-winding reset forward converter. 
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Table 4.7 Expressions for Circuit Variables of Tertiary-Winding Reset Forward 
Converter 

vN 

vm 

im 

k 

iN 

hi 

lD2 

ip 

Iß 

is 

VQ 

On-time period 

nVs 

Vs 

■*-7η 

0 

nVs-Vot 

ΪΝ 

0 

niN 

im + iP 

i<2 

0 

Reset period 

0 

-Vs 

-r' 
^m 

^m 

-ντ< 
0 

iN 

-im 

0 

~ic 

2VS 

Recess period 

0 

0 

0 

0 

-ντ· 
0 

iN 

0 

0 

0 

Vs 

Figure 4.33 shows the circuit waveforms, constructed using the equations in Table 
4.7. The waveforms indicate that the operation of the forward converter is identical to 
that of the conceptual converter in Fig. 4.28, except for the waveforms associated with 
the magnetizing inductance and reset winding. The output voltage of the converter 
is given by 

V0 = vN(t) = nDVs (4.86) 

with the 1 : n turns ratio between the primary and secondary windings. 
The peak value of im is given by 

immax = ^DTS (4.87) 

The maximum value for the the switch network current iN is given by 

V0 lnVs- V0 _ 
IN max = — + -Z ; DTS (4.88) 
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Table 4.8 Steady-State Analysis of Tertiary-Winding Reset Forward Converter 

Circuit variable Expression 

Vo 

VN max 

IN 

MN -^T^DT' = 4 0 x l o - 6 Q · 2 5 * 2 0 x 10"° - 3·° Α 

IN max h + 2Ai" = 8 Ό + 23 · 0 = 9 ' 5 A 

IN min IN - -Δ//ν = 8.0 - -3.0 = 6.5 A 

Vmmax V5 = 64 V 

Vmmin ~VS = " 64 V 

Vs ™ 64 

nDVs 

nVs = 

Vo _ 
R 

nVs-

= 0.5 · 0.25 · 64 

= 0.5-

8 _ 
1 " 

■Vo. 

■64 = 

8A 

ΊΤ = 

:32 V 

0.5· 

= 8V 

6 4 - 8 

— DTS = — —0.25-20xl0-6 = 1.6 A 
Lm 200 x 10-6 

VQmax 2VS = 2 · 64 = 128 V 

The minimum value of /# is given by 

_ V0 InVs-Vo RQ 
IN min ~ — ~ -Z " Vis (4.0^j 

From these values, the peak and valley values of the other current waveforms can 
readily be evaluated. 

The tertiary-winding reset forward converter is one of most popular converter 
topologies. Advantages of this converter include the lossless reset and minimal 
component count. Due to the lossless reset, efficiency of the converter can be high, 
compared with other forward converters with a lossy reset scheme. This converter 
uses only one active switch, while handling the power level comparable to that of the 
half-bridge converter. 

There are many other variations of the forward converter with lossless reset. One 
popular converter topology with lossless reset is the forward converter that employs 
two active switches and one two-winding transformer, known as the two-switch 
forward converter. The operation of this converter is described in the next section. 



SUMMARY 177 

■ EXAMPLE 4.6 Steady-State Operation of Forward Converter 

This example illustrates the steady-state analysis and major circuit waveforms 
of a tertiary-winding reset forward converter. The operational conditions and 
circuit parameters of the forward converter are Vs = 64 V, Lm = 200 μΗ, 
NP : Ns : NT = 1 : 0.5 : 1, L = 40 μΗ, C = 400 μ¥, R=lCl,Ts = 20 /zs, 
and D = 0.25. For the given power stage parameters and operating conditions, 
steady-state values of major circuit variables are evaluated using the previous 
analysis results. The steady-state values are listed in Table 4.8 and the simulated 
circuit waveforms are given in Fig. 4.34. 

4.6.3 Two-Switch Forward Converter 

As another variation of the forward converter, Fig. 4.35(a) shows the two-switch 
forward converter. The converter employs two synchronized active switches, Q\ and 
Q2, and two diodes, D\ and D2, in the primary side of the switch network. The 
remaining part of the switch network contains a two-winding transformer and two 
other rectification diodes. When the two synchronized active switches are turned-on, 
the converter presents the on-time subcircuit. The on-time subcircuit of this converter 
is identical to that of the previous tertiary-winding reset forward converter. 

When the two synchronized switches are turned-off, the magnetizing current im 

turns on the two diodes, D\ and D2, in the primary side of the circuit, and freewheels 
through the loop formed by Lm, D\, D2, and the voltage source V5. When D\ and 
D2 conduct, the input voltage V$ is applied to the magnetizing inductance Lm in the 
negative polarity. Thus, the magnetizing current ramps down with a slope -Vs/Lm. 
This period is referred to as the reset period, and D\ and D2 are called the reset diodes. 
In the reset period, the energy stored in the magnetizing inductance is recovered by 
the voltage source Vs, thereby offering a lossless reset. 

When the condition im = iD = 0 is reached, the reset diodes turn off and the recess 
period starts. Figure 4.35(b) shows the three subcircuits, each valid in the respective 
operational period of the converter. Figure 4.36 shows the circuit waveforms of the 
converter, constructed using the subcircuits in Fig. 4.35(b). The shapes and peak 
values of the circuit waveforms are nearly identical to those of the tertiary-winding 
reset forward converter. The only difference is the peak value of the switch voltage 
VQ during the reset and recess periods, which is half the previous case. 

4.7 SUMMARY 

In this chapter, we studied an important family of dc-to-dc converters, focusing 
on their topological origins, operational principles, and circuit waveforms. We 
discussed the evolution of the buck converter into two other basic converters. The 
boost converter is viewed as an inverse buck converter, while the buck/boost converter 
is derived from the cascaded connection of the buck converter and boost converter. 
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Figure 4.34 Circuit waveforms of tertiary-winding reset forward converter. 
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Figure 4.35 Two-switch forward converter, (a) Circuit diagram, (b) Three subcircuits. 
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mmax 

Figure 4.36 Circuit waveforms of two-switch forward converter. 

The operations of these newly introduced basic converters are studied using the circuit 
analysis techniques developed in Chapter 3. 

Addition of a transformer to the three basic converters creates a number of new 
isolated dc-to-dc converters. The simplest among them is the flyback converter 
whose operation closely mimics that of the buck/boost converter while providing an 
input-output isolation. A number of isolated dc-to-dc converters are derived from 
the buck converter by replacing the single-pole double-throw (SPDT) switch with a 
switch network. Depending on the structure of the switch network, these converters 
are classified as the full-bridge, half-bridge, and push-pull converter. The operation 
of these bridge-type buck-derived converters has proven to be equivalent to that of 
the buck converter. As the second example of buck-derived isolated converters, the 
forward converter is studied, which employs a variety of auxiliary circuits to reset the 
transformer in the switch network. The two most widely-used forward converters, 
the tertiary-winding reset forward converter and two-switch forward converter, are 
studied in detail. 
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PROBLEMS 

4.1* Consider the circuits shown in Fig. P4.1 and answer the questions. 

ΑΟμΗ i 

—o^cy-^yyrv^L· + 
I I 0.02 Ω < L 

©i6v I j_sn>v0 

i I ^riJ-

160//H . 

32 n e v0 

Closed 

10/is 1 °Pe n Γ 

20/ys 

10/zs I °P e n 

20/zs 

(a) (b) 

Fig. P4.1 

a) For Circuit (a), sketch the steady-state waveforms of the inductor current, 
IL, and output voltage ripple, vo = vo - Vo, for the two switching periods. 
Show the maximum and minimum values of the waveforms. 

b) Repeat a) for Circuit (b). 

4.2** In the two circuits shown in Fig. P4.2, Qx and Qi are ideal bidirectional 
switches which deliver the current in the forward and reverse directions. The 
switch drive signals shown in Fig. P4.2 are commonly applied to Circuit (a) 
and Circuit (b). 

/ » 

Φ 10V 

40 μϋ 

-frrrv. 

Qi o o ; 2 Ω . 

(a) (b) 
Closed 

Qx\ 20/is 

Open 
02' 

30 //s 

50 μ& 

Fig. P4.2 

a) For Circuit (a), sketch ii for the two operational periods. Show the maxi-
mum and minimum values of the waveform. 

b) Repeat a) for Circuit (b). 
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4.3 Figure P4.3 shows a boost converter along with its switch drive signal. 

300//H ; 

rrcr\ t-F* 300 / /F;±; R: 

Closed 

50/vs Open 

lOOyUS 

Fig. P4.3 

a) Sketch the steady-state waveforms for iL and vi when R = 3 Ω. Show the 
maximum, minimum, and average values of each waveform. 

b) Now assume the load resistor is accidentally disconnected so that R = oo. 
i) Sketch the ig waveform. Show the maximum value of IQ. 
ii) Explain the behavior of the output voltage. What would happen to the 
output capacitor and converter circuit? 

4.4* Consider the two converters shown in Fig. P4.4 and answer the questions. 

i 1 i rc 1 ^ 

L < W M vco» ^NsiJ -. L<PWM Vc°» ^ ^ l ] L 

TVi:; T vn:: ft 

Ί M L Π-
O . 0.05 Ω S L 

X 
1//F 

20/7S 

(a) 
20//s 

(b) 

Fig. P4.4 

a) For Converter (a), determine the following items: 
i) operational mode, CCM or DCM ii) average inductor current, IL 

iii) inductor current ripple, Ait iv) output voltage ripple, Δν# 
v) average control voltage, vcon 

b) Repeat a) for Converter (b). 

4.5** The maximum voltage that a switching device should block during the op-
eration is called the voltage stress. Similarly, the maximum current that a 
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4.6* 

switching device should carry is called the current stress. Referring to the 
boost converter shown in Fig. P4.5, answer the questions. 

80 μΆ 
JTYYY 

Closed 

DT, Open 

100//S 

Fig. P4.5 

a) Find the voltage stress and current stress of the MOSFET and diode when 
D = 0.6. 

b) Repeat a) for D = 0.9. 

Consider the dc-to-dc power conversion system shown in Fig. P4.6. All the 
converters operate in CCM with a duty ratio of D = 0.4. Evaluate the average 
values of the inductor currents: FLI, *L2> and 1̂ 3. 

©30V ± 

/YYY\_ 
<L1 

-σ^ο 
lL2l 

-M-

I ^YYYYV_ 

'L3 

L L 

: ΙΩ 

: 2 Ω 

Fig. P4.6 

4.7** Assume all the circuit components are ideal in the converter circuits shown 
in Fig. P4.7. For each converter circuit, calculate the average values for the 
control voltage vcon and output voltage Vo in CCM operation. 

4.8 Figure P4.8 shows a closed-loop controlled boost converter. Answer the ques-
tions. 
a) Sketch the steady-state waveforms for vcon, IL, ID, and v0 = v0 - Vo when 

b) Show that R = 16 Ω is the critical resistance that places the converter on 
the CCM/DCM boundary. 

c) Now assume that R is increased beyond Rcrit. Sketch a family of ii wave-
forms, each with a successively increasing R, to show the transition pattern 
of the inductor current in DCM operation. 
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4.9* Consider the four converter circuits shown in Fig. P4.9. For each converter 
circuit, calculate the reference voltage Vref that is required to produce the 
output voltage V0 = 20 V in CCM operation. 
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20//s 

(d) 

Fig. P4.9 

4.10* In the dc-to-dc conversion system shown in Fig. P4.10, assume that all the 
active switches are driven from the same switch drive signal. Also, assume 
CCM operation for all three converters. Evaluate the average current running 
through each semiconductor switch: TQ\, TO\, IQI, ΊΌΙ, iQ3, and JD^. 

Qx 
i cr o- j y m . 

© 3 0 V %D, 

Qi 

_o^o—.—rn^-
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I TYYYV. 

03 

O3 

-M-
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2//s 

L :20Ω 
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5//S 

Fig. P4.10 
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4.11* Consider the four converter circuits shown in Fig. P4.11. For each converter 
circuit, find the average values of the control voltage, vcon, and output voltage, 

10V 

50//H 
_JTYYV_ 

A 500μΈΤτΖ 2 0 Ω > ν0 10V 

50//H 
_nnnrL_ 

vcon " \ t l 1 

500 / iFTp 1 Q J v 0 
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lOkQ 

~1 i — — i 

20//s 20 //s 

(a) (b) 

20//s 20//s 

(c) (d) 

Fig. P4.11 

4.12**Figure P4.12 shows three converter circuits. Assume the same switch drive 
signal for the three converters. 
a) Evaluate the average values of the three diode currents: Ίο\, ϊο2> and T03· 
b) Evaluate the average values of the three switch currents: TQ\ , JQ2, and JQ^. 
c) Find the voltage stress of the three switches: VQ\max, VQ2max, and VQ^max. 

4.13 Referring to the converter circuit shown in Fig. P4.13(a), answer the following 
questions. 
a) For the switch drive signals in Fig. P4.13(b), sketch the steady-state wave-

form of ii for the two switching periods. Label the maximum and minimum 
values on your sketch. 

b) Repeat a) for the switch drive signals in Fig. P4.13(c). 
c) Repeat a) for the switch drive signals in Fig. P4.13(d). 
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4.14**Figure P4.14 depicts the circuit diagram of a composite converter which is built 
by cascading the boost converter and buck converter. Referring to the switch 
drive signals for Q\ and Q2, answer the questions. 

240//H 
JTYY\ 

240 μΆ 

Q) 

n, 

Closed 

50//s 

100 

Open 

Open 

Closed 

Fig. P4.14 

a) Find the average values for vo\ and voi> 
b) Sketch the steady-state waveforms of iu and iL2 for the two switching peri-

ods. Label the maximum, minimum, and average values of each waveform. 
c) Sketch the steady-state waveforms of ic\ and iCi for the two switching peri-

ods. Label the maximum, minimum, and average values of each waveform. 

4.15** Shown in Fig. P4.15 is a buck/boost converter built using the non-ideal switches 
and practical passive components. 

© 
1L\ 

-H-

40 V 

Closed 

50//S Open 

100/zs 

Fig. P4.15 

a) During the normal operation, the load resistor is accidentally disconnected 
so that R = 00. What do you think will happen to the circuit? If you 
claim a new steady-state operation, find the average values for the output 
voltage v<9 and inductor current //,. If you claim a catastrophic failure of the 
circuit, identify the component that is responsible for the failure and state 
the origin/reason for the component breakdown. 



PROBLEMS 189 

b) Now assume that the load resistor is accidentally shorted, R = 0, dur-
ing the normal operation of the converter. Repeat Problem a) under this 
assumption. 

4.16 Figure P4.16 is the circuit diagram of a closed-loop controlled buck/boost 
converter. Assume that the load resistance R is varied between 6 Ω < R < 24 Ω 
and find the range of the following operational condition and circuit variables 
of the converter: 

( ) < £ > < ( ) ( )<Vcon<( ) 

( ) < kmax < ( ) ( ) < &Vesr < ( ) 

24 V( 

10 ki 

^ W 

L<1>WM vcon ^ ^ t | Ί 
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40//s 

Fig. P4.16 

4.17* Figure P4.17 depicts a composite converter circuit and its switch drive signals. 
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Fig. P4.17 
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a) Find the average values for vox and V02· 
b) Sketch the steady-state waveforms of iL\ and /̂ 2 for the two operational 

periods. Label the maximum and minimum values of each waveform. 
c) Draw the steady-state waveforms of ic\ and ici for the two operational 

periods. Label the maximum and minimum values of each waveform. 

4.18**The three converters in Fig. P4.18 generate the same inductor current waveform 
shown at the bottom of the figure. For each converter, evaluate the output 
voltage VQ, load resistance R, and inductance L. 

30//s 50//s 

100/zs 

Fig. P4.18 
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4.19* For the three circuits shown in Fig. P4.19(a), assume that Q\ and Q2 are ideal 
bidirectional switches which deliver the current in both the forward and reverse 
directions. 
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Circuit B 

Closed 
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Closed 
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Open 0.757c 

Closed 

Si 
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Fig. P4.19 

Open 

(a) 

(b) 

(c) 

ß l Qi + 

v2 

Circuit C 

a) Assume that the average value of v2 is 14 V for all the three circuits. For 
the switch drive signals in Fig. P4.19(b), find the average value of vi in the 
three circuits in Fig. P4.19(a). 

b) Repeat a) for the switch drive signals in Fig. P4.19(c). 

4.20**The flyback converter discussed in Section 4.4 is modified as shown in Fig. 
P4.20(a). 
a) Figure P4.20(b) illustrates the switch drive signal and other major circuit 

waveforms labeled in the circuit diagram. Referring to the switch drive 
signal and circuit parameters, evaluate the numerical values for A, B, C, 
and D, specified in Fig. P4.20(b). 

b) Estimate the time instant at which vc will increase to 400 V. 
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4.21 Consider the half-bridge converter shown in Fig. P4.21 along with its switch 
drive signals. 
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Fig. P4.21 
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a) Find the average value of the output voltage vo> 
b) Referring to the switch drive signals, sketch iL, is, and iD-$ for the two 

switching periods. Show the maximum, minimum, and average values on 
your sketch. 

4.22* Use the flux balance condition and charge balance condition to derive the 
voltage gain expression 

Vo 

Vs 

D 

\-D 

1 

1 + 
1 Ri 

(l-D)2 R 

for the buck/boost converter with inductor winding resistance /?/. This expres-
sion was given in (4.36) in the text. 

4.23 Consider the circuit shown in Fig. P4.23 and answer the questions. 

24 v Q 

Closed 

Ö1Ö2I 10//s Open 

20//s 

Fig. P4.23 

a) Referring to the circuit diagram and switch drive signals, sketch 102 for the 
two switching periods. Show the maximum, minimum, and average values 
on your sketch. 

b) Now assume that the load resistance R is increased while the other circuit 
parameters and switch drive signals remain unchanged. With the new load 
resistor, the output voltage of the converter is enhanced to V0 = 15 V. 
Under this situation, sketch im for the two switching periods. Show the 
maximum, minimum, and average values on your sketch. 

4.24 Figure P4.24 shows a push-pull converter circuit. Referring to the switch drive 
signals and circuit components values, sketch the steady-state waveforms of 
vN, IN and iD\ for the two switching periods. Label the maximum and minimum 
values on your sketch. 
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4.25**The forward converter shown in Fig. P4.25 is built using a practical transformer. 
The number of turns of the three-winding transformer is Np = Ns = Νγ = 48. 
The converter had established steady-state operation with a duty ratio D = 0.4. 
Now assume that the following failure or change occurred to the converter 
during its steady-state operation: 

i) open-circuit failure of Dc ii) open-circuit failure of D2 

iii) open-circuit failure of C iv) decrease in the duty ratio to D = 0.15 
v) increase in the duty ratio to D = 0.65 

For each failure/change listed above, what do you think will happen to the 
converter? If you claim a catastrophic failure of the circuit, identify the com-
ponent responsible to the failure and state the origin/reason of the component 
breakdown. If you claim a new steady-state operation, describe the major 
change in the circuit operation. 

Fig. P4.25 
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4.26**In the four isolated dc-to-dc converters shown in Fig. P4.26, assume that the 
transformer has a finite magnetizing inductance. 

/YYTL. 

(c) (d) 

Fig. P4.26 

a) Answer the following questions. 
i) Which converter would result in the worst power conversion efficiency? 
ii) Which converter would offer the largest power handling capacity? 
iii) Which converter would minimize the manufacturing cost? 

b) For each dc-to-dc converter, find the range of the duty ratio that guarantees 
proper operation of the converter. Express your answer in the form of 
( ) < D< ( ). 

c) Now assume that all the converters are closed-loop controlled to produce 
an output voltage of 2.4 V. Evaluate the voltage stress of the active switch 
employed in each circuit. 

4.27**The following questions concern the topological structure, circuit components, 
and operational principles of various PWM converters. Answer the questions 
in a brief and precise manner. 
a) The transformer employed in a flyback converter is typically built on the 

magnetic core to which an air gap is intentionally introduced. Explain the 
necessity of this practice. 

b) While an appropriate reset circuit is required for the forward converter, 
the flyback converter and bridge-type converters do not require any reset 
circuit. Explain the reasons for this. 

c) Figure P4.27 shows five different converter topologies. For each converter, 
find the maximum possible value for the output voltage and the voltage 
stress of the active switch employed in the circuit. 
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CHAPTER 5 

MODELING PWM DC-TO-DC 
CONVERTERS 

The first part of this book dealt with the power stage configuration and steady-state 
operation of PWM dc-to-dc converters. This static analysis constitutes one essential 
part of the dc-to-dc power conversion technology. As introduced in Chapter 1, the 
dynamic analysis is another critical area in studying the dc-to-dc power conversion. 
In the dynamic analysis, the dc-to-dc converter is viewed as a closed-loop controlled 
dynamic system and its characteristics are investigated using an appropriate model. 
As the prerequisite for the dynamic analysis, this chapter presents the modeling of 
PWM dc-to-dc converters. 

Dc-to-dc converters are a time-variant system in the sense that the topological 
structure of their power stage constantly varies with time. Depending on the status of 
the semiconductor switches, dc-to-dc converters exhibit different power stage con-
figurations during operation. In addition, dc-to-dc converters employ the pulsewidth 
modulation (PWM) process to generate dedicated switch drive signals. The PWM 
process is a well-known nonlinear process in which the input and output variables are 
linked by a nonlinear relationship. The time variance of the power stage configuration 
and nonlinearity of the PWM process collectively classify dc-to-dc converters as a 
nonlinear time-variant system. 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 199 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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Figure 5.1 Closed-loop controlled PWM converter. 

The dynamic analysis of a nonlinear time-variant system is known to be difficult. 
Conventional circuit analysis techniques are mainly intended for linear time-invariant 
systems and therefore cannot be directly applied to PWM dc-to-dc converters. While 
certain analytical methods are available for nonlinear systems, the analysis becomes 
intractably complicated when adapted into PWM dc-to-dc converters. Accordingly, 
the analysis of the converter dynamics in the original form can be a very challenging 
task. The purpose of this chapter is to develop an analytical process, referred to as 
the modeling in this book, which enables us to overcome the obstacles presented by 
the time variance and nonlinearity of PWM dc-to-dc converters. 

Modeling in general refers to the procedure of describing the dynamic character-
istics of a given system in a desired format. The desired format is determined by the 
object of the modeling. For example, to develop a simplified model for a complicate 
system, the system behavior is expressed by the simple equations that only capture 
the major system dynamics while ignoring unimportant details. The object of the 
dc-to-dc converter modeling herein is to establish a systematic method of describing 
the dynamics of nonlinear time-variant dc-to-dc converters using the language and 
format that have been used for linear time-invariant systems. If we achieve this aim, 
we can analyze the dynamics of dc-to-dc converters in the exact same manner as we 
analyze linear time-invariant systems. 

5.1 OVERVIEW OF PWM CONVERTER MODELING 

In this chapter, we study a series of modeling techniques that eventually provides a 
small-signal model for PWM dc-to-dc converters. The small-signal model is a linear 
time-invariant circuit model to which all the standard circuit analysis techniques can 
directly be applied. Figure 5.1 shows a general structure of a closed-loop controlled 
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Figure 5.2 Steps of power stage modeling. 

PWM converter. Discussions about the converter structure were given in Section 
3.6.1. 

The converter is divided into three functional blocks for the convenience of model-
ing: the power stage, PWM block, and voltage feedback circuit. First, each functional 
block is transformed into the respective small-signal model using various modeling 
techniques. The small-signal models of the three functional blocks are later merged to 
yield a complete small-signal model for the closed-loop controlled PWM converter. 

Power Stage Modeling 

Figure 5.2 illustrates the procedures of power stage modeling. The method of 
averaging is first applied to the time-varying power stage dynamics. This method 
provides an average model in which the time variance is removed. In the process of 
averaging, however, certain nonlinear relationships among circuit variables arise and 
are embedded into the average model. Thus, the average model is a time-invariant 
but nonlinear model. The average model describes the averaged time-domain power 
stage dynamics. 

As the second step, the linearization is invoked to deal with the nonlinear rela-
tionships incurred during the averaging process. The linearization is a process of 
approximating the nonlinear relationships among the circuit variables to linear de-
scriptions under small-signal assumption. The linearization thus produces a linear 
time-invariant small-signal model. This model describes the averaged time-domain 
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dynamics at the presence of small-signal excitation. As the last step, the time-domain 
small-signal model is converted into a frequency-domain, or s-domain, small-signal 
model, which provides transfer functions of power stage dynamics. The resulting 
transfer functions embrace all the standard s-domain analysis techniques and reveal 
the frequency-domain small-signal dynamics of power stage. 

PWM Block Modeling 

The PWM process employed in dc-to-dc converters is a typical nonlinear operation. 
The PWM block receives the input signal from the voltage feedback circuit and 
produces the switch drive signal as its output. While the input of the PWM block is a 
continuous analog signal, the output is a periodic pulse waveform, whose cycle-by-
cycle pulsewidth is modulated by the input signal. This highly nonlinear functionality 
can be approximated by a linear expression, given that the input signal only changes 
narrowly and slowly within the period of the output of the PWM block. Because most 
dc-to-dc converters meet this assumption, there exists a simple linear relationship 
between the input and output signals of the PWM block. This linear relationship is 
the small-signal gain of the PWM block, called the PWM gain or modulator gain. 
Details about the modulator gain will be given in Section 5.5. 

Voltage Feedback Circuit and Small-Signal Model of PWM Converter 

The voltage feedback circuit is a linear time-invariant circuitry which can readily 
be converted into the small-signal model using standard circuit analysis techniques. 
The small-signal model for the voltage feedback circuit will be described in Section 
5.6.1. 

The complete small-signal model for dc-to-dc converters can now be constructed 
by merging the small-signal models of the power stage, PWM block, and voltage 
feedback circuit. The resulting small-signal model allows us to perform the dynamic 
analysis of the nonlinear time-variant dc-to-dc converter using the conventional s-
domain analysis techniques. 

5.2 AVERAGING POWER STAGE DYNAMICS 

Figure 5.3 illustrates the averaging process of the power stage dynamics. Figure 
5.3(a) is a conceptual diagram of a PWM dc-to-dc converter containing one single-
pole double-throw (SPDT) switch. For the purpose of dynamic modeling, the duty 
ratio of the SPDT switch is allowed to change with time. This time-varying duty 
ratio is represented by d to differentiate it from the fixed steady-state duty ratio D. 
For simplicity of ensuing discussions, only the continuous conduction mode (CCM) 
operation is considered for the PWM converter. The averaging process of PWM 
converters in discontinuous conduction mode (DCM) operation will be separately 
discussed in Chapter 9. 
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(a) 

idt) 

dTs {\-d)Ts 
(b) 

Figure 5.3 Averaging power stage dynamics, (a) Diagram of PWM dc-to-dc converter, (b) 
Concept of averaging. 

Referring to Fig. 5.3, the method of averaging is explained as follows. When the 
SPDT switch is held at position a during dTs, the power stage presents the on-time 
subcircuit. Likewise, with the SPDT switch at position p during (1 - d)Ts, the power 
stage becomes the off-time subcircuit. Figure 5.3(b) illustrates the time variance of 
the power stage dynamics and concept of averaging. During the on-time period dTs, 
the inductor current ii(t) develops according to the circuit equations of the on-time 
subcircuit. During the off-time period (1 - d)Ts, iL{t) evolves based on the circuit 
equations of the off-time subcircuit. Accordingly, the inductor current ii(t) changes 
its pattern at every switching instant. 

The method of averaging is an analytical approach that attempts to produce a 
smooth waveform that follows the time-averaged trajectory of the inductor current, 
as illustrated with Tiif) in Fig. 5.3(b). In other words, the method of averaging 
provides the circuit equations or circuit models that produce the continuous circuit 
waveforms which track the original waveforms. 

As the outcome of past research efforts, two useful averaging methods have been 
developed for PWM dc-to-dc converters. The first method manipulates the state-
space description of the power stage so that the manipulated state-space description 
predicts the time-averaged dynamics of the power stage. This method is known as 
the state-space averaging. 

The second method uses the time-averaged behavior of the circuit variables to 
develop an average model of the power stage. The average power stage model 
produces the continuous circuit waveforms that follow the original waveforms. This 
method is referred to as the circuit averaging because it directly averages the circuit 
variables associated with power stage components. 

This section presents both the state-space averaging method and circuit averaging 
technique, focusing on their theoretical basis and application to the PWM converter 
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modeling. The relative merit of each method and the equivalence between the two 
methods are also discussed. 

5.2.1 State-Space Averaging 

In the method of state-space averaging, an exact state-space description of the power 
stage is initially formulated, using the concept of the switching function which can 
have different values depending on time. The resulting state-space description is 
called the switched state-space model. Although the switched state-space model 
precisely describes the power stage dynamics, it is a time-variant model due to 
the presence of the switching function. The switched state-space model is then 
appropriately averaged to yield an averaged state-space model that describes the 
time-averaged power stage dynamics. 

Switched State-Space Model 

As the initial step of deriving the switched state-space model, the power stage dynam-
ics are described by separately formulating the state-space description of the on-time 
subcircuit and the state-space description of the off-time subcircuit. The power stage 
dynamics during an on-time period are expressed in the form of a state equation 

dx(t) 
—— = Aonx(t) + Bon vs (t) at 
v0(t) = Conx(t) (5.1) 

where x is the state vector, vs is the input voltage, vo is the output voltage, and 
{Aon Bon Con] are the coefficient matrices of the on-time subcircuit. Similarly, another 
state equation is written for an off-time period 

dx(t) 
- ^ - = Aoffx(t) + Boffvs(t) 
voit) = Coffx(t) (5.2) 

where {A0ff B0ff C0/f} are the coefficient matrices of the off-time subcircuit. 
The two state equations (5.1) and (5.2) are merged into one single state equation 

^ = (q(t)Aon + (l-q(t)) Aoff)x(t) 

+ (q(t)Bon + (l-q(t))Boff)vs(t) 

v0(t) = (q(t)Con + (\-q(t))Coff)x(t) (5.3) 

using the notation of the switching function q(t), defined as 

f 1 for on-time period dTs 
q{t) ~\ 0 for off-time period (1 - d)Ts

 ( } 

The equation (5.3) is called the switched state-space model because it contains the 
switching function q(t). 
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Figure 5.4 Ideal buck converter, (a) Circuit diagram, (b) On-time subcircuit. (c) Off-time 
subcircuit. 

EXAMPLE 5.1 Switched State-Space Model of Ideal Buck Converter 

This example illustrates the formation of the switched state-space model for 
the buck converter. The circuit diagram of an ideal buck converter without any 
parasitic resistances is shown in Fig. 5.4, along with its on-time and off-time 
subcircuits. When the state vector is defined as x = [iL vc]

T, the coefficient 
matrices of the on-time and off-time subcircuits become 

1 

A0n — & off — 

Bn 

Boff -

0 

c 

Z 

o 

0 

0 

~CR J 

(5.5) 

(5.6) 

(5.7) 

Con = Coff = [0 1] (5.8) 

Readers are encouraged to confirm the above coefficient matrices by formu-
lating the state equations of the on-time and off-time subcircuits of the buck 
converter. 
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The switched state-space model is obtained by plugging the appropriate 
coefficient matrices into (5.3) 

dx(t) 
~dT q(f) 

0 

1 

c 

1 
~Z 

1 

c# 

+ (i-<?(0) 

0 

1 

c 

1 
~z 

1 

~~CR 

q(t) 

1 

z + ( i -*(0) vs(t) 

voit) = [q(t)[0 1 ] + ( l-?(*)) [0 \]]x(t) 

x(t) 

(5.9) 

(5.10) 

EXAMPLE 5.2 Coefficient Matrices of Three Basic Converters 

The coefficient matrices of the boost converter and buck/boost converter can 
readily be formulated from their circuit diagrams. For the ideal boost and 
buck/boost converters, the converter circuit is transformed into the on-time 
and off-time subcircuts. The state equation for each subcircuit is then written. 
From the state equations of the two subcircuits, the coefficient matrices are 
extracted. The coefficient matrices of the three basic dc-to-dc converters are 
summarized in Table 5.1. The coefficient matrices can be used to construct the 
switched state-space model of the respective converter. 

Continuous Duty Ratio and Averaged State-Space Model 

This section discusses the averaging process of the switched state-space model. As 
the first step towards obtaining an averaged version of the switched state-space model, 
averaging operation is performed on the switching function q(t) 

d(t) -τϊ 
1 s Jt-Ts 

q(T)ar (5.11) 

where Ts is the switching period. The d(t) defined in (5.11) represents the averaged 
expression of q(t), evaluated while sliding the averaging period Ts in time. In this 
sense, d(t) is interpreted as the moving average or local average of q(t). The d(t) 
is also called a continuous duty ratio. The implications of the continuous duty ratio 
d(t) are summarized as follows. 

1) It is recognized that d(t)t=kTs = d(kTs) = dk is the actual duty ratio in the kth 

switching period. 
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Table 5.1 Coefficient Matrices of Three Basic Converters 

On-time subcircuit Off-time subcircuit 

Buck converter ^ o n — 

Bon = 

0 

1 

c 

1 

1 
~~CR 

Co„ = [0 1] 

Aoff = 
° -L 

c 
J_ 

"CR 

Boff = [0 0 ] 7 

Coff = [0 1] 

Boost converter Aon — 

0 0 

0 

1 

CR 

L ° Bon = 

Con = [0 1] 

Aoff = 

Boff = 

0 
1 

~Z 

1 1 
C ~~CR 

H Γ 

Coff = [0 1] 

Buck/boost converter 

0 0 

1 

Bon = 

CR 

T 

Con = [0 1] 

v/ · 1 

c 

1 
~L 

J_ 
CR 

Boff = [0 0 ] 7 

Q / = [0 1] 

2) If g(7) is periodic with a fixed on-time period, then it becomes that dk = d(t) = 
D, where D is the steady-state duty ratio. 

3) If q(f) is non-periodic with a time-varying on-time period, then the actual duty 
ratio differs from the continuous duty ratio: dk Φ d(t). However, if the cycle-
by-cycle variation in the on-time period is sufficiently small, the actual duty 
ratio can be approximated by the continuous duty ratio: dk « d(t). 
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Figure 5.5 Relationships among switching function q(t), cycle-by-cycle duty ratio dk, and 
continuous duty ratio d(t). 

Figure 5.5 illustrates the relationship among the switching function q(t), cycle-by-
cycle duty ratio dk, and continuous duty ratio d(t). The continuous duty ratio d(t) is 
recognized as a continuous-time approximation of the discontinuous cycle-by-cycle 
duty ratio dk. The error due to this approximation becomes negligible when the 
cycle-by-cycle variation in dk is sufficiently small. 

As the second step, an averaging operation is performed on the switched state-
space model of (5.3) 

dx(t) 

at 
= (q(i)Aon + (1 - q(t))Aoff) x{t) 

+ (q(t)Bon + (1 - q(t))Boff) vs(t) 

v0(t) = (q(t)Con + (l-q(t))Coff)x(t) (5.12) 

where the overbar denotes the moving average of the corresponding item over the 
switching period Ts. For example, the overbar on x(t) indicates 

x(t) 
1 

Jt-T, 
X(T) dr (5.13) 

The expression (5.12) is approximated to 

dic(r) 

at 
= (q(t)Aon + (1 - q(t))Aoff) x(t) 

+ {q{t)Bm + (\-q(t))Boff)vs{t) 

v0(t) = (q(t)Con + {\-q{t))Coff)x{t) (5.14) 
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based on the following facts and assumption. 

• The averaging is a linear operation. 

• The coefficient matrices in (5.12) are constant matrices. 

• If the state variables and input variable do not deviate widely from their local 
averages, it becomes q(t)x(t) « q(f)x(f) and q(t)vs(t) « q(t)vs(t). 

Finally, (5.14) is rewritten as 

(d(t)Aon + (l-d(t))Aoff)x(t) 

+ (d(t)Bon + (1 - d(t))Boff) vs(t) 

(d(t)Con + (1 - d{t))Coff)x{t) (5.15) 

by noting that q(t) corresponds to the continuous duty ratio d{t) defined in (5.11). The 
description (5.15) is called the averaged state-space model. The averaged state-space 
model takes the continuous duty ratio d(t) as the input variable and describes the 
time-averaged power stage dynamics. Namely, the averaged state-space model is a 
continuous-time approximation of the switched state-space model. 

The continuous duty ratio d(t) is used as an instrumental variable in transforming 
the switched state-space model into the averaged state-space model. In fact, the 
averaged state-space model is obtained by simply replacing the switching function 
q(t) with the continuous duty ratio d(t), and replacing the circuit variables with 
their local averages. It should be emphasized that the averaged state-space model 
is a nonlinear model because the time-dependent variable d(t) is multiplied with the 
coefficient matrices. The averaged state-space model is also called the averaged state 
equation. 

The averaged state equation has been extensively used in the analysis of PWM 
dc-to-dc converters as well as other switching power converters. The steady-state 
equilibrium is found by solving the averaged state equation with the condition that 
all the state and input variables are frozen at constant: dx(t)/dt = 0, vs (0 = Vs, and 
d(t) = D. 

More importantly, the averaged state equation has been used to simulate the 
converter waveforms, while focusing only on the time-averaged dynamics of the 
converter. Time-domain simulations on the averaged state equation provide the same 
information as the cycle-by-cycle simulations, yet with a greatly reduced simulation 
time. 

Most importantly, the averaged state equation constitutes the foundation for de-
veloping small-signal models for dc-to-dc converters. By linearizing the averaged 
state equation at a given operating point, a linear time-invariant small-signal model 
is developed for dc-to-dc converters. 

One disadvantage of the state-space averaging is the necessity of formulating 
and manipulating the state equation of the entire power stage, which can be time-
consuming and tedious when the power stage contains a large number of reactive 
components. Another potential disadvantage is that the method only yields the final 

ax(i) 
~dT 

v0(t) = 
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result in the format of the state equation, which is not directly programmable with 
standard circuit simulation softwares. 

EXAMPLE 5.3 Averaged State-Space Model of Ideal Buck Converter 

The averaged state-space model of an ideal buck converter can be obtained from 
the switched state-space model, given in Example 5.1, by simply replacing qit) 
with d(t) and also replacing the circuit variables with their average values. 

dx(t) 
dit) 

0 

1 
c 

1 
~Z 

1 
~~CR 

+ (!-</(*)) 

0 

1 
c 

1 
~Z 

1 
~~CR 

m 

d(t) I 

0 
+ d-d(0) 

0 
Mt) 

vo(t) = [d(t)[0 l ] + (l-£/(i))[0 l]]x(t) 

with x = [TL vc]r. The above expression is simplified to 

1 r drL(o Ί 
at 

dvc(f) 
L at J 

= 

0 

1 

c 
vo(t) = vc(t) 

1 
~CR 

\ hit) 
[ vc(0 ~r 

d{t) -
L 

0 

(5.16) 

(5.17) 

vs(t) (5.18) 

(5.19) 

5.2.2 Circuit Averaging 

The method of the circuit averaging deals with the circuit variables associated with 
power stage components. The circuit averaging technique might be best described 
by illustrating the steps of the modeling process. 

1) Formulate an equation that describes the time-averaged behavior of the circuit 
variables associated with an individual component in the power stage. This 
equation is referred to as the averaged circuit equation. 

2) Synthesize a circuit model that satisfies the averaged circuit equation formu-
lated in the previous step. This model is called the average model of a specific 
circuit component. 

3) Put the resulting average model into the power stage in place of the original 
circuit component. 
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4) Repeat the above process for all the components in the power stage. When all 
the circuit components are replaced with their average models, the resulting 
circuit configuration becomes an average circuit model of the entire power 
stage. The average power stage model generates the circuit waveforms that 
track the moving averages of the original waveforms. 

In the circuit averaging, it is not always necessary to individually apply the averag-
ing process to every single circuit component. In fact, several circuit components can 
be grouped together and treated as one composite circuit component. This practice 
will be explored in the next section. 

PWM Switch 

In principle, all the circuit components in the power stage should be replaced with 
their average models to yield an average model for the entire power stage. However, 
the linear circuit components, including the voltage source, inductor, and capacitor, 
remain invariant during the averaging process. In other words, linear circuit compo-
nents can be used in their original forms at their initial locations when constructing 
an average model for the power stage. Accordingly, the circuit components that need 
to go through the formal averaging process are only the active and passive switches. 

Figure 5.6 shows the circuit diagrams of the three basic PWM converters, where 
the active-passive switch pair is identified as the circuit component that is subjected 
to the averaging operation. The active-passive switch pair functions as a single-pole 
double-throw (SPDT) switch that periodically changes its structure based on the 
PWM principle. This active-passive switch pair is named as the PWM switch, in 
order to highlight its function as a three-terminal switching device operating under 
the principle of PWM. 

Figure 5.7 shows the functional description, circuit symbol, and polarity/direction 
of the terminal circuit variables of the PWM switch. The node a stands for the 
active terminal directed to the active switch, p represents the passive terminal, and 
c denotes the common terminal. The circuit symbol also signifies that the common 
terminal is connected to the active terminal a for dTs and to the passive terminal p 
for d'Ts = (I-d)Ts. 

The PWM switch has the characteristic features on its terminal waveforms, re-
gardless of the converter topology in which the PWM switch is embedded. First, 
referring to Fig. 5.6, a dc voltage is applied across the active and passive terminals. 
For the three basic dc-to-dc converters, the voltage between a and p terminals is 

I vs for buck converter 
-vo for boost converter (5.20) 

vs + vo for buck/boost converter 
which can be considered as a dc under the small-ripple approximation. The voltage 
across c and p terminals, vcp, is a sampled replica of vap\ vcp equals to vap during dTs 

and becomes zero during d'Ts. 
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Figure 5.6 Circuit diagrams of three basic converters, (a) Buck converter, (b) Boost 
converter, (c) Buck/boost converter. 
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Figure 5.7 PWM switch, (a) Active-passive switch pair operating under PWM principle. 
(b) Circuit symbol for PWM switch. 

Second, the common terminal carries the inductor current, which is a continuous 
triangular waveform, 

ic{t) -{-
ii{t) for buck and buck/boost converters 
ii{t) for boost converter 

(5.21) 

The active terminal current ia is a sampled version of ic, thus a pulsating discontinuous 
waveform. These facts will be used later in formulating the circuit equations for the 
PWM switch. 
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Averaging PWM Switch 

The PWM switch, identified as the three-terminal switching device embedded in all 
the three basic PWM converters, can be treated as an individual circuit component 
and its average model is derived based on the terminal circuit behavior. The circuit 
equations for the PWM switch are written as 

vcp(t) = vap(t)q(t) 

ia(t) = ic(t)q(t) (5.22) 

using the switching function qit) 

-{i « ( ί ) = \ n for </% ( 5 · 2 3 ) 

Vcpit) = 

Ta(t) = 

iated to 

Vcpif) ~ 

hit) ~ 

vapit)qit) 

idt)qit) 

vapit)qit) 

TciOqit) 

Equation (5.22) indicates that the continuous circuit variables vap and ic are multiplied 
by the switching function qit), yielding the discontinuous circuit variables vcp and ia. 
This equation is actually a compact expression for the circuit variables of the PWM 
switch, formulated using the switching function qit). 

By taking the local average of (5.22), it follows that 

(5.24) 

These expressions are approximated to 

(5.25) 

based on the assumption that the circuit variables do not significantly deviate from 
their local averages. 

Because the local average of the switching function qit) is actually the continuous 
duty ratio d{t) defined in (5.11), the expressions (5.25) are rewritten as 

Vcpit) = dit)vapit) 

Tait) = dit)Tcit) (5.26) 

yielding the desired expressions for averaged circuit variables. 
The average equations for the PWM switch, given by (5.26), describe the rela-

tionships among the averaged circuit variables vcp, vap, Ta, and ic. The averaged 
relationships of other circuit variables can be evaluated based on Kirchhoff 's voltage 
and current laws 

Vac(0 = Vapit) - Vcpit) 

Tpit) = Tait)-Tdt) (5.27) 

The PWM switch is a lossless switching device, so it obeys the power balance 
condition in terms of the averaged circuit variables 

Vapit)Tait) = Vcpit) hit) (5.28) 
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Figure 5.8 PWM switch and its average model, (a) PWM switch, (b) Average model. 

The averaged equations of the PWM switch in (5.26) are identical to the circuit 
equations of an ideal two-winding transformer with a turns ratio d(t). Accordingly, the 
ideal two-winding transformer can be used as an average model for the PWM switch. 
Figure 5.8 shows the PWM switch and its average model representation using an ideal 
transformer. The ideal transformer in Fig. 5.8(b) has the following properties. First, 
the turns ratio is a time-dependent variable d{t) rather than a constant. Second, the 
primary and secondary windings are tied together at the passive terminal. Therefore, 
the average model for the PWM switch is a time-variant three-terminal device which 
has the structure of a two-winding ideal transformer. 

■ EXAMPLE 5.4 Average Equations of PWM Switch in Buck Converter 

This example illustrates the average equations for the PWM switch. Figure 5.9 
shows the circuit waveforms of the PWM switch embedded in a buck converter. 
From the circuit waveforms, the average values of vap and ic are written as 

Vapit) = VS 

TM = IL (5.29) 

On the other hand, the average values of vcp and ia are expressed as 

vcp(t) = d(t)Vs 

Ut) = d(t)IL (5.30) 

using the definition of the continuous duty ratio. It becomes apparent from the 
above expressions that 

vcp(t) = d(t)vap(t) 

ia(t) = d(t)Tc(t) (5.31) 

which are the average equations for the PWM switch given in (5.26). 
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Figure 5.9 PWM switch in buck converter, (a) Circuit diagram, (b) Circuit waveforms. 

Average Models for Three Basic PWM Converters 

The average model for the PWM switch is derived considering the PWM switch as 
a standalone individual device. Accordingly, the average model can universally be 
used for all the three basic PWM converters, which commonly contain the PWM 
switch. The average models are simply obtained with a pin-to-pin replacement of 
the active-passive switch pair with the average model of the PWM switch. Figure 
5.10 shows the average models for the buck, boost, and buck/boost converters. Each 
average model describes the time-averaged circuit behavior of the respective PWM 
converter. 

EXAMPLE 5.5 Responses of Switch Model and Average Model 

This example illustrates the implication of the average model of dc-to-dc con-
verters. Figure 5.11 compares the responses of the switch model and average 
model of a buck converter. Figure 5.11(a) is the simulation result using the 
switch model. For this simulation, the switch drive signal is appropriately 
modulated to produce the switching function q{t) whose cycle-by-cycle duty 
ratio is varied in a sinusoidal fashion. With this switching function, the indue-
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Figure 5.10 Average models for three basic converters, (a) Buck converter, (b) Boost 
converter, (c) Buck/boost converter. 

tor current iL{t) shows a low-frequency sinusoidal oscillation, as well as the 
high-frequency switching ripple. 

Simulations with the average model are shown in Fig. 5.11(b). For this case, 
the switching function q(t) is first converted into the continuous duty ratio d(t) 
by performing the averaging operation 

d(t) / 
Jt-Ts 

q(r) άτ (5.32) 

The resulting continuous duty ratio d(t\ shown in Fig. 5.11 (b), is then used as a 
time-varying turns ratio of the ideal transformer. The average model produces 
the continuous inductor current Ti(t) that traces the moving average of the actual 
inductor current iL(f) of the switch model 

hit) Ψ I ' 
1 s Jt-Ts 

iL(r) άτ (5.33) 

As shown in the previous example, the average model generates continuous circuit 
waveforms that track the moving average of the actual responses of the dc-to-dc 
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Figure 5.11 Responses of buck converter, (a) Switch model response, (b) Average model 
response. 

converter. Accordingly, the average models are often used to simulate the time-
averaged circuit waveforms during transition periods. 

The average model is also used to study the steady-state circuit operation. In 
the steady-state equilibrium, all the circuit variables denote dc quantities and the 
continuous duty ratio becomes the steady-state duty ratio D. In addition, the inductor 
behaves as a short circuit, while the capacitor functions as an open circuit. Under 
these conditions, the average model of the buck converter in Fig. 5.10(a) indicates 
that Vo = DVs; namely, the dc voltage gain of the converter equals to D. The use of 
the average model for the steady-state analysis is further illustrated in the following 
example. 

EXAMPLE 5.6 Voltage Gain of Non-Ideal Boost Converter 

The average model for the boost converter is shown in Fig. 5.12(a). In the 
average model, the resistance Ri represents the esr of the inductor. As will be 
discussed later, the esr of the inductor does not affect the averaging process. 
Thus, the esr is placed in the original location in the average model. The average 
model is transformed into a dc model, shown in Fig. 5.12(b), by shorting the 
inductor, opening the capacitor, and replacing the continuous duty ratio d{f) 
with the steady-state duty ratio D. Figure 5.12(b) is further modified to Fig. 
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Figure 5.12 Average and dc models of boost converter, (a) Average model, (b) Dc model. 
(c) Modified model. 

5.12(c) by replacing the ideal transformer with a pair of voltage source and 
current source. 

The dc model can be used for the steady-state analysis at the presence of the 
esr of the inductor. For example, the voltage gain of the converter is evaluated as 
follows. Referring to the circuit variables in Fig. 5.12(c), the average inductor 
current is given by 

// = 
Vs+DVo-Vo Vs+{D-\)Vo 

Ri Ri 

On the other hand, the output voltage is given by 

V0 = (\-D)ILR 

From (5.34) and (5.35), it becomes 

fVs+(D-l)Vo V0 = (l-D) 
Ri > 

which can be rearranged as 

Vo 
Vs l ~ D i +

 l R, 

( l - O ) 2 R 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

yielding the voltage gain expression. This expression is the same as the gain 
formula derived in Section 4.1.4 using the flux and charge balance conditions. 
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5.2.3 Generalization of Circuit Averaging Technique 

In the previous section, the circuit averaging technique is adapted to develop the 
average models for the three basic PWM converters. Relatively simple modeling 
procedures are applied to the buck, boost, and buck/boost converters operating in 
continuous conduction mode (CCM). These modeling procedures can be extended to 
cover the following general cases: 

• the cases where the reactive circuit components include parasitic resistances, 

• the cases where dc-to-dc converters operate in discontinuous condition mode 
(DCM), and 

• the cases where other isolated PWM converters are employed. 

The extension of the modeling technique to the general cases requires lengthy 
discussions, as such, the topic is postponed to a later chapter. This section briefly 
introduces some of the results of the forthcoming model generalization, in order to 
facilitate the use of the basic average models developed in this chapter. 

Effects of Parasitic Resistances 

One practical issue in the model generalization is the effects of the parasitic circuit 
components on the average model. As mentioned earlier, linear circuit components 
remain invariant during the averaging process. Accordingly, parasitic resistances of 
reactive components can be included in the average models. In Example 5.6, the 
equivalent series resistance (esr) of the inductor was added to the average model of 
the boost converter and the resulting model was used to find the voltage gain of the 
converter. 

Unlike the esr of the inductor, which can be added to the average model without 
affecting the average model of other circuit components, the esr of the capacitor could 
alter the circuit waveforms of the PWM switch. Accordingly, the average model of 
the PWM switch needs to be modified at the existence of the esr of the capacitor, even 
though the esr itself can be added at its original place. The effects of the esr of the 
capacitor will be covered in Chapter 9, yet it is now emphasized that the consequence 
of this modification is negligible for most situations. Correspondingly, it can broadly 
be considered that the esrs of the reactive components do not cause any practical 
changes to the average model. Therefore, all the parasitic resistances can be included 
in the average model at their original places without causing any notable error. Figure 
5.13 shows a buck converter and its average model, where the esrs of the inductor 
and capacitor are both included. 

Average Models in DCM Operation 

Throughout this chapter, it was assumed that dc-to-dc converters operate in CCM 
and their average models were derived based on the CCM waveforms. As a dc-to-dc 
converter departs from CCM operation and enters DCM operation, the circuit wave-
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Figure 5.13 Buck converter with parasitic resistances, (a) Buck converter, (b) Average 
model. 

forms of the PWM switch are altered and its average model should be reformulated. 
Average models for PWM converters operating in DCM can be derived in a similar 
manner to the CCM case. Converter modeling in DCM operation will be treated in 
Chapter 9, along with other advanced topics of the PWM converter modeling. 

Average Models for Isolated PWM Converters 

In addition to the three basic converters, Chapter 4 introduced several isolated PWM 
dc-to-dc converters. The average modeling, established for non-isolated basic con-
verters, needs to be extended to the isolated dc-to-dc converters. 

As discussed in Chapter 4, each isolated converter has a forerunning non-isolated 
converter; for instance, the isolated full-bridge converter is evolved from the non-
isolated buck converter. The average model of a non-isolated converter can be 
modified to yield the average model of the affiliated isolated converter. The average 
model of the buck converter can readily be altered to the average model of the full-
bridge converter. Similarly, the average model for the buck/boost converter can be 
modified to yield the average model of the flyback converter. The development of 
average models for isolated PWM dc-to-dc converters will be covered in Chapter 9. 

5.2.4 Circuit Averaging and State-Space Averaging 

Circuit averaging has several advantages over the state-space averaging. First, the 
circuit averaging performs the averaging operation directly on the power stage circuit. 
Thus, this technique does not require the manipulation of the state equation, which 
is the case for state-space averaging, thereby greatly reducing the computational 
burden. Second, the circuit averaging provides the average model in the structure 
that closely resembles the original power stage circuit diagram, which is not the 
case for state-space averaging. Thus, the resulting average model can readily be 
programmed with standard circuit simulation software. 

In spite of the differences in the modeling approaches, the circuit averaging is 
functionally identical to the state-space averaging. A simple confirmation of the 
equivalence between these two techniques is given as follows. 
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The average model of the buck converter shown in Fig. 5.10(a) yields the circuit 
equation 

C 

- diL(t) 
' dt 
dvc(0 

dt 

d(t)vs(t)-vc(t) 

vc(0 
= h(t)-

R 
(5.38) 

This equation is rearranged into a matrix form 

Γ diL(t) 1 
dt 

dvc(0 
L dt J 

= 

0 

1 

c 

1 -i 

z 
1 

~CR J 

[ hit) 
[ vc(0 

+ 

r d(t) 
L 

o 
vs(t) (5.39) 

which is identical to the result of the state-space averaging given in Example 5.3. 
The average models, derived from either state-space averaging or circuit averaging, 

can be transformed into small-signal models through the linearization process. In 
this book, however, the average models derived from the circuit averaging are only 
considered for the linearization, primarily due to the simplicity in the linearization 
process. The derivation of average models using the state-pace averaging technique 
and linearization of the resulting average models can be found in [2]. 

5.3 LINEARIZING AVERAGED POWER STAGE DYNAMICS 

While the averaging eliminates the time variance from the power stage dynamics, it 
brings in certain nonlinearities to the average model of the power stage. In this section, 
we employ the linearization process to remove nonlinearities brought in during the 
averaging process. The linearized average model constitutes the small-signal model 
of the power stage. 

5.3.1 Linearization of Nonlinear Function and Small-Signal Model 

Linearization is the process of approximating a nonlinear function to a linear rela-
tionship under certain assumptions. One can expand a nonlinear function into Taylor 
series and retain only the constant and the first-order term of the series, leading to a 
linear approximation of the nonlinear equation around the point of expansion. More 
specifically, a nonlinear function y = f(x), when x = X + x with x = \x - X\ «: 1, 
can be approximated by 

y = / ( * + *) * / ( * ) + 
dx 

(5.40) 
x=X 

in the vicinity of the quiescent point (X, f(X)). The variable x represents a small 
variation in x around a fixed value X. In this book, Jc denotes a sinusoidal variation 

x(t) = xs sin ü)st (5.41) 
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y = f(x) 

Figure 5.14 Linearization of nonlinear function. 

Thus, x is called the sinusoidal component or ac component, while X is referred to 
as the dc component. Figure 5.14 graphically illustrates the linearization process. It 
can be envisaged that the linearization described by (5.40) is equivalent to replacing 
the nonlinear curve with its tangential line segment evaluated at x = X. In other 
words, the nonlinear relationship is locally linearized using the tangential line at the 
quiescent point. The assumption x = \x-X\ <$c 1 is necessary to ensure that the length 
of the tangential line segment is so short that the deviation between the nonlinear 
curve and the line segment is negligibly small. 

With the input variable consisting of the dc and ac components, x - X + jt, the 
output variable 3; can also be decomposed into a dc component Y and an ac component 
y: y = Y + y. From (5.40), the dc component ofy is given by Y = f(X), and the ac 
component then becomes 

d/l A y=te (5.42) 
x=X 

The small-signal gain or small-signal model of the nonlinear equation is denned as 
the ratio of the ac variables 

x dx\ 
(5.43) 

x=X 

The small-signal gain relates the ac components of input and output variables 
in the vicinity of a given dc operating point. The condition Jc = \x - X\ «: 1 is 
called the small-signal assumption because it indicates that the ac component of 
the input variable is substantially smaller than the dc component. In this context, 
x(t) = xs sin ωί is referred to as the small signal, while X is called the large signal. 
The small-signal assumption is the necessary condition for the accuracy of the small-
signal model. 

The process of finding a small-signal model is called the small-signal modeling 
of a nonlinear process. As illustrated in Fig. 5.14, the small-signal modeling can be 
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considered as the process of evaluating the slope or derivative of a nonlinear function 
at a given quiescent point. 

The small-signal modeling can also be performed in an alternative manner. For 
simple algebraic nonlinear equations, the small-signal model can be found by 

1) evaluating the nonlinear equation with the variables consisting of dc and ac 
components, and 

2) equating only the ac components of input and output variables from the result-
ing expression. 

As a simple example, the small-signal gain of a nonlinear equation y = jc2atJt = X = 2 
can be found as follows. By evaluating the equation with the input and output variables 
consisting of both dc and ac components, it follows that 

Y + y = (X + xf = X2 + 2Xx + x2 (5.44) 

The first term in the right-hand side of (5.44), X2, is a dc quantity and thus is irrelevant 
to the small-signal modeling. The third term x2 is a second-order function of the small 
ac variable, and thus is small enough to be ignored. Accordingly, the small-signal 
relationship of the given equation becomes 

y = 2Xx (5.45) 

The evaluation of (5.45) at X = 2 leads to the desired small-signal gain 

? = 2X\X=2 = 4 (5.46) 
x 

On the other hand, a direct application of (5.43) to y = x2 in the neighborhood of 
x = X = 2 yields the small-signal gain 

y djc2 

x ax 
= 2x\x=x=2 = 4 (5.47) 

x=X=2 

which is identical to (5.46). 

5.3.2 Small-Signal Model for PWM Switch — PWM Switch Model 

The linearization can be adapted to either the averaged state equation of the power 
stage, obtained from the state-space averaging, or the average model of the PWM 
switch, derived from the circuit averaging. Because the latter is more convenient for 
linearization, the small-signal modeling is now employed to the average model of the 
PWM switch, shown in Fig. 5.15(a). The circuit equations for the average model of 
the PWM switch are repeated below 

vcp(t) = d(t)vap(t) 

Ta(t) = d(t)Jc(t) (5.48) 
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Figure 5.15 Dynamic models for PWM switch, (a) Average model of PWM switch, (b) 
Small-signal model of PWM switch. 

Although the symbol overbar will be omitted in following developments, all the 
circuit variables represent the averaged variables. 

Using the alternative linearization process discussed earlier, the small-signal mod-
eling of (5.48) is preformed as follows. Application of the linearization process to 
(5.48) yields 

Vcp +Vcp(f) = (D + d{t))(Vap + Vap(t)) 

de ac 

= DVap + d(t)Vap + Dvap(t) 

dc ac 

+ d(t)vap(t) (5.49) 

second-order 

Ja^+Utl = (D + d(tWc + h(t)) 
dc ac 

= DIC +d(t)Ic + Dic(t) 

dc ac 

+ d(t)ic(t) (5.50) 

second-order 

where the capitalized variables are dc components and the variables with the super-
script Λ are ac components. For example, D is the steady-state duty ratio, whereas 
the quantity d(t) denotes the small-signal ac component of the continuous duty ratio 
d(t). Discussions about the ac components of d{t) and other ac variables are given in 
the next section. 

By equating the ac components in (5.49) and (5.50), the small-signal representation 
of (5.48) is obtained 

vCp(t) = Vap d(t) + D vap(t) 

ta(f) = Icd(t) + Dic(t) (5.51) 
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Table 5.2 Models for PWM Switch 

Switch model Average model Small-signal model 

la ^d ^ lc 
►—O JD ►— 

vap vcp 
vap vcp 

vcp(t) = q(t)vap{t) 

' 1 for dTs 

0 for (\-d)Ts 
q{t) = 

vcp{t) = d{t)vap{t) 

Ta(t) = d(t)Tc(t) 

d(0 = — J q(T)ar 
S t-T„ 

^cpit)=Vapd(t)+Dvap{t) 

ia(t)=Icd(t) + Dic(t) 

Equation (5.51) constitutes the small-signal model or small-signal representation of 
the PWM switch. In (5.51), in the left-hand side circuit variables are expressed as 
a linear combination of the dc and ac components of other variables. In particular, 
Vap, D, and Ic are the dc values of the corresponding circuit variables. Thus, the 
small-signal representation of (5.51) depends on the dc operating point of the PWM 
switch, as is always the case with the small-signal model of any nonlinear system. 

The small-signal relationship (5.51) can be converted into an equivalent circuit 
model. The circuit representation is shown in Fig. 5.15(b). It is straightforward to 
show that this model satisfies the circuit equations of (5.51). The circuit model was 
named the PWM switch model by Dr. Vatche Vorperion who first proposed this model. 
The PWM switch model thus refers to the small-signal model of the PWM switch. 
As shown in Fig. 5.15(b), the PWM switch model contains two dependent signal 
sources, both controlled by the small-signal continuous duty ratio d. It also includes 
an ideal transformer whose turns ratio is given by the steady-state duty ratio D of the 
converter. 

Table 5.2 compares the three different models for the PWM switch: the switch 
model, average model, and small-signal model. The switch model is a time-variant 
model in which the switching function q(t) represents the time dependency of the 
PWM switch. The switch model is converted into the time-invariant but nonlinear 
average model by adopting the continuous duty ratio d(t), which is defined as the 
moving average of the switching function q{t). Finally, the nonlinear average model is 
linearized under small-signal assumption, leading to the linear time-invariant small-
signal model of the PWM switch — the PWM switch model. The circuit equations 
for the switch model, average model, and PWM switch model are also shown in Table 
5.2. 
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Figure 5.16 Small-signal models of buck converter, (a) Time-domain small-signal model. 
(b) s-domain small-signal model. 

5.3.3 Small-Signal Model of Converter Power Stage 

The same as with the averaging process case, the linear circuit components are 
invariant to the linearization process and can be used in their original shapes at 
their initial positions in constructing a small-signal model from the average model. 
Accordingly, the small-signal model for the converter power stage is obtained from 
the respective average model of the power stage, by simply replacing the PWM switch 
with its small-signal model and introducing appropriate small-signal sources as the 
input variables to the model. 

Figure 5.16(a) shows the small-signal model of the buck converter. In this model, 
vs(t) is the small-signal input voltage, d(t) denotes the small-signal continuous duty 
ratio, and t0(t) is the small-signal current source that represents the sinusoidal current 
deviation from the dc output current. The small-signal model shows that Vap = V$ 
and Ic = Ii for the buck converter. 

The small-signal power stage model in Fig. 5.16(a) is a time-domain model in 
which all the excitation sources and circuit variables are defined as time-dependent 
quantities. This time-domain small-signal model exhibits the transient response of 
the power stage at the presence of small-signal time-domain excitations. The small-
signal model becomes far more useful when converted into the frequency-domain, or 
s-domain, model. The time-domain small-signal model is now transformed into the s-
domain small-signal model, as shown in Fig. 5.16(b), by using s-domain expressions 
for the circuit variables and circuit components. 

Figure 5.17 shows the s-domain small signal models for the three basic converters. 
The models are constructed from the average models by following the procedures 
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Figure 5.17 Small-signal models of three basic converters, (a) Buck converter, (b) Boost 
converter, (c) Buck/boost converter. 

explained above. The small-signal model of the boost converter incorporates that 
Vap = ~Vo and Ic = -IL, thus altering the polarity/direction of the dependent 
voltage/current source in the PWM switch model. The buck/boost converter model 
reflects that Vap = Vs + Vo and Ic = IL. The s-domain small-signal models are a linear 
time-invariant model to which all classical circuit analysis techniques can directly be 
applied. In Chapter 6, the power stage dynamics of the three basic dc-to-dc converters 
will be investigated using these models. 

5.4 FREQUENCY RESPONSE OF CONVERTER POWER STAGE 

The s-domain small-signal models can be used to study the frequency response of 
the PWM converter. While the frequency response of linear time-invariant systems is 
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well known, the frequency response of the PWM converter may require explanations 
about its origin. 

The concept of the frequency response is evolved from the sinusoidal response. 
Thus, this section first discusses the sinusoidal response and later presents the fre-
quency response of the converter power stage. 

5.4.1 Sinusoidal Response of Power Stage 

The sinusoidal response is initially established for linear time-invariant systems. 
When a sinusoidal input is applied to a linear time-invariant system, the output of the 
system is a sinusoid with the same frequency as that of the input sinusoid. However, 
the magnitude and phase of the output sinusoid are usually altered. The changes 
in the magnitude and phase are referred to as the sinusoidal response of a linear 
time-invariant system. The concept of the sinusoidal response is now extended to 
PWM dc-to-dc converters. 

First, it is presumed that the switch drive signal q(t) is periodic with a fixed duty 
ratio, resulting in a constant continuous duty ratio, d(t) = D. However, it is also 
assumed that the input voltage of the converter contains an ac component, vs, on top 
of the dc component Vs 

vs(t) = Vs+vs(t) (5.52) 

The ac component is further assumed to be a sinusoid at frequency ω8 

vs(t) = vsuwix)st (5.53) 

When the condition v̂  «c Vs is imposed, the output voltage vo will exhibit a sinusoidal 
excursion around a dc value, with the switching ripple superimposed on it. This 
situation is illustrated in Fig. 5.18, where the switch drive signal q(t) is periodic while 
the input voltage v̂  (t) contains a sinusoidal component. When the switching ripple 
is ignored, the output voltage is expressed as a combination of dc and ac components 

v0(t) = V0 + Ut) (5.54) 

The ac component will be a sinusoid at frequency ω8 

vo(0 = v„ sin((ost + 05) (5.55) 

From (5.53) and (5.55), the input-to-output sinusoidal response at ωΞ is defined as 

• magnitude response at ω8 = = — 
|v,(OI vs 

• phase response at ω5 = lv0(t) - lvs(t) = 6S (5.56) 

Another example of the sinusoidal response is shown in Fig. 5.19. For this case, 
the input voltage is fixed at v$ = Vs but the switch drive signal is modulated cycle-
by-cycle, as illustrated by the switching function q(t) in Fig. 5.19. The modulation 
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Figure 5.18 Output voltage response due to sinusoidal change in input voltage. 

in the switch drive signal has occurred in a sinusoidal fashion so that the continuous 
duty ratio d{t) is expressed as 

d(t) = D + d(t) (5.57) 

with 
d(t) = άύηωάί (5.58) 

When the switching ripple is ignored, the output voltage can also be represented by 
the sum of dc and ac components 

v0(t) = Vo + v0{t) (5.59) 

with 
v0(t) = v0 sin(6V + Gd) (5.60) 

The sinusoidal response between the continuous duty ratio and output voltage is 
defined as 

magnitude response at ω^ = |vo(0l v0 

\d(t)\ d 

• phase response at ω^ = lv0(t) - Ld(t) - Qd (5.61) 

The sinusoidal response from the load current to the output voltage is defined in 
the same manner. 
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Figure 5.19 Output voltage response due to sinusoidal change in continuous duty ratio. 

5.4.2 Frequency Response and s-Domain Small-Signal Model of 
Power Stage 

The sinusoidal response of the power stage is now extended to the frequency response. 
When the sinusoidal response is continuously evaluated in frequency, two continuous 
curves are obtained, which are referred to as the gain response curve and phase 
response curve. The gain and phase response curves are collectively called the 
frequency response plot. The frequency response plot is usually displayed in the 
Bode plot format. Details about the Bode plot representation are given in Chapter 6. 

The most significant value of the s-domain small-signal model is the generation 
of the power stage transfer functions, which can readily be converted into frequency 
response plots. The transfer functions are derived from the s-domain small-signal 
model using conventional circuit analysis techniques. The resulting transfer functions 
are then converted into Bode plots to portray the frequency response of the power 
stage. 

The frequency response carries the whole information about the power stage 
dynamics, as is the case with linear time-invariant systems. The frequency response 
reveals the static and dynamic behaviors of the power stage, and constitutes the 
foundation for the feedback controller design. Construction of the frequency response 
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Figure 5.20 s-domain small-signal model of buck converter. 

plots and analysis of the frequency response of dc-to-dc converters will be covered 
in Chapter 6. 

■ EXAMPLE 5.7 Power Stage Transfer Functions of Buck Converter 

This example illustrates the use of the s-domain small-signal model of the 
converter power stage. Figure 5.20 shows the s-domain small-signal model of 
the ideal buck converter. Considering the small-signal output voltage as the 
output variable, three power stage transfer functions are defined as follows. 

• Gvs(s)= τ^—: input-to-output transfer function 

• Gvd(s)= -4—: duty ratio-to-output transfer function 
d{s) 

• Zp(s)= -£-—: load current-to-output transfer function 
lo(s) 

Expressions for these transfer functions are readily determined from the s-
domain small-signal model in Fig. 5.20. For example, the duty ratio-to-output 
transfer function, Gvd(s), is found by evaluating v0(s)/d(s) with the condition 
v*0) = ts(s) = 0 

Gvd(s) = ^r— = —D-
**> ° sL+±\\R 1 + _i_ + 

sC Q^o ω2
0 

(5.62) 

with 

and 

Q = R 

JLC 

(5.63) 

(5.64) 
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The input-to-output transfer function is given by 

Gvs(s) = —— = D = γ (5.65) 
Vs^ *τ -u l ii p 1 s s 

sL + -p IIR l + —— + — 
sC Qo)0 ωΐ 

The load current-to-output transfer function becomes 

Zp(s) = ^ = sL\\^-\\R= r (5.66) 
i0(s) sC 1 | s | s2 

Qco0 ω2
0 

The transfer functions can be converted into Bode plots to reveal frequency 
response characteristics of the power stage, as will be demonstrated in the next 
chapter. 

5.5 SMALL-SIGNAL GAIN OF PWM BLOCK 

This section presents the small-signal modeling of the PWM block. While the 
procedure and outcome of the modeling are relatively straightforward, the PWM 
block is an essential ingredient of the small-signal model of closed-loop controlled 
PWM converters. 

Figure 5.21 illustrates the operation of the PWM block in a closed-loop controlled 
PWM converter. The PWM block compares the control signal vcon against the ramp 
signal, Vramp, to generate the pulsewidth modulated switch drive signal. The PWM 
output is represented by the switching function q(t), while the cycle-by-cycle duty 
ratio of the PWM output is depicted as dk-\, dk, dk+\, and dk+2- From the PWM 
waveforms highlighted with thick lines in Fig. 5.21, the following relationship can 
be seen 

dkTs : Ts - vcon(f) : Vm (5.67) 

where dk denotes the duty ratio in the kth switching cycle, Vm is the height of the 
ramp signal, and t* is the time instant the ramp signal Vramp intersects with the control 
voltage vcon. 

The relationship (5.67) is rearranged as dk - vcon(t*)/Vm and subsequently ap-
proximated to 

4 = ^ (5.68) 

with the assumption that vcon does not change widely within the kth switching period. 
If vcon is further restricted to change slowly over several switching periods, the cycle-
by-cycle variation in the on-time period is small and dk thus can be approximated by 
the continuous duty ratio d(t): dk ~ d(t). By replacing dk with d(t) and taking the 
local average of vcon, (5.68) becomes 

d(t) = % ^ (5.69) 
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Figure 5.21 PWM block and its major waveforms, (a) PWM block, (b) PWM waveforms. 

resulting in an averaged functional description of the PWM block. 
Application of the linearization process to (5.69) yields 

D + d(t)= —(Vcon + vcon(t)) 
*m 

The small-signal equation of the PWM process is now given by 

d(t) = —VconiO 

leading to the s-domain small-signal gain of the PWM block 

(5.70) 

(5.71) 

d(s) _ _J_ 
Vcon\S) *m 

(5.72) 

The constant small-signal gain of the PWM block is termed as the PWM gain or 
modulator gain Fm. The PWM gain is given by the inverse of the height of the ramp 
signal: Fm = l/Vm. This simple result is the outcome of the fundamental assumption 
that the control voltage vcon does not vary widely within one switching period and 
only changes slowly over several switching periods. 
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Figure 5.22 PWM converter and voltage feedback circuit. 

5.6 SMALL-SIGNAL MODEL FOR PWM DC-TO-DC CONVERTERS 

Figure 5.22 shows the block diagram representation of a closed-loop controlled PWM 
converter. Because the small-signal models for the power stage and PWM block are 
already developed, the modeling for the entire PWM converter will be completed if 
the small-signal characteristics of the voltage feedback circuit are incorporated. This 
section discusses the voltage feedback circuit and presents the small-signal models 
of the three basic PWM converters. 

5.6.1 Voltage Feedback Circuit 

The general structure of the voltage feedback circuit is shown in Fig. 5.22. While the 
voltage feedback circuit retains the same configuration as that of Section 3.6.1, it has 
an additional resistance Rx. When Rx is not present, the output voltage is regulated 
at the reference voltage, Vo - Vref, as discussed in Section 3.6.1. The resistance 
Rx provides a means of controlling the output voltage with a fixed reference voltage 
Vref- This section first discusses the output voltage control and subsequently presents 
the small-signal transfer function of the voltage feedback circuit. 

Output Voltage Control 

Referring to Fig. 5.22, the node equation at the inverting terminal of the error amplifier 
is given by 

VQ ~ Vref V, ref 

Rr 

Vref ~ Vc 

Z2(s) 
(5.73) 
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Z2(s) 

\Zi(s) 

Figure 5.23 Voltage feedback circuit in which |Z2(yO)| is infinite while |Z] (y'0)| is finite. 

which is rearranged as 

Vref ~ vcon -
Zi(s) 

(v„-V,.,(. + f>)) (5.74, 

The output voltage control is explained using the expression in the right-hand side of 
(5.74). If the magnitude of the impedance ratio \Z2(jO)/Z\(jO)\ is infinite, the term 
Ύο - yrefi\ + |Zi 0*0)1//?*)' should converge to zero, in order to make their product 
finite. Justifications for this argument were given in Section 3.6.1. When Z\(s) and 
Z2(s) are selected such that |Z20'0)| = °°, while |ZiO'0)| is finite, the steady-state 
output voltage is determined as 

Vo ~ Vref (■♦sa). . Vn = V, ref 
(1 + !2β!) (5.75) 

An example of the voltage feedback circuit, in which |Z20'0)| = °° and |ZiO'0)| is 
finite, is shown in Fig. 5.23. In fact, this circuit was introduced in Section 3.6.1 as 
the voltage feedback circuit for the buck converter. 

Equation (5.75) indicates that the output voltage is controlled by varying Rx. 
While alternative schemes can be employed, the feedback circuit structure in Fig. 
5.22 has an advantage over other methods. This advantage will become clear when 
its small-signal transfer function is analyzed in the next section. 

Voltage Feedback Compensation 

The transfer function of the voltage feedback circuit is readily found by noting that the 
inverting terminal of the op amp in Fig. 5.22 is an ac ground. For the small-signal ac 
analysis, Vref is replaced with a short circuit and the inverting terminal thus becomes 
a virtual ground for ac signal. With this observation, a node equation is written at the 
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inverting terminal of the op amp 

v()(s) - 0 0 - vcon{s) 

Zx{s) Z2{s) 

which is rearranged to yield the transfer function of the voltage feedback circuit 

Vcon(s) Z2(S) 

(5.76) 

v0(s) ZiO) 

with 

= -Fv(s) (5.77) 

Fv(s) = ψ^: (5.78) 
Z\{s) 

The transfer function Fv(s) is called voltage feedback compensation. The condition 
for the dc regulation now becomes 

|Ζ2ΟΌ)| = oo (5.79) 

implicitly assuming |Zi(y'0)| is finite. Equation (5.78) indicates that the voltage 
feedback compensation is not affected by the output voltage-controlling resistor Rx. 
Accordingly, the voltage feedback circuit could control the output voltage without 
altering its transfer function. This desirable feature may not exist if other structures 
are selected for the voltage feedback circuit. 

5.6.2 Small-Signal Model for PWM Converters 

Figure 5.24 shows a general functional diagram of closed-loop controlled PWM 
converters. The PWM switch is combined with the inductor, and the resulting 
circuitry is considered as a single circuit element. The outward terminal at the 
inductor side is denoted as i. Figure 5.24 could represent any of the three basic 
PWM converters by using different power stage connections. With the connections 
{ a - X p - Y i - Z } , Fig. 5.24 represents the buck converter. Similarly, the connections 
{ i - X a - Y p - Z } lead to the boost converter, while the connections { a - X i - Y p - Z 
} yield the buck/boost converter. 

The small-signal model for the PWM converters can be obtained from Fig. 5.24 
by replacing the PWM switch, PWM block, and voltage feedback circuit with their 
respective small-signal models, and by introducing appropriate small-signal excita-
tions. Figure 5.25 shows the small-signal model derived as outlined above. This 
figure can be arranged to represent the small-signal model of the buck, boost, or 
buck/boost converter. For example, Fig. 5.25 becomes the small-signal model of the 
buck converter when the connections {a-X p - Y i -Z } are assumed. 

The small-signal model in Fig. 5.25 is converted into a block diagram represen-
tation shown in Fig. 5.26. In the block diagram, the small-signal sources vs(s) and 
ia(s) are the input variables, v„(s) is the output variable, and d(s) is the control vari-
able. Regarding the gain blocks, Fm is the PWM gain, Fv(s) is the voltage feedback 
compensation, and the other gain blocks represent the power stage transfer functions: 
Gvs(s) = v0(s)/vs(s), Gvd(s) = v0(s)/d(s), and Zp(s) = v0(s)/i0(s). The - sign in 
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Figure 5.24 General functional diagram for three basic PWM converters. 

Figure 5.25 Small-signal model for three basic PWM converters. 

front of the voltage feedback compensation, Fv(s), signifies the negative feedback 
control embedded in the control scheme. 

The small-signal model of the closed-loop controlled converter or its block di-
agram representation is a linear time-invariant model to which all the conventional 
s-domain analysis techniques can be directly applied. The utility and versatility of 
the small-signal model will be demonstrated in the later chapters which deal with 
the small-signal analysis and control design of closed-loop controlled PWM dc-to-dc 
converters. 
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Figure 5.26 Block diagram representation of small-signal model. 

5.7 SUMMARY 

In this chapter, we developed the s-domain small-signal model for the three basic 
PWM dc-to-dc converters. As a linear time-invariant model, the small-signal model 
allows us to investigate the dynamics of the PWM converters using standard s-domain 
analysis techniques. The small-signal model is derived in a general and unified way 
so that a single model could represent all the three basic PWM converters. 

We employed several modeling techniques to derive the small-signal model for the 
PWM converters. The averaging method is used to eliminate the time variance from 
the power stage configuration and the linearization process is employed to remove 
nonlinearities from the power stage dynamics and PWM process. 

Two very important averaging methods, the state-space averaging and circuit 
averaging, are studied for the power stage modeling. The linearization process is 
then employed. Application of the circuit averaging to the PWM switch and ensuing 
linearization led to the PWM switch model, which is utilized as an instrumental tool 
in deriving a universal small-signal model for the three basic PWM converters. 

The small-signal model for the PWM block was found to be a constant PWM 
gain, under the assumption that the control signal only varies narrowly and slowly 
within the switching period of the converter. The PWM switch model and PWM 
gain are combined with the voltage feedback compensation, leading to the complete 
small-signal model for closed-loop controlled PWM dc-to-dc converters. With this 
small-signal model, we can perform the dynamic analysis of the nonlinear time-
variant PWM converters in the manner that has been used for conventional linear 
time-invariant systems. The value of the small-signal model will be demonstrated 
in the later chapters dealing with the dynamic analysis and control design of PWM 
dc-to-dc converters. 
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PROBLEMS 

5.1* Consider the circuits shown in Fig. P5.1 and answer the questions. 

dir 

■^Φ-

Vap dv°pQ vcp 

Fig. P5.1 

5.2* 

a) Shown in Fig. P5.1(a) is an average model of a nonlinear switching device. 
The variable d represents the continuous duty ratio of the active switch. 
Construct the nonlinear switching device using semiconductor switches. 

b) Prove that the small-signal equations of the nonlinear switching device can 
be represented by the circuit model in Fig. P5.1(b). Find the expressions 
for the dependent current source IA and voltage source v#. 

c) Construct a small-signal model of the buck converter using Fig. P5.1(b). 
Express the dependent sources in terms of the operating conditions and 
circuit variables of the buck converter. 

d) Construct an average model of the boost converter using Fig. P5.1 (a). Show 
all the model parameters. 

e) Build a small-signal model of the boost converter using Fig. P5.1(b). Show 
all the model parameters. 

Figure P5.2 shows the circuit diagrams of the three basic PWM converters with 
the parasitic resistances. 
a) Formulate the switched state-space model for each of the three basic con-

verters. 
b) Convert the switched state-space models you derived in a) into the averaged 

state-space models for the three basic converters. 
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Fig. P5.2 
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5.3** A cascaded converter shown in Fig. P5.3 is configured by connecting a boost 
converter and buck converter. Answer the questions. 

JTYYV. 

© vs 

-H-

C j ^ 

L2 

o · rrrr\ 

Fig. P5.3 

a) Construct a nonlinear circuit model that predicts the time-averaged power 
stage dynamics of the converter during both transition period and steady 
state. 

b) Draw a linear circuit model that predicts the small-signal dynamics of 
the converter under the small-signal assumption. Express all the circuit 
components as functions of circuit variables and operational conditions of 
the converter. 



PROBLEMS 241 

5.4* Referring to the circuit shown in Fig. P5.4(a), answer the questions. 

r^7 
37.5μΗ 
JTYY\ 

40 V 

(a) 

Closed 

Ο,ΓΖΠ Ope" I L 

Qi\ L 
10/zs 

J L 
(b) 

Closed 

ß l 
Closed 

( ? 7 rm °pen Γ 
< ► 

ΙΟμβ (c) 

5.5 

Fig. P5.4 

a) The switch drive signals shown in Fig. P5.4(b) are applied to the circuit. 
Draw an average circuit model that predicts the time-averaged behavior of 
the converter. Show all the model parameters. 

b) Repeat a) for the switch drive signal in Fig. P5.4(c). 

Figure P5.5 shows the circuit diagram of a buck/boost converter with the 
parasitic resistance of the inductor. 

Fig. P5.5 

a) Use the flux balance and charge balance conditions to find the expression 
for the voltage gain V0/Vs of the converter. 

b) Use the averaged model of the power stage to derive the voltage gain 
expression of the converter. 
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5.6* Assume that the functional relationship between the duty ratio d and the control 
voltage vcon of a certain PWM converter is given by 

0.2 

5.7 

d(t) = 1 
n(t) 

a) Find the expression for the small-signal modulator gain, Fm = d/vcon. 
b) Find the numeric value for Fm = d/vcon when Vcon = 2 V. 

Figure P5.7 shows the small-signal model of the buck converter with the 
parasitic resistances of reactive components. Find the accurate expressions for 
the three power stage transfer functions, Gvs(s), Gvd(s), and Zp(s). 

Ws) 

ν,ωφ 

Fig. P5.7 

5.8** Shown in Fig. P.5.8 is a PWM converter configured using a nonlinear switching 
network. The time-averaged expressions for the circuit variables associated 
with the nonlinear switching network are given by 

Vacit) = (l ~ d(t))vbc(t) 

ib{t) = (l - d(t))ia(t) 

where d represents the continuous duty ratio of the active switch. 

L 
r rm l° 

1 ^ 
+ 

Nonlinear 
switching 
network 

-
c 

lb 

vbc - ^C < v0 

Fig. P5.8 

a) Derive a set of equations that describe the small-signal dynamics of the 
nonlinear switching network. 

b) Draw a small-signal circuit model for the nonlinear switching network. 
Show all model parameters. 

c) Sketch the small-signal circuit model of the entire power converter. Show 
all model parameters. 
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d) Derive the input-to-output transfer function, Gvs(s) = v0(s)/vs(s), in terms 
of the circuit parameters of the small-signal model. 

5.9* The PWM can be performed by comparing the control signal vcon against the 
carrier signal. Different carrier signals can be used to implement various PWM 
schemes. Three examples of such PWM schemes are shown in Fig. P5.9. For 
each PWM scheme, find the expression for the modulator gain Fm. 

^_ rL_r"L_ 

ΛΛΙ 
(a) 

M 
ov1 N x 

ov 

(b) 

Fig. P5.9 

(c) 

5.10**Figure P5.10 shows the v-i characteristics of a nonlinear device. Answer the 
questions. 
a) Find the small-signal gain, ΐ/ν, at the operating point of v = 4 V and 

/ = 2 mA. 
b) Estimate the maximum magnitude of v(t) which validates the accuracy of 

the small-signal gain you found in a). 
c) Assume v(t) = 4 + 0.1 sin 20t and find the expression for i(t). 
d) Now assume v(t) = 4 + 0.5 sin 20t and evaluate the range of \i(t)\: ( ) < 

|i(i)l < ( )· 
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CHAPTER 6 

POWER STAGE TRANSFER 
FUNCTIONS 

In the previous chapter, we developed s-domain small-signal models for the three 
basic PWM dc-to-dc converters: the buck converter, boost converter, and buck/boost 
converter. Using these small-signal models, we could perform the dynamic analysis 
and control design of nonlinear time-variant PWM dc-to-dc converters, in the same 
way as we do for conventional linear time-invariant systems. 

In preparation for the analysis and design of PWM dc-to-dc converters, this 
chapter analyzes power stage transfer functions focusing on their frequency response 
characteristics. The first section covers the Bode plot representation of s-domain 
transfer functions. The later sections then present analytical expressions, Bode plot 
representations, and salient features of power stage transfer functions of the three 
basic PWM dc-to-dc converters. This chapter also discusses empirical approaches to 
the power stage dynamic analysis. 

6.1 BODE PLOT FOR TRANSFER FUNCTIONS 

The most useful outcome of the s-domain small-signal model is the transfer function 
which allows us to investigate the frequency response characteristics of the converter 
power stage. From the s-domain small-signal model, power stage transfer functions 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 245 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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are derived using standard circuit analysis techniques. The resulting s-domain trans-
fer functions are then transformed into Bode plots to reveal the frequency response 
characteristics. This section deals with the construction of Bode plots for s-domain 
transfer functions, thereby providing the underlying basics for the forthcoming con-
verter power stage analysis. 

6.1.1 Basic Definitions 

Discussions start with the basic definitions which constitute the basis in constructing 
frequency response plots for s-domain transfer functions. These basic definitions 
include the transfer function, frequency response, and Bode plot representation. 

Transfer Function 

The transfer function is defined for linear time-invariant systems or circuits as the 
ratio of the Laplace transform of the output to the Laplace transform of the input, 
under the assumption that all initial conditions are zero 

ns) = z^ (6.i) 

where v0(s) is the s-domain expression, or Laplace transform, of the output variable 
while vs(s) is the s-domain expression of the input variable. For general cases, 
the transfer function is obtained by performing the Laplace transform operation 
on the differential equation or state equation of the system. However, for linear 
time-invariant circuits, the transfer function can be directly derived from the circuit 
diagram by adopting s-domain representations for circuit components and variables 
and applying basic circuit theorems. 

Although originally defined for linear time-invariant systems, the transfer function 
can be extended to nonlinear time-variant PWM converters to describe the frequency 
response of power stage circuit variables. For this case, the transfer functions are 
derived from the s-domain small-signal power stage model, as illustrated in Example 
5.7. Readers may refer to Section 5.4 for the concept of the frequency response and 
transfer function for PWM dc-to-dc converters. 

Frequency Response 

The frequency response denotes the input-output relationship of linear or linearized 
systems, under the assumption that the system is excited by a sinusoidal input. 
Accordingly, the frequency response is evaluated from the s-domain transfer function 
by replacing the complex frequency s with }ω 

Τ(]ω) = (6.2) 
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201og|r(M)| 

(a) (b) 

Figure 6.1 Graphical representation of frequency response, (a) Polar plot, (b) Bode plot. 

where ω is the frequency of the sinusoidal excitation. The magnitude relationship of 
(6.2) becomes the magnitude response 

\T(jü>)\ = 
|νο0'ω)| 

and the phase relationship of (6.2) is the phase response of the system 

ζΓΟ'ω) = /-Vo(jcS) - Ζν,Οω) 

(6.3) 

(6.4) 

The magnitude and phase responses are collectively called the frequency response. 
Equations (6.3) and (6.4) indicate that the frequency response is found by evaluating 
the magnitude and phase of the transfer function with s = }ω, while sweeping the 
frequency ω for the range of interest. 

Bode Plot Representation 

The frequency response can be graphically displayed in the polar plot format or 
Bode plot format. Each of these graphical representations has its own value in 
s-domain analysis. Figure 6.1(a) illustrates the polar plot representation of the 
frequency response, where the frequency response is converted into the polar form 
and portrayed as a single curve in s-plain. Each point in the polar plot represents 
the frequency response in the polar coordinate, from which the magnitude and phase 
responses at a specific frequency a>s are defined, as illustrated in Fig. 6.1(a). 

Figure 6.1(b) shows the Bode plot representation of the frequency response. The 
magnitude response is first calculated in dB scale, 201og|7X/a>)|, while the phase 
is expressed in degree °. The magnitude and phase responses are then individually 
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displayed on the two separate plots. In the magnitude plot, the dB-scale magnitude is 
shown on the y-axis, while the frequency ω is displayed in the log scale on the x-axis. 
In the phase plot, the linear-scale phase is shown against the log-scale frequency axis. 
Each point in the magnitude or phase plot represents the corresponding magnitude or 
phase response evaluated at a specific frequency ω8, as shown in Fig. 6.1(b). 

6.1.2 Bode Plots for Multiplication Factors 

It is assumed that the transfer function T(s) for the Bode plot construction has been 
factorized into the following format 

1 + — 4 S±J 1 4- — \ ωζ I . S S2 

1 + ή — + 2 

s s2\ 
1 + 77— + — ·· (6.5) 

which is known as the time constant form. Each term in (6.5) is called the multipli-
cation factor. The Bode plot for the transfer function Ts(s) can be constructed by 

1) finding the Bode plot of each individual multiplication factor, and 

2) combining the resulting individual Bode plots. 

This section discusses Bode plots of multiplication factors. The construction of the 
composite Bode plot for the transfer function will be treated in the next section. 

Constant 

Figure 6.2 shows the Bode plot for a constant K. The magnitude plot is a flat line of 
20 log K for both positive K and negative K. However, the phase is 0° for K > 0 and 
-180°for/<:<0. 

Single and Double Integration Functions 

The single integration function 

F(s) = — (6.6) 
s 

is evaluated with s = ja> 

F{ju) = ^- (6.7) 

for the Bode plot construction. The above expression is split into the magnitude 
response 

201og|FCM| = 201og(^) (6.8) 
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dB dB 

20\ogK 20 log A: 

deg deg 

-180 

(a) (b) 

Figure 6.2 Bode plots for constant K. (a) K > 0. (b) K < 0. 

and the phase response 
LF(j<o) = -90° (6.9) 

Figure 6.3(a) shows the Bode plot based on (6.8) and (6.9). The magnitude linearly 
decays with a - 2 0 dB/dec slope while the phase stays at -90°. The magnitude plot 
crosses the 0 dB line at ω = Kr. 20 log Ki/Ki = 0 dB. 

For notational simplicity, the following numeric symbols will be used to represent 
the slope of the magnitude curve 

- 2 slope: - 4 0 dB/dec slope 

+ 1 slope: +20 dB/dec slope 

- 1 slope: - 2 0 dB/dec slope 

+ 2 slope: +40 dB/dec slope 

deg 

-90 

(a) 

dB 

k -40 dB/dec or - 2 

(b) 

*<x> 

Figure 6.3 Bode plots for single and double integration functions, (a) F(s) = K-Js. (b) 
F(s) = KJs2. 
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The double integration function 

F(s) = % (6.10) 

is evaluated as 

leading to 

and 

201og|FOw)| = 2 0 1 o g ( ^ ) 

lF(ju>) = -180° 

(6.11) 

(6.12) 

(6.13) 

The Bode plot is shown in Fig. 6.3(b). The descending slope of the magnitude plot is 
-40 dB/dec slope, or -2 slope, and the phase remains at -180°. The 0 dB crossover 
now occurs at ω = yfKi: 20log K\l Λ/Κ~Ϊ = 0 dB. 

Single and Double Differentiation Functions 

The single differentiation function F(s) = K^s is evaluated as F(jo)) = Κ<ι]ω, 
yielding the magnitude response 

201og |F (» | = 201og(/^ü,) (6.14) 

and phase response 
zFO-ω) = 90° (6.15) 

The Bode plot for the single differentiation is shown in Fig. 6.4(a). The magnitude 
plot linearly increases with a 20 dB/dec slope, or +1 slope, and crosses the 0 dB line 
at ω = l/Kd, while the phase stays at 90°. 

(a) 

Figure 6.4 Bode plots for single and double differentiation functions, (a) F(s) - Kds. (b) 
F(s) = Kds\ 
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The double differentiation function F(s) = Kds
2 is converted into F(joS) = 

Kd(jci))2 for the Bode plot construction. The magnitude and phase responses re-
spectively become 

201og|F0^)| = 20\og(Kdu
2) (6.16) 

and 
lF(ja)) = 180° (6.17) 

leading to the Bode plot shown in Fig. 6.4(b). The magnitude plot increases with 
40 dB/dec slope, or +2 slope, and the 0 dB crossover occurs at ω = 1/ yfKd. The 
phase remains at 180° for this case. 

Single Pole and Single Zero Functions 

The single pole function 
1 

1 + 
F(s) = (6.18) 

is evaluated with s = ]ω 

F(ju) = j - (6.19) 
1 + ^ 

yielding the magnitude response 

20 log | F 0 < J ) | = 20 log 1 (6.20) 

and phase response 

zF(y^) = - t a n " 1 1 - ^ I (6.21) 

Although the Bode plot can accurately be drawn from (6.20) and (6.21), it is usually 
unnecessary to find the exact Bode plot. Instead, the asymptotic plot that describes the 
asymptotic behavior of the Bode plot is sufficient for most situations. The asymptotic 
plots can quickly be sketched from the transfer function and provide all the important 
information about the frequency response. Furthermore, an asymptotic plot can 
readily be refined so that the resulting plot closely resembles the actual frequency 
response. 

For the asymptotic Bode plot construction, (6.19) is split into three expressions 
/ 1 at frequencies where ω < ωρ 

1 
F<Jo>) 

1 + ^ 

at frequency ω = ωι - ; a t i ic^uciiv^y UJ — tup ,*- ΊΟΛ 

OJp_ 
at frequencies where ω > ωρ 
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ΰ.5ωρωρ 2ωρ 

20dB/dec 

dB 

3 dB 

+20dB/dec 

deg 

0 

-45' 

-90C 

\ 0.1 e>p °>P 
1 

^v 1 

\0ωρ 

(a) 

0Αωζ ωζ \0ωζ 

(b) 

Figure 6.5 Bode plots for single pole and single zero functions, (a) Single pole function. 
(b) Single zero function. 

using the pole frequency ωρ as the borderline for approximations. 
The top expression in the right-hand side of (6.22) describes the asymptotic 

behavior of F(ju) at frequencies below ωρ, while the bottom expression approxi-
mates F(ja>) at frequencies beyond ωρ. In other words, the top expression provides 
the low-frequency asymptotes for the magnitude and phase plots: |F | = 0 dB and 
IF = 0°. Similarly, the bottom expression produces the high-frequency asymptotes: 
20log\F(jw>)\ - 20\og(a>p/ci)) and lF(ju) - -90°. The high-frequency asymptotes 
are the same as those of a single integration function passing through the 0 dB line at 
ωρ. The middle equation is the exact frequency response evaluated at ωρ 

2 0 1 o g | F O ^ ) | = 201og 
1+7 

=**(±) -3 dB (6.23) 

iF(jUp) = Z 
1+7 

-45° (6.24) 

Figure 6.5(a) shows the asymptotic plots of the single pole function, in comparison 
with the exact plots. The thick line represents the asymptotic plots while the thin line 
describes the exact plots. The asymptotic magnitude plot is formed by merging the 
low- and high-frequency asymptotes at ωρ. The asymptotic phase plot is constructed 
by bridging the low- and high-frequency asymptotes through a line segment that 
ramps down linearly from 0.1 ωρ to 10ω ρ with -45°/dec slope. The asymptotic 
magnitude plot shows small deviations from the exact plot in the frequency range 
0 . 5 ω / 7 < ω < 2 ωρ with a maximum 3dB error at ωρ\ for this reason, the pole frequency 
ωρ is called the 3 dB frequency. The asymptotic phase plot also provides a good 
approximation for the exact plot. In particular, the asymptotic plot shows the exact 
-45° phase at ωρ. 
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As illustrated in Fig. 6.5(a), an accurate Bode plot can be constructed, with neg-
ligible and predictable errors, by smoothly connecting the low- and high-frequency 
asymptotes so that the combined curves pass the exact values at ωρ: - 3 dB for 
\F(jajp)\ and -45° for lF{jup). 

The single zero function 

is approximated to 

Ft/ω) = 1 + J— * { 
ω7 

F{s) = 1 + — 

1 at frequencies where ω < ωζ 

1+7 at frequency ω = ωζ 

j — at frequencies where ω > ωζ 

(6.25) 

(6.26) 

for the asymptotic Bode plot construction. The bottom term in (6.26) constitutes 
the high-frequency asymptote, which is a single differentiation function crossing the 
0 dB line at ωζ. The middle term is the exact frequency response at ωζ 

201og|F(M)l = 201og | l+7 l*3dB (6.27) 

and 
ZF(M) = Z( l+7) = 45° (6.28) 

Figure 6.5(b) shows the asymptotic and exact Bode plots of the single zero function. 

Double Pole and Double Zero Functions 

The double pole and double zero functions frequently appear in the upcoming small-
signal analysis of power stage transfer functions. The double pole function is given 
by 

F(s) = r (6.29) 

1 + 

where ω0 is the double pole frequency and Qp is the damping ratio. The double pole 
function with Qp > 0.5 is approximated to 

1 at frequencies where ω < ω0 

QP 

F(jo>) = 
j(x) ω" 1 + 

QpVo ω2
0 

at frequency ω = ω0 

o 

- — at frequencies where ω > ω0 

(6.30) 

The low-frequency asymptote is the 0 dB line, as is the case with the single pole 
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dB 

OdB 
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.20 logß 
dB 
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OdB 

deg 

-+ω 180 
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201ogÖz 

(a) 

Figure 6.6 Bode plots for double pole and double zero functions, (a) Double pole function. 
(b) Double zero function. 

function. On the other hand, the high-frequency asymptote is a double integration 
function passing through the 0 dB line at ω0. The exact response at ω0 is 

201og|F(M)| = 201og QP 

and 
QP 

J 

= 20\ogQp 

-90° 

(6.31) 

(6.32) 

Figure 6.6(a) shows the asymptotic plots of the double pole function, in parallel 
with the exact plots. The asymptotic magnitude plot is formed by merging low- and 
high-frequency asymptotes at ω0. The phase plot is created by connecting the low-
and high-frequency asymptotes with a line segment linearly declining at frequencies 
around ω0. 

The asymptotic magnitude plot shows a noticeable difference from the exact plot 
in the frequency range 0.3ωο < ω <3ω(). In particular, the exact magnitude plot 
shows a peaking of 20 log Qp at ω09 which is not accounted for in the asymptotic 
plot. On the other hand, the asymptotic phase plot passes the exact -90° point at ω0, 
while producing some error at neighboring frequencies. 

The accurate magnitude and phase characteristics of the double pole function can 
be determined by evaluating (6.29) at frequencies around ω(). Such an analysis reveals 
that the transition patterns of the magnitude and phase curves are strongly influenced 
by the value of the damping ratio Qp. Figure 6.7 shows the exact Bode plots of the 
double pole function in the frequency range 03ωο<ω<3ωο with different Qp values 
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Figure 6.7 Exact Bode plots of double pole function with 0.5 < Qp < 8. 

of 0.5 < Qp < 8. In the magnitude response, a larger Qp generates a higher peaking at 
ωθ9 resulting in a wider gap between the asymptote and exact plots. Regarding the 
phase response, a larger Qp accelerates the decaying rate of the phase plot around 
ω0, thereby exhibiting a more abrupt phase change in the narrower frequency range. 
These characteristics need to be incorporated when the actual frequency response is 
predicted from the asymptotic plots. 

The double zero function 

F(s) = 1 + 
Qz^o 

(6.33) 

with Qz > 0.5 is approximated to 

F(Jo>) = 1 + 
Qz^o ω% 

1 at frequencies where ω < ω0 

— at frequency ω = ω0 
Qz 

at frequencies where ω > ω0 

(6.34) 

The bottom term in (6.34) indicates that the high-frequency asymptote is a double dif-
ferentiation function crossing the 0 dB line at ω0. Figure 6.6(b) shows the asymptotic 
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and exact plots for the double zero function. The construction and accuracy of the 
asymptotic plots are very similar to those of the double pole case. The magnitude plot 
shows a dipping of 20 log Qz at ωσ, which was not accounted for in the asymptotic 
plot. 

RHP Pole and RHP Zero Functions 

The single pole function given by 

F(s) = — V = l-s~ (635) 

1 - — 1 + — 
ωρ -ωρ 

is called the right-half plane (RHP) pole function in the sense that the pole s = ωρ is 
located in the right-half side of s-plane. 

The RHP pole has unique characteristics and thus deserves special attentions. For 
the frequency response analysis, the transfer function is evaluated with s = ju 

F(s) = l-r— (6.36) 
1 + - ^ -

-ωρ 

yielding the magnitude response 

20 log \F(ja))\ = 20 log - = 20 log — — = (6.37) 

and phase response 

Z F ( » = - tan"1 ( - ^ - J = tan"11 — ) (6.38) 

The above equations indicate that the magnitude response is the same as that of 
a regular pole function. However, the phase response follows the pattern of a zero 
function, rather than a pole function. Figure 6.8(a) shows the asymptotic and exact 
plots of the RHP pole function. The flat magnitude asymptote breaks at ωρ and rolls 
down by -20 dB/dec, or - 1 , slope thereafter, while the phase increases from 0° to 
90° over the frequency range 0.1 ωρ < ω < \0ωρ. 

The frequency response of an RHP zero function 

F(s) = 1 - — = 1 + — (6.39) 
ωζ -ωζ 

is evaluated as 

\F(jco)\ = 20log Λ/1 + I -^-\ = 20log J l + i - ^ j (6.40) 
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Figure 6.8 Bode plots for RHP pole and RHP zero functions, (a) RHP pole function, (b) 
RHP zero function. 

and 

Z F ( » = tan"1 ί ^ - j = -tan"1 f — J (6.41) 

Regarding the phase characteristics, the RHP zero follows the pattern of a single 
pole function, not a zero function. Figure 6.8(b) shows the asymptotic and exact 
plots for the RHP zero function. In the neighborhood of the RHP zero ωζ, the 0 dB 
magnitude plot starts to ramp up with 20 dB/dec, or +1, slope, while the phase drops 
linearly from 0° to -90°. The RHP zero frequently appears in the power stage transfer 
functions of PWM dc-to-dc converters, as will be discussed later in this chapter. 

6.1.3 Bode Plot Construction for Transfer Functions 

Bode plots for transfer functions are constructed by combining Bode plots of individ-
ual multiplication factors. Techniques for the Bode plot construction are illustrated 
with several examples. 

Examples of Bode Plot Construction 

The first example considers the Bode plot for the following transfer function 

T(s) = 10s 
1 1 

1 + ϊ^1 + ϊ^ 
(6.42) 
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Figure 6.9 Example of Bode plot construction: {l+sn^l+sn(fi) · 

The magnitude and phase responses are evaluated as 

20 log |Γ0'ω)| = 20 log 110;ω| + 20 log 
1 + 

102 

and 

+ 20 log 
1 + 

105 

ΐΤ(ίω) = Αΐθίω + Z — + Z — 

102 105 

(6.43) 

(6.44) 

Figure 6.9 illustrates the procedure of creating asymptotic plots for the transfer 
function. The magnitude plots for the multiplication factors are first drawn individ-
ually and then added together to create the composite magnitude plot for the transfer 
function. The magnitude plot initially ramps up with a 20 dB/dec, or +1, slope due to 
the single differentiation function. After passing through the 0 dB line at ω = 0.1, the 
magnitude plot becomes flat at the first pole ω = 102. The flat mid-band magnitude 
is evaluated as 201og|10</<j|6,=io2 = 60 dB. The 60 dB mid-band magnitude starts 
declining by -20 dB/dec, or - 1 , slope at the second pole ω - 105, thereby crossing 
the 0 dB line at ω = 108. 

The phase plot is constructed by adding the phase plots of the individual multipli-
cation factors. The phase starts with 90° due to the single differentiation function. 
The 90° low-frequency phase decreases to 0° over the first pole ω - 102. The 0° 
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phase reduces to the -90° final phase over the second pole ω = 105. Figure 6.9 also 
shows the exact Bode plots of the transfer function. 

From the previous example, the general transition patterns of Bode plots can be 
described as follows. The Bode plot initially starts with a differentiation function, 
integration function, or constant. Then, the evolution of the Bode plot is changed by 
the poles or zeros of the transfer function. 

1) A single pole ωρ decreases the magnitude slope by 20 dB/dec at the pole 
frequency, while causing a 90° phase lag over the frequency range 0Αωρ<ω< 
\0ωρ. 

2) A double pole ω0 reduces the magnitude slope by 40 dB/dec, while lagging 
the phase by 180° over the frequencies around ω0. 

3) A single zero ωζ boosts the magnitude slope by 20 dB/dec, while causing a 
90° phase lead over the frequency range 0.1 ωζ <ω< 10 ωζ. 

4) A double zero ω0 increases the magnitude slope by 40 dB/dec, while leading 
the phase by 180° over the frequencies around ω0. 

The pole or zero frequency is called the corner frequency because the magnitude 
asymptote shapes a corner at pole and zero frequencies by changing the ascending 
and descending slopes. The aforementioned evolution patterns serve as the general 
rules in constructing Bode plots for given transfer functions. 

Now, the second example deals with the following transfer function 

s(s + 10) 
Γ ( ' ) = ( , + 25Χ, + 100) ( M 5 ) 

The transfer function is first written in the time constant form 

λ _s_ 

\ 25/V 100/ 

The asymptotic plot is created as shown in Fig. 6.10 by applying the Bode plot 
construction rules. The high-frequency magnitude is found from (6.45) 

lim \T(jo>)\ = Μ / ω + 10) 
ΙΟω + 25)Οω+100) 

while the high-frequency phase is evaluated as 

jiu{ju+ 10) 

= 1 => 0 dB (6.47) 

lim ΐΤ(]ω) = lim Z 
■oo Ο'ω + 25)Οω+100) 

= (90° + 90°) - (90° + 90°) = 0° (6.48) 

By incorporating the actual frequency response characteristics near the corner fre-
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Figure 6.10 Example of Bode plot construction: 5(5+10) 

(5+25)0+100)· 

quencies, each asymptotic Bode plot can be modified to a smooth curve that closely 
resembles the exact Bode plot, as shown in Fig. 6.10. 

For another example, the following transfer function is considered 

T(s) = 
s s* 

1 + Ö 5 + Ö ^ 

(6.49) 

whose denominator is the double pole function at ω0 = 0.1 with Qp = 5. Figure 
6.11(a) shows the Bode plot, obtained by adding the 20 log 5 peaking at ω0 = 0.1 to 
the asymptotic plot. 

As an additional example, the Bode plot of the transfer function 

s s 
1 + ^ττ + T(s) 50 800 2002 

s Λ s s2 

1 + ΤΓ7 + 

(6.50) 

400 1002 

can be constructed as shown in Fig. 6.11(b) by recognizing Qp = 4 and ω0 = 100 for 
the denominator, and Qz = 4 and ω0 = 200 for the numerator. 

Non-Minimum Phase System 

The dynamic system containing a right-half plane (RHP) zero or RHP pole in its 
transfer function is called the non-minimum phase system. To be specific, the 
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Figure 6.11 Examples of Bode plots, (a) 
l+s/0.5+s2/0.l •(b) 50 1+5/800+s2/2002 
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following transfer function 

T(s) = 
1 + 

(6.51) 

1 + 
QpUo ω^ 

is a regular second-order system. In contrast, the transfer function given by 

T(s) = 

s 

ω7 (6.52) 

1 + 
Qp^o 

is a non-minimum phase second-order system, due to the presence of an RHP zero 
function in the numerator. 

Figure 6.12 compares the Bode plots of the regular second-order system and 
the non-minimum phase second-order system with the assumption ω0 < ωζ. The 
magnitude plots of the two systems are identical, but the phase responses differ from 
each other. Due to the presence of the RHP zero at ωζ, which causes a 90° phase 
delay, the phase of the non-minimum phase system decreases from -180° to -270° 
over ωζ, resulting in the overall phase variation between 0° and -270°. On the other 
hand, the phase of the regular system only changes between 0° and -180°. The 
non-minimum phase system is named so because the phase variation is wider than 
that of the regular system. 
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dB dB 

Figure 6.12 Bode plots for regular and non-minimum phase second-order systems, (a) 
Regular second-order system, (b) Non-minimum phase second-order system. 

6.1.4 Identification of Transfer Function from Bode Plot 

In many dynamic system analyses, the asymptotic plots of certain transfer functions 
are determined in advance and it then becomes necessary to extract analytical expres-
sions of those transfer functions from their preexisting asymptotic plots. This task 
is fulfilled by taking the inverse steps of the Bode plot construction. From the given 
asymptotic plot, the structure of the transfer function is first determined. The transfer 
function is written in a time constant form which includes the leading coefficient 
in front. The general structure of the time constant form is given in (6.5). The 
leading coefficient is then calculated from the value of the low-frequency asymptote, 
high-frequency asymptote, 0 dB frequency, or one of the corner frequencies. This 
technique is frequently used in the later chapters that deal with the dynamic analysis 
and control design of dc-to-dc converters. 

■ EXAMPLE 6.1 Identification of Transfer Function 

This example illustrates the procedures of identifying the transfer function from 
its asymptotic plot. The first illustration considers the asymptotic plot shown 
in Fig. 6.13(a), where the mid-frequency asymptote is given by 20 log Km. The 
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Figure 6.13 Example of asymptotic plots, (a) Case where mid-band gain is given, (b) Case 
where high-frequency asymptote is known. 

asymptotic plot is converted into an analytic equation 

T(s) = Kds-
ω7 

\ ωρι)\ ωρ1) 

(6.53) 

by taking the inverse steps of the Bode plot construction. The mid-frequency 
magnitude of the asymptotic plot is determined as 

\Kds\ ί=7ω ρ ι = 201og(/Q<<v) = 201og/^ 

which indicates 
Kd ωρ\ - Km 

The expression for the leading coefficient is now given by 

Kd = 
ωΡ\ 

(6.54) 

(6.55) 

(6.56) 

The second example deals with the asymptotic plot shown in Fig. 6.13(b). 
The expression for the transfer function is the same, but the leading coefficient 
Kd is different. The value for Kj is now found from the high-frequency 
asymptote of the transfer function. The high-frequency asymptote is evaluated 
from the T(s) expression 

lim \Τ{]ω)\ 
1 + 

Kdj<*> 
ω2 

ll + M(l + M 
\ ωρ1)\ ωρ2) 

= 2 0 1 o g ( * ^ ) (6.57) 
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Figure 6.14 Small-signal model of buck converter, (a) Circuit diagram, (b) Small-signal 
model. 

On the other hand, the asymptotic plot indicates that 

\T(joo)\ = 20logKh (6.58) 

By equating (6.57) and (6.58), the leading coefficient is given by 

Kd^Kh-^— (6.59) 
Mp\Mp2 

The techniques illustrated in the previous examples will be adopted in later parts 
of this book. Further details about this method will be covered in Chapter 8. 

6.2 POWER STAGE TRANSFER FUNCTIONS OF BUCK CONVERTER 

Power stage transfer functions of PWM dc-to-dc converters can be derived from the 
s-domain small-signal model of power stage. The Bode plot construction techniques 
are then applied to the power stage transfer functions to reveal the frequency response 
characteristics. This section deals with the power stage transfer functions of the buck 
converter while succeeding sections cover the boost and buck/boost converters. 

Figure 6.14(a) shows the circuit diagram of the buck converter where the parasitic 
resistances of the inductor and capacitor are both included. Figure 6.14(b) is the 
small-signal model of Fig. 6.14(a), obtained by replacing the PWM switch with its 
small-signal model and introducing appropriate small-signal sources. Readers may 
refer to Section 5.3.3 for the details about the small-signal model. 



POWER STAGE TRANSFER FUNCTIONS OF BUCK CONVERTER 2 6 5 

6.2.1 Input-to-Output Transfer Function 

The standard circuit analysis of Fig. 6.14(b) with the condition d(s) = i0(s) = 0 yields 
the input-to-output transfer function 

1 + — 
Gvs(s) =^\= Kvs ^ - j (6.60) 

vs(s) s sl 

with 

Kvs = — ^ - * D (6.61) 1 + f 
and 

(6.62) 

The ω ^ , appearing in the numerator due to the equivalent series resistance (esr) of 
the output capacitor, is named the esr zero. The power stage double pole ω0 and the 
damping ratio Q are given by 

/ 1 /? + /?/ 1 (6.63) 
Vic 

and 
1 R + Rt -VI (6.64) 

ω0 L + C(RiRc + RiR + RCR) Xl T 

The approximations in (6.61), (6.63), and (6.64) become accurate with the conditions 
R^>Ri and R » Rc. 

When the expression (6.60) is compared with the Gvs(s) of an ideal buck converter, 
given by (5.65) in Example 5.7, the effects of the parasitic resistances can be seen. 
Most notably, the esr of the output capacitor introduces the esr zero. The effects of 
the esr zero on the frequency response will be described shortly. 

While the parasitic resistances also alter the expressions for the pole frequency and 
damping ratio, these changes are usually insignificant. When the parasitic resistances 
are sufficiently small, the pole frequency and damping ratio can be approximated to 
those of the ideal buck converter, as shown in (6.63) and (6.64). 

Figure 6.15 shows the asymptotic plot of |GVJ| and lGvs, created by following the 
Bode plot construction rules with assumptions ω0 «: a)esr and Q > 0.5. The low-pass 
filter characteristics, originating from the circuit structure and operational principle 
of the buck converter, are apparent in Fig. 6.15. As a typical second-order low pass 
filter, the flat low-frequency asymptote of |GV5| falls off at the double pole frequency 
ω0 with a -40 dB/dec, or -2 , slope. At the esr zero ωβ5Γ9 the -40 dB /dec slope is 
changed to the -20 dB/dec, or - 1 , slope. The low-frequency asymptote of |GVJ| is 
the voltage gain of the buck converter: \Gvs(j0)\ = 201og^V5 « 20 log D. 
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20 log D ω0 
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Figure 6.15 Asymptotic plot of input-to-output transfer function. 

The lGvs starts with 0° at low frequencies, drops down to -180° in the mid-
frequency band, and finally converges to -90° at high frequencies. The esr zero in 
effect provides a 90° phase boost for lGvs. 

The frequency response of the input-to-output transfer function should be inter-
preted based on the definition discussed in Section 5.4. The frequency response only 
describes the ac component of the circuit variables, as such, the dc component and 
switching ripple component should be considered separately. 

■ EXAMPLE 6.2 Input-to-Output Transfer Function 

This example shows the input-to-output transfer function of a buck converter 
and illustrates its relationship with time-domain circuit variables. Consider a 
buck converter operating with Vs = 16 V, L = 40 //F, /?/ = 0.1 Ω, C = 470 μ¥, 
Rc = 0.05 Ω, R = 1 Ω, fs = 20 kHz, and D = 0.25. The input-to-output 
transfer function of the converter is given by 

Gvs(s) « Kvs-
1 + 

s s"-

Quo ωζ
0 

(6.65) 

with 
KVS = D = 0.25 =>-12dB 

and 
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Figure 6.16 Input-to-output transfer function of buck converter. 

1 1 

VIC V40xl0" 6 470x 10"6 

1 1 

= 2π· 1.16 xlO3 rad/s 

CRC 470 xlO"6 0.05 
= In · 6.77 x W rad/s 

Figure 6.16 shows the input-to-output transfer function obtained from the 
PSpice® simulation using the s-domain small-signal model. The magnitude 
and phase responses at / = 2 kHz or ω = In · 2 x 103 rad/s, highlighted with 
a rectangle in Fig. 6.16, are used to illustrate the implication of the frequency 
response. When a 2 kHz sinusoid is added to the dc input voltage, it will 
propagate to the output with about a 20 dB attenuation in magnitude and 130° 
delay in phase. The output voltage is given by the sum of the dc value, switching 
ripple, and sinusoidal component originating from the input sinusoid. To verify 
this prediction, the time-domain simulation is performed with 

Vs(t) = 16 + 0.5 sin2n · 2 x 103i 

Based on the converter operation and prediction of Gvs(j2n · 2 x 103), the output 
voltage will be 

v0(t) = 0.25 · 16 + 0.1 · 0.5 8ΐη(2π · 2 x 103i - 130°)+ switching ripple 
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1.0 
Time [ms] 

Figure 6.17 Time-domain response of input voltage vs and output voltage v0 of buck 
converter. 

= 4 + 0.05 sin(2tf · 2 x 103/ - 130°) + switching ripple 

Figure 6.17 shows the simulation results. When the switching ripple is ignored, 
the output voltage exhibits a 0.1 V sinusoidal swing as predicted from the input-
to-output transfer function. 

6.2.2 Duty Ratio-to-Output Transfer Function 

The duty ratio-to-output transfer function is evaluated from Fig. 6.14(b) with the 
condition vs{s) = i()(s) = 0 

tJvdyS) - "T - Avd~ 
d(s) 

1 + 

1 + 
Qü>o 

with 

Kvd -
Vs 

1 + 
Ri 
R 

(6.66) 

(6.67) 

Figure 6.18 shows a typical \GVJ[ in comparison with |GVS|. While the structure is 
identical to |GVJ|, the low-frequency asymptote of the transfer function, \GVd(j0)\ « 
20 log Vs, can be significantly larger than \Gvs(j0)\ « 20 log D. 

Because Gvd(s) is the transfer function from the duty ratio to output voltage, the 
transfer function is located in the middle of the voltage feedback path. Accordingly, 
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\GVS\ 

20 log ̂  ω0 

Figure 6.18 Asymptotic plot of input-to-output transfer function and duty ratio-to-output 
transfer function. 

Gvd(s) directly influences stability and performance of the closed-loop controlled 
converter. Thus, Gvd(s) is critical in determining the structure and components of the 
voltage feedback circuit, as will be demonstrated in Chapter 8. 

EXAMPLE 6.3 Duty Ratio-to-Output Transfer Function 

This example shows the duty ratio-to-output transfer function of the buck 
converter introduced in Example 6.2. The implication of the Gvd(s) on the 
time-domain circuit waveforms is also illustrated. The duty ratio-to-output 
transfer function is given by 

1 + 
Gvd(s) « Kvd~ (6.68) 

1 + 
Qu0 

with Kvd = Vs = 16 =» 24 dB. Other parameters are the same as those of 
Example 6.2. Figure 6.19 shows the simulation of Gvd(s). Similar to Example 
6.2, the time-domain relationship between the duty ratio and output voltage can 
be predicted from Fig. 6.19. As highlighted with a rectangle in Fig. 6.19, the 
5 kHz sinusoidal variation in the duty ratio will propagate to the output voltage 
with the same magnitude but with about 135° phase delay. When the switch 
drive signal is modulated to produce the following continuous duty ratio 

d(t) = 0.25 + 0.05 sin 2π · 5 x \03t 

the output voltage will be 

v0(t) = 0.25 · 16 + 1 · 0.05 8ΐη(2π · 5 x I03t - 135°)+switching ripple 

= 4 + 0.05 sin(2tt · 5 x 103f - 135°) + switching ripple 
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Figure 6.19 Duty ratio-to-output transfer function of buck converter. 

Figure 6.20 shows the time-domain response of the converter, simulated 
with the aforementioned operational conditions. It can be seen that the switch 
drive signal q(t) is modulated to produce a 5 kHz sinusoidal variation in d(t) 
around the steady-state duty ratio. When the switching ripple is neglected, the 
magnitude of the sinusoidal variation in the output voltage is approximately 
the same as that of the duty ratio, as predicted from the duty ratio-to-output 
transfer function. 

6.2.3 Load Current-to-Output Transfer Function 

The load current-to-output voltage transfer function is derived from Fig. 6.14(b) with 
the condition vs(s) = d(s) = 0 

ZP(S) : 
Vo(s) 

= R\\Rt 

1 + 

* Ri 

1 + 

-Ml·-) 
ωζ)\ uesr) s r 

1 + 
Qo>o ω2

0 

(6.69) 
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Figure 6.20 Time-domain response of switch drive signal q{t), continuous duty ratio d(t), 
and output voltage v0. 

with 

L 
(6.70) 

In addition to a)esr, the transfer function has another zero ωζ, created by the esr of 
the inductor. While uesr appears at high frequencies, ωζ is usually located at lower 
frequencies. Accordingly, the low-frequency characteristics of the transfer function 
are mainly influenced by the esr of the inductor. 

Figure 6.21 shows the asymptotic plots for \ZP\ and lZp. The low-frequency 
asymptote of \ZP\ is the parallel connection of the load resistor and esr of the inductor, 
which can be practically approximated to IZ^O'O)! = 20log/? || /?/ « 20log/?/. 
The high-frequency asymptote can be found from the small-signal circuit model in 
Fig. 6.14(b). At high frequencies, the inductance behaves open-circuited and the 
capacitance presents very low impedance. Thus, the high-frequency asymptote is the 
parallel combination of the load resistor and esr of the output capacitor, which can 
be approximated to \Zp(joo)\ - 20log/? || Rc « 201og/?c for most cases. 

6.3 POWER STAGE TRANSFER FUNCTIONS OF BOOST CONVERTER 

Figure 6.22(a) shows the power stage of the boost converter and Fig. 6.22(b) depicts its 
small-signal model. Details about the small-signal model were presented in Section 
5.3.3. 
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Figure 6.21 Asymptotic plot of load current-to-output transfer function. 
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Figure 6.22 Small-signal model of boost converter, (a) Circuit diagram, (b) Small-signal 
model. 

6.3.1 Input-to-Output Transfer Function 

The input-to-output transfer function is derived from Fig. 6.22(b) with the condition 
d(s) = t0(s) = 0 

s 
1 + 

Gvs(s) = Kvs 

s r 
(6.71) 
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with 

Kvs = ί—5— ~ — (6.72) 

* ( l + A) 
Mesr = 777Γ (6.73) 

(6.74) 

Q = ~ "~ - Γ - — , . *R\\T~ (6.75) 

with 

and 

ö ' ( i + A) D' 
1 

C ^ 

/ 1 #D' 2 + Ri D' 

\LC R + Rc " ^[LC~ , 

1 RD'2 + Ri 

0)oL + C(RiRc + /?//? + RCRD' 

D'2 

1 

4L£ 

~ P 
2 ) ^ A F 

He 

(6.76) 

D' = 1 - D (6.77) 

An interesting property of the boost converter is observed from the input-to-output 
transfer function. The transfer function shows the low-pass filter characteristics, as 
is the case with the buck converter. However, the inductive parameter appears as 
Le = L/D'2 in the double pole frequency ω0 and damping ratio Q, instead of the 
original inductance L. This is attributed to the fact that the inductor is not directly 
connected to the output capacitor but separated by the PWM switch. The inductance 
located at one side of the PWM switch should be altered when the filter transfer 
function is evaluated from the other side. The transfer function expression also 
indicates that the pole frequency and damping ratio depend on the duty ratio of the 
converter. Thus, the power stage dynamics will be changed when the duty ratio of 
the converter varies. 

The low-frequency value of the transfer function is approximated to \Gvs(jO)\ = 
20 log Kvs « 20 log(l /£>'), which corresponds to the voltage gain of an ideal boost 
converter. The asymptotic plots for |GVS| and lGvs are essentially the same as those 
of the buck converter case. 

6.3.2 Duty Ratio-to-Output Transfer Function and RHP Zero 

With the condition vs(s) = i0(s) = 0, the duty ratio-to-output transfer function is 
derived as 

- ) ( ■ ♦ - ) 
Gvd{s) = Κ^ ^ ^ ψ^ (6.78) 

1+ S S 

Quo ω2 
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Figure 6.23 Effects of a>rhp on duty ratio-to-output transfer function, (a) Case with nominal 
duty ratio, (b) Case with increased duty ratio. 

with 

Kvd -

1 - - * -
Vs RD'2 

D'2i+
 R< D'2 

(6.79) 

RD'2 

and 
D'2R 

>rhp 
L \ RD'2) 

D'LR R 
(6.80) 
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with Le = LID'2. 
The most distinctive feature of the transfer function is the presence of a right-half 

plane (RHP) zero, ωΓΗρ, in the numerator of (6.78). The zero, s = a>rhp, is located in 
the right-hand side of s-plane and the subscript rhp is used to signify this fact. The 
expression for the RHP zero, ω^ρ = (1 - D)2R/L, indicates that the zero frequency is 
affected by the duty ratio. Accordingly, the zero frequency will move around when 
the duty ratio is changed; for this reason, ω^ρ is called the moving RHP zero. 

The impacts of the moving RHP zero, ωΓπρ, on the transfer function are explained 
in Fig. 6.23. As far as the magnitude of the transfer function is concerned, ω^ρ has 
the same effect as that of a regular zero. However, ωΓπρ causes a 90° phase delay 
to LGvd, in contrast to the 90° phase boost in the case of a regular zero. Thus, a>rhp 

increases the slope of \Gvd\ by 20 dB/dec, while bringing down lGvd by 90°. 
Typical asymptotic plots for \Gvd\ and lGvd are shown in Fig. 6.23(a), with the 

assumption ω0 «c ωΓπρ <£ coesr. At frequencies beyond ωσ, lGvd mainly stays below 
-180°, with a -270° basin in the frequency range of ωΓπρ<ω<ωβ5Γ. When the duty 
ratio is increased from the previous value, ω^ρ shifts towards lower frequencies, 
resulting in the asymptotic plots shown in Fig. 6.23(b). For this case, lGvd would 
stay at the -270° basin for a wider frequency range. As will be detailed in Section 
8.4.7, these phase characteristics present considerable difficulties to the design of the 
voltage feedback circuit. Accordingly, the control design of the boost converter is 
more challenging than that of the buck converter. The impact of ω^ρ on the control 
design and converter performance will be covered in later chapters. 

EXAMPLE 6.4 Duty Ratio-to-Output Transfer Function 

In order to confirm the existence of the RHP zero, this example derives the duty 
ratio-to-output transfer function of the boost converter. Figure 6.24(a) shows 
the small-signal model of an ideal boost converter. This model is derived from 
Fig. 6.22(b) for the evaluation of Gvd(s) with the conditions vs(s) = t0(s) = 0 
and Ri = Rc = 0. Figure 6.24(a) is modified to Fig. 6.24(b) by replacing the 
ideal transformer with a pair of voltage source vj and current source i> 

vT = - (v0 + ^ ή θ = -(Dv0 + V0d) (6.81) 

iT = DtL (6.82) 

The inductor current ϊι is then given by 

-(l-D)v0 + V0d 

sL 
(6.83) 

The current coming out of the passive terminal of the PWM switch, ip in 
Fig. 6.24(b), is given by 

h = iL- h - hd = tL- DiL - lLd = (1 - D)iL - ILd (6.84) 
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Figure 6.24 Small-signal model of ideal boost converter, (a) Original model, (b) Modified 
model. 

with IL = Vo/((l - D)R). The output voltage v0 is now determined as 

1 
v0 = ip\—\\R 

By substituting (6.84) and (6.83) into (6.85), it follows that 

v0 = (1 -D) ILd 
sL ) 1 + sCR 

which can be arranged in a transfer function form 

}__sL 
Us) Vo 

(6.85) 

(6.86) 

Gvd(s) = 
(1 -D)2R 

d(s) 1 - D 
1 + 

sL s2LC 
(\-D)2R (l-D)2 

(6.87) 

The presence of the RHP zero, a)rhp = (1 - D)2R/L = R/Le, is explicit in 
(6.87). While the derivation becomes somewhat complicated when the parasitic 
resistances are included, the same procedure leads to the equation (6.78). 

EXAMPLE 6.5 Duty Ratio-to-Output Transfer Function 

This example shows the duty ratio-to-output transfer function of a boost con-
verter. The operational conditions of the boost converter are Vs = 12 V, 
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L = 800 μΗ, Rt = 0.01 Ω, C = 1000 /iF, Rc = 0.05 Ω, R = 2 Ω, fs = 10 kHz, 
and D = 0.25. The duty ratio-to-output transfer function is given by 

( ' - - ) ( « ♦ -

with 

Gvd{s) * Kvd+ ^ j — ^ - (6.88) 

*«/ = 7 7 - ^ 7 = — τ = 2 1 . 3 =»26.6 dB 
(l-D)2 (1-0.25)2 

(1-0.25)2 

800 x 10"6 1000 x 10"6 

= 2π· 133 rad/s 

/ (1 -D) 2 C /(l-0.25)21000x10-6 
ß = Ry—[— = 2 y — S Ö Ö ^ T Ö ^ — = L68 

( l - D ) 2 ( 1 - 0 . 2 5 ) 2 , 
Mrhp ~ K = 800 x 10"6 

= 2π · 224 rad/s 
1 1 . 

ω65Γ = = = 2π · 3.18 x 103 rad/s 
CRC 1000 xlO"6 0.05 ' 

Figure 6.25 shows the duty ratio-to-output transfer function obtained from 
PSpice® simulations using Fig. 6.22(b). The impact of the RHP zero at ω^ρ = 
2π · 224 rad/s is clearly seen in the Bode plot. In particular, the phase remains 
lower than -200° after mid-frequencies. As will be demonstrated in Section 
8.4.7, these phase characteristics complicate the control design and hinder the 
boost converter from acceptable closed-loop performance. 

6.3.3 Load Current-to-Output Transfer Function 

The load current-to-output transfer function is evaluated as 

i +
s 

Zp(s) = V ^ ^ p - (6.89) 
1+ ' S 

ζ*ω0 ω2 

with 
Rl R, 

( l - D ) 2 ~ ( 1 - D ) 2 
KP =R H „ ™, * „ m (6-90) 
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Figure 6.25 Duty ratio-to-output transfer function of boost converter. 

Ri (6.91) 

The asymptotic plots for \ZP\ and LZp are the same as those of the buck converter, 
except for the low-frequency magnitude of Zp: |ZP(0)| = 201og(7?//(l - D)2). 

6.3.4 Physical Origin of RHP Zero 

As the most salient feature, the boost converter has an RHP zero in its duty ratio-to-
output transfer function. While the direct evaluation of the transfer function led to 
the expression of the RHP zero, the existence of the RHP zero can also be confirmed 
from the operational principle of the boost converter. For this purpose, it is necessary 
to investigate the time-domain response of the system with an RHP zero in its transfer 
function - this type of system was previously referred to as the non-minimum phase 
system. To be specific, assume the following second-order equation as the transfer 
function of a non-minimum phase system 

v,0) 

1 
= T(s) = (6.92) 

1 + 
βωσ 
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The unit step input response of the system is given by 

voW = r\vs(s)T(s)) = £ -1 1 
1 - ^ 

s Λ s sL 

Quo ωζ
0 

(6.93) 

using the fact vs(s) = 1 /s for the unit step input. The above equation is split into two 
parts 

vo(t) = Γ 
1 

s s^ 
Quo (^i 

—Γ 
ω7 S S" 

Quo ωι
0 

(6.94) 

where X"1 denotes the inverse Laplace transform operation. 
By noting that the multiplication with s in s-domain corresponds to the derivative 

operation in time-domain, the expression (6.94) is written as 

vo(0 = v0{t) -
1 dv0(t) 

ωζ at 

with 

v0(t) = Γ 
s s^ 

Quo ωι
0 

(6.95) 

(6.96) 

The transient response is expressed as the sum of two terms. The first term is 
a transient waveform given by (6.96). The second term is generated by taking the 
derivative of the first term and multiplying it by the negative inverse of the RHP 
zero frequency. Figure 6.26 illustrates the construction of v0 based on (6.95). As 
shown in this figure, vo dips into the negative direction before it proceeds towards 
the positive direction. As the RHP zero frequency, ωζ, moves closer to the origin, 
the dip becomes deeper. This initial dip is the distinctive transitional behavior of a 
non-minimum phase system and thus can be used as a criterion to judge the existence 
of the RHP zero. 

The presence of an RHP zero in the duty ratio-to-output transfer function can be 
deduced from the transient waveforms of the boost converter. Figure 6.27 illustrates 
the circuit waveforms of a boost converter experiencing a step increase in its duty 
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Figure 6.26 Unit step response of non-minimum phase system. 

Figure 6.27 Transient response of boost converter with step increase in duty ratio. 

ratio. Although the duty ratio is instantly increased, the inductor current slowly rises 
towards the final value based on the power stage dynamics. The diode current /#, 
which corresponds to the off-time inductor current, gradually increases in its peak 
value but abruptly decreases in width. Accordingly, the moving average of the diode 
current, Fp, initially droops before the inductor current becomes sufficiently large, as 
illustrated in Fig. 6.27. 

The droop in iD in turn causes the transitional undershoot to the output voltage 
at the beginning of the transition period, because the output voltage is proportional 
to the moving average of the diode current, ϊρ. This validates the presence of an 
RHP zero in the duty ratio-to-output transfer function. This phenomenon commonly 
occurs in all the PWM converters in which the load current is supported by the diode 
current, such as the boost converter, buck/boost converter, and all isolated converters 
derived from these two converters. 
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0.5 

Figure 6.28 Transient waveform of output voltage v0 and diode current iD of boost converter. 

■ EXAMPLE 6.6 Transient Response of Boost Converter 

The transitional behavior of a boost converter, illustrated in Fig. 6.27, is verified 
by time-domain simulations. Figure 6.28 shows the transient response of the 
boost converter introduced in Example 6.5. The boost converter has an RHP 
zero at ω^ρ = 2π · 224 rad/s. The duty ratio of the boost converter undergoes 
a step increase from D = 0.25 to D = 0.5 at t - 5 ms. As shown in Fig. 6.28, 
the output voltage vo reveals an initial droop before it proceeds towards a new 
steady-state value, thereby verifying the existence of the RHP zero. Figure 
6.28 also shows the diode current iD during the transient period. The abrupt 
decrease in the width of the diode current is responsible for the initial droop in 
the output voltage. 

6.4 POWER STAGE TRANSFER FUNCTIONS OF BUCK/BOOST 
CONVERTER 

Figure 6.29(a) depicts the power stage of the buck/boost converter and Fig. 6.29(b) is 
the small-signal model obtained by adopting the PWM switch model. Section 5.3.3 
presented the details about the small-signal model of the buck/boost converter. With 
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Figure 6.29 Small-signal model of buck/boost converter, (a) Circuit diagram, (b) Small-
signal. 

the condition d{s) = i()(s) = 0, the input-to-output transfer function is derived as 

s 

with 

with 

1 + 

Gvs(s) = Kvs-
MeSr 

s r 

Kvs — 

u)esr -

D 

V RD'2) 

Ri_\ ~ D7 

RD' 

CRC 

i RD'2 + Rt σ i 

Q = 

\\LC R + Rc yf[C -JUC 

J RD'2 + Ri 
ω0 L + C(RiRc + RiR + RCRD'2) " V Le 

L 

R 

U = 
Df 

(6.97) 

(6.98) 

(6.99) 

(6.100) 

(6.101) 

(6.102) 
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The low-frequency value of the transfer function is the voltage gain of the ideal 
buck/boost converter: \Gvs(jO)\ = 20 log Kvs « 201og(D/D'). 

The duty ratio-to-output transfer function is given by 

( ' - - ) ( ' ♦ - ) 
\ Mrhp I \ OJesr I Gvd(s) = Kvd± ^ ^ ^ (6.103) 

with 

Qu0 ωι
0 

1_ RlD 

v _ Vs RD'2 „ Vs (f. i r u , 

RD'2 

and 
D,2R / p . n \ r>'2 

OJrhp - (-^)·^-έ DL \ RD 

with Le = L/D . As expected from the circuit structure and operational principle of 
the converter, the transfer function has a moving RHP zero, ω^ρ, as is the case with 
the boost converter. 

Finally, the load current-to-output transfer function is derived as 

1 + 
- ) ( ■ ♦ - ) 

Zp(s) = Kpi ^ ψ-L (6.106) 
s sL 

with 
R, R, 

and 

ωζ = | (6.108) 

Asymptotic plots for the power stage transfer functions of the buck/boost converter 
are shown in Fig. 6.30. 

6.5 EMPIRICAL METHODS FOR SMALL-SIGNAL ANALYSIS 

In addition to the analytical method discussed in the previous sections, there are 
empirical approaches to investigating the frequency response of the converter. These 
empirical methods can be employed as a means of verifying theoretical predictions 
or as a substitute for analytical analyses. 

Figure 6.31 shows an empirical construction to investigate the duty ratio-to-output 
transfer function. When the small-signal source vp is not excited, a fixed dc voltage 
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Figure 6.30 Asymptotic plots for transfer functions of buck/boost converter. 

Figure 6.31 Experimental set-up for duty ratio-to-output transfer function measurement. 

Vdc is applied as the control voltage 
vCon to the PWM block. For this case, the switch 

drive signal is periodic and the converter establishes a steady-state equilibrium with 
a constant duty ratio D. 

When the small-signal source vp is activated, the control signal is perturbed 

Vcon(t) = Vdc + Vp(t) 

thereby introducing a sinusoidal ac component in the duty ratio 

d(t) = D + d(t) 

(6.109) 

(6.110) 
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The agitated duty ratio in turn generates a perturbed output voltage, consisting of the 
dc and small-signal components 

vo(t) = V0 + Ut) (6.1H) 

By evaluating the ratio v0(s) to vp(s) 

v0(s) d(s) v0(s) 
vp(s) vp(s) d(s) 

and incorporating the small-signal gain of the PWM block 

d(s) _ p 

vp(s) 

the desired duty ratio-to-output transfer function is now obtained 

VQ(S) _ 1 VQ(S) 

d(s) Fm vp(s) 

(6.112) 

(6.113) 

(6.114) 

where Fm = l/Vm with Vm being the magnitude of the ramp signal. 
The evaluation of the v0(s)/vp(s) ratio can be performed by two different empirical 

methods - one is an experimental method and the other is a computational method. 
The first experimental method is to measure the v0(s)/vp(s) ratio from the operational 
converter using an impedance analyzer. The impedance analyzer injects the input 
sinusoid while sweeping the perturbation frequency, extracts the output sinusoid in 
order to compare it with the input sinusoid, and finally generates the magnitude and 
phase plots for the v0(s)/vp(s) ratio. 

The second computational method is to calculate the v0(s)/vp(s) ratio based on 
time-domain simulations using a circuit simulation software. In this method, the 
circuit simulation software is employed as a functional equivalent to the impedance 
analyzer. The simulation software performs a series of time-domain simulations 
while sweeping the perturbation frequency for the range of interest. The simulation 
software processes the simulation results to yield the magnitude and phase plots for the 
v0(s)/vp(s) ratio. Some commercial circuit simulation softwares offer an automated 
execution of this computational procedure. In this book, the computational method 
will be used as a means of verifying the analytical results of the small-signal analysis. 
Whenever appropriate and informative, theoretical results of small-signal analysis 
will be compared and correlated with the empirical results of the computational 
method. Further details about the computational method will be given in Chapter 8. 

EXAMPLE 6.7 Comparison of Duty Ratio-to-Output Transfer Functions 

This example compares the prediction of the s-domain small-signal model with 
the outcomes of the two empirical methods. Figure 6.32 shows the duty ratio-
to-output transfer function of the buck converter operating with Vs = 15 V, 
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: experimental measurement 
: computational result 
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Frequency [kHz] 

Figure 6.32 Duty ratio-to-output transfer function of buck converter. 

L = 68 μΗ, /?/ = 0.16 Ω, C = 430 //F, /?, = 0.05 Ω, R = 1 Ω, fs = 50 kHz, 
and D = 0.33. The analytical prediction of the small-signal model is compared 
with both the experimental measurement using an impedance analyzer and 
the computational result using a circuit simulation software. The close match 
among the transfer functions confirms the validity and accuracy of the analytical 
and empirical methods discussed in this section. Example 8.5 in Chapter 8 
provides further discussions about the results of the computational method. 

6.6 SUMMARY 

This chapter investigated the power stage transfer functions of the three basic PWM 
converters. The input-to-output transfer function, duty ratio-to-output transfer func-
tion, and load current-to-output transfer function are analyzed, focusing on their 
frequency response characteristics. 

The three basic PWM converters commonly revealed the low-pass filter charac-
teristics. For buck converter, the power stage inductor L directly combines with the 
output capacitor to form a low pass filter. For boost and buck/boost converters, an 
effective inductance Le = L/(l - D)2 appears in the power stage transfer functions as 
the inductive parameter. 
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The boost and buck/boost converters contain a right-half plane (RHP) zero in 
their duty ratio-to-output transfer function. In addition to the direct evaluation of 
the transfer function, functional explanations are given to support the existence of 
the RHP zero. The impact of the RHP zero is analyzed concentrating on the phase 
characteristics of the duty ratio-to-output transfer function. As will be demonstrated 
in Section 8.4.7, the RHP zero presents in considerable difficulties to the feedback 
compensation design and prevents the converters from securing a stable operation 
with good performance. 

Analytical expressions and asymptotic plots for power stage transfer functions are 
given for the buck, boost, and buck/boost converters. These results will be used in 
later chapters for the feedback compensation design and closed-loop analysis. Table 
6.1 summarizes the expressions for power stage transfer functions of the three basic 
PWM converters. 

This chapter also presented the construction of Bode plots for transfer functions, 
which was used throughout the chapter to illustrate the frequency response char-
acteristics of the converters. This chapter also introduced the experimental and 
computational approaches to the power stage dynamic analysis. The computational 
method will be used in later chapters as a method of verifying predictions of the 
small-signal analysis and control design. 
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Table 6.1 Transfer Functions of Three Basic Converters 
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The transfer functions are approximations whose accuracy improves with the conditions R » Rc and 

R^> Ri. 
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PROBLEMS 

6.1 For each of the asymptotic magnitude curves shown in Fig. P6.1, derive the 
expression for the corresponding transfer function in the time constant form. 

40 dB OdB 

200 r/s 

-40 dB 

+1 

(b) 

200 r/s 

+1 

40 dB 

"200 r/s 
20 dB 

OdB OdB 
5 r/s 

(c) (d) 

(e) (f) 

Fig. P6.1 

6.2* The input-to-output transfer function of a two-port network is given by 

vo0) 

"w K)( 1 + 
"o2 

For each of the following different input signals, find the expression for ampli-
tude of vo(t). 

i) v/(i) = Vmsmü)zt 
iii) v/(f) = Vm sin ωρί 

ii) v/(i) = Vmsini j o l i 

iv) v/(i) = Vmsinwo2i 
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6.3* For each asymptotic magnitude curve in Fig. P6.3, derive the expression for 
the corresponding transfer function in the time constant form. 

20r/s 800 r/s 

20r/s 
(c) 

Fig. P6.3 

30 dB 30 dB 

800 r/s 
(d) 

6.4* Consider the following transfer function 

O + CJZI)(S + ωζ2) 
T(s) = Kt (s + (DpX)(s + (x)p2) 

a) Assume Kt > 1, ωρ\ < ωζ\ < ωζ2 < ωρ2, and \ωζ\ - ωρ\\ < \ωρ2 - ωζ2\. 
Sketch the asymptotic plot of |Γ|. Find the expressions for the maximum 
and minimum values of \T\. 

b) Assume Kt < 1, ωζ\ < ωρ\ < ωζ2 < ωρ2, and \ωρ\ - ωζ\\ > \ωρ2 - ωζ2\. 
Repeat a). 

6.5 Sketch the asymptotic plot for \T\ of the following transfer functions. Find the 
expression of the maximum value of \T\. Show the corner frequencies of |7|. 

a) T(s) = Kts-
1 

1 + 
ωη 

b) T(s) = Kts 
1 

with ωρι «: ωΡ2· 

c) T(s) = K,s 
1 + ^ 

ω7 

ωρι){ ωρ2\ 

with ωρ\ « ωζ « ωρ2. 
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1 + 
d) T(s) = Kts 7 ΓΤΓ^ Γ^ w i t h ωρΐ ^ ωρ2 «: ωζ. 

i + _L i + -1Δ 
\ ωρι){ ωρ2) 

For the asymptotic plots shown in Fig. P6.6, find the numerical values for X 
and Y specified in the blanks. 

OdB . - 2000 r/s 

-30 dB 600 r/s 

+1 ^ \ X ) r/s -1 
( Y ) dB 

4000 r/s 

(a) 

OdB 

+1 

^ - " ( X )r/s 

-35 dB 600 r/s 

"100 r/s -1 
-60 dB 

( Y ) r/s 

(b) 

2000 r/s 

OdB 

+1 

Fig. P6.6 

"( Y ) dB 600 r/s 

*\ X ) r/s 
-60 dB 

4000 r/s 

(c) 

Sketch the asymptotic magnitude plot \T\ of the following transfer function for 
three cases listed below. 

T(s) = 
( ■ ♦ - ) ( ' ♦ - ) 

Kt \ ωζι)\ ωζ2) 

• ( 1 + ^ _ + 4 ) ( 1 + j . ) 
\ Q^o ω2

0)\ ωρ) 
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i) ωζ\ < ω0 < ωζ2 < ωρ 

iii) ω(, < ωζι < ωΖ2 < ωρ 

ϋ) ωζ\ < ωΖ2 < ωσ < ωΡ 

6.8 Referring to the asymptotic magnitude plots shown in Fig. P6.8, find the 
numerical values for X and Y specified in the blanks. 

( Y ) r/s 

Fig. P6.8 

6.9 Sketch the asymptotic magnitude plot for the following transfer functions. 
Show the corner frequency, 0 dB crossover frequency, and slopes of asymp-
totes. 

ί) Γ,(5): ii) r2(s)= — 

iii) T3(s) = 1 + — 
s iv) T4(s) = 

1 + 

6.10 Construct the magnitude and phase asymptotic plots for the following transfer 
functions. Show the corner frequency, 0 dB crossover frequency, and slopes 
of magnitude asymptotes, as appropriate. 
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i) Tx(s) = 

iü) T3(s): 

1 + 5 

1 - s + s2 

1 + s + s2 

ü) T2(s) = Ά 
l+s 

iv) r4(s) = 

2 
5 S 

1 + 5 + S2 

6.11**Figure P6.11 shows the circuit diagram of a buck converter and its duty ratio-to-
output transfer function, Gvd(s), and load current-to-output transfer function, 
Zp(s). Based on the information given in the Bode plots, estimate the values 
of the circuit components {L Ri C Rc R} and the input voltage Vs of the buck 
converter. Assume R^> Ri and R^$> Rc. 

L Ri 
/YYTt w _ 

40 

20 

PQ 

a o 
Ό 

a 
a -20 

s 
-40 

-60 
0.01 

(a) 

U l i : 

\<r 

ffl'Z 

Vd 

p\ 

| 

SJi 

0.1 1 

Frequency [kHz] 

(b) 

10 100 

Fig. P6.11 

6.12* Follow the procedure shown in Example 6.4 in order to derive the duty ratio-to-
output transfer function, Gvd(s), of the boost converter and buck/boost converter 
with the parasitic resistances of the reactive components: Ri Φ 0 and Rc Φ 0. 

6.13 Figure P6.13 shows the circuit diagrams of the three basic dc-to-dc converters. 
Sketch the asymptotic plots for the magnitude and phase responses of the three 
transfer functions of Gvs(s), Gvd(s), and Zp(s). Note that Ri = 0, yet Rc Φ 0. 
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Express the corner frequencies and asymptotic values of the magnitude plot 
in terms of the circuit parameters and operating conditions. Assume Q > 0.5 
and ω0 <c uesr for the buck converter, and ω0 <£ ωΓπρ <£ uesr for boost and 
buck/boost converters. 

(c) 

Fig. P6.13 

6.14** An experimental circuit is built to extract the frequency response of a buck 
converter power stage. Using the experimental set-up in Fig. P6.14(a), the 
frequency response ofv0(s)/vp(s) is measured as shown in Fig. P6.14(b). 
a) Find an analytical expression for the duty ratio-to-output transfer function, 

Gvd(s) = v0(s)/d(s), of the buck power stage. 
b) Find an analytical expression for the input-to-output transfer function, 

Gvs(s) = v0(s)/vs(s), of the converter operating in the experimental set-
up. 

6.15* This problem deals with the identification of the transfer function from the 
given Bode plot. 
a) Assume that the Bode plot in Fig. P6.15(a) is generated from the transfer 

function 

T(s) = 
Kt 

1 + 

1 + ■ 
Q^o 
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VS© Power stage 

— i — 

d ^ ^ \ \ T i / 1 0 ^ 
1 <Q>WM ^st j f—\k—i 

/ l/lov i 4 

(a) 

4U 

ffl on 
-o 2U 

'S n 

a ° 
& on 

s 
-40 

0 

.—. -50 
T3 
- -100 
<Λ 

£ -150 

I p y 

\ Kl irr—- lU-wk1 -ΙΓΤΤ' 

~Ju J ^ 

i *-1F 

Frequency [kHz] 

(b) 

Fig. P6.14 

Find the numerical values for the parameters {Kt ωζ Q ω0}. 

b) Figure P6.15(b) is the Bode plot of the transfer function 

T(s) = Kts 
1 

1 + 
ωρι ) \ ωρΐ) 

Determine the numerical values for the parameters [Kt ωρ\ ωΡ2\. 

c) Figure P6.15(c) is generated from the transfer function 

T(s) 
Kt ωζ 

1 + 
ωΌ 

Find the numerical values for the parameters {Kt ωζωρ}. 
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CHAPTER 7 

DYNAMIC PERFORMANCE OF PWM 
DC-TO-DC CONVERTERS 

Dc-to-dc converters are intended to function as an effective and reliable voltage 
source. Accordingly, there are certain criteria to assess the performance of dc-to-dc 
converters as a voltage source. These performance criteria are typically classified into 
two categories. The first category is the static or dc criteria which characterize the 
converters' performance in steady state. The static performance criteria include the 
power handing capacity, current and voltage stresses of switches, and output voltage 
ripple. These criteria are determined by power stage parameters and are irrelevant to 
the feedback controller. 

The second category is the dynamic or ac performance criteria which describe 
the converters' ability to withstand the external and internal disturbances or transient 
behavior at the presence of certain changes in the operational conditions. The 
dynamic performance criteria include stability, frequency-domain transfer functions, 
and time-domain transient responses. In contrast to the static performance, the 
dynamic performance is solely determined by the feedback controller. Thus, two dc-
to-dc converters with identical power stage parameters could show entirely different 
dynamic performance, depending on the characteristics of their feedback controller. 

There are several requirements for engineers to build dc-to-dc converters for 
satisfactory dynamic performance. The first requirement is the comprehension about 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 297 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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the small-signal dynamics of the power stage. Chapters 5 and 6, which dealt with 
the small-signal modeling and analysis of the converter power stage, would serve 
this purpose. The second requirement is to understand the nature and implication of 
the dynamic performance of closed-loop controlled dc-to-dc converters. The final 
requirement is the implementation of the feedback controller which could provide 
good dynamic performance. The purpose of this chapter is to cover the second 
requirement, namely, investigating the dynamic performance of dc-to-dc converters. 
The design and implementation of the feedback controller are explored in Chapter 8. 

7.1 STABILITY 

In previous chapters, it is implicitly considered that dc-to-dc converters always es-
tablish a periodic operation in steady state. However, this is only the case when 
dc-to-dc converters operate in an open-loop fashion with a fixed duty ratio. When 
a closed-loop feedback control is employed to regulate the output voltage, dc-to-dc 
converters reach a periodic steady-state operation, given only that their feedback 
controller is properly designed to meet the stability criterion. 

Figure 7.1 (a) shows the circuit diagram of a closed-loop controlled buck converter. 
This converter will be used throughout this chapter to illustrate stability and other 
dynamic performance of the closed-loop controlled dc-to-dc converter. Figure 7.1(b) 
shows the output voltage vo and inductor current iL of the buck converter which 
goes through a transition from stable operation to unstable operation. Initially, the 
feedback controller is duly designed to secure a stable operation. In the middle of the 
stable operation, the circuit parameters of the feedback compensation are altered to 
new values that violate the stability criterion. With the new unstable compensation 
parameters, the circuit waveforms start to show a growing oscillation as the token of 
instability. 

Stability analysis can be performed using the familiar classical control theory 
because we have already developed the s-domain small-signal model for dc-to-dc 
converters. As will be explained in Section 7.5, stability is judged by investigating 
the loop gain characteristics of the converter. First, we evaluate the loop gain from 
the small-signal model of the converter. Then, the loop gain is portrayed either in the 
Bode plot format to assess stability margins or in the polar plot format to apply the 
Nyquist stability criterion. While the detailed stability analysis using the s-domain 
small-signal model will be covered later in this chapter, the results of such an analysis 
are shown in the following example, in order to highlight the utility of the s-domain 
small-signal model. 

■ EXAMPLE 7.1 Stability Analysis of Buck Converter 

This example provides an introductory overview of the upcoming stability 
analysis based on the classical control theory. The simplicity and accuracy of 
the stability analysis are demonstrated using the buck converter shown in Fig. 



STABILITY 299 

o^o T—£JV™—v\r-

16 V 

6 

5 

> 
3 

40//H ο.ΙΩ 
0.05 Ω 

470//F ; 
1 Ω | ν 0 

PWM 
ramp ~ 8 V 

·< ► 

20/iS 
iov Ί> iXe/=4.ov 

(a) 

Stable compensation t 

Unstable compensation 

1.0 1.5 2.0 
Time [ms] 

(b) 

3.0 

Figure 7.1 Closed-loop controlled buck converter, (a) Circuit diagram, (b) Circuit 
waveforms showing transition from stable operation to unstable operation. 

7.1. The loop gain of the converter, obtained from the s-domain small-signal 
model, is employed as the analytical basis for the stability analysis. Figure 
7.2(a) shows the loop gain of the buck converter in the Bode plot format, 
while Fig. 7.2(b) depicts the same loop gain in the polar plot format. The 
loop gain is evaluated with the two different feedback compensations: the 
original stable compensation and the modified unstable compensation. With 
the original compensation, the Bode plot indicates that the converter is stable 
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Stable 
compensation 

(b) 

Figure 7.2 Stability analysis of buck converter, (a) Bode plot of loop gain, (b) Polar plot of 
loop gain. 

with a sufficient phase margin and the polar plot well satisfies the Nyquist 
stability criterion. With the modified compensation, by contrast, the phase 
margin vanishes and the polar plot encircles the ( -1 ,0) point, thereby both 
indicating that the converter is unstable. The prediction of Fig. 7.2 is surely 
consistent with the circuit waveforms in Fig. 7.1. 



FREQUENCY-DOMAIN PERFORMANCE CRITERIA 301 

L(s) -

d(s) 

Gvs(s) 

Zp(s) 

Gvd(s) 

v0(
s) 

VCon(s) 
-Fv(s) 

Figure 7.3 Small-signal block diagram of closed-loop controlled dc-to-dc converter. 

Although the stability analysis is rather straightforward and standard, readers 
should be reminded that this simple analysis is possible due to the existence of 
the s-domain small-signal model. If the small-signal model were not available, 
the stability analysis would be a very challenging task. 

7.2 FREQUENCY-DOMAIN PERFORMANCE CRITERIA 

There are three frequency-domain transfer functions that are meaningful and useful 
as the dynamic performance for a closed-loop controlled converter. They are the 
loop gain, audio-susceptibility, and output impedance. This section describes the 
definition and implication of these performance criteria. 

7.2.1 Loop Gain 

As demonstrated in Example 7.1, the loop gain carries the whole information about 
the converter stability. Figure 7.3 is the small-signal block diagram of a closed-loop 
controlled dc-to-dc converter. The gain block Fm represents the small-signal gain 
of the PWM block, Fv(s) is the voltage feedback compensation, and the other gain 
blocks denote the small-signal transfer functions of the power stage. The power stage 
transfer functions for the three basic PWM converters were studied in Chapter 6. 

The loop gain is defined as the negative product of all the gain blocks located 
along the feedback path. From Fig. 7.3, the loop gain is determined as 

Tm(s) = (-)-z-
d(s) Vo(s) vcon(s) 

= (-)Gvd(s)(-)Fv(s)Fm 

= Gvd(s)Fv(s)Fm (7.1) 

where GVi/0) is the duty ratio-to-output transfer function. Once evaluated from the 
individual gain blocks, the loop gain can be converted into the Bode plot or polar plot 
for stability analysis. Examples of the loop gain plots were shown in Example 7.1. 
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In addition to stability, the loop gain is also closely related with other frequency-
domain transfer functions - the audio-susceptibility and output impedance. Thus, 
the loop gain lies at the center of the small-signal analysis and control design, and 
governs all the dynamic performance of the converter. For the given duty ratio-to-
output transfer function and PWM gain, the voltage feedback compensation Fv(s) is 
the only gain block that can be freely designed for good loop gain characteristics. 
Thus, the dynamic analysis and control design are eventually directed by the design 
of Fv(s). This topic will be treated in Chapter 8. 

7.2.2 Audio-Susceptibility 

Dc-to-dc converters usually receive the input from a non-ideal voltage source, rather 
than a pure dc source. For example, the input of an off-line dc-to-dc converter is 
the rectified utility line, which usually contains line-frequency ripple component. 
Also, in distributed power systems where several dc-to-dc converters are employed 
together, the input of one dc-to-dc converter may pick up various noises generated 
by the other converters in the system. 

A dc-to-dc converter is required to generate a constant dc voltage as its output, 
regardless of the ripple or noise component in the input voltage. Thus, it becomes 
necessary to define the input-to-output noise rejection as one of the performance 
criteria. The audio-susceptibility refers to the input-to-output voltage transfer func-
tion, which in fact represents the input-to-output noise rejection capacity of dc-to-dc 
converters. 

In the past, dc-to-dc converters operated with the switching frequency that falls 
into the audible frequency range, for example fs = 10 kHz. When excited by the 
10 kHz switching frequency, the magnetic components generate audible noises that 
would propagate to the converter output. Although the switching frequency of 
modern dc-to-dc converters now extends far beyond the audible frequency range, the 
audio-susceptibility is still used to describe the noise transmission characteristics of 
dc-to-dc converters. 

By applying Mason's gain rule to Fig. 7.3, the audio-susceptibility is evaluated as 

Au(s) = 
US) 'closed L + 1 m\s) 

where Gvs(s) is the input-to-output transfer function and Tm(s) is the loop gain defined 
in (7.1). With a given input-to-output transfer function, the audio-susceptibility can 
be altered by changing the loop gain. One objective of the loop gain design would be 
minimizing the audio-susceptibility for all frequencies, thereby providing a constant 
output voltage with minimal noise contamination. 

■ EXAMPLE 7.2 Audio-Susceptibility of Buck Converter 

Figure 7.4 shows the audio-susceptibility of the buck converter introduced in 
Example 7.1. The prediction of the small-signal model is shown in comparison 
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Figure 7.4 Audio-susceptibility of buck converter. 

with the empirical result obtained from the computational method discussed in 
Section 6.5. The use and accuracy of the computational method for the dynamic 
analysis of dc-to-dc converters will be described in detail in Example 8.5. The 
audio-susceptibility curve indicates that the converter provides sufficient noise 
rejection at low and high frequencies yet it passes the mid-frequency noise 
components with about 33 dB attenuation. 

7.2.3 Output Impedance 

Dc-to-dc converters are also required to maintain the output voltage constant at the 
presence of variations or fluctuations in the load current. One way to characterize 
this feature is to investigate the closed-loop transfer function from the load current to 
output voltage. This transfer function is referred to as the output impedance. 

Same as the audio-susceptibility case, the output impedance should be minimized 
for all frequencies. As the output impedance becomes smaller, the dc-to-dc converter 
resembles an ideal voltage source more closely, which has zero output impedance. 
Thus, minimizing the output impedance is another important objective of the con-
troller design. 

From the small-signal block diagram of Fig. 7.3, the output impedance is evaluated 
as 

Z0{s) EE 
Vo(s) 

lo(s) 

Zp(s) 
(7.3) 

'closed 1 + ■/ m\s) 

where Zp(s) is the open-loop load current-to-output transfer function. The loop gain 
affects the output impedance in the same manner as that of the audio-susceptibility 
case. 
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Figure 7.5 Output impedance of buck converter. 

EXAMPLE 7.3 Output Impedance of Buck Converter 

Figure 7.5 shows the theoretical and empirical output impedances of the buck 
converter used in Example 7.1. The output impedance starts with a very small 
magnitude at low frequencies and gradually increases until it approaches a 
constant value at high frequencies. As will be shown in Section 8.2.2, the 
high-frequency asymptote is determined by the equivalent series resistance 
(esr) of the output capacitor: |Z0(yoo)| = 201og/?c. For the power stage 
parameters shown in Fig. 7.1(a), the high-frequency asymptote is given by 
201og0.05 = -26dB. 

7.3 TIME-DOMAIN PERFORMANCE CRITERIA 

Besides the frequency-domain performance, the time-domain performance is also 
important when evaluating dc-to-dc converters as a voltage source. The time-domain 
performance includes the transient response of the output voltage due to a sudden 
change in the load current or input voltage. 

Transient responses of a buck converter have already been presented in Section 
3.6.2, in order to illustrate the principles of the closed-loop control using PWM 
scheme. In the current section, the transient responses are investigated as the dynamic 
performance of dc-to-dc converters. 
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7.3.1 Step Load Response 

The step load response refers to the transient response of the output voltage due 
to a step change in the load current. The step load response has been of concern 
for two reasons. First, in many applications, dc-to-dc converters often encounter 
step changes in the load current. For example, dc-to-dc converters powering digital 
equipment downstream will frequently experience sudden changes in the load current. 
Second, the step load response is usually used as a means of evaluating the transient 
performance in general. The converter producing a good step load response will also 
offer good transient responses upon other changes in operational conditions. 

The time-domain transient response can be analyzed using the appropriate s-
domain transfer function. Especially, the step load response is investigated using the 
output impedance, which is the closed-loop load current-to-output transfer function. 
First, the s-domain expression of the output voltage is obtained by multiplying the 
output impedance by the s-domain expression of the step change in the load current 

Vo(s) = — Z0(s) (7.4) 
s 

where Istep is the magnitude of the load current change. Now, the inverse Laplace 
transform is performed on (7.4) to yield the time-domain expression for the output 
voltage 

vo(t) = X"1 fif-Zois)) (7.5) 

where X"1 represents the inverse Laplace transform. This relationship will be used 
in later chapters to investigate the transient behavior of the output voltage. 

■ EXAMPLE 7.4 Step Load Response of Buck Converter 

This example shows the step load response of the buck converter used in the 
previous examples. Figure 7.6 shows the output voltage of the converter going 
through a series of step changes in the load current: / 0 = 4 A = > 8 A = » 

;> 

t° 

4.4 

4.2 

4.0 

3.8 

3.6 
0.0 0.5 1.0 1.5 2.0 

Time [ms] 

Figure 7.6 Step load response of buck converter. 
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4 A. The load current change is introduced by altering the load resistance 
accordingly. Qualitative explanations about the output voltage response were 
given in Section 3.6.2. 

The step load response is mainly characterized by two parameters: the 
peak overshoot/undershoot and settling time. The peak overshoot/undershoot 
is the maximum transitional deviation of the output voltage from the steady-
state value. The settling time is the time interval before the output voltage 
settles within ± 5% of the final value. Figure 7.6 indicates that the peak 
overshoot/undershoot is limited by ± 0.2 V and the settling time is less than 
0.2 ms. 

7.3.2 Step Input Response 

The step input response is the transient behavior of the output voltage due to a step 
change in the input voltage. Examples of the step input response were presented 
in Section 3.6.2. Similar to the step load response case, the step input response is 
analyzed using the audio-susceptibility 

v0(t) = £~ 
V, step Au(s) (7.6) 

where Vstep is the magnitude of the step change in the input voltage. 

■ EXAMPLE 7.5 Step Input Response of Buck Converter 

This example shows the step input response of the previous buck converter. 
Figure 7.7 is the output voltage of the buck converter experiencing a series of 
step changes in the input voltage: Vs = 16 V => 8 V => 16 V. Same as the 
step load response case, the peak overshoot/undershoot and settling time are 
the two important parameters for the step input response. Figure 7.7 shows 
a ± 0.4 V peak overshoot/undershoot which returns to the steady-state value 
within a 0.7 ms settling time. 

Figure 7.7 Step input response of buck converter. 
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7.4 STABILITY OF DC-TO-DC CONVERTERS 

Section 7.1 introduced the concept of stability and demonstrated the behavior of an 
unstable dc-to-dc converter. In this section, we study the stability theory adapted to 
dc-to-dc converters. The classical stability theory, originally established for linear 
time-invariant (LTI) systems, is reviewed. Then, we will discuss how the classical 
stability theory is extended to nonlinear time-variant PWM dc-to-dc converters. This 
section starts with discussions about the stability of LTI systems. 

7.4.1 Stability of Linear Time-Invariant Systems 

Stability theory for LTI systems is closely related with the transfer function and 
characteristic equation. The transfer function of an LTI system is defined as the ratio 
of the Laplace transform of the output to the Laplace transform of the input under 
the assumption that all initial conditions are zero. The transfer function is given by a 
ratio of s-domain polynomials 

b0 + bxs + b2s
2 + + bm-ism-1 + bmsm 

F(s) = z - (7.7) 
a0 + a\ s + a2s

l + + an-\ s
n~[ + ans

n 

The characteristic equation is then defined as 

a0 + a\ s + a2s
2 + + an-\ s

n~x + ans
n = 0 (7.8) 

from the denominator of the transfer function. The characteristic equation contains 
all the important information about the dynamic properties of the system. Most 
significantly, the solutions of the characteristic equation are called the poles or natural 
modes of the system. The location of the poles in s-plane determines stability of the 
system. 

LTI systems are defined unstable if any of their poles is located in the right-hand 
plane (RHP) of s-plane or on the imaginary axis. An unstable system would produce 
exponentially or sinusoidally growing responses if it has any poles in RHP of s-plane. 
Also, the system would exhibit a sustained oscillation if its poles are located on the 
imaginary axis. 

Conversely, an LTI system is defined stable if all the poles are located in the left-
hand plane (LHP) of s-plane. A stable LTI system does not contain any growing or 
oscillating terms and all transient responses will eventually settle down to their steady-
state values. Accordingly, a stable LTI system establishes a stationary operating point 
in steady state. Furthermore, if the system is perturbed by certain external or internal 
disturbance, a stable system always returns to the original operating point. 

7.4.2 Small-Signal Stability of Dc-to-Dc Converters 

The classical stability theory is now extended to nonlinear time-variant PWM dc-to-dc 
converters as explained below. We consider a dc-to-dc converter stable if the converter 
produces periodic circuit waveforms in steady state. A stable inductor current settles 
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into a periodic triangular waveform and a stable output voltage periodically ripples 
on top of the desired dc component. If the averaging operation discussed in Section 
5.2 is executed on the stable periodic waveforms, the resulting waveforms will not 
show any behavior of an unstable LTI system. In other words, the averaged circuit 
waveforms of a stable dc-to-dc converter do not resemble the circuit waveforms 
produced by an unstable LTI system. Conversely, the averaged circuit waveforms 
of an unstable dc-to-dc converter will exhibit the circuit behavior of an unstable LTI 
system. 

As elaborated in Section 5.2, the average model of dc-to-dc converters is developed 
to accurately predict the averaged circuit waveforms of the converter. Accordingly, 
we could adapt the stability theory to the average model of a dc-to-dc converter to test 
whether the converter establishes a periodic steady-state operation, or equivalently, to 
determine stability of the converter. However, the classical stability theory cannot be 
directly applied to the average model of the converter, because the average model is 
still nonlinear although it is time invariant. As a functional alternative, the s-domain 
small-signal model obtained by linearizing the average model is used for stability 
analysis. 

The small-signal model is a linear approximation of the nonlinear average model. 
The approximation is based on the condition that the converter remains in close 
proximity to the initial operating point. Therefore, the validity of the small-signal 
model is limited to the neighborhood of the given operating point. This implies 
that the result of the stability analysis using the small-signal model can only be 
used for the local stability. In other words, the stability theory only provides the 
information about the converter's behavior near the given operating point and is not 
suited to judge the stability of the converter that experiences large excursions. In this 
sense, the stability defined on the small-signal model is also called the small-signal 
stability. Despite the aforementioned restrictions and limitations, the small-signal 
stability still is a very useful and viable method for analyzing the stability of the 
nonlinear time-variant dc-to-dc converters. 

Based on the preceding discussions, we now apply the classical stability theory 
to the small-signal model of the converter. If the small-signal model is found to be 
stable, we are assured that the converter would attain a periodic steady-state operation. 
In addition, the converter will withstand external and internal disturbances and return 
to the original state if the magnitude of the disturbance is not too large. 

7.5 NYQUIST CRITERION 

The Nyquist criterion plays the central role in the classical stability theory. The 
Nyquist criterion provides a graphical means of determining the number of RHP 
roots in the equation of the following specific form 

1 + T{s) = 0 (7.9) 
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Figure 7.8 Polar plots of T(s). 

where T(s) is an s-domain rational function. The Nyquist criterion is based on the 
well-known relationship 

Z = N + P (7.10) 

where Z is the number of RHP roots in 1 + T(s) = 0, N represents the number of 
encirclements of the (-1,0) point made by the polar plot of T(s), and *P is the number 
of RHP poles in T(s) itself. 

Figure 7.8 shows the polar plots of T(s), drawn under the assumption that \T(s)\ 
monotonically decreases when the frequency is swept from s = j0+ to 700. The 
polar plot displayed with the thin line does not encircle the (-1,0) point and 
consequently N = 0 for this case. On the other hand, the polar plot depicted 
with the thick line encircles the (-1,0) point. It should be noted that the polar plot 
in Fig. 7.8 is sketched only for the positive frequency. The complementary part of 
the plot, evaluated for the negative frequency, is the symmetric mirror image of the 
original plot reflected on the real axis. When both positive and negative frequencies 
are considered, the polar plot thus encircles the (-1,0) point twice. Accordingly, it 
becomes that N = 2 for this case. Now, if the number of RHP poles in T(s), P, is 
known, the number of RHP roots in 1 + T(s) = 0, Z, is determined from (7.10). 

The Nyquist criterion is now adapted to the stability analysis of dc-to-dc converters. 
The audio-susceptibility of the closed-loop controlled converter is determined as 

Au(s) = 
Vo(s) 

V j ( j ) 

Gvs(s) 

closed 1 + Gvd(s)Fv(s)Fm 

(7.11) 

by applying Mason's gain rule to the small-signal model of the converter in Fig. 7.3. 
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When the input-to-output transfer function Gvs(s) is denoted as 

O M - ^ (7.12) 

the audio-susceptibility becomes 

Au(s) = ^ (7.13) 

D(s)(\+Gvd(s)Fv(s)Fm) 

The characteristic equation is then given by 

D(s)(l+Gvd(s)Fv(s)Fm) = 0 (7.14) 
If the equation D(s) = 0 does not contain any RHP roots, stability is determined by 
investigating the existence of any RHP root in 1 + Gvd(s)Fv(s)Fm = 0, that is, by 
applying the Nyquist criterion to 1 + Tm(s) = 0 where Tm(s) = Gvd(s)Fv(s)Fm is the 
loop gain defined in the previous section. 

There are several remarks regarding the preceding discussions. First, while the 
audio-susceptibility is used in the previous analysis, any closed-loop transfer function 
can be used for the stability analysis because all transfer functions have the same 
denominator. Second, the power stage transfer functions of the three basic converters 
indeed do not have any RHP pole; more specifically, the equation D{s) = 0 does not 
have any RHP roots as presumed in the previous discussions. Finally, the loop gain, 
Tm(s) = GV£i(s)Fv(s)Fm, of the three basic converters does not contain any RHP poles: 
V = 0. Accordingly, the Nyquist criterion is simplified as follows. The number of 
the RHP roots in the characteristic equation is the same as the number of (-1,0) point 
encirclements made by the polar plot of the loop gain: Z = N. In this case, stability 
is simply tested using the polar plot drawn only for positive frequencies; for stability, 
the polar plot should not encircle the (-1,0) point. 

The preceding discussions about the Nyquist criterion provide a graphical method 
for the stability analysis using the converter loop gain. Figure 7.9 shows the four 
different cases of the polar plot of the converter loop gain, Tm(s) = Gvd(s)Fv(s)Fm. 

Figure 7.9(a) shows the stable case in which the polar plot of the converter loop 
gain does not encircle the (-1,0) point. Figure 7.9(b) is the unstable polar plot, 
encircling the (-1,0) point. Figure 7.9(c) is the marginally stable case where the 
polar plot just passes the (-1,0) point. The marginally stable case is the borderline 
between stability and instability. For this case, the system has a pair of poles on the 
imaginary axis and develops sustained oscillations in time-domain responses. The 
behavior of a marginally stable dc-to-dc converter will be analyzed in Example 7.6. 

Finally, Fig. 7.9(d) shows a special case where the polar plot of the converter loop 
gain does not encircle the (-1,0) point but exhibits a distinctive pattern. The polar plot 
initially crosses the - real axis outside the unit circle. Later, the polar plot passes the 
- real axis again before intersecting the unit circle, and finally approaches the origin 
without encircling the (-1,0) point. The system with these loop gain characteristics 
is called conditionally stable system. Although stable, the conditionally stable system 
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Figure 7.9 Polar plot of converter loop gain and stability, (a) Stable system, (b) Unstable 
system, (c) Marginally stable system, (d) Conditionally stable system. 

can be problematic in real applications due to the distinguishing polar plot pattern. 
The feature of the conditionally stable system, along with its potential stability 
problem in practical applications, will be analyzed in Example 7.7. 

The Nyquist criterion can also be applied to the converter loop gain portrayed in 
the Bode plot format. To illustrate this, the first three cases in Fig. 7.9 are redrawn in 
Fig. 7.10 in both the Bode plot and polar plot formats. 

1) Stable case in Fig. 7.10(a): The polar plot passes the - real axis through a 
point located between the (-1,0) point and the origin. In other words, the polar 
plot crosses the - real axis with its magnitude smaller than unity: \Tm\ < 0 dB 
at the frequency where lTm becomes -180°. This situation is illustrated in the 
Bode plot in Fig. 7.10(a). 

2) Unstable case in Fig. 7.10(b): The polar plot crosses the - real axis with its 
magnitude larger than unity: \Tm\ > 0 dB at the frequency where lTm is -180°. 
This condition is depicted in the Bode plot in Fig. 7.10(b). For this case, the 
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(-1,0) 

(a) (b) (c) 

Figure 7.10 Stability analysis using polar plot and Bode plot of converter loop gain, (a) 
Stable case, (b) Unstable case, (c) Marginally stable case. 

polar plot crosses the - real axis through a point between (-1,0) and (-oo, 0), 
thereby encircling the critical (-1,0) point. 

3) Marginally stable case in Fig. 7.10(c): The polar plot passes the - real axis 
with its magnitude exactly being unity. This situation corresponds to the case 
where \Tm\ crosses the 0 dB line with lTm - -180°, as shown in the Bode plot 
in Fig. 7.10(c). 

As illustrated in Fig. 7.10, stability can also be judged directly from the Bode plot 
of the loop gain. For stability, \Tm\ should be smaller than 0 dB when lTm falls to 
-180°, or equivalently lTm should be larger than -180° (less negative than -180°) 
when \Tm\ reduces to 0 dB. This condition is identical to the requirement of not 
encircling the (-1,0) point in the polar plot. Example 7.1 illustrated the application 
of this stability theory to a practical dc-to-dc converter. 

EXAMPLE 7.6 Marginally Stable Buck Converter 

The purpose of this example is to demonstrate the loop gain characteristics and 
time-domain response of a marginally stable buck converter. The feedback 
compensation parameters used in the previous buck converter example are 
modified to yield a marginally stable case. Figure 7.11 shows the loop gain 
curves of the buck converter. The Bode plot in Fig. 7.11(a) indicates that \Tm\ -
0 dB and LTm = -180° at the frequency fc = 2 kHz. Figure 7.11(b) shows that 
the polar plot traverses the critical (-1,0) point. Thus, the buck converter is 



NYQUIST CRITERION 3 1 3 

40 I 

PQ 

a 

20 

/ c =2kHz 

-20 V 

Frequency [kHz] 

(a) 

(b) 

Figure 7.11 Loop gain of marginally stable buck converter, (a) Bode plot of loop gain, (b) 
Polar plot of loop gain. 
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Figure 7.12 Output voltage of marginally stable buck converter. 

marginally stable according to the definition of stability. Furthermore, the loop 
gain indicates that 

7UM·) = Tm(j2nfc) = Tm(j2n.2xl03) 

= l z -180° = - l (7.15) 

which is rearranged as 

l + Tm(j2n-2x 103) = 0 (7.16) 

Equation (7.16) implies that s - j2n · 2 x 103 is one root of the characteristic 
equation. Then, s = -j2n · 2 x 103 becomes another root of the characteristic 
equation. With a pair of poles at s = ±j2n · 2 x 103, the buck converter would 
reveal a sustained oscillation at the frequency ω€ = 2π · 2 x 103 rad/s. 

Figure 7.12 is the output voltage of the converter, which indeed oscillates at 
the expected frequency ω€ = 2π · 2 x 103 rad/s, or equivalently with the period 
tos = 2π/ων - 0.5 ms. This example again confirms that the classical stability 
theory, when applied to the s-domain small-signal model, accurately predicts 
the dynamics of the nonlinear time-variant dc-to-dc converters. 

■ EXAMPLE 7.7 Conditionally Stable System 

This example illustrates the potential problem of a conditionally stable system. 
A conditionally stable system exhibits stability at the given operating point. 
However, when the operating point is altered, the conditionally stable system 
could become unstable. This destabilizing effect could take place in real 
applications and threaten the system operation. 

Figure 7.13(a) shows a family of loop gain plots for a conditionally stable 
system under the assumption that the magnitude of the loop gain is successively 
decreased, while its phase characteristics remain unchanged. As shown in this 
figure, the decrease in the loop gain magnitude results in a contraction in the 
polar plot. The contraction in the polar plot in turn incurs the encirclement of 

o > 
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Figure 7.13 Problem of conditionally stable system, (a) Loop gain of conditionally stable 
system, (b) Input-to-output characteristics of practical amplifier. 

the (-1,0) point. Thus, a conditionally stable system becomes unstable when 
the loop gain magnitude is unduly lessened. 

Most closed-loop controlled systems employ an amplifier in their feedback 
path. For this case, the loop gain magnitude can inadvertently be decreased 
when the operating point shifts from the initial position. Figure 7.13(b) shows 
the input-output transfer characteristics of a practical amplifier which encoun-
ters saturations when the operating point is moved largely away from the origin. 
The slope of the input-output transfer curve is the incremental gain of the ampli-
fier. With the initial operating point lying in Region A, the incremental gain of 
the amplifier is large. However, when the operating point shifts towards Region 
B or Region C, the amplifier starts being saturated. Consequently, the slope of 
the input-output curve will be decreased, resulting in considerable decline in 
the loop gain magnitude. The reduction in gain could destabilize the system 
as explained earlier. This unstable shift in the operating point could readily 
occurs when the operational conditions undergo large fluctuations during the 
start-up procedures, protective operations, or large-scale load/input changes. 

Most stable systems also become unstable when the magnitude of the loop 
gain is sufficiently increased so that the polar plot stretches out to encircle the 
(-1,0) point. This would occur when the amplifier gain is overly increased. 
However, such a large gain increase will not take place in practice because the 
maximum allowable gain of the amplifier is mostly limited by the amplifier 
design. Thus, unlike the case for conditionally stable systems, the destabilizing 
effect of the gain increase in stable systems will not be a real problem. 

7.6 RELATIVE STABILITY: GAIN MARGIN AND PHASE MARGIN 

Stability is the most important issue for any closed-loop controlled dynamic systems. 
Accordingly, we are concerned with the absolute stability-we primarily want to 



3 1 6 DYNAMIC PERFORMANCE OF PWM DC-TO-DC CONVERTERS 

Im Im 

Figure 7.14 Destabilizing effect of gain increase and phase delay, (a) Increase in gain, (b) 
Increase in phase delay. 

know whether the system is currently stable or not. In addition to the absolute 
stability, it is also important to know the firmness of stability. We may want to know 
1) how easily a currently stable system could become unstable or 2) whether one 
system is more or less stable than the other system. 

The absolute stability is determined by applying the Nyquist criterion to the loop 
gain. The polar plot of a stable loop gain does not encircle the (-1,0) point. However, 
the increase either in the loop gain magnitude or in the phase delay would cause the 
polar plot to violate the Nyquist stability criterion. Figure 7.14 shows the effects of 
these increases on the polar plot. 

1) An increase in gain with a fixed phase delay results in a proportional expan-
sion of the polar plot. As shown in Fig. 7.14(a), a continuous gain increase 
eventually ends up with the encirclement of the (-1,0) point, thus making the 
system unstable. 

2) An increase in phase delay with a fixed gain causes a clockwise rotation of 
the polar plot. An excessive phase delay also brings in the encirclement of the 
(-1,0) point, as shown in Fig. 7.14(b). 

Because the increase in the loop gain magnitude or in the phase delay could 
destabilize the system, the relative stability needs to be specified by two separate 
margins, the gain margin and the phase margin. 

Gain Margin: The gain margin is the amount of gain increase that can be added 
to \Tm\ before a stable system becomes marginally stable or unstable, with 
the assumption that phase characteristics remain the same. Figure 7.15 is an 
illustration of the gain margin. Figure 7.15(a) indicates that the polar plot 
currently crosses the (-0.5,0) point. The polar plot will pass the (-1,0) point, 
as shown with the thick line, when the loop gain magnitude is doubled. For this 
case, the gain margin is given by 20 log 2 ^ 6 dB. Figure 7.15(b) is the Bode 
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Figure 7.15 Gain margin representation, (a) Polar plot, (b) Bode plot. 

plot of the same loop gain. It can be inferred that \Tm\ should be - 6 dB at the 
frequency where lTm falls to -180° so that the Bode plot also predicts a 6 dB 
gain margin. In other words, when \Tm\ is raised by 6 dB as shown with the 
thick line, the system confronts the condition \Tm\ = 0 dB with lTm = -180°, 
which implies the polar plot passing the (-1,0) point. 

Phase Margin: The phase margin denotes the amount of phase delay that can be 
added to lTm with fixed \Tm\, while retaining stability. Figure 7.16 shows the 
loop gain plots with a 45° phase margin. Figure 7.16(a) indicates that the polar 
plot crosses the unit circle with a -135° phase angle. When the polar plot is 
rotated by 45° in the clockwise direction, the polar plot passes the (-1,0) point 
and the system loses stability. Figure 7.16(b) shows that lTm becomes -135° 
when \Tm\ curve crosses the 0 dB line. If lTm is lowered by 45°, the loop gain 
again encounters the condition \Tm\ = 0 dB with lTm = -180° and the system 
thus becomes marginally stable. 

The gain margin and phase margin, individually shown in Figs. 7.15 and 7.16, are 
simultaneously displayed on the loop gain plots in Fig. 7.17. Figure 7.17(a) depicts 
the gain margin and phase margin on the polar plot. 

1) Gain margin, GM = 201og(l/k): The gain margin specifies to the distance 
between the (-1,0) point and the point at which the polar plot passes the - real 
axis. When the polar plot crosses the (-k, 0) point, the gain margin is given by 
201og(l/k). 

2) Phase margin, PM: The phase margin denotes the angle measured between 
the - real axis and the line stretched from the origin to the point at which the 
polar plot intersects the unit circle. 

Figure 7.17(b) illustrates the gain margin and phase margin on the Bode plot. 
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Figure 7.16 Phase margin representation, (a) Polar plot, (b) Bode plot. 

1) Gain margin GM: The gain margin is the difference between 0 dB and \Tm\ 
evaluated at the frequency where lTm falls to -180°. 

2) Phase margin PM: The phase margin corresponds to the difference between 
-180° and lTm evaluated at the frequency where \Tm\ reduces to 0 dB. 

It is easily inferred from Fig. 7.17 that both the gain margin and phase mar-
gin reduce to zero for marginally stable systems and become negative for unstable 
systems. 

Although the stability margins are originally intended to quantify the relative 
stability, they also serve as criteria for the frequency- and time-domain performance 
of closed-loop controlled systems. The relationship between the stability margins 
and dynamic performance is based on the following arguments. From the definition 
of the relative stability, it is evident that the stability margins account for the nearness 

(a) (b) 

Figure 7.17 Gain margin and phase margin representation, (a) Polar plot, (b) Bode plot. 
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Figure 7.18 System with small stability margins, (a) Polar plot, (b) Pole location. 

of the polar plot to the (-1,0) point. When the polar plot passes the (-1,0) point, the 
system is marginally stable and the stability margins reduce to zero. For this case, 
the system has a pair of poles on the imaginary axis, as demonstrated in Example 
7.6. When the polar plot bypasses the (-1,0) point, in close proximity to but not 
encircling the (-1,0) point, the system is barely stable with small stability margins. 
For this case, the system poles locate near the imaginary axis although they are in the 
LHP of s-plane. This situation is illustrated in Fig. 7.18. 

The position of the system poles influences both the frequency- and time-domain 
performance. First, the poles located nearby s = ±jü)c points induce a peaking at 
the frequency a>c in s-domain transfer functions. The nearer the poles to s - ±]ω€ 

points, the larger the peaking at ω€ in transfer functions. When the system poles are 
located at s = ± jajc points, the peaking becomes infinite. Proof of these statements 
can be found in most textbooks on control theory or circuit analysis. Second, the pole 
location affects the transient behavior of time-domain responses. As demonstrated 
in Example 7.6, the poles located at s = ±JCJC points cause a sustained oscillation. 
The period of this oscillation is given by tos = 2π/ωε. When the poles are located in 
the LHP neighborhood of s = ±JOJC points, the system exhibits a decaying sinusoidal 
oscillation at the period of tos = 2n/a>c. 

The peaking in transfer functions or oscillation in transient responses worsen 
the closed-loop performance of the system. These detrimental effects become more 
pronounced as the poles move closer to the imaginary axis, or equivalently the stability 
margins become smaller. Accordingly, the stability margins can be considered as 
a barometer for the frequency- and time-domain performance. For this reason, the 
lower limits of the stability margins are recommended for acceptable closed-loop 
performance. As a rule of thumb, a 45° limit is generally accepted for the phase 
margin, while a 12 dB threshold is adopted for the gain margin. 
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Figure 7.19 Loop gains with different phase margins, (a) Bode plot, (b) Polar plot. 
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EXAMPLE 7.8 Phase Margin and Closed-Loop Performance 

This example illustrates the consequences of a small phase margin on the 
dynamic performance of the buck converter used in the previous examples. 
Figure 7.19(a) shows the Bode plots of the converter loop gain. For this 
example, the feedback compensation is selected to produce five different phase 
margins, decreasing successively from PM = 60° to 0° by a 15° step, while 
maintaining the 0 dB crossover frequency at fc = 6 kHz. Figure 7.19(b) shows 
the loop gains displayed in the polar plot format. The decrease in the phase 
margin is evident in the polar plot. 

Figure 7.20 shows the output impedances of the converter with the five 
different phase margins. When the phase margin is lower than 60°, the output 
impedance shows a peaking due to the nearness of the system poles to the 
imaginary axis. The peaking occurs at the loop gain crossover frequency, 
fc = 6 kHz. The magnitude of the peaking is inversely proportional to the 
phase margin - the smaller the phase margin, the nearer the system poles to the 
imaginary axis and the larger the peaking. In fact, there is an exact relationship 
between the magnitude of the peaking, |peaking|, and the phase margin, PM 

Ipeakingl = 20 log f 1 ) (7.17) 
\ V2-2cosPM/ 

This expression will be discussed in detail in Section 8.4.4. 
Finally, Fig. 7.21 shows the transient responses of the output voltage vo due 

to a step change in the load current: I0 = 4 A => 2 A. As the phase margin 
is lessened, the transient response becomes increasingly oscillatory until it 
develops a full oscillation with PM = 0°. The frequency of the transitional or 
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Figure 7.21 Step load response of output voltage v0 with different phase margins. 

sustained oscillation coincides with the loop gain crossover frequency: CUOS 

In · 6 x 103 rad/s => *0.y = 1/6 x 103 = 0.17 ms. 

7.7 SUMMARY 

Dc-to-dc converters are intended to function as a voltage source that resembles the 
ideal voltage source as closely as possible. Accordingly, a dc-to-dc converter is 
required to possess certain properties as its dynamic performance. 

1) A dc-to-dc converter should establish a periodic steady-state operation, thereby 
producing a predetermined output voltage. In addition, when perturbed by 
certain external or internal disturbances, the converter should return to the 
original operating point. 

2) A dc-to-dc converter should maintain the output voltage as cleanly as possible 
in the presence of the high-frequency noises or sinusoidal variations either in 
the input voltage or load current. 
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3) A dc-to-dc converter should minimize the fluctuation in the output voltage in 
response to sudden changes in the load current or input voltage. 

The first property among these three items is defined as the stability of the dc-to-dc 
converter. The second requirement is quantified by the audio-susceptibility or output 
impedance. Finally, the third aspect is specified by the step load response or step 
input response. This chapter presented practical examples to illustrate the implication 
and importance of these performance criteria. 

We demonstrated that all the aforementioned criteria can be analyzed using the 
conventional control theory or circuit analysis techniques. The s-domain small-signal 
model of dc-to-dc converters is the instrumental tool that links the conventional tech-
niques, originally developed for linear systems, to the dynamic analysis of nonlinear 
time-variant dc-to-dc converters. While the dynamic analysis of dc-to-dc converters 
can mostly be performed in the exact same manner as that of linear time-invariant 
systems, the results should be interpreted based on the assumptions and limitations 
of the small-signal analysis; that is, the analysis results are only valid when dc-to-dc 
converters do not significantly depart from the initial operating point. 

This chapter provided a selective summary of the classical control theory, in 
preparation for upcoming details about the converter dynamic analysis. The current 
chapter reviewed the Nyquist stability criterion and presented the loop gain analysis 
using both the polar plot and Bode plot. The implication and significance of stability 
margins are addressed. The role of the stability margins as the performance index 
for dc-to-dc converters is emphasized. While this chapter highlighted theoretical 
essentials, further details about the classical control theory can be found in most 
standard textbooks. 
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PROBLEMS 

7.1 Shown in Fig. P7.1 is the circuit diagram of a closed-loop controlled buck 
converter. 

JTYY\ 

+V^=4V 

20 μβ 

Fig. P7.1 

7.2* 

a) Assume R\ = 10 kΩ, Ri = 100 kQ, and C2 - 0 and answer the questions. 
i) Find the expression for the loop gain Tm(s). 
ii) Sketch the asymptotic plots for \Tm\ and lTm. 
iii) Find the average values for vo and vcon. 

b) Repeat a) for Rx = 10 kQ R2 = oo, and C2 = 32 nF. 
c) Repeat a) for R{ = 10 kQ, #2 = 100 kQ, and C2 = 32 nF. 

Figure P7.2 is the Bode plot of the audio-susceptibility of a closed-loop con-
trolled buck converter. The buck converter is operating at fs = 50 kHz with 
the duty ratio D = 0.25. Assume that the audio-susceptibility is expressed as 

Au(s) = Kas 
1 

1 + ■ 
0)p\ 

1 + 
ω^2 

with ωρ\ «: ωΡ2 

a) Use the relationship (7.6) to derive an analytical expression for the output 
voltage vo when a step increase of Vstep is occurred in the input voltage. 
Sketch the general shape of vo- Show all the important information on your 
sketch. 

b) Based on the information given in Fig. P7.2, estimate the parameters 
{Ka ωρ\ ωΡ2\ which appeared in the audio-susceptibility expression. 

c) Use the results of a) and b) to find the numeric expression for v0 with 
* step — ^ V · 
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d) Now assume that vs(t) = 12 + sin27r-20i is applied to the input of the 
converter. Find the expression for the output voltage while ignoring the 
switching ripple component. 

7.3* Shown in Fig. P7.3 is the Bode plot of the output impedance of a closed-loop 
controlled buck converter. Assume that the output impedance is expressed by 
the equation 

Z0{s)- " l 
Kzs 

1 + ^ 

o.oi 

Fig. P7.3 

u 

-20 

-40 

-60 

0.1 1 

Frequency [kHz] 

10 

a) Using the relationship (7.5), derive an analytic equation for the output 
voltage v0 when a step decrease of Istep occurred in the load current. 
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Sketch the general shape of vo and show all the important information on 
your sketch. 

b) Refer to the information given in the Bode plot to determine the parameters 
{Κζωρ} used in the output impedance expression. 

c) Using the results of a) and b), find the numeric expression for v# with 
'step — ^ A . 

7.4 Consider the following expressions as the output impedance of a closed-loop 
controlled buck converter. 

i) Z0(s) = 

ii) Z„{s) = 

iii) Z„(s) 

-Kz. 

-KZ. 

= KZ 

1 

ωρ 

'(■ 

> 

l + ± 
ωζ 

+ - ) ( ι + 

l + ± 
ωζ 

- \ 
ωρ2) 

s λ 

ωΡ2) 

with ωρ\ <c ωζ «: ωρ2 

with ωρ\ «: ωΡ2 <̂  ωζ 

Now assume that a step decrease of Istep is occurred in the load current. For 
each of the above expressions, derive an analytic expression for the transient 
response of the output voltage vo using the relationship (7.5). Also, sketch the 
general shape of the transitional output voltage. 

7.5 Figure P7.5 is the magnitude plot of the loop gain \Tm\ and the load current-
to-output transfer function \ZP\ of a closed-loop controlled buck converter. As 
discussed in Section 7.2.3, the output impedance is expressed as 

Z0(s) 
1 + Tm(s) 

This relationship can be split into the approximations 

[ Zp(s) 

Zp(s) 

1 + Tm(s) 

at frequencies where \Tm\ > 1 
Tm(s) 

Zp(s) at frequencies where \Tm\ < 1 

to construct the asymptotic plot for \Z0\. 
a) Sketch the asymptotic plot of the output impedance \Z0\. Label the corner 

frequency, slope, and peak value of \Z0\. 
b) Use the outcome of a) to find the expression for Z0(s). 
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Fig. P7.5 

c) Derive the equation for the output voltage vo due to a 5 A step decrease in 
the load current. Sketch vo and show the time constant and peak undershoot 
of v0. 

A composite system shown in Fig. P7.6 is configured using a voltage source 
and two two-port systems. 

vo(s) 

Z0{s) Z^s) 

Fig. P7.6 

a) Find the expression for the input-to-output transfer function of the compos-
ite system, v0(s)/vs(s), in terms of the following transfer functions defined 
individually for System A and System B: 
FA(S): the input-to-output transfer function of System A 
FB(s): the input-to-output transfer function of System B 
Z0(s): the output impedance of System A 
Z/0): the input impedance of System B 

b) Assume that System A and System B are individually stable. Now argue 
that the stability of the composite system can be assessed by applying the 
Nyquist criterion to the impedance ratio Z0(s)/Zi(s). 

c) Derive a sufficient, but not necessary, condition to ensure the stability of 
the composite system. 

d) State the condition which makes the composite system marginally stable. 

The Bode plot shown in Fig. P7.7 is the loop gain of a closed-loop controlled 
dc-to-dc converter. 
a) Determine the stability of the converter. Evaluate the gain margin (posi-

tive or negative), phase margin (positive or negative), and 0 dB crossover 
frequency of the loop gain. 

K(s) System A System B 
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Fig. P7.7 

b) You are only allowed to change the magnitude of the voltage feedback 
compensation to meet the following design objectives: 
i) stability with the phase margin in the neighborhood of 20°, 
ii) stability with the phase margin in the neighborhood of 60°, and 
iii) stability with the gain margin in the neighborhood of 20 dB 
What would you do to achieve each of the design specifications above? 

7.8** Figure P7.8 is the polar plot of the loop gain of a PWM dc-to-dc converter. 

200 r/s 

Fig. P7.8 

a) Determine the stability of the converter. 
b) The gain of the voltage feedback compensation is currently Kv = 100. 

Now assume that the gain is varied between 1 < Kv < 500, while other 
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compensation parameters remain the same. Under this condition, find the 
range(s) of Kv in which the converter remains stable. 

c) What would happen to the converter output when the magnitude of the 
current feedback gain, Kv = 100, is changed to Kv = 10, Kv = 20, and 
Kv = 400? 

7.9** Shown in Fig. P7.9 is the polar plot for the loop gain of a closed-loop controlled 
dc-to-dc converter. 

(b) 

(c) 

Fig. P7.9 

a) Determine the stability of the converter. Evaluate the gain margin, phase 
margin, and 0 dB crossover frequency of the loop gain. 

b) Convert the polar plot into the Bode plot for \Tm\ and lTm. Show all the 
prominent features on the Bode plot. 

c) Assume that the converter produces the output voltage waveform shown 
in Fig. P7.9(b). What do you think happened to the voltage feedback 
compensation of the converter? 
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d) Now assume that the converter output generates the waveform in Fig. 
P7.9(c). What do you think occurred in voltage feedback compensation? 

7.10**Figure P7.10 is the Bode plot of the loop gain of a closed-loop controlled buck 
converter. 
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Fig. P7.10 

a) Determine the stability of the converter. 
b) Convert the Bode plot into the polar plot. Show all the prominent features 

of the loop gain on the polar plot. 
c) Assume that the gain of the voltage feedback compensation is Kv = 103 for 

the current design. Now assume that the gain is varied between 1 < ATV < 
105. Find the range(s) of Kv which secure(s) the stability of the converter. 

7.11** A marginally stable system shows unique characteristic features in the closed-
loop performance. Describe or illustrate the characteristic feature(s) in the 
following closed-loop performance of a marginally stable system. For the def-
initeness of your argument, assume that 0 dB crossover frequency of the loop 
gain occurs at ω = ω€. 
i) Polar plot of loop gain ii) Bode plot of loop gain 
iii) Pole location in s-plane iv) Time-domain waveforms 
v) Closed-loop transfer functions 



CHAPTER 8 

CLOSED-LOOP PERFORMANCE AND 
FEEDBACK COMPENSATION 

The dynamic performance of closed-loop controlled dc-to-dc converters is solely 
determined by the feedback controller. The ultimate goal of the small-signal modeling 
and dynamic analysis is to develop systematic procedures that allow us to design 
the feedback controller for optimal dynamic performance. This chapter covers the 
dynamic analysis and control design, and provides step-by-step design guidelines to 
achieve optimal closed-loop performance for PWM dc-to-dc converters. 

The dynamic performance includes the loop gain, frequency-domain transfer func-
tions, and time-domain transient responses. These performance criteria are closely 
related to each other and thus must be considered collectively when designing the 
voltage feedback compensation. Accordingly, the first step towards a successful con-
troller design is to understand the relationships among various performance criteria 
and to analyze the impacts of the voltage feedback compensation on these criteria. 
Once these issues have been resolved, it then becomes possible to develop design 
principles for the voltage feedback compensation. 

This chapter covers the dynamic analysis and feedback design of closed-loop 
controlled PWM dc-to-dc converters. The first two sections analyze the dynamic 
performance focusing on the relationship between the loop gain and frequency-
domain performance criteria. The mid-portion of this chapter deals with the design 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 331 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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Figure 8.1 Small-signal block diagram of PWM converter. 

of the voltage feedback compensation. The desired structure for the voltage feedback 
circuit is identified and step-by-step design guidelines for the compensation param-
eters are presented. Later sections illustrate the impacts of the voltage feedback 
compensation on the frequency- and time-domain performance. 

The graphical asymptotic analysis method is used as an instrumental tool for the 
closed-loop analysis and feedback compensation design. The concept and examples 
of the asymptotic analysis are introduced in the first section of this chapter. The 
asymptotic analysis method is then used in the forthcoming sections to illustrate the 
outcomes of the closed-loop analysis, design of voltage feedback compensation, and 
impacts of the feedback compensation on the converter performance. 

8.1 ASYMPTOTIC ANALYSIS METHOD 

This section provides an analytical basis for the asymptotic analysis method. The 
motivation and concept of the asymptotic analysis are first introduced. Practical 
details about the proposed method then follow. 

8.1.1 Concept of Asymptotic Analysis Method 

As discussed in Chapter 7, the frequency-domain performance includes the loop 
gain, audio-susceptibility, and output impedance. This section presents a systematic 
approach to analyzing these performance criteria. The proposed approach is referred 
to as the asymptotic analysis method because it uses the asymptotic expressions of 
the transfer functions as the basis for the analysis. 

Figure 8.1 shows the small-signal block diagram of a closed-loop controlled dc-
to-dc converter. The gain block Fm is the PWM gain, Fv(s) is the voltage feedback 
compensation, and the other small-signal gain blocks denote the power stage transfer 
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functions. From Fig. 8.1, the loop gain is determined as 

= (-)Gvd(s)(-)Fv(s)Fni 
„ , . V0(S) Vcon(s) d(s) 
Tm(s) = -^r d(s) v0(s) vcon(s) 

= Gvd(s)Fv(s)Fm (8.1) 

The application of Mason's gain rule to Fig. 8.1 yields the expressions for the 
frequency-domain performance criteria. The audio-susceptibility is given by 

Au(s) 
V0(S) 

vs(s) 
Gvs(s) (8.2) 

'closed 1 + i m\s) 

If the small-signal gain blocks are all known, the expression (8.2) can be used to find 
an equation for the audio-susceptibility. However, this direct method would not yield 
any useful results that can readily be adapted to the feedback compensation design. 

As an alternative to the direct method, an asymptotic analysis method is used 
to simplify the analysis and, more importantly, to obtain design information. The 
expression (8.2) is split into two asymptotic approximations 

Gvs(s) 

Au(s) 
Gvs(s) 

1 + Tm(s) 

Tm(s) 

Gvs(s) 

at frequencies where \Tm\ » 1 

at frequencies where \Tm\ «: 1 
(8.3) 

For most practical converters, \Tm\ is very large at low frequencies, crosses the 
0 dB line at mid-frequencies, and continuously decreases at high frequencies. Thus, 
the 0 dB crossover frequency of the loop gain serves as the borderline for the asymp-
totic approximation: Au(s) « Gvs(s)/Tm(s) at frequencies before the 0 dB crossover 
frequency and Au(s) « Gvs(s) thereafter. 

The asymptotic approximation of (8.3) is combined with the graphical Bode plot 
analysis technique. The resulting analysis method will be referred to as the asymptotic 
analysis method. The asymptotic analysis method explicitly shows the impacts of the 
voltage feedback compensation on the audio-susceptibility Au(s), thereby providing 
easy and clear design information. This method does not require any complicated 
analytical treatments and quickly yields the expression for Au(s) in a factorized form. 
For most cases, a factorized expression for Au(s) can immediately be written by 
inspection. 

The expression for the output impedance is found from Fig. 8.1 and put into the 
asymptotic approximation 

Z0{s) = 
V0(S) 

lo(s) closed 

Zp(s) 

1 + Tm(s) 

Z„(s) 
at frequencies where \Tm\ » 1 

Tm(s) 

Zp(s) at frequencies where \Tm\ <sc 1 
(8.4) 
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Figure 8.2 Asymptotic analysis for Case A. 

for the asymptotic analysis. Because the expressions (8.3) and (8.4) have the same 
structure, the asymptotic analysis method can consistently be applied to both the 
audio-susceptibility and output impedance. 

8.1.2 Examples of Asymptotic Analysis Method 

Details about the asymptotic analysis are illustrated using the following equation 

F(s) = 
G(s) 

1 + T(s) 

G(s) 
T(s) 

at frequencies where \T\ » 1 

G(s) at frequencies where \T\ «: 1 
(8.5) 

with simple expressions for G(s) and T(s). Three different cases are considered to 
provide practical insights on the asymptotic analysis method. 

(Or 

Case A: G(s) = Kg < 1 and T(s) = — 

As the simplest example, a constant is used for G(s) while a single integration 
function is assumed for T(s): G(s) = Kg < 1 and T(s) = uc/s. Figure 8.2 illustrates 
the construction of the asymptotic plot for \F\ with the given G(s) and T(s). As 
previously discussed, the 0 dB crossover frequency of \T\, denoted as ω€ in Fig. 
8.2, becomes the boundary for the approximations. For frequencies beyond ω€, \F\ 
follows \G\. For frequencies below ωα, \F\ is formed by subtracting \T\ from \G\ 
because the division in the linear scale corresponds to the subtraction in the log scale. 
As shown in Fig. 8.2, the ascending slope and corner frequency of |F| are readily 
determined from the graphical analysis. 
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The asymptotic plot of |F| is transformed into an analytic equation for F(s) 

F(s)asym = Kfs — (8.6) 

(L>c 

by applying the inverse process of the Bode plot construction, as discussed in Section 
6.1.4. The value for the leading coefficient Kf is found by equating |Fasyml at ωε to 
\G\ 

|^(>)asym|5=M = \Kfs\s=jü)c = \Kfü)c\ = \G\ 

=> 20 log(Ä/ioc) = 20 log Kg (8.7) 

to yield the relationship 
(8.8) 

(8.9) 

The desired expression for Kj 

resulting in the expression 

Kf coc = Kg 

=· is obtained from (8.8) 

K* 
ÜJC 

Kg 1 
1 v^/asym — Λ c 

ω' 1 + — 
(8.10) 

On the other hand, the direct evaluation of the left-hand side expression of (8.5) 
with G(s) = Kg and T(s) = ω€Ι s offers the exact equation for F(s) 

Ko Ko 1 
^Wexec = | r = — S Γ (8.11) 

1 + — ω< 1 + — 
s ω€ 

For this particular case, the asymptotic analysis is the same as the exact analysis: 
(̂s)asym = ^(^)exec· However, the sameness is due to the simple structure of T(s) 

and is not always true for general cases. 

Case B: G(s) = ^ with Kg > 1 and T(s) = ^ 

In this case, a low pass filter is considered for G(s) while the single integrator is 
used for T(s): G(s) = Kg/(l + s/a)p) and T(s) = CJCIS. Figure 8.3 shows the 
construction of the asymptotic plot for \F\. 

The asymptotic plot for |F| in Fig. 8.3 is transformed into a factorized equation 
for F(s) 

F(s)asym = Kfs- — — (8.12) 

l ωρ)\ ωο) 
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Figure 8.3 Asymptotic analysis for Case B. 

The value for Kf is determined by evaluating the magnitude of F(s)asym at ωρ 

= \G(s)\s=jtJp - \T(s)\s=jtJp (8.13) 

which is transformed to 

leading to the expression 

KfüJp = 
(JÜC 

Kf = κΡ 

(8.14) 

(8.15) 

On the other hand, the direct evaluation of the left-hand side expression of (8.5) 
with the given transfer functions produces the exact expression for the transfer func-
tion for F(s) 

r ("S/exec — 
ω„ Kg 

1 + T ω'{^5 

Λ \ ω 

(8.16) 

which is identical to the result of the preceding asymptotic analysis. 
From the procedures illustrated in Figs. 8.2 and 8.3, insights about the asymptotic 

analysis can be gained, leading to general analytical procedures for this graphical 
approach. The procedures and rules for the asymptotic analysis are discussed later 
in this section and the conclusions are summarized in Tables 8.1 and 8.2 at the end 
of this section. 
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Figure 8.4 Asymptotic analysis for Case C. 

Case C: G(s) = Kg < 1 and T(s) = - — — — with ω„ < ω7 s l+s/ωρ 

As the last example, it is assumed that G(s) = Kg < 1 and T(s) = (a)c/s)(l + 
s/o)z)/(l + ωρ) with ωρ < ωζ. Figure 8.4 illustrates the construction of the asymp-
totic plot for \F\. The asymptotic plot is transformed into a factorized equation for 
F(s) 

F(s\ asym 
K. 
Ü>r 

(1 + ω ζ ) \ 1 + ω^) 

(8.17) 

based on the procedures in Table 8.2. The leading coefficient of (8.17) is determined 
using the same procedure as that of Case B. The direct evaluation of the left-hand 
side expression of (8.5) with the given G(s) and T(s) expressions yields 

F(s)G 
Ke 

1 + 
(Or 

1 + 

1 + -Ϊ-
(8.18) 

ω7 
1 + — + ■ 

ω7 

1 + 
ωη 

By comparing (8.17) and (8.18), it becomes apparent that the asymptotic analysis 
is only an approximation to the exact evaluation. Even so, this approximation is 
practically accurate for the following reasons. First, the two equations have the 
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same leading coefficient and numerator. Because these terms determine the low-
frequency characteristics, the two transfer functions will show the same behavior at 
low frequencies. Second, the high-frequency asymptote of the approximated equation 

is given by 

(Κ„ωζω'\ 
IFO'oOasyJ = 201og (8.19) 

\ ω€ωρ ) 
while that of the exact equation is given by 

l^(7^)execl = 20 log \-^-ωρ ω\ = 20 log Kg (8.20) 

From the geometry of the asymptotic plot in Fig. 8.4, it can be shown that 

(8.21) 
ωη ω' 

resulting in the relationship 

IFO'cxOasyJ = |F(ycx3)exec| = 20 log Kg (8.22) 

which indicates that the high-frequency asymptotes of the two equations are also 
identical. The previous analysis concludes that the asymptotic approximation dupli-
cates the exact equation at low and high frequencies, yet with some deviation in the 
mid-frequency range. This mid-frequency error is negligibly small for most cases. 

■ EXAMPLE 8.1 Accuracy of Asymptotic Approximation 

This example substantiates the accuracy of the asymptotic approximation. As 
an illustration, Case C in the previous three cases is selected with G(s) = 0.01 
and 

Ύ* 1 + 

T(s) = 

s 
4 x l Q 4 1 " 4 Ö Ö 

Figure 8.5 shows the Bode plot of the asymptotic approximation of (8.17) 
with Kg = 0.01, uc = 4 x 104 rad/s, ω'€ = 4 x 103 rad/s, ωζ = 400 rad/s, 
and ωρ = 40 rad/s, in comparison with that of the exact equation of (8.18). 
As predicted, the asymptotic approximation ideally matches with the exact 
equation at low and high frequencies, while showing only nearly-undetectable 
error in the mid-band. This confirms that the asymptotic analysis offers good 
accuracy and can generally be used for the closed-loop dynamic analysis of 
dc-to-dc converters. 
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Figure 8.5 Accuracy of asymptotic approximation. 

Procedures for Asymptotic Analysis 

The graphical asymptotic analysis of F(s) = G(s)/(l + T(s)) involves the following 
two steps. 

1) The first step is to sketch the asymptotic plot for |̂ (7*ω)| = \G(JÜJ)\/\(1+T(JÜ)))\ 

for known G(s) and T(s) expressions. 

2) The second step is to construct the F(s) expression from the Ι^Ο'ω)! sketch 
obtained in the first step. 

Tables 8.1 and 8.2 present the general rules for the asymptotic analysis. Table 8.1 
illustrates the steps of sketching the asymptotic plot for \F(j<o)\, while Table 8.2 
summarizes the rules of writing the F(s) expression from \F(JOJ)\ sketch. Readers 
are urged to review Tables 8.1 and 8.2 in preparation for upcoming details about the 
dynamic analysis and control design based on the asymptotic analysis. 

8.2 FREQUENCY-DOMAIN PERFORMANCE 

This section investigates the frequency-domain performance using the asymptotic 
analysis method. Relationships between the loop gain and closed-loop transfer func-
tions are graphically illustrated. Factorized s-domain expressions for the transfer 
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Table 8.1 Procedures for \F(jaJ)\ Sketch 

Basic equation 

F(s) = 
r( . | at frequencies where \T\ > 

1 + T{s) 
G{s) at frequencies where \T\ < 1 

Sketch rules for asymptotic plot of |F| 

1) Sketch \G\ and \T\ for given equations. 

2) Start sketching |F| from high frequencies. 

3) Sketch \F\ based on the following guidelines at different frequency ranges. 

a) Frequencies beyond the 0 dB crossover frequency of \T\: \F\ duplicates \G\. 

b) At the 0 dB crossover frequency of \T\: \F\ intersects with \G\. 

c) Frequencies below the 0 dB crossover frequency of \T\: \F\ is constructed 
by subtracting \T\ from \G\. There is a simple relationship among the 
ascending and descending slopes of the transfer functions 

slope of \F\ - slope of \G\ - slope of \T\ 

For example, when \G\ decays with -1 slope and \T\ also declines with 
-1 slope, |F| stays at a flat value with zero slope: -1 - (-1) = 0. Simi-
larly, when \G\ ascends with +1 slope and \T\ descends with -1 slope, \F\ 
increases with +2 slope: +1 - (-1) = 2. 

functions are provided. A closed-loop controlled buck converter is used as an illus-
trative example, nonetheless, the results can be extended to all PWM converters. 

8.2.1 Audio-Susceptibility 

Figure 8.6 shows the small-signal model of a closed-loop controlled buck converter. 
The input-to-output transfer function is found from Fig. 8.6 

s 

(8.23) 

where 

(8.24) 

(8.25) 

Gv s(s) — Γ) 

1 

<*>esr : 

ω0 « 

1 + 
<*>esr 

S 

βω„ 

1 

V/r 

s2 

"t 
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Table 8.2 Procedures for F(s) Construction 

Basic equation 

F(S): Kf Ϊ7Ζ-Ν)" 1 + 

Λ | s ( s2 \ 
\ ζ)ζω0 ω2

0) 

QpU0 

Construction rules for factorized equation of F(s) 

1) Construct F(s) in the time constant form. 

2) Start writing the F(s) expression from low-frequency terms. 

3) Determine the poles and zeros for F(s) from |F(ya>)| sketch. The poles and zeros 
appear at the frequencies where \F\ changes its slope. When the slope is changed 
by one, a single pole or single zero occurs. Similarly, when the slope is changed 
by two, a double pole or double zero appears. 

4) Determine the value for the leading coefficient Kf. Kf can be determined from the 
low-frequency asymptote, high-frequency asymptote, 0 dB crossover frequency, 
or at one of corner frequencies of \F\. 

Figure 8.6 Small-signal model of buck converter. 

and 

Ö "ft (8.26) 

with assumptions R^> R[ and R^> Rc. 
Figure 8.7 shows the construction of the asymptotic plot for \AU\ based on the rules 

described Table 8.1. While |GVJ| is formed using (8.23), \Tm\ is drawn assuming a 
single integration function 

Tm(s) = ^ (8.27) 
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Figure 8.7 Construction of asymptotic plot for audio-susceptibility. 

The ascending/descending slopes and corner frequencies of \AU\ can readily be deter-
mined from the asymptote sketch rules given in Table 8.1. 

The effects of the loop gain on the audio-susceptibility are clearly shown in Fig. 
8.7. The loop gain provides attenuation up to the 0 dB crossover frequency. The 
amount of attenuation, highlighted by the shaded region in Fig. 8.7, is equal to the 
area of the triangle formed by connecting the \Tm\ curve and 0 dB line. The range 
and extent of the attenuation will be increased by pushing the loop gain crossover 
frequency towards higher frequencies, or equivalently, by increasing the integrator 
gain, ÜJC. 

The asymptotic plot of \AU\ is converted into a factorized expression for Au(s) 
based on the rules presented in Table 8.2 

Au(s) = Kas- ψ^ — (8.28) 

\ Qu0 ωΐ)\ ω€) 

The leading coefficient Ka is found by evaluating the magnitude of the transfer 
function at the power stage double pole s - ]ω0 

\Au(jaj0)\ = \Kas\s=M> = |GV,(M,)| - \Tm(jü>0)\ (8.29) 

which is transformed to 

20\og(Kaajo) = 20 log D - 2 0 log [— ] (8.30) 
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This relationship is illustrated in Fig. 8.7. Equation (8.30) is converted to the linear 
relationship 

(8.31) D 
■αωο -

Ka = 

a>c 

ω0 

D 
(JL>C 

yielding the expression for Ka 

8.2.2 Output Impedance 

The load current-to-output transfer function is derived from Fig. 8.6 

(8.32) 

Ml·-) 
\ ωζ)\ (x)esr) Zp(s) = R^ ^ p - (8.33) 

1 + 7 Γ " + 2 βω0 ωζ
0 

where 
Ri (8.34) c L 

Figure 8.8 shows the construction of the asymptotic plot for the output impedance 
\Z0\ using the (8.33) and the assumption of Tm(s) = a>c/s. The asymptotic plot is 
converted into a factorized equation 

Ml·-) 
\ ωζ)\ iuesr) 

\ Quo ωΐ)\ ÜJC) 

Zo(s) = KzST^ 2 , , v ( 8 · 3 5 ) 

The expression for Kz is found using the high-frequency asymptote of the output 
impedance, |Z0(yoo)|. As shown in Fig. 8.8, \Z0{joo)\ converges to the high-frequency 
asymptote of \Zp\ because \Tm\ «: 1 at high frequencies: \Z0(joo)\ = \Zp(joo)\. Now, 
it can be deduced from the small-signal model in Fig. 8.6 that \Zp(joo)\ is the parallel 
connection of the load resistor and esr of the output capacitor, because the inductor 
L behaves as an open circuit at high frequencies while the capacitor C practically 
becomes a short circuit. Accordingly, it follows that 

|Zo0'oo)| = |Zp0'oo)| = 201og(Ä || Rc) * 20\ogRc (8.36) 

On the other hand, \Z0(joo)\ is also found from (8.35) 

ΐΚζω
2
0ωΛ 

J \ ωζω€5Γ I 
|Zo0oo)| = 201og z ° c\ (8.37) 

By equating (8.36) and (8.37), Kz is given by 

ωζ ü)esr 

ω2
0ωε 

KZ=RC^T-^L (8.38) 
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Figure 8.8 Construction of asymptotic plot for output impedance. 

The influence of the loop gain on the output impedance can be understood in the 
same manner as the audio-susceptibility case. 

8.3 VOLTAGE FEEDBACK COMPENSATION AND LOOP GAIN 

In the previous section, we investigated the relationship between the loop gain and 
closed-loop transfer functions. To focus on the effects of the loop gain characteristics, 
a single integration function was assumed for the loop gain. However, the loop gain is 
the very quantity that must be properly designed in order to obtain good closed-loop 
transfer functions. Thus, it is first necessary to investigate the loop gain itself. 

The loop gain is given by the product of the three factors: the duty ratio-to-output 
transfer function Gvd{s), PWM gain Fm, and voltage feedback compensation Fv(s). 
Among these three factors, the voltage feedback compensation is the only component 
that can be altered by design. For the given Gvd(s) and Fm, the voltage feedback 
compensation Fv(s) should be designed for good loop gain characteristics. 

The objective of the voltage feedback compensation is to shape the loop gain 
into the desired structure. The primary consideration in this loop gain shaping is, 
of course, stability of the converter. In addition, the loop gain should provide good 
audio-susceptibility and output impedance characteristics. This section presents 
detailed steps of determining the structure and parameters of the voltage feedback 
compensation, in order to achieve the desired loop gain characteristics. 
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From Fig. 8.6, the duty ratio-to-output transfer function of the buck converter is 
given by 

Gvd(s) = Vs ^ - ^ (8.39) 
i J S 

Quo ωζ
0 

In Section 5.5, the PWM gain was found as 

Fm = ^~ (8-40) 

where Vm is the height of the PWM ramp signal. With the knowledge of the duty 
ratio-to-output transfer function and PWM gain, the structure of the voltage feedback 
compensation is now investigated. 

8.3.1 Problems of Single Integrator 

As discussed in Section 3.6.1, the voltage feedback compensation should have an 
infinite dc gain, \Fv(jO)\ = oo, in order to regulate the output voltage at the desired 
value. The simplest circuit with such a property is the single integrator. As an initial 
attempt, a single integrator is considered for the voltage feedback compensation 

Fv(s) = — (8.41) 

s 

The expression for the loop gain then becomes 

s 
1 + -

Tm(s) = Gvd(s)Fv(s)Fm = Vs — 

1 + 
Mesr 

1 + 
_ L· — 

Qa>0 ' ω2
0 FV{S) Fm 

Gvd(s) 

K
 1 + — 

s s s2 

βω0 ωζ
0 

(8.42) 

with 

K, = ^ (8.43) 

Figure 8.9 shows the asymptotic plots for \Tm\ and lTm in comparison with \Gvd\. 
Because of the integrator, \Tm\ starts with -1 slope. The initial -1 slope is altered 
to - 3 slope at the double pole frequency, ω0. The - 3 mid-frequency slope is finally 
changed to the - 2 high-frequency slope at the esr zero, ω68Γ. Figure 8.9 assumes that 
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Figure 8.9 Unstable loop gain with Fv(s) = Kv/s. 

the crossover frequency of the loop gain, ω 0 occurs at the frequency between the 
power stage double pole and esr zero: ωσ < ωε < a>esr. 

The phase of the loop gain starts with -90° due to the integrator. The initial -90° 
phase dips down to -270° over ωσ. At high frequencies, lTm settles into the -180° 
final phase, owing to the 90° phase boost at the esr zero. 

The problem of the voltage feedback compensation is obvious in Fig. 8.9. Because 
LTm falls well below -180° at the loop gain crossover frequency, the loop gain 
violates the Nyquist stability criterion and the converter becomes unstable. The 
only way to secure stability is to significantly reduce the integrator gain Kv so 
that \Tm\ crosses the 0 dB line at the frequency before the power stage double pole: 
ω€ < ω0. The loop gain with this modification is shown in Fig. 8.10. Even though the 
converter is stable, both the phase and gain margins will be very small. Furthermore, 
\Tm\ is significantly reduced with a small integrator gain. The reduced \Tm\ only 
provides limited attenuation for closed-loop transfer functions, as highlighted by the 
shaded triangle in Fig. 8.10. For this case, the magnitude of the closed-loop transfer 
functions would be large. The small stability margins and large closed-loop transfer 
function magnitude both make the voltage feedback compensation unacceptable for 
real applications. 
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Figure 8.10 Stable loop gain with Fv(s) = Kv/s. 

8.3.2 Voltage Feedback Compensation 

The origin of the problem in the case of the single integrator compensation is the 
phase delay incurred by the integrator and power stage double pole. The integrator 
forces the loop gain to start with the -90° initial phase. The power stage double pole 
brings in additional -180° phase delay, causing lTm to decline to -270°. This makes 
the converter highly prone to instability. To secure stability under this situation, the 
loop gain crossover should occur before the power stage double pole at the expense 
of the poor closed-loop performance. 

The voltage feedback compensation should always start with an integrator structure 
to achieve the output voltage regulation with the condition \Fv(jO)\ = oo. After the 
initial integrator, the voltage feedback compensation could incorporate two zeros to 
boost the phase of the loop gain. When placed in the neighborhood of the power 
stage double pole, the two zeros compensate for the -180° phase delay incurred by 
the power stage double pole. This allows the 0 dB crossover frequency to be placed 
at the frequencies beyond the power stage double pole, while maintaining good phase 
characteristics. 

Besides the two zeros, two poles should be added to the voltage feedback com-
pensation for the following reason. The voltage feedback circuit receives the input 
signal from the output of the converter, which abounds with high-frequency switching 
noises. The high-frequency noises will be transmitted to the PWM block through 
the voltage feedback compensation. To prevent malfunctions triggered by the high-
frequency noises at the PWM block, the voltage feedback compensation must provide 



3 4 8 CLOSED-LOOP PERFORMANCE AND FEEDBACK COMPENSATION 

ωρ\ ωρ2 

C\ 

Z2(s) 

Z,(5) 

(b) 

Figure 8.11 Three-pole two-zero feedback compensation, (a) Structure of voltage feedback 
compensation, (b) Circuit implementation. 

a fair amount of attenuation at high frequencies. To provide this high-frequency noise 
attenuation, the magnitude of the voltage feedback compensation should have a de-
scending high-frequency asymptote. At the presence of the two zeros, two poles are 
necessary to provide a -20 dB/dec roll-off at high frequencies. 

From the preceding discussions, the desired structure of the voltage feedback 
compensation is identified as 

Fv(s) = 
Kv 

1 + 
ωζΧ ) ( ' ♦ = ) 

1 + 
Mp\J\ ωρ2) 

(8.44) 

Figure 8.11(a) shows the asymptotic plot of the voltage feedback compensation. The 
exact locations of the zeros and poles must be determined in consideration of their 
impacts on stability margins and closed-loop transfer functions. This issue will be 
treated in Section 8.4. 

The voltage feedback compensation in Fig. 8.11(a) can be constructed using an op 
amp and passive circuit components. Figure 8.11(b) shows such implementation, in 
which the impedance ratio Zi(s)IZ\ (s) constitutes the voltage feedback compensation. 
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The resistance Rx in Fig. 8.11(b) is added to control the magnitude of the output volt-
age: Vo = Vref(l +#2/^JC)· As discussed in Section 5.6.1, this resistance is irrelevant 
to the voltage feedback compensation. By directly evaluating Fv(s) = Z2(s)/Z\(s), 
the compensation parameters are expressed in terms of the circuit components 

Fv(s) = 

with Kv = 

A vat 
s i + - i - i + - ^ 

;)(' 
1 

Ri(C2 + C3) 

1 1 
ωΔ R3C3

 ωα (Rx+R2)Ci 

A3 
RiC{ I C2C3 \ 

3\C2 + C3/ 

Once the integrator gain and corner frequencies are selected, the circuit compo-
nents in Fig. 8.11(b) are determined using the above equations. Among the six circuit 
components, one can be arbitrarily chosen and the other components are found using 
the equations in (8.45). This compensation circuit, named the three-pole two-zero 
compensation after its transfer function, was previously introduced in Sections 3.6.1 
and 5.6.1. 

8.4 COMPENSATION DESIGN AND CLOSED-LOOP PERFORMANCE 

The design of the voltage feedback compensation involves with the selection of the 
five compensation parameters {ωζ\ ωζ2 ωρ\ ωρ2 Κν } while simultaneously meeting 
the following design objectives: 

• stability with adequate phase and gain margins, 

• small audio-susceptibility, and 

• small output impedance. 

This section provides design principles to properly select the five compensation 
parameters. 

8.4.1 Voltage Feedback Compensation and Loop Gain 

This section investigates the selection of the compensation parameters focusing on 
loop gain characteristics. With the three-pole two-zero compensation, the loop gain 
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is expressed by 

Tm(s) --= Gvd(s)Fv{s)Fm 

s 
1 + 

= Vs γ 
s s 1 + 77—+ -T 

QoJo ω% 

/i * \ 
„ \l + — 

5 /i S \ 
1 + 

\ «W 

i / i 5 \ 
1 i + — 

\ ωζ2) 

ι / ι 5 \ 
1 i + — 
\ ωρ2> 

1 

F* 

— (8.46) 

Gvd(s) FM 

which can be arranged as 

1 + 
(oesr)\ ω ζ ι / \ ωζ2 

with 

Tm(s) = £ - - „ , , . , _ , ( 8 4 7 ) 

^ p l / \ ^ 2 y 

(8.48) 

5 

βω„ 

^ r 

+ 

_ 

52 \d <*)x 
VsKv 

For the given power stage parameters and operational conditions, the zeros and 
poles of the voltage feedback compensation should be selected to provide desirable 
loop gain characteristics, which in turn offer good audio-susceptibility and output 
impedance characteristics. 

Figure 8.12 shows the asymptotic plots for \Tm\, |GVi/|, and lTm. The asymptotic 
plots are constructed with the assumption ωζ\ < ωσ < ωΖ2 < ω€ < ωρ\ = uesr < ωρ^', 
where ω€ denotes the 0 dB crossover frequency of the loop gain. Justifications for 
the selection of the compensation parameters are given as follows. 

1) The first compensation zero ωζ\ should be placed prior to the power stage 
double pole ω0: ωζ\ < ω0. This step is necessary to prevent the converter from 
being a conditionally stable system. If the compensation zero is not present 
until the power stage double pole appears, the initial -90° loop gain phase 
will dip down well below -180° over the power stage double pole ωσ. In 
this case, the two compensation zeros should be placed between ω() and the 
0 dB crossover frequency of the loop gain, ω€, in order to provide the phase 
boost needed for a positive phase margin. 

Although the converter could maintain stability in this case, there surely is 
the frequency range in which lTm is less than -180° while \Tm\ is larger than 
unity. Figure 8.13(a) is the polar plot of the loop gain for such a case. The 
polar plot indicates that the converter is a conditionally stable system which is 

^The asymptotic plot in Fig. 8.12 is drawn with the assumption that the corner frequencies of the loop gain 
are widely separated so that the phase undergoes a complete 90° or 180° change over corner frequencies. 
However, the loop gain will not go through the complete phase change due to the finite distance among 
the corner frequencies. Thus, the phase does not reduce to -180° after the power stage double pole ωυ 

and the phase margin at the crossover frequency ω€ does not increase to 90° 



COMPENSATION DESIGN AND CLOSED-LOOP PERFORMANCE 

Ζ Γ 

-180 180 

Figure 8.12 Construction of loop gain asymptotic plot. 

Im Im 

(a) (b) 

Figure 8.13 Polar plot of loop gain, (a) Conditionally stable loop gain with ω0 < ωζ\. (b) 
Stable loop gain with ωΔ < ω0. 

problematic in real operations, as illustrated in Example 7.7. 
Conversely, if the first compensation zero precedes the power stage double 

pole, lTm stays above -180° due to the early phase boost and the converter 
thus secures stability without being conditionally stable. Figure 8.13(b) is the 
loop gain plot for this case. 
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2) The second compensation zero ωΖ2 needs to be placed after the power stage 
double pole but before the loop gain crossover frequency ω€ (ω0 < ωζ2 < ωα), 
in order to provide adequate phase boost at the crossover frequency. If ωΖ2 is 
placed after ω 0 it only makes limited contribution to the phase margin and its 
phase boosting effect is mostly wasted. The loop gain magnitude \Tm\ retains 
the initial -20 dB/dec slope after ωΖ2, as shown in Fig. 8.12. 

3) The first compensation pole ωρ\ is placed at the esr zero, ωρ\ = cjesr, to maintain 
the -20 dB/dec slope by canceling the esr zero. The ideal structure of the loop 
gain is in fact the single integration function that has a fixed -20 dB/dec 
magnitude slope for all frequencies, as illustrated in Section 8.2. Although 
this ideal loop gain structure is not feasible due to the power stage dynamics, 
it is always desirable to increase the frequency range in which \Tm\ maintains 
a -20 dB/dec slope. This design objective is achieved by placing ωρ\ at a)esr. 

4) Finally, the second compensation pole ωΡ2 is placed at high frequencies to 
provide the high-frequency noise attenuation. 

With the compensation parameters described above, the loop gain crossover fre-
quency can be placed at higher frequencies, while securing sufficient phase margin. 
Although Fig. 8.12 hints that the phase margin could reach 90°, this theoretical max-
imum cannot be obtained due to the finite distances among the corner frequencies of 
the loop gain. The actual phase margin is determined by the relative locations of the 
compensation parameters and usually falls in the range of 45°-70°. 

8.4.2 Feedback Compensation Design Guidelines 

Based on the previous discussions, step-by-step compensation design guidelines are 
established as follows. 

1) Place the first compensation pole ωρ\ at the esr zero, ωρ\ = uesr, to nullify the 
effects of the esr zero. This provides a -20 dB/dec loop gain roll-off for wider 
frequency range. 

2) Locate the first compensation zero ωζ\ before the power stage double pole ω() to 
provide phase boost without becoming a conditionally stable system. As will 
be shown in Section 8.4.5, the location of this compensation zero determines 
the speed of the step input response. The response becomes faster as the zero 
is positioned at higher frequencies. Thus, ωζ\ should be placed as high as 
possible, yet still should not exceed the power stage double pole. As a rule of 
thumb, it is recommended that ωζ\ = (0.6 - 0.8) ω0. 

3) Place the second compensation zero ωΖ2 after the power stage double pole but 
before the loop gain crossover frequency, to obtain an adequate phase boost at 
the crossover frequency. As will be discussed in Section 8.4.6, the position of 
this zero determines the speed of the step load response. For faster responses, 
the zero should be placed at higher frequencies. However, the phase boosting 
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effect at the crossover frequency will be diminished as ωΖ2 is pushed towards 
higher frequencies. It is generally recommended that ωΖ2 = (1.5 - 3.0) ω0 to 
trade off the phase boosting effect and speed of the step load response. 

4) Locate the second compensation pole ωΡ2 at high frequencies. In general, 
ωΡ2 can be placed around 50-80% of the switching frequency ω8: ωΡ2 -
(0 .5 - 0.8) ω5. 

5) Select the desired frequency for the loop gain crossover, ωε. It is a good 
practice to place the crossover frequency around 10-30% of the switching 
frequency ω8\ ωε = (0.1 - 0.3) ω8. Detailed discussions about the selection of 
ωε will be given in the next section. From the asymptotic plot of \Tm\ in Fig. 
8.12 and the expression (8.47), the following relationship is derived 

20 log - 5 ^ - 40 log ^ - 20 log — = 0 dB (8.49) 
vmiuz\ ω0 ωΖ2 

where ω€ is the desired location of the crossover frequency. The preceding 
equation is converted into the design equation 

Vs 
ωζ\\ωΖ2) \(i>c) Vs ωλ

0 Vm^z 

This equation can be used to find Kv for a preselected a>c. 

6) Check the phase margin and adjust the integrator gain, if necessary, to secure 
a 45° - 70° phase margin. 

The above design procedures are summarized in Table 8.3 for easy reference. An 
application of this design approach will be illustrated in Example 8.2. 

8.4.3 Voltage Feedback Compensation and Closed-Loop Performance 

Figure 8.14 illustrates the relationship among the loop gain, open-loop transfer func-
tions, and closed-loop transfer functions. The asymptotic plots are constructed using 
the rules given in Table 8.1. The impacts of the loop gain characteristics, or equiva-
lently the effects of the voltage feedback compensation, can clearly be seen in Fig. 
8.14. The open-loop transfer functions are attenuated up to the loop gain crossover 
frequency. The power stage double pole does not appear in the closed-loop trans-
fer functions because the second-order feature of the open-loop transfer functions 
is canceled by the loop gain, which itself carries the same second-order feature: 
Au(s) % Gvs(s)/Tm(s) and Z0(s) « Zp(s)/Tm(s) for the frequencies where \Tm\ » 1. 
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Table 8.3 Compensation Design Procedures 

Loop gain expression 

Tm(s) = Gvd(s)Fv(s)Fm = Vi 
i + -?- „ i - - i +

 s 

sm 
)(■ ü)esr Kv \ ωζ\ I \ ωΖ2 j 1 

s \ΙΛ s \ Vm 1 + l· { + 7Τ~ + — 1 + it* ■ / -
Q(x)„ ωλ

α \ o)p\)\ ωρ2) F, 
Gvd(s) Fv(s) 

VsKv/Vm 0Jesr)\ ωζι)\ ωζ2) 

QOJ0 cx)fj\ ωρι)\ ωρ2 

Compensation design guidelines 

1) Set the first compensation pole: ωρ] = <j)esr. 

2) Choose the first compensation zero: ωζ\ = (0.6-0.8) ω0. 

3) Select the second compensation zero: ωζ2 = (1.5-3.0) ω0. 

4) Choose the second compensation pole: ωρ2 = (0.5-0.8) ω5. 

5) Select the loop gain crossover frequency: ω€ - (0.1-0.3) ω5. 

6) Evaluate the integrator gain: Kv . 
Vs ωΐ 

7) Check the phase margin and adjust Kv to secure a 45°-70° phase margin. 

8) Evaluate the circuit components for the voltage feedback compensation using 
(8.45). 

The asymptotic plot reveals the structure of the closed-loop transfer functions and 
also provides the information to judge the influence of each compensation parameter 
on the converter performance. For example, when the integrator gain Kv is increased 
within a limited range while other parameters remain unchanged, the following 
changes can be inferred: 

• increase in the loop gain crossover frequency, 

• decrease in the peak value of the audio-susceptibility l A J ^ ^ , and 

• decrease in the peak value of the output impedance and \Z()\peak. 

On the other hand, an excessive increase in Kv lessens the phase margin. The 
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Figure 8.14 Voltage feedback compensation and closed-loop transfer functions. 

converter could lose stability when the crossover frequency is pushed beyond ωΡ2 
with a very large Kv. 

The asymptotic plot of \AU\ is converted into an analytical expression, based on 
the rules in Table 8.2 

1 + 
Au(s) = Kas ü)e. 

\ ω ζ ι / \ ωζ2)\ ω€) 

(8.51) 

The expression for Ka is found from the magnitude relationship among the transfer 
functions at ωζ\ 

l^«(Mi)l = \Kas\s=jüJz] = \Gvs(jo)zi)\ - \Tm(jü>zi)\ (8.52) 
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Referring to (8.23), (8.47), and (8.51), the above equation is translated as 

Καωζλ = -^- (8.53) 

ωζ\ 

yielding the expression for Ka 

Ka = ^r (8.54) 

where Kt = (VsKv)/Vm. The peak value of \AU\ is approximated as 

\Au\peak = \Au\s=juzl = Ι ^ 4 = , ω : 1 = 20 log I — ωζ\ I (8.55) 

From Fig. 8.14, the closed-loop output impedance is expressed as 

, ♦ - ! . ) ( , + - L 
Zois) = Kzs- ^ / M -f^ r (8.56) 

, + - l , + - L , + . l 
\ ωζ\)\ ωΖ2/\ Ü>CI 

The value for Kz is found from the high-frequency asymptote of the output impedance. 
The high-frequency asymptote of \Z0\ is given by 

1^0-00)1 = 20 log ( ^ ^ ^ ^ ) (8.57) 

As discussed in Section 8.2.2, the high-frequency asymptote of \Z0\ approaches the 
parallel connection of the load resistance and esr of the output capacitor 

|Zo0'oo)| = 201og(/? || Rc) * 201ogÄc (8.58) 

By equating (8.57) and (8.58), Kz is given by 

K,=RC
 UzUesr (8.59) 

ωζ\ ωΖ2 ÜJC 

The peak value of the output impedance is found by evaluating \Z0\ at ω€ 

\Z„\peak = |Z„(M)l = 201og/?c + 2 0 1 o g i ^ 

= 2 0 1 o g ( i ? t Ä ] (8.60) 
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EXAMPLE 8.2 Compensation Design Example 

This example demonstrates the application of the compensation design guide-
lines established in this section. Figure 8.15 shows the circuit diagram of 
a closed-loop controlled buck converter. The converter regulates the output 
voltage at 4 V using the three-pole two-zero compensation. From the circuit 
parameters, the power stage double pole and esr zero are determined as 

1 l = 2π· 1.16 xlO3 rad/s 
VIC V 4 0 x l 0 - 6 4 7 0 x l 0 - 6 

and 
1 1 <* 

Uesr = Τ77Γ = τ^—ΤΤΓΤΤΓΤ^ = 2π' 6.77 x 1(T rad/s 
CRC 470 xl0~ 6 0.05 

The switching frequency of the converter is set at us - In · 50 x 103 rad/s and 
the height of the ramp signal is Vm = 3.8 V. Based on the compensation design 
guidelines, the corner frequencies of the three-pole two-zero compensation are 
selected 

• ωζ\ = 0.8 ω0 = 2π · 928 rad/s 

. ωζ2 = 1.5 ω0 = 2π · 1.74 x 103 rad/s 

• ωρ\ = ioesr = 2π · 6.77 χ 103 rad/s 

. ωρ2 = 0.8 ω5 = 2π · 4 χ 104 rad/s 

The 0 dB crossover frequency is chosen at ωε = 0.116ω5 = 2π·5.80χ103 rad/s. 
Based on the design equation, the integrator gain Kv is determined as 

_ Vm ωζ{ ωζ2 ω€ 

Vs ω2
0 

3.8 (2π · 928)(2π - 1.74 x 103)(2π · 5.80 x IQ3) 
16 (2π·1.16χ103)2 

= 1.04xl04 

The loop gain characteristics with the selected parameters are shown in Fig. 
8.16. The loop gain crossover occurs at the exact target frequency of 5.8 kHz 
with 65° phase margin. The loop gain, as well as other upcoming closed-loop 
transfer functions, is obtained from PSpice® simulations using the small-signal 
model of the converter. 

From the loop gain in Fig. 8.16, it can be noticed that the integrator gain can 
be further increased to place the crossover frequency around 9 kHz where the 
largest phase margin is expected. However, this extreme design is not desirable 
in practice and could actually end up with inferior performance, compared 
with the current design of Kv = 1.04 x 104. Justifications for not increasing Kv 

beyond the current value will be given in Example 8.4, which covers the issues 
related with the fidelity and limitation of the small-signal model. 
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Figure 8.15 Closed-loop controlled buck converter: /?] = 2.2 kΩ, C\ = 11 nF, 7?2 = 6.4 kQ, 
C2 = 365 pF, R3 = 11 kH, and C3 - 15 nF. 
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Figure 8.16 Loop gain characteristics with Kv - 1.04 x 104 
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Figure 8.17 Closed-loop performance, (a) Audio-susceptibility, (b) Output impedance. 

The integrator gain Kv = 1.04 x 104 is now selected as the final design while 
other compensation parameters were chosen earlier. The circuit components 
for the voltage feedback circuit are determined from the selected compensation 
parameters. One circuit component is arbitrarily chosen as R\ - 2.2 kQ. and 
the remaining circuit components are determined as C\ = 11 nF, R2 - 6.4 kü,, 
C2 = 365 pF, R3 = 11 kQ, and C3 = 15 nF, based on the equations (8.45). 

Figure 8.17 illustrates the closed-loop performance of the converter. Fig-
ure 8.17(a) shows the audio-susceptibility \AU\ along with the input-to-output 
transfer function |GVS| and loop gain \Tm\. Figure 8.17(b) displays the output 
impedance \Za\, load current-to-output transfer function \ZP\, and loop gain \Tm\. 
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Figure 8.18 Step load transient response of inductor current iL and output voltage v0. 

The validity and usefulness of the asymptotic analysis are confirmed when the 
Bode plots in Fig. 8.17 are compared with the asymptotic plots in Fig. 8.14. 

The compensation design is also evaluated by time-domain simulations. 
Figure 8.18 shows the transient response of the inductor current and output 
voltage due to a series of step changes in the load current: / 0 = 4 A = > 8 A = > 
4 A. The transient waveforms exhibit very stable and well-controlled behavior. 
The detailed analysis of the step load response will be covered in Section 8.4.6. 
The compensation design presented in this example was used in Section 3.6.2 
to illustrate the dc regulation and transient behavior of a closed-loop controlled 
buck converter. 

EXAMPLE 8.3 Accuracy of Asymptotic Approximation 

Based on the asymptotic analysis, the closed-loop transfer functions are ex-
pressed in a factorized analytical form. In this example, the accuracy of this 
asymptotic approximation is assessed using the buck converter used in the 
previous example. The audio-susceptibility was given by 

1 + 
Au(s) = Kas 

ω ζ ι / \ ω ζ 2 / \ toc) 

(8.61) 
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Figure 8.19 Audio-susceptibility comparison. 

The leading coefficient Ka is determined as 

Vs Kv 
Ka (8.62) 

from (8.48) and (8.54). Based on the information shown in Fig. 8.15 and the 
integrator gain in Example 8.2, Ka is found as 

YuR. - 3-8 0.25 
a~ Vs Kv " 16 1.04 xlO4 = 5.71 x 10-

The corner frequencies of (8.61) are given in Example 8.2: ωζ\ = In · 
928 rad/s, ωζ2 = In · 1.74 x 103 rad/s, ωβ5Γ = In · 6.77 x 103 rad/s, and 
o)c = In · 5.80 x 103 rad/s. 

Figure 8.19 displays the Bode plot of (8.61) in comparison with the actual 
audio-susceptibility. The actual audio-susceptibility refers to the PSpice® 
simulation obtained directly from the small-signal model of the converter. The 
asymptotic transfer function shows a good correlation with the actual transfer 
function, except for some deviation in the frequency range of 1 -20 kHz. The 
asymptotic analysis assumes that \Tm\ » 1 for all the frequencies below the 
loop gain crossover, and \Tm\ «: 1 for all the frequencies thereafter. However, 
this assumption is not quite satisfied in the frequency range centered around the 
loop gain crossover frequency, because the condition \Tm\ « 1 prevails in these 
frequencies. For the given converter, this range falls into the frequency region 
of 1 -20 kHz and the asymptotic approximation produces a 3-4 dB maximum 
error in this region. The asymptotic analysis predicts the peak value of \AU\ 

\K\peak = 201og(tfe6>zi) 

= 201og(5.71 x 10~6 In · 928) = -29.6 dB 
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The asymptotic approximation for the output impedance was given by 

Z0(s) = Kzs 
\ ωζ)\ uesr 

(I+i)(1+i)(1+i) 

where 
R 

ω7 = 
0.1 

K7 - Rc 

L 40 x 10"6 

ωζ a>esr 

= 2π · 398 rad/s 

ωζ]ωζ2ωα 

0.05-
(2π ■ 398)(2ττ · 6.77 x IQ3) 

'(2ττ · 928)(2π · 1.74 x 103)(2π · 5.8 x 103) 

= 2.29 x 10-6 

The peak value of the output impedance is predicted as 

\Z0\peak = 201ogitfc^J 

= 20 log 0.05 (o.( 
2π · 6.77 x 103 

In · 5.8 x 103 j = -24.7 dB 

(8.63) 

Figure 8.20 compares the Bode plot of (8.63) with the actual output impedance. 
Same as the audio-susceptibility case, the asymptotic approximation exhibits 
good accuracy except for the frequency range of 1 - 20 kHz, where either the 
condition \Tm\ » 1 or |7m| «: 1 is not quite satisfied. 

-20 
PQ 
- a 

■: asymptotic approximation 
-: exact simuation 

Frequency [kHz] 

Figure 8.20 Output impedance comparison. 

100 
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Figure 8.21 Loop gain comparison. 

■ EXAMPLE 8.4 Accuracy of Small-Signal Model 

The accuracy of the asymptotic analysis is verified in the previous example. 
This example investigates the accuracy of the small-signal model itself, which 
was derived under the small-signal assumption. The buck converter used in 
Example 8.2 was built and its loop gain is measured using an impedance 
analyzer. The measured loop gain characteristics are then compared with the 
predictions of the small-signal model. The comparison is shown in Fig. 8.21. 
While affected by some measurement noises, the experimental data clearly 
exhibit the loop gain characteristics of the converter. 

The small-signal prediction shows a close correlation with the experimental 
data. However, the theoretical prediction deviates from the measurement in two 
different frequency ranges. The first deviation is observed in the neighborhood 
of the power stage double pole at f0 = ω0/2π « 1.16 kHz and the second 
disagreement is found at high frequencies. 

The first deviation is due to the difference in the power stage damping. In the 
small-signal model, the esrs of the output capacitor and inductor are only con-
sidered as the parasitic resistances that contribute to the power stage damping. 
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In the experimental converter, there are many other parasitic resistances which 
are not accounted for in the small-signal model. These unaccounted parasitic 
resistances additionally contribute to the damping and the experimental data 
show less peaking in the magnitude and more gradual change in the phase. The 
accuracy of the small-signal prediction will be improved if the actual parasitic 
resistances are properly included in the small-signal model. 

The second disagreement at the high frequencies stems from the limitation 
of the small-signal model of the PWM block. The constant modulator gain 
Fm, defined as the small-signal model of the PWM process in Section 5.5, is 
an approximation based on the presumption that the input signal to the PWM 
block does not significantly vary within one switching period. This presumption 
only holds true when the frequency response is evaluated at significantly lower 
frequencies than the switching frequency. As the evaluation frequency is 
increased, this assumption becomes less accurate and so does the PWM gain. 

When the evaluation frequency becomes so high that the input signal to 
the PWM block varies substantially within one switching period, the nonlinear 
time-varying effect of the PWM process starts becoming pronounced. In this 
frequency range, the frequency response is strongly influenced by the sideband 
components of the PWM process; more specifically, the frequency response 
contains the sideband offshoots of the PWM process, as well as the response 
to the original small-signal excitation. This frequency-dependent nonlinear 
time-varying effect of the PWM process is not included in the small-signal 
PWM gain. 

As shown in Fig. 8.21, the error in the small-signal prediction grows larger 
as the evaluation frequency is increased. In particular, the experimental phase 
curve drops noticeably as the evaluation frequency approaches half the switch-
ing frequency, 0.5fs = 25 kHz. In addition, the experimental magnitude 
curve shows a dip at integer multiples of the switching frequency, 50 kHz and 
100 kHz. In fact, these are the singular points where the nonlinear effect of 
the PWM process is most pronounced and the small-signal model produces the 
largest error. 

Figure 8.21 illustrates that the danger of overly increasing the loop gain 
crossover frequency. The phase characteristics in Fig. 8.21 indicate that the 
phase margin of the actual converter is smaller than the estimation based on 
the small-signal model. The error becomes increasingly larger as the crossover 
frequency is pushed towards higher frequency. The crossover frequency is 
recommended to be placed around 10-30% of the switching frequency, in 
order to avoid the risk of overestimating the phase margin and to secure the 
fidelity of the analysis results. In addition, it is good engineering practice to 
consider the additional phase drop at high frequencies when designing the loop 
gain. For example, in anticipation of the additional phase drop which is not 
accounted for in the small-signal model, the crossover frequency can be placed 
before the frequency at which the small-signal model predicts the maximum 
phase margin, as previously exercised in Example 8.2. 



COMPENSATION DESIGN AND CLOSED-LOOP PERFORMANCE 3 6 5 

0.1 1 10 100 

Frequency [kHz] 

Figure 8.22 Computational method for loop gain evaluation. 

■ EXAMPLE 8.5 Computational Method for Frequency-Domain Analysis 

As introduced in Section 6.5, an empirical approach based on the computational 
method can be used as a means of verifying predictions of the small-signal 
model. In the computational method, the time-domain simulation is performed 
with a perturbed input signal, and the output at the perturbation frequency is 
extracted and compared with the input signal. By sweeping the perturbation 
frequency for the range of interest and recording the ratio between the input 
and output signals, the Bode plot of the corresponding frequency response 
is obtained. This computational method is a functional duplication of the 
experimental measurement using an impedance analyzer. 

Some commercial circuit simulation softwares offer an automated process 
for the computational method. In this book, small-signal model predictions 
are compared with the empirical data obtained from the computational method 
using PSIM® from Powersim Inc [3]. 

Figure 8.22 shows the loop gain of the buck converter used in Example 
8.2. The predictions of the small-signal model are compared with the em-
pirical data of the computational method. At low frequencies, the disparity 
between the analytical and empirical results is practically undetectable. On 
the other hand, some discrepancies are noticeable at high frequencies. The 
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empirical data show irregular spikes in both magnitude and phase due to the 
sensitivity of the numerical algorithm. Even so, the computational data ex-
hibit discernible patterns. The magnitude envelope follows the prediction of 
the small-signal model. Very interestingly, the high-frequency phase envelope 
deviates from the small-signal model prediction but tracks the measured phase 
response demonstrated in Fig. 8.21. This indicates that the computational 
method duly captures the frequency-dependent nonlinear time-varying effects 
of the PWM process and provides accurate high-frequency dynamics of the 
converter. 

Figure 8.23 shows the audio-susceptibility and output impedance character-
istics of the converter. This figure confirms the accuracy of the small-signal 
model prediction and utility of the empirical approach in the frequency-domain 
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Figure 8.23 Computational method for closed-loop performance evaluation, (a) Audio-
susceptibility. (b) Output impedance. 
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analysis. Unlike the loop gain analysis, the small-signal model predictions are 
a close match with the computational data for all frequencies, because the 
closed-loop transfer functions follow the open-loop transfer functions at high 
frequencies where the loop gain magnitude becomes very small. 

8.4.4 Phase Margin and Closed-Loop Performance 

As shown in the audio-susceptibility and output impedance analysis, the closed-loop 
transfer function G(s)ci0sed is related with the open-loop transfer function G(s)open 
through the following equation 

^ / x ^ W o p e n 
GWclosed = ~Λ ΤΓ7-. (8.64) 

1 + Tm(s) 

where Tm(s) is the loop gain. This equation is split into the two approximations 
( ^W/open 

G(s)0pen 
t /Wclosed 

1 + Tm(S) 

at frequencies where \Tm\ » 1 
Tm^ (8.65) 

I G(s)open at frequencies where \Tm\ «: 1 

for the asymptotic analysis. This asymptotic analysis is valid and accurate in the 
frequency range where either the condition \Tm\ » 1 or \Tm\ «: 1 is met. However, 
neither of these assumptions is satisfied in the neighborhood of the loop gain crossover 
frequency where \Tm\ « 1. The accuracy of the asymptotic approximation near the 
loop gain crossover was broadly discussed in Example 8.3. A more precise analysis 
around the crossover frequency is now given. 

The exact behavior of the closed-loop transfer function can be investigated by 
evaluating the magnitude of the closed-loop transfer function 

IGdosedl = n T ■ (8.66) 

at the loop gain crossover frequency. Figure 8.24 illustrates the evaluation of the 
denominator of (8.66) based on the following facts. 

• The denominator of (8.66) is the magnitude of the composite vector |f + fm\. 

• The magnitude of the loop gain is unity, \Tm\ = 1, at the crossover frequency. 

• The angle φΜ in Fig. 8.24, which corresponds to the difference between -180° 
and lTm at the crossover frequency, is the phase margin of the loop gain. 

From the vector addition rule and trigonometric relationships, the denominator of 
(8.66) becomes 
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Figure 8.24 Evaluation of |f + fm\ at loop gain crossover frequency. 

Accordingly, the relationship (8.66) becomes 

Inclosed! — 
IG, openl 

yjl-l COS φη 

(8.68) 

If the phase margin φηι is smaller than 60°, the denominator of (8.68) is less than unity 
and |Gciosedl will surge from |Gopenl by the amount of 

|G|peaking = 2 0 l o g 
1 

( y/2 - 2 cos φη 

(8.69) 

The magnitude of the peaking is inversely proportional to the phase margin-the 
smaller the phase margin, the larger the peaking. If the phase margin is reduced to 
zero, the peaking becomes infinite. 

When the phase margin 0m is not significantly lower than 60°, the |Gci0Sedl curve 
can be obtained by smoothly connecting the asymptotes of |Gopenl/|7ml and |Gopenl at 
the \Tm\ crossover frequency, as suggested in the asymptotic analysis rules in Table 
8.1. If 0m is noticeably lower than 60°, the peaking at the crossover frequency of \Tm\ 
should be considered when predicting the |Gci0Sedl curve. 

EXAMPLE 8.6 Effects of Small Phase Margin 

This example demonstrates the detrimental effects of a small phase margin. 
The small phase margin was shown to cause a peaking in the transfer function. 
It will also be argued that the peaking in turn results in an oscillatory behavior 
in the transient response. 

The voltage feedback compensation, employed to the buck converter in the 
previous examples, is now modified to 

Fv(s) 
1.04 xlO4 (■♦ 

2π · 928 ) ( ' ♦ 2π ·9 .9χ10 3 ; 

(1 + 2 , .6 .77x lQ3) ( 1 + 2ττ ·4χ104; 
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Figure 8.25 Loop gain characteristics with modified compensation design. 

to produce the loop gain with a small phase margin. Compared to the original 
design, only the second compensation zero is increased from ωΖ2 = 2π · 1.74 x 
103 rad/s to ω'ζ1 = 2π · 9.90 x 103 rad/s. The loop gain characteristics with 
this modification are shown in Fig. 8.25. The 0 dB crossover now occurs at 
f'c = 3.3 kHz and the phase margin is reduced to φ'Μ = 16°. The magnitude of 
the peaking is calculated as 

|G|peaking = 20 log 

= 20 log 

1 

A/2-2cos0^J 

f ! L 
\ V 2 - 2 c o s l 6 ° / 

11 dB 

This peaking is expected to occur at the loop gain crossover frequency, f'c = 
3.3 kHz. Figure 8.26 shows the output impedance \Z0\ with the modified 
compensation design, along with the load current-to-output transfer function 
\ZP\ and loop gain \Tm\. The output impedance \Z0\ follows the curve formed 
by \ZP\ - \Tm\ at low frequencies and it converges to \Zp\ at high frequencies. 
However, in the neighborhood of the loop gain crossover frequency, the output 
impedance deviates from the respective approximations, showing the expected 
11 dB upsurge from \ZP\ at the crossover frequency f'c = 3.3 kHz. The effect 
of the small phase margin is clearly shown in Fig. 8.27, which compares the 
output impedance of the modified design with that of the original design. The 
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Figure 8.26 Output impedance characteristics with modified compensation design. 

phase margin of the original design was 0m = 65°, while that of the modified 
design is <p'm = 16°. 

As discussed in Section 7.3.1, the transient response of the output voltage 
due to the step change in the load current, Istep, is given by1^ 

v0(t) = Γ1ί—Z0(s)\ (8.70) 

where X"1 is the inverse Laplace transform operator. The impact of the out-
put impedance peaking is deduced from this relationship. The peaking in \Z0\ 
indicates the existence of an underdamped second-order term in the output 
impedance. When the inverse Laplace transform is taken, the underdamped 
second-order term produces a decaying sinusoidal component in the time-
domain equation. Accordingly, the peaking in \Z0\ signals an oscillatory behav-
ior in the output voltage. The frequency of the oscillation coincides with the 
frequency of the output impedance peaking, which is the loop gain crossover 
frequency. Figure 8.28 shows the step load response of the modified design, 
in comparison with that of the original design. A series of step changes in 
the load current, I0 = 4 A => 8 A =» 4 A, is used in Fig. 8.28. The output 
voltage of the modified design shows a decaying oscillation while the original 
design does not show any oscillatory behavior. The period of the oscillation is 

tStrictly speaking, the relationship (8.70) is only valid when Istep is sufficiently small because the output 
impedance is derived under the small-signal assumption. Even so, the predictions of the output impedance 
exhibit markedly good correlations to transient responses with relatively large changes: for example, up 
to 50% change in the load current. 
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Figure 8.27 Phase margin and output impedance. 
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Figure 8.28 Phase margin and step load response of output voltage. 

predicted as 
1 1 

tos ~Ji~ 3.3 x 103 
= 0.3 ms 

where f'c = 3 . 3 kHz is the loop gain crossover frequency of the modified design. 

As demonstrated in the previous example, there is an intimate relationship among 
the phase margin, output impedance peaking, and output voltage oscillation. A small 
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phase margin causes a peaking in the output impedance which in turn invokes an 
oscillation in the output voltage. The reduction in the phase margin intensifies the 
peaking and the intensified peaking makes the oscillation more persistent. When 
the phase margin is reduced to zero, the output impedance peaks to infinity and the 
output voltage shows a sustained oscillation as the sign of instability. 

The effects of a small phase margin were previously addressed in Section 7.6. 
However, the perspective of Section 7.6 differs from that of the current section. 
Section 7.6 addressed the problem in a qualitative manner, in conjunction with the 
location of the system poles, while this section provided an explicit equation of 
(8.69). It is informative to compare the analytical results of this section with the 
qualitative discussions of Section 7.6. Readers are urged to review Example 7.8 
which substantiates and reinforces the results of Example 8.6. 

8.4.5 Compensation Zeros and Speed of Transient Responses 

The three-pole two-zero circuit 

FvM = ^ } 1 + H/ ' <8·7Ι> 
ωρ\ ] \ ωρ2 

is identified as the optimal structure for the voltage feedback compensation. The 
selection of the compensation parameters is discussed focusing on the frequency-
domain performance criteria. However, as will be shown in this section, the com-
pensation parameters also affect the time-domain performance. In particular, the 
compensation zeros, ωζ\ and ωΖ2, determine the speed of transient responses. The 
first compensation zero ωζ\ governs the speed of the step input response, while the 
second compensation zero ωΖ2 dictates the speed of the step load response. Accord-
ingly, the location of the compensation zeros should be selected considering these 
facts. This section presents the selection of the first compensation zero ωζ\, while 
the next section deals with the second compensation zero ωΖ2. 

The impact of the first compensation zero ωζ\ is explained using the audio-
susceptibility and its relationship to the step input response. Figure 8.29 shows the 
asymptotic plot of the audio-susceptibility \AU\, along with the asymptotic plots of 
\Tm\ and |GVJ|. The audio-susceptibility is written as 

i + - i -
Au(s) = Kas- v ,

 ω"\ , (8.72) 

1 + 

\ ω ζ \ , 

with the condition ωζ\ <̂c ωΖ2 <̂  ω€ <$c uesr. 
The first compensation zero ωζ\ becomes a pole in the Au(s) expression in (8.72). 

The step input response of the output voltage is given by 

v0(t) = X"1 l^Au(s)\ (8.73) 

i / l ωζ2/\ ω€) 
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Figure 8.29 Construction of asymptotic plot for audio-susceptibility. 

where Vstep denotes the magnitude of the step input change. From (8.72) and (8.73), 
it follows that 

v0(t) = £ -1 

κα[ι + ^ ) 

p(I + i)(1 + i)(1+i)j 
V \ ωζι)\ ωζ2)\ (ocJ) 

(8.74) 

When the inverse Laplace transform is performed, the output voltage expression 
would contain three different exponential terms 

vo(0 = the term associated with β~ωΔί 

+ the term associated with β~ωζ2ί 

+ the term associated with β~ω<:ϊ (8.75) 

The first term in (8.75) is the slowest mode due to the prevailing condition of ωζ\ «: 
ωζ2 <£ ü)c; in other words, the first compensation zero ωζ\ becomes the dominant 
pole. Accordingly, the time constant of the transient response is τ = 1/ωζ\. The 
settling time of the transient response is determined as 

ts 3r = 3 — 
ωζλ 

(8.76) 
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For faster response, ωζ\ should be selected at higher frequencies. However, if ωζ\ 
is placed after the power stage double pole ω0, lTm could temporarily drop below 
-180° making the converter conditionally stable, as discussed in Section 8.4.1. Thus, 
the compensation zero ωζ\ should be placed at higher frequencies but still be located 
below the power stage double pole. In the previous section, it was recommended that 
ωζ] = (0.6-0.8) ω0. 

■ EXAMPLE 8.7 Compensation Zero and Step Input Response 

This example substantiates the previous theoretical discussions about the im-
pacts of the first compensation zero. The voltage feedback compensation of 
the buck converter is now modified to 

3.9 xlO3 Γ +
 2π ■ Z\l)V + 2π· 1.74 x HP, 

Fv{s) = 

1 + ^ r r ^ 1 + 

1 + - " . - J l + )( 2π·6.77χ 103Λ 2ττ · 4.0 x 104/ 

Compared with the original design, the first compensation zero is reduced 
from ωζ\ = 2π · 928 rad/s to ω'χ = 2π · 312 rad/s and the integrator gain 
is also decreased from Kv = 1.04 x 104 to K'v = 3.9 x 103, while the 
other compensation parameters are unchanged. Figure 8.30 shows the audio-
susceptibility of the modified design in comparison with the original transfer 
function. 

Figure 8.31 compares the output voltage of the buck converter in response 
to the step changes in the input voltage: V$ = 16 V => 8 V => 16V. As 
expected, the modified design produces a slower response. The settling time 
of the modified design is predicted as 

t' = 3τ' = 3 — = 3 - — — - = 1.53 ms 
ω'Δ 2π·312 

while that of the original design is estimated as 

ts = 3τ = 3 — = 3 - — — - = 0.51 ms 
ωζ} 2π · 928 

8.4.6 Step Load Response 

The step load response is a very important performance criterion for many dc-to-dc 
converters. As discussed in Section 7.3.1, the transient response of the output voltage 
can be analyzed using the output impedance. This section illustrates such an analysis 
with some simplifying assumptions on the output impedance characteristics. We will 
show that the speed of the step load response is determined by the position of the 
second compensation zero, ωΖ2 in (8.71). 
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• ωζ\ = 2π ■ 928: original design 

■ ω'ζ\ = 2π · 312: modified design 
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Figure 8.30 Compensation zero and audio-susceptibility. 

2 3 

Time [ms] 

Figure 8.31 Compensation zero and step input response. 

The asymptotic plot for the output impedance, originally introduced in Fig. 8.14, 
is modified in Fig. 8.32 with the following assumptions. 

1) The first compensation zero ωζ\ is placed at the low-frequency zero, ωζ, of the 
load current-to-output transfer function: ωζ\ = ωζ. 

2) The loop gain crossover frequency a>c is placed at the esr zero cuesr\ ω€ = ωβΞΓ. 
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Figure 8.32 Construction of asymptotic plot for output impedance. 

As will be shown in Example 8.8, these assumptions can broadly be justified in 
many practical dc-to-dc converters. The asymptotic plot for \Z0\ is redrawn in Fig. 
8.33(a). The first compensation zero ωζ\, which determines the speed of the step 
input response, does not appear in the output impedance. From Fig. 8.33(a), the 
output impedance is written as 

Z0(s) = (8.77) 
1 + 

ωΖ2 

where ωγη represents the frequency at which the initial line segment of \Z0\ crosses 
the 0 dB line. The peak magnitude of the output impedance is given by 

\Zo(jv)\peak = \ZoU°°)\ = 2 0 1 ° g (8.78) 

The transient response of the output voltage due to the step load change Istep is 
expressed as 

v0(t) = Γ 
'step S 1 

s ωι m 1 + 
ωζ1) 

I, ^ e ' ^ 
1 step c 

Mm 

(8.79) 
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Figure 8.33 Output impedance and step load response, (a) Output impedance, (b) Step load 
response. 

Figure 8.33(b) depicts the waveform of the output voltage. The peak overshoot of 
the output voltage is given by 

VoiOpeak = VO(0) = Istep 
ωζ2 

l^olpeak 

Istep 10 20 (8.80) 

based on (8.78) and (8.79). The output voltage decays from the peak with a time 
constant of τ = 1/ωΖ2· Thus, the settling time becomes 

ts = 3τ = 3 — 
ωζ2 

(8.81) 

As shown in the preceding analysis, there are simple, yet very practical and use-
ful, relationships among the output impedance characteristics and step load transient 
response. The settling time of the output voltage is dictated by the second compen-
sation zero, ts = 3/ωζ2· The peak value of the output voltage is determined by the 
product of the size of the step load change and the peak magnitude of the output 
impedance: v0(t)peak = I step 10| Z o l^ / 2 0 . 
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Figure 8.34 Output impedance of buck converter. 

EXAMPLE 8.8 Output Impedance and Step Load Response 

The accuracy of the preceding step load response analysis is confirmed in this 
example. For the buck converter in Example 8.2, the corner frequencies are 
given as ωζ1 = 2π · 928 rad/s, ωζ = 2π · 398 rad/s, ω€ = 2π · 5.80 x 103 rad/s, 
and a)esr = 2π · 6.67 x 103 rad/s, thereby broadly satisfying the conditions 
ωζ\ « ωζ and ω€ « 0Jesr. 

Figure 8.34 shows the output impedance \Z0\, load current-to-output trans-
fer function \Zp\, and loop gain \Tm\ of the converter. The simulated output 
impedance shows a good correlation with the theoretical prediction of Fig. 
8.32. 

Figure 8.35 illustrates the transient response of the output voltage with 
Istep = 4 A. The peak value of the output voltage is predicted as 

i^oipeak 

VoiOpeak 4.0 + 7 ^ 1 0 20 

4.0 + 4-10 -26/20 :4.2 V 

and the settling time is estimated as 

ts = 3τ = 3 — = 3 
ωζ2 2π·1 .74χ103 = 0.27 ms 
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Figure 8.35 Step load response of buck converter. 

8.4.7 Non-Minimum Phase System Case: Boost and Buck/Boost 
Converters 

As discussed in Sections 6.3 and 6.4, the boost and buck/boost converters contain a 
right-half plane (RHP) zero in the duty ratio-to-output transfer function, Gvd(s). The 
RHP zero induces a 90° phase delay to lGVd while increasing the slope of \GV(t\ by a 
20 dB/dec. The dynamic system with an RHP zero is called the non-minimum phase 
system in the sense that the total phase variation in the transfer function becomes 
larger than that of the system with a regular left-half plane zero. Thus, the boost and 
buck/boost converters are a typical example of the non-minimum phase system. 

The non-minimum phase system presents considerable difficulties to the feedback 
compensation design. The boost and buck/boost converters indeed do not render 
themselves to the application of the feedback control scheme presented in this chapter. 
In this section, we investigate the problem of the boost and buck/boost converters 
in regard to their control design. This section also introduces a new control scheme 
which can be applied to the boost and buck/boost converter to mitigate the problem 
of the RHP zero. 

Boost and Buck/Boost Converters 

The RHP zero imposes demanding constraints on the compensation design and hin-
ders the boost and buck/boost converters from acceptable closed-loop performance. 
The problem of the RHP zero can readily be seen in Fig. 8.36, which shows the asymp-
totic plots for the \Gvd\ and loop gain of a boost or buck/boost converter. The previous 
three-pole two-zero circuit is assumed for the voltage feedback compensation. 

The compensation parameters are selected based on the design strategy established 
in Section 8.4.2. In particular, the first compensation pole is placed at the RHP zero, 

J i I i I ■ I i I ■ L 
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ΖΓ, 

270 

Figure 8.36 Loop gain characteristics of boost or buck/boost converter with three-pole 
two-zero compensation. 

ωρ\ = (Jürhp, in an attempt to extend the frequency range in which \Tm\ maintains the 
desirable -20 dB/dec slope. 

The phase characteristics of the loop gain uncover the problem of the RHP zero. 
As shown in lTm in Fig. 8.36, the loop gain phase drops by 180° over the RHP 
zero, thereby worsening the high-frequency phase characteristics. The 90° phase 
drop caused by ω^ρ is augmented by the additional 90° phase delay brought in by 
ωρ\, resulting in 180° phase decay while \Tm\ stays in -20 dB/dec slope. Under this 
situation, lTm mainly remains near or below -180° from the mid-frequencies to high 
frequencies. Due to these unfavorable phase characteristics, it is very difficult to 
achieve satisfactory closed-loop performance while securing a reliable phase margin. 

EXAMPLE 8.9 Boost Converter Example 

This example demonstrates the difficulty in designing feedback compensation 
for a practical boost converter. Figure 8.37 shows the circuit diagram of a 
closed-loop controlled boost converter. The converter produces a 20 V output 
from a 12 V input source using the three-pole two-zero voltage feedback circuit. 
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Figure 8.37 Closed-loop controlled boost converter: Rx = 2.2 kQ, Ci = 40.4 nF, R2 

12 kH, C2 = 1.7 nF, R3 = 2.4 kn, and C3 = 0.28 //F. 

The steady-state duty ratio of the converter is determined as 

1 Vo= 

Vs l - D 

1 20 

12 l - D 
D = 0A 

From the duty ratio and power stage circuit parameters, the corner frequencies 
of the duty ratio-to-output transfer function are determined as 

and 

and 

l - D 

VZc 
1 - 0 . 4 

V160 x 10"6470 x 10"6 

= 2TT · 348 rad/s 

Mrhp 

1 

CRC 470 x 10"60.05 

( l - D ) 2 / ? 

L 

( l - 0 . 4 ) 2 5 

160 x 10"6 

2π · 1.79 x 103 rad/s 

1 
= 2π · 6.77 x 103 rad/s 
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Figure 8.38 Loop gain characteristics of boost converter. 

Based on the design guidelines for the three-pole two-zero compensation, 
the compensation parameters are selected as 

• ωζ\ = 0.7'ωυ = 2π · 244 rad/s 

• ωΖ2 = 1.2ω0 = 2π · 418 rad/s 

• ωρ\ = (x)rhp = 2π · 1.79 x 103 rad/s 

. ωρ2 = 0.8 ω5 = 2π · 4.0 x 104 rad/s 

. Κν = 500 

The loop gain characteristics are shown in Fig. 8.38. When compared with the 
asymptotic plots in Fig. 8.36, lTm curve shows a rather gradual decay at the 
frequencies beyond the power stage double pole. This is because the corner 
frequencies of the voltage feedback compensation are not as widely separated 
as presumed in the asymptotic analysis. The loop gain crossover frequency is 
located at ωα - 2π· 1.1 x 103 rad/s with a 13° phase margin. This design would 
not be acceptable for most applications due to the insufficient phase margin. 
A possible design change for an adequate phase margin is to place the loop 
gain crossover frequency near or before the power stage double pole. However, 
such a design would end up with poor closed-loop performance with overly 
large output impedance and audio-susceptibility. 
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Alternative Control Scheme: Current Mode Control 

The difficulty in the compensation design in Example 8.9 originates not from the 
structure of the feedback circuit but from the existence of the RHP zero in the 
duty ratio-to-output transfer function. While the previous example underscored the 
problem of the three-pole two-zero compensation circuit, it can readily be inferred 
that other compensation structures would worsen the situation. 

The feedback control scheme covered in this chapter employs the output voltage 
as the only feedback signal. In this sense, this control scheme is referred to as 
voltage mode control. Example 8.9 proved that voltage mode control is not suitable 
for converters that have an RHP zero, such as the boost converter, the buck/boost 
converter, and all other isolated PWM converters derived from these two converters. 

For dc-to-dc converters with the RHP zero, an alternative control method is adapted 
to resolve the aforementioned problem. The alternative control scheme employs the 
feedback signal not only from the output voltage but also from the inductor current. 
This control scheme is called current mode control because it employs an additional 
feedback from the inductor current. Current mode control could provide good closed-
loop performance for the boost and buck/boost converters at the presence of the RHP 
zero. Current mode control deserves rigorous treatments and thus is the topic of the 
last two chapters of this book. 

8.5 SUMMARY 

This chapter presented the dynamic analysis and feedback design of closed-loop 
controlled PWM dc-to-dc converters. The graphical asymptotic analysis method is 
used to illustrate the results of the closed-loop analysis, principles of the feedback 
compensation design, and impacts of the compensation parameters. The asymptotic 
analysis has emerged as a systematic and viable tool for the dynamic analysis and 
control design. This method provides a graphical process for the compensation design 
and closed-loop analysis, and also yields factorized equations for transfer functions. 

The three-pole two-zero circuit is identified as the optimal structure for the volt-
age feedback compensation for the buck converter. The relationship between the 
compensation parameters and performance criteria is investigated using the asymp-
totic analysis method. Simple and straightforward design procedures for the voltage 
feedback compensation are established. 

The frequency-domain analysis based on the small-signal model is an approxima-
tion and the results should be interpreted with care. In particular, the small-signal 
model does not account for the high-frequency phase delay, incurred by the nonlinear 
time-varying dynamics of the PWM modulator. The small-signal model thus under-
estimates the phase delay and the actual phase characteristics can be worse than the 
predictions of the small-signal model. The error grows steadily as the evaluation fre-
quency increases towards the switching frequency. This fact should be incorporated 
in the design and analysis of the converter loop gain, in order not to misinterpret the 
phase characteristics of the loop gain. Especially, the loop gain crossover frequency 
should be located at the frequencies sufficiently lower than the switching frequency, 
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typically 10-30% of the switching frequency, for the integrity of the information 
about the stability margins of the converter. Furthermore, the additional phase de-
lay, which is not accounted for in the small-signal model, should be considered in 
assessing the phase margin. 

The asymptotic analysis only uses the magnitude asymptotes while ignoring phase 
characteristics. This method is acceptable for most cases because the phase character-
istics in general do not significantly affect the asymptotic analysis. However, there is 
one exception for this general trend. At the frequencies near the loop gain crossover 
where \Tm\ « 1, the underlying assumption of \Tm\ » 1 or \Tm\ «: 1 is infringed 
and the closed-loop transfer function is strongly affected by the phase margin. In 
particular, insufficient phase margins induce a peaking in transfer functions, which 
the asymptotic analysis cannot predict. To avoid an excessive peaking, the phase 
margin of 45°-70° is recommended as a general guideline. 

It was demonstrated that the results of the frequency-domain analysis can be used 
to predict and optimize the time-domain transient response. This chapter presented 
the three examples of such analyses. 

1) The peaking in transfer functions, which appears at the loop gain crossover 
frequency when the phase margin is insufficient, can be translated to a damped 
oscillation in the transient response. The frequency of the oscillation is the 
same as the frequency of the peaking. 

2) The location of the first compensation zero determines the speed of the step 
input response. 

3) Finally, the location of the second compensation zero determines the speed of 
the step load response, while the peak value of the output impedance determines 
the magnitude of the output voltage excursion in the step load response. 

Although these time-domain analyses are performed using the small-signal model 
derived under the small-signal assumption, the analysis results show good correlation 
with the transient responses produced by relatively large changes in operational 
conditions: for example, up to the 50% change in the load current or input voltage. 

The feedback control scheme covered in this chapter is not suitable for the boost 
and buck/boost converters which have an RHP zero in their power stage transfer func-
tions. For boost and buck/boost converters, an advanced feedback control technique, 
called current mode control, needs to be employed. Current mode control utilizes an 
additional feedback from the inductor current, as well as the output voltage feedback. 
Current mode control is now widely adapted to PWM dc-to-dc converters thanks to 
to its inherent advantages. 

In contrast to current mode control, the control scheme covered in this chapter is 
called voltage mode control because it only utilizes the output voltage as the single 
feedback signal. Although voltage mode control has currently limited applications 
to buck and buck-derived PWM converters, it has profound significance in the area 
of the PWM converter modeling and analysis. Before the advent of current mode 
control, voltage mode control had virtually been the only available control scheme 
for PWM converters. Due to this long-time prevalence, the modeling and analysis of 
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PWM dc-to-dc converters have advanced centering around voltage mode control. As 
the outcomes of decades of research efforts, many important and valuable results are 
established for voltage mode control. Most of these achievements can be directly, 
or with minor modifications, adapted to current mode control. Current mode control 
will be treated in great details in the last two chapters of this book. 
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PROBLEMS 

8.1* Consider the asymptotic plots for \T\ and \G\ shown in Fig. P8.1. 

Fig. P8.1 

a) Use the asymptotic analysis method to find an analytical expression for 
F(s) = G(s)/(l + T(s)). 

b) Directly evaluate F(s) = G(s)/(l + T(s)) to find the analytical expression 
for F(s). 
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Figure P8.2 shows the circuit diagram of a closed-loop controlled buck con-
verter. 

-o^o . r>nm . 

)16V 

50 μΗ 
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25 /vs 

4 V 

0 V 

Fig. P8.2 

a) Sketch the asymptotic plots for the power stage transfer functions of |GV9|, 
\Gvd\, and \ZP\. Show the values for the low- and high-frequency asymptotes 
and corner frequencies on your plots. 

b) Assume that a single integrator Fv(s) - Z2(s)/Z\(s) = Kv/s is employed 
as the voltage feedback compensation. Argue that the converter becomes 
marginally stable when the 0 dB crossover frequency of the loop gain occurs 
at the power stage double pole. Based on your argument, find the value for 
Kv that makes the converter marginally stable. 

c) Assume that the following three-pole two-zero circuit is employed as the 
voltage feedback compensation 

Fv(s) = 
Kv 

1 + 
ωζ] 

1 + 
ωζ2 

1 + 
ωΡ\ 

1 + 
ωΡ2 

i) Select the numerical values for [ωζ\ ωΖ2 ωρ\ ωΡ2\ based on the compen-
sation design procedures discussed in Section 8.4.2. 
ii) Determine the integrator gain Kv in order to place the loop gain crossover 
frequency at the esr zero, while using the feedback compensation parame-
ters determined in i). 
iii) Construct asymptotic plots for \Tm\, \GVS\, and \AU\ based on the results 
of i) and ii). Find the expression for the audio-susceptibility in a factorized 
form. Specify the corner frequencies and leading coefficient of the audio-
susceptibility. Evaluate the peak value of \AU\. 
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8.3** The loop gain of a closed-loop controlled buck converter is shown in Fig. P8.3. 
Now assume that the three-pole two-zero compensation is used for the voltage 
feedback compensation. The feedback compensation parameters are selected 
as outlined in Section 8.4.2. 

Fv(s) 
Kv 

1 + 
ω ζ ι / \ ωζ2) 

\ ωρΐ)\ ωρ2ΐ 

with ΛΓν = 2500 

60 
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-180 

Ν 
IN 1 1 

1 1 II 1 
IFTffl l i i i l 1 1 1 

0.01 0.1 1 10 
Frequency [kHz] 

100 

Fig. P8.3 

a) Estimate the location of the power stage double pole. 
b) Estimate the value for the first compensation zero, ωζ\. 
c) Find the 0 dB crossover frequency and phase margin of the loop gain. 
d) Sketch the polar plot of the loop gain. Show the 0 dB crossover frequency 

and phase margin on your plot. 
e) Assume that the input voltage of the converter is Vs = 12 V. Find the 

modulator gain Fm of the PWM block. The current integrator gain is 
Kv = 2500. 

f) Is it possible to make the converter unstable by changing only the integrator 
gain, ^v? Justify your answer. 

g) Now assume that the integrator gain is varied between 250 < Kv < 25000, 
while the other compensation parameters remain the same. The current 
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integrator gain is Kv - 2500. The change in the integrator gain will alter 
the loop gain characteristics. Find the range in the 0 dB crossover frequency 
fc and phase margin φΜ of the loop gain. Arrange your answer in the form 
of( ) < / c < ( )and( ) < 0 m < ( ). 

Figure P8.4 is the circuit diagram of a closed-loop controlled buck converter. 
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20//s 

Fig. P8.4 

a) Sketch the asymptotic plot for the loop gain magnitude. Show the values for 
the low-frequency asymptote, crossover frequency, and corner frequencies 
of the loop gain. 

b) Find the average values for vcon and vo- Specify your answer up to the three 
significant digits. 

c) Sketch the asymptotic plot for the magnitude of the audio-susceptibility. 
Show the low-frequency asymptote value, peak value, and corner frequen-
cies of the audio-susceptibility. Use the results of a) and b). 

d) Find the new value for R\ that makes the converter marginally stable. 

Shown in Fig. P8.5 are the circuit diagram of a closed-loop controlled buck 
converter and the asymptotic plots for its loop gain, input-to-output transfer 
function, and load current-to-output transfer function. 
a) Find the numerical values for the frequencies X and Y specified in the 

blanks. 
b) Determine the numerical values for A and B specified in the blanks. 
c) Find the expression for voltage feedback compensation Fv(s) = Z2(s)/Z\ (s). 
d) Sketch the asymptotic plots for \AU\ = \Gvs\/\\ + Tm\ and \Z0\ = \Zp\/\l + Tm\. 

Label the corner frequencies and peak value of the transfer functions. 
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8.6 The loop gain of a closed-loop controlled buck converter is shown in Fig. P8.6. 
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Fig. P8.6 

a) Evaluate the phase margin and crossover frequency of the converter. 
b) Assume the three-pole two-zero circuit is used for the voltage feedback 

compensation 

Fv(s) = 
Kv 

1 + 
ωΔ 

1 + - Ϊ -
ωζ2 

1 + 
ωΡ\ 

1 + 
ωΡ2 

Identify the problems of the current compensation design and provide 
suggestions to improve the current design. 

8.7* Figure P8.7 is the asymptotic magnitude plot for the loop gain of a buck 
converter. The buck converter employs the three-pole two-zero compensation, 
thus yielding the loop gain expression of 

Tm(s) = 
Kt 

1 + 
ωΔ 

ι + -Μίι + - ί -
ωζ2 

1 + 
QcOo 

+ - , ι + 
ωΡ\ 

1 + 
ωρ1 



PROBLEMS 391 

Fig. P8.7 

a) Explain the reason for selecting ωζ\ < ω0. 
b) Explain the considerations for choosing the position of ωζ\. 
c) Describe the considerations for selecting the location of ωΖ2. 
d) Describe the reason for choosing ωρ\ = cjesr. 
e) Why is the step load response always faster than the step input response? 
f) Selections of the compensation parameters affect the performance of the 

converter in various ways. Table P8.7 table summarizes the impacts of 
changes in the value of the specific compensation parameters. Fill in the 
blanks in the table. 

Table P8.7 

Benefits of moderate change Side-effects due to excessive change 

Increase in ωζ\ 
Increase in ωζ2 

Decrease in ωρ2 

Increase in Km 

Fast step input response 
( ) 
( ) 
( ) 

8.8 Figure P8.8 is the functional block diagram of a closed-loop controlled buck 
converter. The voltage feedback compensation is given by 

1 + 
ZI(J ) = 5 0 0 -

1 + 

5 x l 0 4 

s 
5 x l 0 3 

Z2(s) = 
7 .5x l0 6 ( l + ^ S . ) 

(i+2^y J 1 + 
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Fig. P8.8 

a) Sketch the asymptotic plot of the loop gain \Tm\. Show all corner frequencies 
on your plot. 

b) Sketch the asymptotic plot for the input-to-output transfer function |GVV|. 
Show the low-frequency asymptote value and corner frequencies. 

c) Assume that the 0 dB crossover frequency of \Tm\ occurs at a>c = 5 x 
104 rad/s. Sketch the asymptotic plot for the audio-susceptibility \AU\ 
under this assumption. Show the peak value and the corner frequencies of 
the audio-susceptibility. 

8.9 The loop gain of a closed-loop controlled buck converter is shown in Fig. P8.9. 

a) Determine the stability of the converter. 
b) Sketch the polar plot of the loop gain. Show all the prominent features of 

the loop gain on the polar plot. 
c) Assume that the integrator gain Kv of the voltage feedback compensation 

is increased by 10 times. The other compensation parameters remain the 
same. What response is expected in the converter output? 

d) Now assume that the integrator gain Kv is decreased by 10 times and the 
other compensation parameters remain the same. What will happen to the 
converter output? 

8.10 Shown in Fig. P8.10 is the loop gain of a closed-loop controlled buck converter. 
Answer the questions. 
a) Determine the stability of the converter. 
b) Sketch the polar plot of the loop gain. Show all the important information 

on your sketch. 



T
O

" 

0
0 

P
ha

se
[d

eg
] 

M
ag

ni
tu

de
 [

dB
] 

U
> 

K
) 

^ 
>—

 
tO

 
t>

J 

B
M

if
ff

i 

3 T
O

" 

0
0 

SO
 

Ph
as

e 
[d

eg
] 

M
ag

ni
tu

de
 [

dB
] 

w
* 

! 

"
0 

D
O

 
O

 
C

D
 

<o
 

C
d

 



3 9 4 CLOSED-LOOP PERFORMANCE AND FEEDBACK COMPENSATION 

8.11* 

c) The input voltage of the converter is Vs = 16 V and the magnitude of the 
PWM ramp signal is Vm = 4 V. Evaluate the integrator gain Kv of the 
current voltage feedback compensation. 

d) What will happen to the converter output when the integrator gain Kv is in-
creased by a factor of 20 log 3.16^ 10 dB? Assume the other compensation 
parameters remain the same. 

e) Find two different values for Kv which would stabilize the converter with 
a 20° phase margin. Among these two values, which value would you 
prefer as your design choice? Justify your answer. Assume the other 
compensation parameters remain the same. 

The loop gain of a closed-loop controlled buck converter is shown in Fig. 
P8.ll. 
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Fig. P8.11 

a) Determine the stability of the converter. 
b) Sketch the polar plot of the loop gain. Show all the prominent features of 

the polar plot. 

Now assume the three-pole two-zero circuit is used for the voltage feedback 
compensation 

Fv(s) = 
Kv \ ωζ\)\ ωζ2 

/ / i + -L)(i + - L 
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The current integrator gain is Kv = 2500. However, the integrator gain Kv 

will be varied in the following problems. 
c) Find the ranges for Kv that destabilize the converter. 
d) Find the value for Kv that produces a sustained oscillation at ω = 2π · 

105 rad/s. 

8.12**The audio-susceptibility Au(s) of a closed-loop controlled converter is given by 
Au(s) = Gvs(s)/(l + Tm(s)) where Gvs(s) is the input-to-output transfer function 
and Tm(s) is the loop gain. Shown in Fig. P8.12 are asymptotic plots for |GVi| 
and \Tm\ of a closed-loop controlled converter. 

Fig. P8.12 

a) Use the asymptotic analysis method to find an analytical expression for 
Au(s). 

b) Directly evaluate the relationship Au(s) = Gvs(s)/(l + Tm(s)) to find the 
analytical expression for Au(s). 

c) Now assume that a step increase of Vstep = 10 V is occurred in the input 
voltage. Find the expression for the transitional waveform of the output 
voltage vo> Also, draw the general shape of vo and show all the important 
features of ν<> 

8.13 Figure P8.13 shows the circuit diagram of a closed-loop controlled buck con-
verter and the asymptotic plots of its loop gain \Tm\, duty ratio-to-output transfer 
function |GVi/|, and input-to-output transfer function \GVS\. Answer the ques-
tions. 
a) The duty ratio-to-output transfer function, |GVi/|, reveals a notable difference 

from the transfer function discussed in Section 8.3. What do you think 
causes the difference? 

b) Estimate the phase margin and gain margin of the loop gain. 
c) Evaluate the values for A, B, and C specified in the blanks. 
d) Based on the information given in Fig. P8.13, find an expression for the 

voltage feedback compensation, Fv(s) = Zi(s)IZ\(s). Express Fv{s) in 
terms of the circuit and compensation parameters. 



3 9 6 CLOSED-LOOP PERFORMANCE AND FEEDBACK COMPENSATION 

Fig. P8.13 

e) Construct the asymptotic plot for the audio-susceptibility, \AU\ - |GVJ|/|1 + 
Tm\. Show the corner frequencies and slopes of asymptotes on your plot. 

8.14**Consider Fig. P8.14 as the asymptotic plots for the load current-to-output trans-
fer function \ZP\ and the loop gain \Tm\ of a closed-loop controlled converter. 

a) Sketch the asymptotic plot of the closed-loop output impedance \Z0\. Show 
the peak value and corner frequencies of the asymptotic plot. 

b) Derive an analytical expression for Z()(s). 
c) Find an analytical expression for the output voltage in response to a 0.1 A 

step decrease in the load current. 
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Fig. P8.14 

8.15** Assume that the loop gain Tm(s) of a certain closed-loop controlled converter 
is given by 

, x _ Tv(s) 
7 m W " 1 + 7,(5) 

where Tv(s) and Ti(s) are two different s-domain polynomials. The asymptotic 
plot for \TV\ and |Γ/| are shown in Fig. P8.15. 

Fig. P8.15 

a) Use the graphical asymptotic analysis method to find an analytical expres-
sion for the loop gain Tm(s). 

b) Evaluate the crossover frequency, phase margin, and gain margin of Tm(s). 

8.16* Figure P8.16 are the functional block diagram of a closed-loop controlled buck 
converter and the Bode plot of its loop gain. Assume that the Bode plot is 
evaluated with the parameters specified in the circuit diagram. Clearly, the 
converter is unstable with negative gain and phase margins. There are two 
different ways of changing the magnitude of the loop gain, while keeping its 
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phase characteristics unchanged. One way is to alter the resistance R\ and 
the other way is to vary the magnitude of the ramp function, Vm. Currently, 
R] = 10 kQ and Vm = 1.6 V are selected. 
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Fig. P8.16 

a) Find a new value for R\ that makes the converter marginally stable under 
the assumption that the other circuit parameters retain their original values. 
What do you think will be observed in the circuit waveforms of the con-
verter? What will be observed in the transfer functions of the converter? 
Be specific and precise in your answer. 
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b) Find a new value for Vm that makes the converter stable with a phase margin 
of 60° under the assumption that the other circuit parameters maintain their 
original values. 

8.17**The small-signal block diagram of a closed-loop controlled PWM converter is 
shown in Fig. P8.17. 

Gvs (s) = 
1+5/400 

0.1(l+,/2000) 
p 1+5/200 

Gvd(s)--
1+5/400 

F =1.0 

Fig. P8.17 

V 

-Fv(s) = 
Kv(\+s/400) 

a) Based on the information given in Fig. P8.17, sketch the asymptotic plots 
for the output impedance \Z0\ = \v0/t0\ for the following three cases of the 
integrator gain Kv in Fv(s) = Kv{\ + s/400)/s: 

i) Kv = 1000 ii) Kv = 2000 iii) Kv = 4000 

Show the corner frequencies and peak value of \Z0\. 
b) Now, sketch the asymptotic plots for the audio-susceptibility \AU\ = \v0/vs\ 

for the following three cases of Kv values: 

i) Kv = 1000 ii) Kv = 2000 iii) Kv = 4000 

Show the corner frequencies and the peak value of \AU\. 

8.18**Figure P8.18 shows the Bode plot of the load current-to-output transfer function 
\ZP\ and output impedance \Z0\ of a closed-loop controlled buck converter. 
a) Find the 0 dB crossover frequency coc and phase margin φΜ of the converter 

loop gain. 
b) Estimate the values for the esr and inductance of the power stage inductor. 
c) Evaluate the values for the esr and capacitance of the power stage capacitor. 
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Fig. P8.18 

8.19* The loop gain Tm of a closed-loop controlled dc-to-dc converter is shown in 
Fig. P8.19. 

Z7\ 

Fig. P8.19 

a) Find the gain margin and phase margin of the converter. 
b) As discussed in Section 8.4.4, the closed-loop transfer function exhibits a 

peaking at ω = uc where \Tm\ crosses the 0 dB line. For the given system, 
evaluate the size of peaking in dB scale. 

c) It can be shown that the closed-loop transfer function also shows a peaking 
at ω = ω[. where lTm becomes -180°. Derive an equation that describes 
the magnitude of the closed-loop transfer function at ω[. and evaluate the 
size of the peaking in dB scale. 
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8.20**Figure P8.20 depicts the small-signal block diagram of a closed-loop controlled 
dc-to-dc converter. Assume the following transfer functions for the gain blocks: 

Gvd{s) = 

2°(i+4^y 
(i+4öö)(i+4^y 

Gvs(s) 
0.5 

1 + 

Fm = 0.25 

400 

Gvs(s) 

Zp{s) 

Gvd(s) 

Fm 

+ J k+ VP 
V 

+ 

P fv\ 
r i t / W 

Fig. P8.20 

a) Find the expression for voltage feedback compensation, Fv(s), which yields 
the following loop gain characteristics: 
i) a -20 dB/dec slope from the zero frequency to the 0 dB crossover 
frequency located at uc - 4 x 104 rad/s, and 
ii) a 45° phase margin. 

b) Assuming the voltage feedback compensation found in a), answer the 
following questions. 
i) Sketch the asymptotic plot for the audio-susceptibility of the converter. 
Show the corner frequencies and peak value on your sketch. 
ii) Find an expression for the output voltage vo(t) when the input voltage 
is given by vs(f) = 16 + 0.5 sin4000i. 

8.21**Shown in Fig. P8.21 are the small-signal block diagram of a closed-loop con-
trolled buck converter and the asymptotic plot for its loop gain \Tm\. Assume 
the following transfer functions for the gain blocks in the block diagram: 
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Gvd(s) = Zp(s) 

i o ( i + s^y 
1 + 

400 

Fm = 0.2 

Gvs(s) 

Zp(s) 

Gvd(s) 

Fm 

+ ) 
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V 
+ 

17 ic\ 
Ρλ ;\?J 

V0 

Fig. P8.21 

a) Estimate the phase margin and gain margin of the converter. 
b) Find an analytical expression for the voltage feedback compensation Fv(s). 
c) Sketch the asymptotic plot for the output impedance \Z0\ 

and find the equation for Z0(s). 
IZJ/11 + Γ* 

8.22**Shown in Fig. P8.22 are the Bode plot of the input-to-output transfer function 
\GVS\ and audio-susceptibility \AU\ of a closed-loop controlled buck converter. 
a) Estimate the loop gain crossover frequency of the converter. 
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Fig. P8.22 

b) Estimate the duty ratio of the converter. 
c) Assume that vs(t) = 10 + 2sin27r-400i is applied to the input of the 

converter. Find an expression for the output voltage. Ignore the switching 
ripple component. 

d) Estimate the settling time of the output voltage due to a step input change. 

8.23**Figure P8.23 are the Bode plots of the load current-to-output transfer function 
\ZP\ and output impedance \Z0\ of a closed-loop controlled buck converter. 
Assume that the three-pole two-zero circuit is used for the voltage feedback 
compensation. 

Fv(s) = 
Kv 

1 + - ) ( ■ ♦ - ) 
ωζ\)\ ωζ2) 

1 + - ) ( ■ ♦ - ) 

Evaluate the following items based on the information given in the Bode plot 
of |ZP| and |Ζσ|: 
a) loop gain crossover frequency, 
b) location of the first compensation zero ωζ\, 
c) location of the second compensation zero ωΖ2, 
d) location of the esr zero of the power stage a)esr, 
e) magnitude of the output voltage overshoot due to a 10 A step decrease in 

the load current, and 
f) settling time of the output voltage due to a 10 A step decrease in the load 

current. 
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8.24**Shown in Fig. P8.24 are the Bode plots of the input-to-output transfer func-
tion |GVJ| and audio-susceptibility \AU\ of another closed-loop controlled buck 
converter. Assume that the converter employs the same three-pole two-zero 
circuit discussed in the previous problem. Evaluate or illustrate the following 
items based on the information given in the Bode plot: 
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Fig. P8.24 

a) loop gain crossover frequency, 
b) phase margin of the loop gain, 
c) location of the first compensation zero ωζ\, 
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8.25' 

d) duty ratio of the converter D, 
e) settling time of the output voltage due to a 10 V step increase in the input 

voltage, and 
f) general shape of the output voltage due to a 10 V step increase in the input 

voltage. 

The output impedance Z0(s) of a closed-loop controlled converter is given by 
Z0{s) = Zp(s)/(l + Tm(s)) where Zp{s) is the load current-to-output transfer 
function and Tm{s) is the loop gain. Shown in Fig. P8.25 are the asymptotic 
plots for \ZP\ and \Tm\ of a closed-loop controlled converter. 

.40 r/s 

Fig. P8.25 

8.26* 

a) Find the expressions for Zp(s) and Tm(s). 
b) Use the asymptotic analysis method to find the expression for Z0(s). 
c) Now assume that a step decrease of Istep = 10 A is occurred in the load 

current. Find the expression for the transitional waveform of the output 
voltage v0. Also, sketch v0 to show all important features of the waveform. 
Ignore the switching ripple component. 

Figure P8.26 shows the loop gain characteristics of a closed-loop controlled 
buck converter. Assume the standard three-pole two-zero circuit for the voltage 
feedback compensation. 

Fv{s) 
Kv 

1 + 
ωΔ )('♦£) 

\ ωρι)\ ωρ2) 

with Kv = 1500 

a) Evaluate the crossover frequency and phase margin of the loop gain. 
b) Describe the characteristic features of the output impedance with the current 

design. 
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c) Explain the characteristic features of the step load response with the current 
design. 

d) Find the new value for Kv that offers a 60° phase margin. The current 
value of Kv is 1500. Assume the other compensation parameters remain 
unchanged. Although the new integrator gain provides the desired phase 
margin, the resulting design is considered unacceptable. State the reason 
for this. 

e) Find the new value for Kv that offers the largest possible phase margin while 
locating the crossover frequency beyond the current position. Assume the 
other compensation parameters remain the same. 

f) It is not feasible to practically obtain the largest phase margin evaluated in 
e). Explain the reason for this and state the preferred design strategy. 



CHAPTER 9 

PRACTICAL CONSIDERATIONS IN 
MODELING, ANALYSIS, AND DESIGN 
OF PWM CONVERTERS 

Up to this chapter, the modeling and control of dc-to-dc converters are discussed only 
for the three basic non-isolated converters operating in the continuous conduction 
mode (CCM) with an ideal voltage source and purely resistive load. However, real 
dc-to-dc converters encounter many other practical operational conditions. Practical 
considerations for realistic converter operations are listed below. 

1) Although primarily intended for CCM operation, dc-to-dc converters enter 
discontinuous conduction mode (DCM) operation when the load current is 
reduced. Accordingly, dc-to-dc converters operate in both CCM and DCM, 
frequently crossing the borderline between them. The DCM operation should 
be accounted for in the analysis and design of dc-to-dc converters. 

2) Isolated dc-to-dc converters are widely used for practical applications. The 
modeling and design method should be extended to isolated PWM dc-to-dc 
converters. 

3) Dc-to-dc converters are usually powered by a non-ideal voltage source which 
presents a certain source impedance. The source impedance could deteriorate 
the converter dynamics and therefore should be incorporated in the analysis 
and design of dc-to-dc converters. 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 407 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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4) The load of dc-to-dc converters is not a pure resistor but a combination of 
passive and active components which exhibit general impedance characteris-
tics. The load impedance characteristics should be included in the analysis of 
converter performance. 

The purpose of this chapter is to address the practical considerations in modeling, 
analysis, and design of dc-to-dc converters. This chapter illustrates the procedures 
of generalizing the outcomes of the earlier chapters and demonstrates the impacts 
of the departure from the ideal operational conditions on the dynamic performance 
of dc-to-dc converters. The analysis and design methodology, developed earlier in 
previous sections for the three basic converters under ideal conditions, will be proven 
to be adaptable to most real circumstances with non-ideal conditions. 

9.1 GENERALIZATION OF PWM CONVERTER MODEL 

In Chapters 5 and 6, the small-signal modeling and dynamic analysis were discussed 
based on several assumptions and restrictions on the converter operation. It was 
postulated that the parasitic resistances of the reactive components do not interfere 
with the modeling process and can be freely included in the small-signal model. This 
section will demonstrate that this is not an exact fact but is an acceptable presumption 
for most cases. 

Earlier chapters only considered CCM operation in the small-signal modeling 
and dynamic analysis of dc-to-dc converters. When dc-to-dc converters enter DCM 
operation, the small-signal dynamics will be altered. The current section discusses 
the modeling and dynamic analysis in DCM operation. 

The previous chapters exclusively dealt with the modeling and analysis of non-
isolated converters. This section extends the earlier results to isolated PWM dc-to-dc 
converters, thereby allowing the existing techniques to be consistently adapted to all 
isolated/non-isolated PWM dc-to-dc converters. 

9.1.1 Converter Modeling with Parasitic Resistances 

The parasitic resistances of the reactive components affect the modeling process of 
dc-to-dc converters. This section presents the modeling of PWM converters at the 
presence of the parasitic resistances. 

Buck Converter with Ideal Voltage Source 

The buck converter powered by an ideal voltage source is one special case where 
the parasitic resistances do not affect the modeling process. Figure 9.1(a) shows the 
circuit diagram of a buck converter where the inductor and capacitor both contain 
parasitic resistances. Figure 9.1(b) illustrates the circuit waveforms of the PWM 
switch. It is evident from Fig. 9.1(b) that the equations for averaged circuit variables 
remain the same as those of Section 5.2.2 

Ta(t) = dlc(t) 
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Figure 9.1 Buck converter with ideal voltage source, (a) Circuit diagram, (b) PWM switch 
waveforms. 

VCp(0 dvap{f) (9.1) 

regardless of the presence of the parasitic resistances. Accordingly, the parasitic 
resistances can be included as add-ons to the small-signal model, as practiced in the 
previous chapters. This special case is only valid for the buck converter connected to 
an ideal voltage source. 

Buck Converter with Input Filter 

As shown in Fig. 9.1(b), the source current ia{t) delivered from the voltage source 
to the buck converter is a pulsating discontinuous current. For practical reasons 
including regulatory requirements, the buck converter usually employs a filter stage 
between the voltage source and power stage so that the voltage source only supplies 
the average or dc component of the input current. 

The operation of an input filter is illustrated in Fig. 9.2, where the reactive filter 
components, Lf and C/, are assumed to be sufficiently large. The voltage source 
supports the dc component of the input current, Ta(t), while the Rd~Cf branch of 
the input filter carries the ac component of the input current, ia(t) = ia(t)-Ja(t). The 
resistance Rd provides an appropriate damping for the filter stage. The necessity and 
role of the input filter stage will be further discussed in Example 9.8 in Section 9.2.2. 
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Figure 9.2 Buck converter with input filter. 

The PWM switch waveforms with an input filter stage are shown in Fig. 9.3. As 
shown in Fig. 9.3(b), the input filter stage does not alter the current equation of the 
PWM switch, Ja(t) = dic(t). However, the voltage equation is changed by the input 
filter stage. The voltage across the the active-passive terminal, vap, is divided into 
two components: the voltage across the filter capacitor, vcf, and the voltage across 
the damping resistor (in the opposite polarity to vcr), VRd. The filter capacitor voltage 
vcf supports the average value or dc portion of vap 

VC/(0 = Vap(t) (9.2) 

On the other hand, the damping resistor voltage, v/^, is an ac voltage developed 
by the ac portion of ia(f) 

VRd{t) = (ia(t) ~ Ut))Rd = UWd (9-3) 

The voltage VRd is a scaled replica of ia(t) with zero average value. The voltage 
waveforms vcf and VRd are illustrated in Fig. 9.3(c), where the voltage swing AvRd is 
given by 

AvRd = Tc{t)Rd (9.4) 

The active-passive terminal voltage vap is now expressed as 

VapiO = VCf(t) - VRd(t) = Vap(t) - la(t)Rd (9.5) 

This waveform is shown in Fig. 9.3(d), where another dc voltage level, Vx, is defined 
to facilitate the derivation of the voltage equation. Lastly, the voltage across the 
common and passive terminals, vcp(t), is illustrated in Fig. 9.3(e). 

It is evident from Fig. 9.3(e) that the average value of vcp is given by 

vcp(t) = dVx (9.6) 

The above equation differs from the previous voltage equation of vcp = d vap because 
Vx Φ vap. Now the remaining task is to find the expression for Vx, which is done 
using the detailed vap waveform in Fig. 9.4. From the graphical construction, it is 
recognized that the areas of the two shaded rectangles in Fig. 9.4 should be the same 

(vap(t) - Vx)dTs = (Vx + AvRd - vap{t))d'Ts (9.7) 
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Figure 9.4 Active-passive terminal voltage waveform. 

which is simplified to 

Vx = vap(t) - AvRdd' = vap(t) - RdTc(t)d' 

Using the notation of Rd = rap, the above expression is rewritten as 

Vx = vap(t) - rapic(t)d' 

(9.8) 

(9.9) 
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The symbol rap signifies the ac resistance between the active and passive terminals, 
which can be found by opening Lf and shorting C/. The final averaged voltage 
equation is then given by 

vcp{t) = dVx = d(vap(t) - rapJc{t)d') (9.10) 

Linearization of Averaged PWM Switch Equation 

The results of the previous analysis are generalized for the three basic converters 
shown in Fig. 9.5. For all three converters, the averaged circuit equations are given 
by 

Ta(t) = dlc(t) 

Vcpit) = d(vap{t)-rapJc{t)d') (9.11) 

where 

1 0 for buck converter without input filter 

Rd for buck converter with input filter 
Rc || R for boost and buck/boost converters 

The ac resistance between the active-passive terminal, rap, is identified from Fig. 9.5. 
The rap carries the ac component of the active terminal current, la(t) = ia(t) - Ta(t), 
as shown in Fig. 9.5. For the standalone buck converter, it is obvious that rap - 0. 

Application of the linearization process to (9.11) yields 
Ια + taV) = (D + <?(i))(/6. + Ic(0) 

Vcp + vcp(t) = (D + d(t)) 

((Vap + Vap(0) ~ rap(Ic + |c.(0)(l - (D + J))) (9.12) 

By equating the first-order ac components from (9.12), the small-signal representation 
of (9.11) is obtained 

ia(t) = D ic(t) + Ic d(t) 

vcp(t) = Dvap(t) + VDd{t)-ic{t)DD'rap (9.13) 

with 
VD = Vap + HD - D')rap (9.14) 

The circuit model for the above small-signal equations is given in Fig. 9.6. With 
rap = 0, the circuit model reduces to the previous small-signal model which does not 
incorporate the effects of rap. 

Predictions of Refined Small-Signal Model 

The ac resistance between the active-passive terminal, rap, alters the dependent 
voltage source and introduces an additional resistance to the small-signal model of 
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Figure 9.5 Circuit diagram of three basic converters, (a) Buck converter with input filter. 
(b) Boost converter, (c) Buck/boost converter. 

the PWM switch. These changes only influence the dc gain and damping ratio of 
transfer functions and their consequential effects will not be substantial unless the ac 
resistance rap is unusually large. Accordingly, the transfer functions of the refined 
model will largely be the same as those of the previous model which ignores the 
impact of rap. 

+—c 

Figure 9.6 Refined small-signal model for PWM switch. 
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Figure 9.7 Boost converter, (a) Circuit diagram, (b) Small-signal model. 

■ EXAMPLE 9.1 Boost Converter Example 

This example illustrates the prediction of the refined small-signal model. Figure 
9.7 shows a boost converter and its small-signal model. In the small-signal 
model, the ac resistance rap is given by 

Γαρ ~ Re II R 

and the dc voltage source Vp is expressed as 

VD =-Vo ~ h(D - D')rap 

The operational conditions and circuit parameters of the boost converter are 
Vs = 15 V, L = 800 μΗ, Rt = 0.01 Ω, C = 1000 //F, Rc = 0.1 Ω, R = 2 Ω, 
fs = 10 kHz, and D = 0.25. Figure 9.8 compares the duty ratio-to-output 
transfer functions of the converter, simulated with two different conditions. 
One simulation is with rap = R \\ Rc and the other simulation is with rap = 0, 
that is, ignoring the consequence of rap. The difference between the transfer 
functions is nearly undetectable. 

As demonstrated in the previous example, the impacts of rap are negligible for most 
cases. In this book, the earlier small-signal model without rap will be continuously 
used for notational simplicity. Nonetheless, the refined model with rap will be 
employed to all forthcoming PSpice® simulations. 
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Figure 9.8 Duty ratio-to-output transfer function of boost converter. 

9.1.2 Modeling and Analysis of PWM Converters in DCM Operation 

The operation of practical dc-to-dc converters spans both CCM and DCM regions. 
As a dc-to-dc converter departs from CCM and enters DCM operation, its small-
signal dynamics will be altered, thereby requiring a new small-signal model and new 
analysis. 

Averaged Equations for PWM Switch in DCM 

The buck/boost converter is selected to illustrate the modeling of DCM dynamics. 
The modeling results are invariant with the selected converter topology and thus can 
be extended to all the three basic dc-to-dc converters. In the buck/boost converter 
circuit in Fig. 9.9(a), the following relationships hold 

Vac(t) = VS 

Vcp(t) = Vo (9.15) 

because the average value of the inductor voltage is zero, vi = 0, due to the volt-sec 
balance condition. 
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Figure 9.9 Buck/boost converter and DCM waveforms of PWM switch, (a) Buck/boost 
converter, (b) PWM switch waveforms in DCM. 

The current waveforms of the PWM switch in Fig. 9.9(b) indicate that 

^LpeakdTs / 

hit) = -—= = -^-d 

1 

Tp(t) 

^LpeakdlT, ^ 

(9.16) 

where it. peak is the peak value of the inductor current. Expressions (9.16) yield the 
averaged current equation 

hit) = ^-ip{t) (9.17) 

Two different expressions for itpeak are formulated from Fig. 9.9 

lL peak 
Vs .„ vac(t) 
TdTs = — dTs 

^ L peak 
V0 vcp(t) 
—d\Ts = —j—d\Ts 

to produce the averaged voltage equation for the PWM switch 

d± 
d 

Vac(t) = —VCp(t) 

(9.18) 

(9.19) 
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Using (9.16) and (9.18), the parameter d\ is expressed in terms of the average 
circuit variables and operational conditions 

dx = mi^L^M}j^ (9.20) 
d vcp{t) d vac(t) 

where fs = l/Ts is the switching frequency. Expressions (9.17), (9.19), and (9.20) are 
combined together to establish a set of equations that describe the averaged dynamics 
of the PWM switch in DCM operation 

Ja{t) = μϊρ(ή 

Vcpit) = μναΜ (9.21) 

with 

μ dx 2Lfsia(t) 2LfsTp(t) 

Linearization of Averaged Equation and Small-Signal Circuit Model 

By combining (9.21) and (9.22) and linearizing the resulting equations, a set of 
small-signal equations are obtained [1] 

laif) = -Vac(t) + kid(t) 
n 

i P(t) = gfVadt) + k0d(t) + -vpc(t) (9.23) 
ro 

with 
V ac , ΪΊα 

21 p 2 / p Vcp 
gf=Tr k0 = -Z and r0 = - ^ (9.24) 

*ac L) lp 

The above equations constitute the small-signal equation of the PWM switch in DCM 
operation. Derivations of (9.23) and (9.24) are discussed in Problem 9.1 at the end 
of this chapter. 

A straightforward circuit representation of the small-signal equations in (9.23) 
is shown in Fig. 9.10. This circuit model is referred to as the DCM PWM switch 
model. The DCM PWM switch model includes two resistive parameters, r; and 
r0. These resistive parameters dictate the small-signal dynamics of the model, as 
will be demonstrated shortly. Now, DCM small-signal models for the three basic 
converters are obtained by replacing the PWM switch with the DCM PWM switch 
model. Figure 9.11 shows a buck/boost converter and its DCM small-signal model. 
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Figure 9.10 Small-signal model for PWM switch in DCM operation. 

(b) 

Figure 9.11 Buck/boost converter and DCM small-signal model, (a) Buck/boost converter. 
(b) DCM small-signal model. 

EXAMPLE 9.2 DCM Small-Signal Model of Buck/Boost Converter 

This example shows the prediction of the DCM small-signal model of a 
buck/boost converter. For the buck/boost converter, the parameters of DCM 
PWM switch model in (9.24) are given by 

n = — kl=2IL gf = — 

, 2MVS _ . , r M2VS A A4 

k() = r0 - R with IL = and M 
DR DR 

Readers are encouraged to prove the above expressions for the DCM PWM 
switch model parameters. The operational conditions of the buck/boost con-

V 2L 
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Figure 9.12 Gvd(s) of buck/boost converter in DCM. 

verter are Vs = 18 V, L = 40 μΗ, Ri = 0.01 Ω, C = 470 //F, #c = 0.03 Ω, 
/? = 20 Ω, /j = 50 kHz, and D = 0.25. The critical resistance that places the 
converter on the CCM/DCM boundary is 

Re. 
2L 2 · 40 x 10"6 

(\-D)2Ts ( l - 0 . 2 5 ) 2 2 0 x l 0 " 6 = 7.1Ω 

With /? = 20 Ω, the converter is in deep DCM operation. The duty ratio-
to-output transfer function is simulated using the DCM small-signal model in 
Fig. 9.11(b). Figure 9.12 shows the prediction of the small-signal model, in 
comparison with the empirical result obtained using the computational method 
discussed in Example 8.5 in Chapter 8. 

Analysis of DCM Small-Signal Dynamics 

Although the DCM PWM switch model in Fig. 9.10 is well suited for the frequency-
domain simulations, it is necessary to analyze the DCM PWM switch model, in order 
to obtain analytic expressions for transfer functions. Such analyses were performed 
in [1] and the results are summarized in Table 9.1. As shown in the table, the duty 
ratio-to-output transfer function, Gvd(s), of all the three basic PWM converters has 
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Table 9.1 Expressions for Gvd(s) for Three Basic Converters in DCM 

Gvd(s) = Kt 

s 
Mrhp ) \ Mesr ) 

1 + 
- ) ( ' ♦ -
0Jp\f\ ωρ2 

Buck converter 

2V0\-M 2D 
with M = ^d ■ 

Mp\ 

D 2-M 

1 2 - M 
CRX-M 

Im 8 L 
D + l^r RTS 

"P2=2fsQ 

1 
ÜJrhp - OO ü)esr CRC 

Boost converter 

κ"ΊΓΈΓχ ""■ " = j l ' t , / i + V^F) 
1 2 M - 1 ^ / 1 - 1 / M \ Z 

^ 1 " Τ^ Λ̂  1 ^ 2 - 2J* ^ £ j Cfl M 

Buck/boost converter 

Kd = 

ωρ1 = 

Mrhp 

Vo 
D 

2 
~~ ~CR 

M{\ 
R 
+ M)L 

ωρ 2 = 2 / j f 
,1 + 1/M 

1 
ω"" " c/?c 

For the buck converter, ω^ρ does not exist so urhp = oo is used. 
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the common structure of 

( ' - - ) ( ■ ♦ - ) 

(i-Mfi-!-) 
Gvd(s) = Kd\ ~rnp — (9.25) 

The denominator of the DCM GV(t(s) consists of two real poles, in contrast to a 
complex double pole in the CCM case, thereby producing distinct DCM small-signal 
dynamics. 

■ EXAMPLE 9.3 Analysis of DCM Dynamics 

This example presents qualitative discussions about the DCM small-signal 
dynamics of the buck/boost converter. Figure 9.13 shows a family of the duty 
ratio-to-output transfer functions of the buck/boost converter used in Example 
9.2. The DCM transfer functions, evaluated with R = 7.1 Ω, 10 Ω, and 20 Ω, 
are shown in comparison with the CCM transfer functions with R = 0.2 Ω (Q = 
D'R y/C/L = 0.5), 0.4 Ω (Q = 1), and 1 Ω (Q = 2.5). The critical resistance of 
the converter was Rcrit = 7.1 Ω in Example 9.2. 

The CCM transfer functions demonstrate the presence of the double pole at 
ω0 = U \j\l{LC) = 2π · 871 rad/s with the respective peaking of 20 log Q. As 
the converter moves into DCM operation, the transfer function exhibits notable 
changes. 

1) The double pole is heavily damped and split into two real poles, ωρ\ and 
ωΡ2 in (9.25). The cause of this damping is the two resistive parameters, 
Π = Vs liPh) and r0 = R, in the DCM PWM switch model. The damping 
will intensify as the load resistance R becomes larger. Referring to the 
Gvd(s) expression of the buck/boost converter in Table 9.1, the behavior of 
the two real poles are described below. 

• The first real pole, ωρ\ = 2/(RC), appears at lower frequencies and 
approaches the origin as R increases towards infinity. 

• The second pole ωΡ2 usually occurs at higher frequencies than ω5/π. 

2) Up to the frequency ωΞ/π, the transfer function is dominated by the first 
pole and exhibits the first-order dynamics. The second pole only becomes 
influential at very high frequencies and virtually vanishes from the converter 
dynamics at the frequencies of practical importance. The first-order system 
behavior is apparent in both magnitude and phase characteristics. 

3) Due to the emergence of the first pole at low frequencies, the magnitude 
of the transfer function is substantially reduced. The reduction in the 
magnitude will adversely affect the closed-loop performance in DCM, as 
will be shown later. 
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Figure 9.13 Gvd(s) of buck/boost converter in CCM to DCM operations. 

As demonstrated in the buck/boost converter example, the DCM operation effec-
tively transforms the second-order system into the first-order system. By examining 
Gvd(s) expressions in Table 9.1, the same conclusion is extended to buck and boost 
converters. This apparent change in power stage dynamics should be considered for 
dc-to-dc converters encountering both CCM and DCM operations. 

Control Design and Closed-Loop Performance in DCM 

For the control design purpose, it is necessary to investigate the duty ratio-to-output 
transfer function in both CCM operation and DCM operation. As illustrated in Fig. 
9.13, the Gvd{s) in CCM presents worse characteristics than the Gvd(s) in DCM. The 
double pole in the CCM transfer function causes a 180° phase drop to lGvd. This 
abrupt and large phase delay was the main concern in designing the voltage feedback 
compensation. In contrast, the DCM transfer function only exhibits a gradual 90° 
phase delay. 

The Gvd(s) in CCM operation should be used as the basis for the control design. 
If the control is designed for DCM operation, the converter becomes unstable when 
it enters CCM operations due to the excessive phase delay in CCM operation. On 
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the contrary, the control design tailored for the worst case CCM operation will offer 
stable operation for both CCM and DCM. Thus, the rational choice is to design the 
controller for CCM operation and to predict the closed-loop performance in DCM 
operation. 

For CCM operations, the control can be optimally designed based on the CCM 
dynamics of the converter. When the converter enters DCM operations, Gvd(s) will 
change as illustrated in Fig. 9.13. This change will affect the converter dynamics. In 
particular, the reduction in \Gvd\ will directly propagate to the loop gain characteristics 
and consequently alter other closed-loop performance. Even so, the change in Gvd(s) 
does not jeopardize the stability of the converter, as will be demonstrated in the 
following example. 

■ EXAMPLE 9.4 Performance of Buck Converter in DCM Operation 

This example investigates the performance of the buck converter in both CCM 
and DCM operations, whose control is designed for one particular CCM op-
eration. For this purpose, the buck converter used in Example 8.2 is revisited 
and its performance is evaluated over a wide operational range to include both 
CCM and DCM operations. As elaborated in Example 8.2, the control design 
is optimized for the CCM operation with R = 1 Ω. The critical resistance of 
the buck converter is determined as Rcrit = 2L/(D'TS) - 5.33 Ω. 

Figure 9.14 shows the loop gain characteristics of the buck converter eval-
uated for both CCM and DCM operations. For CCM operations, R = 0.5 Ω, 
R = 1 Ω, and R = 2 Ω are used. On the other hand, R = Rcrit = 5.33 Ω, 
R = 10 Ω, and R = 20 Ω are selected for DCM operations. The other con-
ditions are the same as those of Example 8.2. The mid-band gain reduction 
in \Gvd\ flows into the DCM loop gain characteristics, producing much nar-
rower crossover frequencies. Nonetheless, the loop gains demonstrate that the 
converter remains stable, even with larger phase margins, in DCM operations. 
This justifies the validity of the control design — the control design offering a 
stable CCM operation also guarantees stability in DCM operations. 

The reduced mid-band gain and narrower crossover frequency provide only 
small attenuation for closed-loop transfer functions. Figure 9.15 compares the 
output impedances evaluated with the same conditions. As predicted, the DCM 
output impedances show inferior characteristics with a much larger \Z0\peak. In 
addition, the first pole of the DCM output impedances, labeled as ωρζ in Fig. 
9.15, occurs at much lower frequencies. 

The degradation in the output impedance in DCM operations is the predicted 
consequence of using the voltage feedback compensation designed for a CCM 
operation. The control might be initially optimized for the DCM operation 
for the improved output impedance characteristics. However, for that case, the 
converter instantly becomes unstable when it enters CCM operations. 

As analyzed in Section 8.4.6, there is a direct correlation between the output 
impedance and step load response. The inferior output impedance in DCM 
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Figure 9.14 Loop gain characteristics of buck converter. 

would deteriorate the step load response. The larger \Z0\peak increases the 
transitional deviation of the output voltage, while the lower ωρζ slows down the 
transient response. Figure 9.16 compares the output voltage of the converter 
in response to step load changes in CCM and DCM operations. For CCM 
operation, step changes of R = 0.8 Ω => 1 Ω => 0.8 Ω are introduced, yielding 
blstep = 1 A. On the other hand, step changes of R = 5.3 Ω => 20 Ω => 5.3 Ω 
are exercised in DCM operation, thus producing AIstep = 0.55 A. As predicted 
from the output impedance characteristics, the DCM operation shows a sluggish 
response with larger overshoot and undershoot. 

The performance change over the transitions between CCM and DCM operations 
is related with not only the power stage dynamics but also the control scheme of the 
converter. The performance degradation in DCM operations is an innate limitation 
of voltage mode control. For voltage mode control, the fluctuation of the power 
stage dynamics over the CCM/DCM boundary directly propagates into the closed-
loop performance. Although the converter would remain stable, other closed-loop 
performance will be degraded in DCM operations. 

As introduced in Section 8.4.7, there exists an alternative control scheme for PWM 
converters — current model control, which employs an additional feedback from the 
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Figure 9.16 Step load responses of buck converter. 

inductor current. It will be shown in the next chapter that current mode control 
effectively alleviates the sensitivity of the converter dynamics and could offer near 
uniform loop gain characteristics for both CCM and DCM operations. 

9.1.3 Modeling of Isolated PWM Converters 

Dynamic models for the three basic non-isolated PWM converters were derived 
using the concept of the PWM switch. The modeling procedures for these converters 
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are straightforward because each converter contains the PWM switch in its original 
structure. This section presents the extension of the modeling procedures to isolated 
dc-to-dc converters. 

The isolated PWM converters contain a number of active and passive switches, 
separated by an isolation transformer. Thus, the PWM switch structure is not obvious 
in isolated converters. However, the operation of isolated converters reveals that 
the active and passive switches, even though located in distance with isolation, 
collectively execute the function of the PWM switch. Accordingly, the PWM switch 
can still be used as an effective tool in developing the dynamic models for isolated 
converters. 

As demonstrated in Chapter 4, each isolated converter has a forerunning non-
isolated converter from which that isolated converter is evolved. The modeling of 
an isolated converter is facilitated by using the existing model of the forerunning 
non-isolated converter. For example, the models of buck-derived dc-to-dc converters 
can readily be derived from the model of the buck converter. Similarly, the flyback 
converter can be conveniently modeled using the model of the buck/boost converter. 

Modeling of Forward Converter and Other Bridge-Type Converters 

The modeling of buck-derived isolated converters is illustrated using the forward 
converter. Figure 9.17 shows the modeling of the tertiary-winding reset forward 
converter. The original circuit of the forward converter in Fig. 9.17(a) is modified to 
the functional model in Fig. 9.17(b) by recognizing the following two facts. 

1) The reset circuit, only employed to reset the magnetizing inductance of the 
isolation transformer, does not interfere with the converter dynamics. Thus, 
the reset circuit, along with the magnetizing inductance itself, can be removed 
for the purpose of modeling. 

2) As far as the power stage operation is concerned, the forward converter is a 
functional equivalent of the buck converter combined with an isolation trans-
former upstream. The turns ratio of the isolation transformer is 1 : n with 
n = Ns/Np. 

The average model of the forward converter is constructed as shown in Fig. 9.17(c) 
by replacing the PWM switch with its average model. The two ideal transformers 
in Fig. 9.17(c), the 1 : n isolation transformer and the 1: d transformer in the PWM 
switch, are merged into a single 1: nd transformer in the simplified average model of 
Fig. 9.17(d). A set of averaged equations are written from Fig. 9.17(d) 

Ja(f) = ndic(f) 

vcp(t) = ndvap(t) (9.26) 

By linearizing (9.26), the small-signal expressions are obtained 

ia(t) = n(lcd(t) + Dic(tj) 

vcp(t) = n(Dvap(t) + Vapd(t)) (9.27) 
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Figure 9.17 Modeling of tertiary-winding reset forward converter, (a) Original circuit, (b) 
Functional model, (c) Average model, (d) Simplified average model, (e) Small-signal model. 
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Figure 9.18 Prediction of small-signal model of forward converter. 

With the incorporation of Ic = IL and Vap = Vs, the final small-signal circuit model 
is shown in Fig. 9.17(e). 

■ EXAMPLE 9.5 Small-Signal Model of Forward Converter 

This example shows the prediction of the small-signal model of a tertiary-
winding reset forward converter. The operational conditions and circuit pa-
rameters of the forward converter are Vs = 64 V, L = 40 μΗ, Ri = 0.01 Ω, 
C = 400 μ¥, Rc = 0.02 Ω, R = 1 Ω, fs = 50 kHz, and D = 0.25. The turns 
ratio of the ideal three-winding transformer is NP : Ns : NT = 36 : 18 : 36 and 
the magnetizing inductance is Lm = 200 μΗ. The duty ratio-to-output transfer 
function is simulated using the small-signal model of Fig. 9.17(e). Figure 
9.18 shows the prediction of the small-signal model, in comparison with the 
empirical result obtained from the original circuit of Fig. 9.17(a). 

The small-signal model of Fig. 9.17(e) is also valid for other types of forward 
converters including the two-switch forward converter. Furthermore, the preceding 
procedures are also applicable to other buck-derived isolated converters. Figure 
9.19(a) shows the full-bridge converter and its small-signal model, while Fig. 9.19(b) 
depicts those of the half-bridge converter. With these models, all the previous results 
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(a) 

(b) 

Figure 9.19 Modeling of bridge-type buck-derived converters, (a) Full-bridge converter. 
(b) Half-bridge converter. 

of the modeling, analysis, and control, developed using the buck converter, are now 
extended to all buck-derived isolated converters. 

Modeling of Flyback Converter 

For the purpose of modeling, the flyback converter is successively modified as il-
lustrated in Fig. 9.20. The original circuit of the flyback converter is shown in Fig. 
9.20(a). Figure 9.20(a) is altered to Fig. 9.20(b), where the ideal transformer is 
removed by reflecting the magnetizing inductance and the voltage source into the 
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Figure 9.20 Modeling of flyback converter, (a) Original flyback converter, (b) Modified 
model, (c) Modified model, (d) Equivalent buck/boost converter, (e) Small-signal model. 

secondary side. Figure 9.20(b) is modified to Fig. 9.20(c) by changing the polarity 
of the input and output voltages and reversing the direction of the diode. The power 
stage circuit is further modified into Fig. 9.20(d) by relocating the active switch with-
out changing the circuit operation. Figure 9.20(d) is now recognized as a buck/boost 
converter whose input voltage and inductance are scaled by the turns ratio of the 
transformer. Finally, the small-signal model of the flyback converter is obtained as 
shown in Fig. 9.20(e) by adapting the small-signal model of the buck/boost converter. 

EXAMPLE 9.6 Small-Signal Model of Flyback Converter 

This example shows the prediction of the small-signal model of a flyback 
converter operating with Vs = 180 V, Lm = 4.0 mH, C = 470//F, Rc = 0.03 Ω, 
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Figure 9.21 Prediction of small-signal model of flyback converter. 

R = 1 Ω, fs = 50 kHz, and D = 0.25. The turns ratio of the flyback transformer 
is 60 : 6. The duty ratio-to-output transfer function is simulated using the 
small-signal model in Fig. 9.20(e). Figure 9.21 compares the prediction of the 
small-signal model with the empirical result obtained from the circuit model 
of Fig. 9.20(a). 

9.2 DESIGN AND ANALYSIS OF DC-TO-DC CONVERTERS WITH 
PRACTICAL SOURCE SYSTEM 

In previous chapters, an ideal voltage source was assumed for dc-to-dc converters in 
order to simplify the control design and dynamic analysis. In reality, however, dc-to-
dc converters are powered from a practical voltage source which presents a certain 
source impedance. The source impedance influences the dynamic performance of 
converters in various ways and thus should be considered in the dynamic analysis 
and control design. 

Ideally, dc-to-dc converters should be designed for the actual source impedance. 
However, such a design is impracticable because the source impedance characteristics 
are usually unknown or even undefined at the design stage of the converter. One 
functional approach to resolving this problem is to design dc-to-dc converters for 
an ideal voltage source, while minimizing the chance of the performance change at 
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Dc-to-dc converter powered by non-ideal voltage source with finite source 

the presence of an actual source impedance. This design is very preferable in that 
the preceding design methodology for an ideal voltage source can be adapted to real 
applications with minimal or no modification. 

To implement the aforementioned design approach, it is imperative to investigate 
the impacts of the source impedance on the converter performance. Once this 
knowledge is acquired, the control design can be carried out in such a way that 
is least susceptible to the potential performance change at the presence of a certain 
source impedance. The converter performance with the actual source system can 
later be assessed by incorporating the source impedance characteristics whenever 
they become available. The dc-to-dc converter, designed as outlined above, would 
retain stability and undergo minimal performance change from the initial predictions 
made using the ideal voltage source. 

With this background, we start discussions about the impacts of the source 
impedance on the converter performance. Figure 9.22 shows the dc-to-dc con-
verter powered by a voltage source with a finite source impedance Zs. The source 
impedance influences the closed-loop performance of the converter, including the 
audio-susceptibility, loop gain, output impedance, and most significantly stability. 
This section first analyzes the impact of the source impedance and later proposes a 
design strategy which would offer stability and minimal performance change at the 
presence of the source impedance. 

9.2.1 Audio-Susceptibility Analysis 

Referring to Fig. 9.22, the closed-loop input-to-output transfer function, or audio-
susceptibility, of the converter with the source impedance Zs(s) is expressed as 

Au(s) 
Vo(s) _ v's(s) v()(s) 
vs(s) v,(s) v'(s) 
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Zjc(s) 
ZiC(s) + Zs(s) 

Auc(s) = 
1 + 

Zs(s) 

ZiC(s) 

■Auc(s) (9.28) 

where ZiC(s) is the input impedance of the converter and Auc(s) = v0(s)/v's(s) is the 
audio-susceptibility of the converter with zero source impedance, namely, with an 
ideal voltage source. Details about the input impedance of a closed-loop controlled 
dc-to-dc converter will be given in Section 9.2.3. It is obvious that the audio-
susceptibility is practically unaffected by the source impedance if the condition 
\Zic\ >̂ \ZS\ prevails for all frequencies. 

For general cases, the audio-susceptibility expression is approximated to 

Au(s) = 
1 + 

Zs(s) 
ZiC(s) 

■AuC(s) 

^uC -=- at frequencies where |Z/cl <̂  \ZS\ 

'-<iC 

Auc at frequencies where |Z/d » \ZS\ 

(9.29) 

Now, the impact of the source impedance is analyzed using this relationship. 

EXAMPLE 9.7 Audio-Susceptibility with Source Impedance 

This example demonstrates the impact of the source impedance on the audio-
susceptibility of a closed-loop controlled buck converter. Figure 9.23 shows a 
buck converter powered by a practical source system. The operational condi-
tions of the buck converter are Vs = 16 V, L = 40μΗ, #, = 0.1 Ω, C = 470 μ¥, 

L R, 

pom v ^ 

Figure 9.23 Buck converter with source impedance. 
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Rc = 0.05 Ω, R = 1 Ω, Vref = 4 V, fs = 50 kHz, and Vm = 3.8 V. The voltage 
feedback compensation is given by 

Z2(5) _ 50011 + 5,83 x 1Q3 H 1 + 1.09 x 104) 

0(' 4.25 xlO4 A 2.51 x lO 5 ; 

The source impedance is expressed as 

Q 1 ( 1 + 55o)( 
1 + 

Z 5 ( , ) - - - — 1.25x105, 

1 + 
62500 (7.9 x 103)2 

Figure 9.24(a) shows the audio-susceptibility of the converter with the source 
impedance, Au(s), in comparison with the audio-susceptibility with the zero 
source impedance, Auc(s). The source impedance Zs(s) and input impedance 
ZiC(s) of the buck converter are shown in Fig. 9.24(b). As predicted from (9.29), 
the audio-susceptibility is only modified in the frequencies where |Z/d <£ \ZS\. 
In fact, the overlap between \ZS\ and |Z/d is projected as an additional attenuation 
owing to the source impedance. 

9.2.2 Stability Analysis 

The source impedance exerts a direct influence on stability of the converter. More 
precisely, the source impedance could destablize the converter that was stable with 
the zero source impedance. This section discusses the origin of the stability problem 
and a later section provides design guidelines to avoid such a problem. 

Source-Impedance Induced Instability 

For the stability analysis, the previous audio-susceptibility expression with a source 
impedance is repeated 

Au(s) = ^ = i=-nr-AuC(s) (9.30) 
vs(s) Zs(s) 

Ztc(s) 
where AuC(s) is the audio-susceptibility with the zero source impedance. By denoting 
Auc(s) as 

M(s) 

the audio-susceptibility is expressed as 

ZiC(s) 
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Frequency [kHz] 
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Figure 9.24 Audio-susceptibility of buck converter, (a) Audio-susceptibility, (b) Source 
impedance and input impedance of converter. 

The characteristic equation of the system is then given by 

1 + ! ^ | D ( , ) = 0 Zic(s) (9.33) 

When the converter is stable with the zero source impedance, the equation D{s) = 0 
does not contain any right-half plane (RHP) roots. Accordingly, stability is assessed 
by investigating the existence of any RHP root in the equation 1 + Zs(s)/ZiC(s) = 0, 
that is, by applying the Nyquist criterion to Zs(s)/ZiC(s). Illustrations of such analyses 
are given in Fig. 9.25. Figure 9.25(a) shows Bode plot of \ZiC\ along with three 
different cases of \ZS\. Figure 9.25(b) depicts the polar plots of the impedance ratio 
Zs/Zic for the corresponding three cases. 
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Figure 9.25 Bode plot and polar plot of Zs and Z/c. (a) Bode plot of Zs and ZlC. (b) Polar 
plot of Zs/ZiC. 

1) Case A: The impedances satisfy the condition |Z/d > \ZS\ for all frequencies. 
This condition is equivalent to |Zs/Z/cl < 1 for all frequencies. For this case, the 
polar plot of ZJZiC stays inside the unit circle, thereby excluding the possibility 
of encircling the (-1,0) point. The Nyquist criterion is automatically satisfied 
and the converter remains stable. 

2) Case B: \ZS\ exceeds \ZiC\ in some frequencies. The polar plot partially departs 
from the unit circle. However, the polar plot does not encircle the (-1,0) point 
and the converter thus remains stable even though the condition |Z/d > \ZS\ is 
not met at some frequencies. 

3) Case C: The condition |Z/d > \ZS\ is infringed more widely so that the polar 
plot does encircle the (-1,0) point, thereby violating the Nyquist stability 
criterion. The converter now becomes unstable due to the presence of the 
source impedance. The instability illustrated here is referred to as the source-
impedance induced instability. 
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The sufficient condition for stability is \ZiC\ > \ZS\ for all frequencies, as illustrated 
with Case A in the previous analysis. If the impedances do not meet the sufficient 
condition, thereby showing an impedance overlap, the Nyquist criterion may be 
applied to the polar plot of Zs/Zic to assess stability. It is emphasized that the 
impedance overlap does not necessarily imply instability but does signal the necessity 
of the Nyquist analysis. 

Input Filter and Source Impedance 

Dc-to-dc converters usually employ a filter stage between the voltage source and 
power stage for the following reason. For most dc-to-dc converters, the input current 
to the power stage is a discontinuous pulsating current. If directly drawn from 
the voltage source, the pulsating input current forces the voltage source to deliver 
substantial harmonic current components. The harmonic current components in turn 
produce excessive conducted electromagnetic interference (EMI), thereby failing to 
meet regulatory EMI standards. To avoid such a situation, an input filter stage is 
usually employed between the voltage source and power stage so that the voltage 
source only delivers a smoothly-filtered continuous current waveform. 

The input filter stage always has a finite output impedance. The converter power 
stage sees the output impedance of the input filter as the source impedance. Accord-
ingly, dc-to-dc converters are naturally exposed to a substantial source impedance 
which could affect stability and performance of the converter. 

■ EXAMPLE 9.8 Buck Converter with Input Filter 

This example illustrates the operation of a buck converter with an input filter. 
Figure 9.26(a) shows a closed-loop controlled buck converter with an input 
filter. The operational conditions and power stage parameters are the same as 
those of Example 9.7. The input filter parameters are Lf = 8 μΗ, /ty = 0.01 Ω, 
Cf = 320 μ¥, and Rd = 0.05 Ω. Figure 9.26(b) illustrates the waveforms of the 
input current to the power stage, ig, the voltage source current is, and the input 
filter branch current if. The voltage source mainly supports the dc component 
of the input current, while the parallel branch of the input filter carries the ac 
component. The current filtering effect is clearly seen. Figure 9.27 shows the 
source impedance Zs and the input impedance Zic of the converter. The wide 
separation between impedances automatically meets the sufficient condition 
for stability. 

Stability Analysis with Input Filter 

The previous example showed the case in which the source impedance and input 
impedance are widely separated, thus precluding any chance of the stability prob-
lem. However, there are other cases where the source impedance does destablize a 
previously stable converter. In fact, this source-impedance induced instability is a 
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Figure 9.26 Buck converter with input filter, (a) Circuit diagram, (b) Current waveforms. 

well-known problem of the input filter design, which has been researched in many 
papers [2-4]. This section illustrates an example of the source-impedance induced 
instability. 

EXAMPLE 9.9 Stability of Buck Converter with Input Filter 

The stability analysis of a buck converter with an input filter is illustrated in 
this example. The buck converter used in Examples 9.7 and 9.8 is revisited 
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Figure 9.27 Converter input impedance and source impedance. 

with a minor modification in the voltage feedback compensation 

Fv(s) = 
2000 I1 + 5.83x103 ) ( 

1 + 
1.09 x l0 4 J 

1 + 4.25 x 104 ) ( · ♦ 2.51x10s, 

Figure 9.28(a) shows |Z/cl of the buck converter and \ZS\ of the four different 
input filters, referred to as Filter A, B, C, and D 

. Filter A: Lf = 145 μΗ, % = 0.01 Ω, Cf = 45 /iF, and Rd = 0.4 Ω 

. Filter B: Lf = 240 /iH, % = 0.01 Ω, Cf = 60 /iF, and Rd = 0.4 Ω 

. Filter C: Lf = 390 /iH, Rif = 0.01 Ω, Cf = 75 /iF, and Rd = 0.4 Ω 

. Filter D: Lf = 1100 /iH, Rlf = 0.01 Ω, Cf = 150 /iF, and Rd = 0.4 Ω 

All the four cases exhibit an impedance overlap and thus require the Nyquist 
stability analysis. Figure 9.28(b) shows the polar plots of Zs/ZiC with the four 
different input filters. As the region of the impedance overlap shifts from 
high frequencies to lower frequencies, from Filter A to Filter D, the circular-
shaped polar plot rolls in the counter-clockwise direction until it encircles the 
(-1,0) point. The qualitative explanation about the behavior of the polar plot 
will be given in the next section. With Filter D, the polar plot encircles the 
(-1,0) point, indicating that the converter is unstable. Figure 9.29 displays the 
loop gain of the buck converter with the four different input filters, in parallel 
with the loop gain without any input filter. The loop gain with Filter C shows 
that the converter is barely stable with a small phase margin. With Filter D, the 
loop gain predicts instability with a negative phase margin. 
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Figure 9.28 Stability analysis of buck converter with input filter, (a) Bode plots of Zs(s) 
and ZiC(s). (b) Polar plots of Zs(s)/ZiC(s). 

Figure 9.30 exhibits the inductor current of the buck converter in response 
to the load changes of R = 1 Ω => 1.5 Ω => 1 Ω . The inductor current is 
displayed with the four different input filters, along with the case without any 
input filter. The inductor current becomes gradually oscillatory until it exhibits 
full instability with Filter D. 

In order to investigate the cause of the source-impedance induced instability, it 
is first necessary to understand the input impedance characteristics of a closed-loop 
controlled dc-to-dc converter. The analysis of the input impedance is given in the 
next section. The origin of the instability and design strategy for unknown source 
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Frequency [kHz] 

Figure 9.29 Loop gain of buck converter with different input filters. 

impedance characteristics are discussed in Sections 9.2.4 and 9.2.5. It will be shown 
that the previous control design guidelines, developed in Section 8.4.2 for an ideal 
voltage source, are in fact the design strategy that minimizes the risk of the source-
impedance induced instability. 

9.2.3 Input Impedance of Regulated Dc-to-Dc Converter 

The input impedance of a closed-loop controlled dc-to-dc converter, or a regulated 
dc-to-dc converter, exhibits a very distinctive property. At low frequencies, the input 
impedance Zic of a regulated converter is a negative resistance. When combined 
with a certain source impedance Zs, the negative resistance causes the polar plot of 
ZsIZic to break the Nyquist stability criterion, as demonstrated in Example 9.9. 

The negative resistance is attributed to the fact that a regulated dc-to-dc converter 
functions as a constant power load. Referring to Fig. 9.31(a), a regulated dc-to-dc 
converter adjusts the duty ratio to maintain the output voltage constant, v0 = V0, for 
a given load resistance R, even if the input voltage vs changes. In other words, a 
regulated converter is a constant power load that always draws a predetermined power, 
P = VQ/R. If the dc-to-dc converter operates losslessly with a 100% efficiency, it 
follows that 

V2 

P=-£- = VoIo = vsis (9.34) 
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Figure 9.31 Negative input resistance of closed-loop controlled dc-to-dc converter, (a) 
Block diagram, (b) vs -is curve. 
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which indicates that 
Y° = Ü = M (9.35) 
vs Io 

where M denotes the forward voltage gain or reverse current gain. The input resistance 
of the converter is evaluated as 

te.*» « ( £ ) . _ £ , . a . »r» . ' « „36) 
d*s d*s W / î  is Ml I0 Ml 

where the facts P = vsis, vs = Vo/M, is = MI0, and R - Vo/Io a r e successively 
used. Equation (9.36) indicates that the input resistance Ric is a negative resistance 
of -R/M2. 

The negative input resistance is also illustrated in Fig. 9.31(b) which depicts 
the vs - is curve of the regulated converter. Because the product of vs and is is 
a predetermined constant, the slope of v$ - is curve is negative, as shown in Fig. 
9.31(b). For example, if vs increases, is must decrease since the input power 
P = vs is always remains constant. The regulated dc-to-dc converter thus exhibits a 
negative incremental resistance, R^c given in (9.36). 

Detailed analyses [2,4,5] showed that the input impedance of a regulated converter 
is a negative resistance only at low frequencies, typically below the 0 dB crossover 
frequency of the converter loop gain. At high frequencies where the reactance of 
the power stage inductor becomes very large, the input impedance increases with a 
+20 dB/dec slope, thus showing inductive characteristics. 

The input impedance characteristics of a regulated converter are mainly determined 
by the location of the 0 dB crossover frequency of the loop gain. Figure 9.32 shows 
typical structures of the input impedance of dc-to-dc converters. The general shape 
of the input impedance can be classified into three cases, as illustrated in Fig. 9.32, 
depending on the location of the loop gain crossover frequency, ωε. 

1) Case A with ω€ > βω0, where ω€ is the loop gain crossover frequency, ω0 is 
the pole frequency, and Q is the damping ratio of the power stage double pole: 
The input impedance follows the negative resistance, R^c = -R/M2, up to the 
crossover frequency and increases with a +20 dB/dec slope thereafter. For 
this case, the minimum magnitude of the input impedance IZ/cUw is limited to 
201ogÄfC. 

2) Case B orB ' with ω0 < ω£ < ζ)ω0\ The input impedance shows a dipping 
of 201og(ßdL>o/a;c) at the loop gain crossover frequency ω€. The minimum 
magnitude of the input impedance, |Z/clmm = 20 log Ric - 20\og(Qcüo/a>c), 
occurs at the loop gain crossover frequency ω€. 

3) Case C with ω€ < ω0: The input impedance produces the maximum dipping 
of 20 log Q. This can be considered the worst input impedance characteristics. 
For this case, the minimum magnitude of the input impedance, IZ/cUm = 
20 log Ric - 20 log Q, occurs at the power stage pole frequency ω0. 

The expressions for the input impedance parameters in Fig. 9.32 are summarized 
in Table 9.2 for the three basic converters. 
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Figure 9.32 Input impedances of dc-to-dc converter with different loop gain crossover 
frequencies. 

Table 9.2 Parameters for Converter Input Impedance Structure in Fig. 9.32 

Buck converter Boost converter Buck/boost converter 
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R 

D2 

VLC 

(1 -DYR 

1 - D 

λίΣΟ 

0-£>)2 

D2 

1 -D 
LC 

Q *fz (i-^Vl {\-D)RA\T 

1 
~CR ~CR CR 

EXAMPLE 9.10 Input Impedance of Buck Converter 

This example shows the effect of the loop gain crossover frequency on the input 
impedance of the buck converter used in Examples 9.7 through 9.9. Figure 
9.33 shows the loop gain and input impedance of the buck converter with 
four different voltage feedback compensation designs. The corner frequencies 
of the voltage feedback compensation are the same and only the integrator 
gain is varied to result in four different crossover frequencies. From the 
operational conditions and power stage parameters of the buck converter, the 
input impedance parameters shown in Table 9.2 are determined as 

201og/e/c = 2 0 1 o g ( J j ) = 2 0 1 o g i ^ y = 24 dB 

ωα -
1 1 

V I C V40x 1 0 - 6 · 4 7 0 χ 10"6 
= 2;r· 1.16 x 103rad/s 
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Figure 9.33 Loop gain and input impedance, (a) Loop gain, (b) Input impedance. 

Q W!-V i-6 470 x 10 
40 x 10"6 3.43 

1 
ωρ = αϊ 470xl0" 6 l 

= 2π · 388 rad/s 

The actual input impedances match well with the analytical predictions. For 
Case A with uc « tu0Q = 2π · 1.16 x 103 · 3.43 = 2π · 4 x 103 rad/s, the 
minimum value of the input impedance is indeed raised to the theoretical limit 
of \ZiC\min = 20\og(R/D2) = 24 dB. For Case Br with ωε = 2π · 2 x 103, the 
input impedance exhibits the minimum value of 16.3 dB, which is close to the 
theoretical prediction of \ZiC\min = 20\og(R/D2) - 20\og(Qcoo/ojc) = 18 dB. 
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Figure 9.34 Impedance overlap and polar plot of ZsIZiC. 

9.2.4 Origin of Source-Impedance Induced Instability 

A regulated converter becomes unstable when the impedance ratio ZS/ZJC breaks the 
Nyquist stability criterion. More precisely, the source impedance Zs destabilizes 
a previously stable converter when the polar plot of Zs/ZiC encircles the (-1,0) 
point. The encirclement cannot happen if the condition \Ζ&\ > \ZS\ is satisfied for 
all frequencies because the polar plot of Zs/Zic never stretches from the unit circle. 
On the other hand, when the condition |Z/d > \ZS\ is violated at certain frequencies 
thereby showing an impedance overlap, the polar plot departs from the unit circle 
and is exposed to the risk of encircling the (-1,0) point. For this case, the phase 
characteristics of Zs and Ztc determine the encirclement of the (-1,0) point. 

Figure 9.34 illustrates the stability analysis of a regulated converter when combined 
with four different cases of the source impedance. The input impedance of the 
converter belongs to Case C in Fig. 9.32 where the loop gain crossover frequency ωα 

falls below the power stage double pole, uc < ωσ. The input impedance starts from 
a negative resistance. The input impedance has a pole at ωρ and a double zero at ω0. 
Detailed analyses [2, 4] showed that the ωρ is a right-half plane (RHP) pole which 
boosts the phase by 90°. Thus, the phase of the input impedance, LZic, starts from 
-180°, increases to -90° over ωρ, and finally settles to 90° after ωσ. 

The four different cases of \ZS\ are shown in Fig. 9.34, each overlapping |Z/d in 
the different frequency region. From the shape of \ZS\, it is evident that lZs changes 
from +90° to -90° over the overlap. To judge the encirclement of the (-1,0) point, 
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the boundaries of l(Zs/ZiC) = lZs - lZiC are evaluated for the four different cases. 
From the lZs and iZic characteristics, it can be inferred that 

. Case A: 90° - 90° < lZs/ZiC < - 90° - 90° 
=>0° <lZs/ZiC <-180° 

. Case B: 90° - (-90°) < lZJZiC < - 90° - 90° 
=> 180° < lZs/ZiC < -180° 

. Case C: 90° - (-90°) < lZJZiC < - 90° - (-90°) 
=> 180° < iZJZic < 0° 

. Case D: 90° - (-180°) < lZs/ZiC < - 90° - (-180°) 
=> 270° < IZJZ^ < 90° 

Figure 9.34 also shows the conceptual polar plot of Zs/Z/c based on the previous 
analysis. As the frequency of the impedance overlap shifts from high frequencies 
to low frequencies, the circular-shaped polar plot turns in the counter-clockwise 
direction, thus successively elevating the risk of encircling the (-1,0) point. When 
the overlap occurs at sufficiently low frequencies where LZ[Q ~ -180°, the polar plot 
encircles the (-1,0) point and the converter now becomes unstable. 

This source-impedance induced instability is a direct consequence of the unique 
characteristics of the input impedance of a regulated converter, which behaves as 
a negative resistance at low frequencies. If the source impedance is coupled with 
a regular positive resistance, the system never becomes unstable, regardless of the 
magnitude of the source impedance or the extent of the impedance overlap. It should 
be noted that the analysis shown in Fig. 9.34 is consistent with the outcome of 
Example 9.9. 

9.2.5 Control Design with Source Impedance 

The design strategy to minimize the danger of instability at the presence of a certain 
source impedance is to increase the 0 dB crossover frequency of the loop gain. When 
the 0 dB crossover frequency occurs at higher frequencies than ζ)ω0, namely, Case 
A in Fig. 9.32, the minimum value of the input impedance is raised to the theoretical 
limit of \Zic\min = 20\og(R/M2). For this case, the converter remains stable if the 
condition \Zs\peak < 20\og(R/M2) is satisfied. This situation is illustrated in Fig. 
9.35. 

The design object of placing the 0 dB crossover frequency at higher frequencies 
is in fact the goal of the control design for an ideal voltage source. Accordingly, 
the previous design guideline for ideal voltage sources is actually a very desirable 
strategy even with the existence of an unknown source impedance. Once the control 
is designed for a higher crossover frequency than Qco0, the converter remains stable 
as long as the condition \Zs\peak < 20\og(R/M2) is met. 

The source impedance Zs can be controlled by the input filter design. The input 
filter should be designed for the minimum \Zs\peak while meeting EMI specifications 
and other constraints. Design techniques for the input filter are given in [2,6]. 
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Figure 9.35 Input impedance and source impedance for properly designed dc-to-dc 
converters. 

Examples of input filter design are provided in Problems 9.9 and 9.10 at the end of 
this chapter. 

9.2.6 Impacts of Source Impedance on Loop Gain and Output 
Impedance 

The source impedance also influences the output impedance and loop gain of the con-
verter. It was shown [2,4] that the output impedance Z0(s) with a source impedance 
Zs(s) is given by 

ZUs) 
Zn(s) = Zl>c(s) fj-r (9.37) 

Zic(s) 
where Z„c(s) the output impedance of the converter with an ideal voltage source 
and Z'iC(s) is the input impedance of the converter evaluated with its feedback loop 
opened and the output port shorted. The output impedance won't be altered with the 
addition of the source impedance, if the conditions |Zt/Z,cl « 1 and \ZJZ'iC\ «: 1 are 
met for all frequencies. 

It was also shown that the loop gain Tm(s) with Zs(s) is expressed as 

γ , Zs(s) 
ZUs) 

Tm{s) = TmC(s) £ - - (9.38) 
ΖΛ± 
Z-(s) 

where Tmc(s) is the loop gain with an ideal voltage source, and Z"c(s) is the input 
impedance of the converter evaluated with its feedback loop closed and the output 
voltage nullified [2,4,5]. The quantity Z[^(s) denotes the input impedance of the 
converter evaluated with its feedback loop opened. The loop gain remains unaffected 
if the conditions |ZV/Z^| «: 1 and \ZS/Z^\ ^ 1 are met for all frequencies. 
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The four different input impedance expressions, ZiC(s), Z[c(s), Z'^is), and Z^(s) 
appearing in (9.37) and (9.38), vary with the converter topology and control scheme. 
In fact, the input impedance analysis in the previous section is only valid for the 
three basic dc-to-dc converters that employ the conventional voltage mode control. 
Detailed analyses of the input impedances, output impedance, and loop gain of 
dc-to-dc converters with different control schemes are given in [2,5,7]. 

9,3 CONSIDERATION FOR NON-RESISTIVE LOAD 

The control design of dc-to-dc converters has previously been investigated based on 
the assumption that the converter is feeding a resistive load. However, the actual load 
of dc-to-dc converters is commonly a combination of passive and active components, 
whose impedance characteristics could widely deviate from a pure resistor. For most 
applications, furthermore, advance information about the actual load impedance 
characteristics is unavailable. 

Figure 9.36 shows a regulated dc-to-dc converter coupled with a general load 
impedance Z^. Despite the uncertainty in ZL characteristics, the low-frequency 
asymptote of ZL is uniquely determined from the converter's output voltage V0 and 
the dc load current /# 

ZLUO) = Rdc = ^r <9·39) 
w 

The quantity Rdc can be considered as an equivalent resistive load for the unknown 
Zi. The equivalent resistive load Rdc is determined from the dc specification of the 
load, without the knowledge about the ac or impedance characteristics of the load. 
The control can be designed for its equivalent resistive load Rdc and the performance 
of the converter with the actual load impedance ZL can be evaluated when the ac 
characteristics of ZL are available. 

■ EXAMPLE 9.11 Converter Performance with General Load Impedance 

This example illustrates the effect of the load impedance on the closed-loop 
performance of the converter. Figure 9.37(a) shows three different non-resistive 
loads whose equivalent resistive load is all identical, Rdc = 1 Ω. Figure 
9.37(b) shows the Bode plots of the three different load impedances. Apart 
from the low-frequency asymptote, the load impedances reveal very different 
characteristics. Figure 9.38(a) shows the loop gain and Fig. 9.38(b) depicts 
the output impedance of the converter with the three non-resistive loads, in 
comparison with that of the converter with a pure resistive load Rdc. It can 
be observed that the control design for a resistive load also provides good 
performance for the converter loaded with the non-resistive loads. Figure 9.39 
shows the output voltage of the converter in response to the step changes of 
Rdc = 0.5 Ω => 1 Ω =» 0.5 Ω. Same as the frequency-domain performance 
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Figure 9.36 Converter loaded with general load impedance. 
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Figure 9.37 Three different load systems, (a) Circuit diagram, (b) Bode plot of load 
impedance ZL. 
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Figure 9.38 Frequency-domain performance with different load impedances, (a) Loop gain. 
(b) Output impedance. 
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Figure 9.39 Step-load response with different load impedances. 

case, the control designed for R^ offers good transient responses for the non-
resistive loads. 

9.4 SUMMARY 

This chapter investigated practical details about modeling, analysis, and design of 
dc-to-dc converters in real applications. The small-signal modeling, established for 
the three basic non-isolated converters operating in continuous conduction mode 
(CCM), is extended to include all isolated/non-isolated dc-to-dc converters operating 
in both CCM and discontinuous conduction mode (DCM). The small-signal dynamics 
of dc-to-dc converters in DCM operation are analyzed and compared with those of 
CCM operation. It was verified that the control design intended for CCM operation 
guarantees stability in DCM operations and therefore is suited for both CCM and 
DCM operations. 

The input impedance of regulated dc-to-dc converters has unique characteristics — 
the input impedance behaves as a negative resistance at low frequencies. The negative 
input resistance is caused by the distinct functional behavior of regulated dc-to-dc 
converters. A regulated dc-to-dc converter always draws a predetermined power 
and therefore functions as a constant power load. When the input voltage of a 
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constant power load increases, the input current must decrease, resulting in a negative 
incremental input resistance. 

The negative input resistance could cause stability problems in practical dc-to-dc 
operations. In real applications, regulated converters are not directly connected to 
the voltage source. An input filter stage is usually employed between the voltage 
source and a regulated dc-to-dc converter, in order to meet mandatory EMI standards. 
Accordingly, the power stage of the regulated dc-to-dc converter sees the output 
impedance of the input filter as the source impedance, whereas the power stage itself 
exhibits a negative input resistance. 

A certain source impedance, when coupled with the negative input resistance of 
the converter power stage, could destablize a formerly stable dc-to-dc converter. The 
danger of this source-impedance induced instability can be minimized by placing the 
loop gain crossover frequency at higher frequencies than Qa>0. This design objective 
is in fact identical to the design strategy developed in Section 8.4.2 for the ideal 
voltage source. Accordingly, the previous design procedures for an ideal voltage 
source can be adapted to the converters with finite source impedance. 

The load of dc-to-dc converters is typically a combination of passive and ac-
tive components which show non-resistive impedance characteristics. This chapter 
demonstrated that dc-to-dc converters designed for the equivalent resistive load, 
Rdc = Vo/Io, maintain good performance when feeding various non-resistive loads. 

This chapter concluded that the design and analysis techniques covered in this 
book, even though they appear only to cover the three basic converters in CCM 
operation with an ideal voltage source and resistive load, actually all apply to real 
circumstances. The design and analysis method is well suited for isolated/non-
isolated dc-to-dc converters operating in both CCM and DCM with non-ideal source 
and load systems. 
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PROBLEMS 

9.1* Derive the small-signal equations of the DCM PWM switch model expressed in 
(9.23) and (9.24) in the text. The derivation can be expedited by incorporating 
(9.22) into (9.21) and taking the partial derivative of the resulting equations. 

9.2 Construct the DCM small-signal model for the buck converter and boost con-
verter. Specify the five model parameters {r; k[ gf ka r()) in terms of the 
operational conditions and steady-state circuit variables of the converter. 

9.3* Consider the forward converter shown in Fig. P9.3. 

W—t—fYYTL-^w 

0.01 Ω 

470//F 

lD2 I : Ι Ω 

Closed 

5//s Open 

20/zs 

Fig. P9.3 

9.4 

a) Assume Lm = 480 μΗ and answer the following questions. 
i) Sketch the steady-state waveforms of [io\ IDI ic) for the two operational 
periods. Label the maximum and minimum values of each waveform. 
ii) Draw the small-signal model of the power stage. Show all model 
parameters. 

b) Now assume Lm = oo and repeat a). 

A two-switch forward converter is shown in Fig. P9.4. Answer the questions. 
a) Assume Lm = 72 μΗ for the magnetizing inductance of the transformer and 

sketch the steady-state waveforms of [io\ ic vs VQ\ for the two operational 
periods. Label the maximum and minimum values of each waveform. 

b) Sketch the small-signal model of the power stage. Show all model param-
eters. 
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9.5* Figure P9.5 shows a full-bridge PWM converter. Answer the questions. 

Q\Qi 

QT,QA 
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I 10;/s L Open J L 

40/is 

J 10/zs L 
20//s 

Fig. P9.5 

J L 

5Ω 

a) Referring to the circuit diagram and the switch drive signals, draw an 
average model that predicts the time-averaged power stage dynamics. Show 
all model parameters. 

b) Construct the small-signal model of the power stage. Show all model 
parameters. 
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9.6* Consider the flyback converter shown in Fig. P9.6 and answer questions. 

-H-
0.01 Ω 

600//F :8Ω 

Closed 
4//s Open 

10//s 

Fig. P9.6 

a) Assume Lm = 72 μΗ for the magnetizing inductance of the transformer 
and sketch the steady-state waveforms of {iß vs VQ) for the two operational 
periods. Label the maximum and minimum values of each waveform. 

b) Sketch a circuit model that predicts the time-averaged dynamics of the 
power stage. 

c) Sketch the small-signal model of the power stage. Show all model param-
eters. 

9.7* Four different input impedances, ZiLA, ZiLB, ZiLC, and ZiLD, are defined for the 
load circuits shown in Fig. P9.7(a). Load B and Load D include a negative 
resistance. Now assume that each load circuit is combined with various source 
impedances, resulting in the four impedance plots shown in Fig. P9.7(b). 
Assume that the phase of the source impedance lZs varies from +90° to -90° . 

For each impedance plot, sketch the corresponding polar plots of the ratios 
of the source impedance to input impedance, Zs(s)/Zn(s), to illustrate the pos-
sibility of the source-impedance induced instability. Explain the consequential 
effects of the negative resistance. 

-* -R< 

7.T J Load A 7 r n Load B 7 τ „ Load C 7 r Λ Load D ^iLA ^iLB ^iLC ^iLD 

(a) 
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Load A LoadB 

Fig. P9.7 

LoadC 

(b) 

LoadD 

9.8* As illustrated in Fig. P9.8(a), a reciprocal two-port network meets the condition 

AvF(s) = AiF(s) 

9.9* 

where Avf(s) = VF(S)/VS(S) is the forward open-circuit voltage transfer func-
tion and Aif(s) = is(s)/if(s) is the backward short-circuit current transfer 
function. Two reciprocal networks, Filter A and Filter B, are shown in Fig. 
P9.8(b). 

For Filter A and Filter B, verify the relationship AvF(s) = AiF(s) by directly 
evaluating the transfer functions. The results of this problem will be used in 
Problems 9.9 and 9.10 which deal with the input filter design. 

Figure P9.9 shows a single-stage filter with a damping branch. This circuit is 
often employed as an input filter in low- and medium-power dc-to-dc convert-
ers. This filter circuit was analyzed in Problem 9.8. 
a) Prove that the backward short-circuit current transfer function Aif(s) and 

the short-circuit output impedance Z0f(s) of the filter are given by 

AiF{s) 
1 

1 + 
β ω 0 ω^ 

ZOF(S) 
sLf 

1 + 
β ω 0 
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Fig. P9.9 

with 

0 = ^ and 
1 

under the assumptions C\, » C/ and Q,/^ » Lf/Rj. 
b) Show that the peak value of the output impedance is given by 

l^oFlpeak ~ = Rd 

if the condition Q - 1 is met. 
c) The input filter design is usually specified by the magnitude of the backward 

short-circuit current transfer function, evaluated at the switching frequency 
of the converter. The peak value of the output impedance of the filter is also 
specified to avoid the source-impedance induced instability for the given 
input impedance characteristics of the dc-to-dc converter. Design the input 
filter for the following specifications: 
i) |A/F|@iookHz = -35 dB ii) \ZoF\peak = +5 dB iii) Q = 1 iv) 
Ch = IOC/. 
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Verify your design with PSpice® simulations. Also confirm the assumption 
C\yRd » Lf/Rd. 

9.10* Figure P9.10 is a two-stage input filter commonly adapted for high-power 
dc-to-dc converters. This filter was analyzed in Problem 9.8. 

TYYTL 

*ci 
JTYYV. 

Co 

Fig. P9.10 

a) Prove that the backward short-circuit current transfer function Aif(s) and 
the short-circuit output impedance ZoF{s) of the filter are given by 

1 + 
AiF(s) ωζλ 

1 + 
βιω0ι 

s2 \L | s s2 \ 

ω2ο\ ) \ Q2OJ02 ω2
ο2) 

ZoF(s) « (■ j L l | l + — 1 + — 
ωζΧ I \ ωζ2 

1 + 
QlO>ol ω2

οΧ)\ 
1 s s 
1 + + 

with 

Re V Ci 

^ 1 / ^ 

β2ωο2 ω2
ο2 

1 

ωζι = 

^c V C2 

1 

ωσι = 

ωο2 

1 

C\RC 

Re 
ωζ2 = — 

L-2 

with the assumptions L\ » L2, Ci » C2, Li » # ^ 2 , and Ci » £2/ /ζ · 
b) Show that the peak value of the output impedance is given by 

ΙΆ? F\ peak Rr 

if the condition Q\ = Q2 = 1 is met. 
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9.11 

c) Design the input filter for the following specifications 
i) |A/F|@,oo kHz = -43 dB ii) \ZoF\peak = +23 dB iii) Qx = Q2 = 1 iv) 
ωο2 = 10ωοι. 
Verify your design with PSpice® simulations. Also, confirm the assump-
tions L\ » R2

CC2 and C\ » L2/R
2.. 

^Figure P9.11 illustrates two different cases of the polar plot for the impedance 
ratio of Zs(s)/Zic(s) where Zs(s) is the source impedance and Zic(s) is the input 
impedance of a dc-to-dc converter. 

(a) (b) 

Fig. P9.11 

a) For Case (a), determine the stability of the converter. Now assume that the 
magnitude of the source impedance \ZS\ is varied while its phase character-
istics remain the same. The input impedance of the converter also remains 
unchanged. State the condition that makes the converter marginally stable. 

b) Repeat a) for Case (b). 

9.12* The loop gain Tm(s) of a converter combined with a source impedance Zs(s) is 
given by 

1 + 
Tm(s) = TmC(s)- ^iC 

1 + 
^iC 

where TmC(s) is the loop gain with an ideal voltage source, and Z^(s) and 
Z'ic(s) are the input impedance of the converter evaluated with the two specific 
conditions that were described in Section 9.2.6. 

Figure P9.12 shows four different cases of the magnitude plots of the transfer 
functions associated with the above equation. For each case, sketch the profile 
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of the \Tm\ based on the asymptotic analysis. Show all the prominent features 
of the loop gain profile. 

\TmC\ \Tmc\ 

(a) (b) 

\Tn,c\ \TmC\ 

(c) (d) 

Fig. P9.12 
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CHAPTER 10 

CURRENT MODE CONTROL — 
FUNCTIONAL BASICS AND 
CLASSICAL ANALYSIS 

The control scheme studied in Chapters 3 and 8 employs the output voltage as the only 
feedback signal in the process of generating the pulsewidth modulated (PWM) switch 
drive signal. This control scheme is called voltage mode control in the sense that 
the output voltage alone is involved in the PWM process. As introduced in Section 
8.4.7, there exists an alternative control scheme for PWM dc-to-dc converters, called 
current mode control. 

Current mode control refers to a class of control schemes that uses the inductor 
current as an additional functional component in the PWM process. Thus, current 
mode control uses both the output voltage and inductor current for the closed-loop 
PWM control. Current mode control is implemented in many different forms by 
changing the method of current sensing or the way of utilizing the sensed current. 
Among various current mode control schemes, the most popular is the peak current 
mode control which employs the peak value of the inductor current as a control 
variable. 

In the previous chapters, we studied voltage mode control. All discussions about 
the dynamic analysis and control design were presented with regard to voltage-mode 
controlled PWM converters. However, modern PWM dc-to-dc converters extensively 
adapt current mode control rather than voltage mode control. 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 4 6 5 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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While the theoretical basics acquired from voltage mode control are equally ap-
plicable to current mode control, additional knowledge is necessary for current mode 
control. As will be shown shortly, the principle of current mode control is rather 
simple and straightforward. However, its dynamic characteristics are complex and 
somewhat intriguing. In fact, the dynamic analysis of current mode control had been 
one challenging and active research topic in the late 1980s through the early 1990s. 

This chapter deals with the peak current mode control, covering both functional 
basics and dynamic characteristics. Motivation, evolution, and implementation of the 
peak current mode control are first discussed. Then, the dynamic analysis and control 
design are covered. This chapter also investigates the closed-loop performance 
of peak current-mode controlled PWM converters. In particular, the design and 
performance of the peak current mode control, employed to boost and buck/boost 
converters that have the right-half plane (RHP) zero in their transfer functions, are 
addressed in detail. 

10.1 CURRENT MODE CONTROL BASICS 

The current section presents the evolution, benefits, and issues of current mode 
control. While most contents are directed towards the peak current mode control, 
other types of current mode control are also introduced. 

10.1.1 Evolution to Peak Current Mode Control 

The concept of current mode control is illustrated in Fig. 10.1 which compares current 
mode control and voltage mode control, both adapted to a buck converter. Figure 
10.1(a) shows voltage mode control, where the PWM is performed using the ramp 
signal Vramp and the control voltage vcon, derived from the voltage feedback circuit. 
At the onset of each operational period, the switch is turned-on and later turned-off at 
the instant Vramp intersects with vcon. The output voltage is regulated at the reference 
voltage, Vo = Vref, by the condition IZ2(y"0)| / |Ζι (7Ό)| = 00 in the voltage feedback 
circuit. The value of vcon is automatically adjusted to yield the required duty ratio for 
the output voltage regulation, Vo - DVS - Vref. 

A time-varying piecewise linear waveform is necessary for PWM operation. In 
the case of voltage mode control, a ramp signal is generated inside the controller and 
used for the time-varying waveform. However, for the purpose of PWM, other linear 
waveforms can be used. In particular, the triangular waveform can be employed for 
the PWM process. More so, the required triangular waveform is already available 
in the power stage waveforms. In all PWM converters, the inductor current linearly 
increases during the on-time period and decreases during the off-time period, thus 
becoming a triangular waveform. 

Figure 10.1 (b) illustrates an example of current mode control. The inductor current 
is sensed via the current sensing network (CSN) and converted into the voltage signal, 
v/ in Fig. 10.1(b). The sensed voltage signal v/ is then compared against the control 
signal vcon, in order to determine the instant to turn off the switch. Current mode 
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Figure 10.1 Control schemes for PWM converters, (a) Voltage mode control, (b) Current 
mode control. 

control uses the triangular inductor current as a functional replacement of the ramp 
signal in voltage mode control. The structure and function of the voltage feedback 
circuit remain the same. The output voltage is regulated at Vo = Vref as long as the 
condition | Z 2 ( J O ) | / | Z I ( J O ) | = oo is met. 

Compensation Ramp 

The original motivation of current mode control was to exploit the free inductor 
current waveform in place of the costly ramp signal; in the past, the creation of the 
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Figure 10.2 Propagation of current feedback signal disturbance, (a) Stable operation with 
D < 0.5. (b) Unstable operation with D > 0.5. 

ramp signal was not as easy as is the case nowadays. However, it was immediately 
found that current mode control has one critical problem. This problem is illustrated in 
Fig. 10.2, which shows the propagation of the disturbed current feedback signal, v/, for 
two different cases. Figure 10.2(a) is the case where the duty ratio is less than 0.5. The 
solid line v/ is the original current feedback signal, while the dashed line v̂  represents 
the perturbed current feedback signal. As time elapses, the distance between the two 
feedback signals shrinks and the initial disturbance eventually disappears; in short, 
the converter is stable. 

Figure 10.2(b) is the case where the duty ratio is larger than 0.5. In contrast to 
the previous case, the initial disturbance successively grows, shortly developing into 
an erratic behavior. This unstable operation is called the sub-harmonic oscillation, 
referring to the nonlinear oscillation occurring at half the switching frequency. Thus, 
when the duty ratio D exceeds 0.5, current mode control becomes unstable and ends 
up with the sub-harmonic oscillation. 

The remedy for the sub-harmonic oscillation is simple. The solution is to rein-
troduce the ramp signal. This situation is shown in Fig. 10.3(a), where the current 
feedback signal v/ is summed with Vmmp and the resulting signal is compared against 
vcon. Figure 10.3(b) illustrates the propagation of the disturbance in the current feed-
back signal. Unlike the previous case, the initial disturbance, brought in under the 
condition D > 0.5, gradually lessens until it vanishes. The ramp signal stabilizes the 
PWM process and the converter thus operates properly for the entire duty ratio range, 
0 < D < 1. The ramp signal employed for this purpose is called the compensation 
ramp. 

Although current mode control was first conceived to remove the ramp signal in 
the PWM process, the compensation ramp is still necessary to avoid the sub-harmonic 
oscillation. Thus, the initial objective is not achieved. Instead, it was soon revealed 
that current mode control offers considerable advantages even though it still requires 
the compensation ramp. The merits of current mode control will be described in the 
next section. 
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Figure 10.3 Addition of compensation ramp to avoid sub-harmonic oscillation, (a) Control 
scheme, (b) Propagation of current feedback signal disturbance. 

The stabilizing effect of the compensation ramp is explained using the current 
feedback signal illustrated in Figs. 10.4 and 10.5. Figure 10.4(a) shows the structure 
and PWM waveforms of current mode control, where the current-to-voltage conver-
sion gain of CSN is assumed unity for simplicity: thus, vj = ii for this case. Figure 
10.4(a) is rearranged into the equivalent form in Fig. 10.4(b). The PWM waveforms 
in Fig. 10.4(b) are closely analyzed in Fig. 10.5, which shows the propagation of the 
perturbed inductor current. In the enlarged illustration in Fig. 10.5, Sn is the slope 
of the on-time inductor current and Sf is the slope of the off-time inductor current, 
while Se is the slope of the compensation ramp. The AdTs denotes the deviation 
in the on-time period due to the inductor current perturbation. From the graphical 
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Figure 10.4 Structure and waveforms of current mode control, (a) Current mode control 
with unity inductor current sensing, (b) Equivalent representation. 
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Figure 10.5 PWM waveforms. 
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construction, the initial distance between the original current iL and the perturbed 
current i'L is given by 

\iL{k) - i'L(Jc)\ = AiL(k) = SnAdTs + SeAdTs (10.1) 

The distance between the two currents after one operational period is given by 

\iL(k + 1) - i'L{k + 1)| = AiL(k + 1) = SfAdTs - SeAdTs (10.2) 

For the successive decrease in the distance between ii and i'L in the ensuing 
operational periods, the condition 

ML(k+X) Sf-Se 
— - = -^ < 1 (10.3) 

AiL(k) Sn + Se 

is required, leading to the condition for the compensation ramp slope 

S f — S n 

Se > -LYJL (10.4) 
for the stabilizing effect. The exact value of the compensation ramp slope should 
be determined in consideration of the closed-loop performance of the converter. In 
fact, as will be demonstrated later, the selection of the compensation ramp slope 
is the most important issue in the design of current mode control. The expression 
(10.3) also indicates that, when Se = 0 with no compensation ramp, stability is only 
maintained under the condition S n > S / , which is true with the duty ratio D < 0.5. In 
other words, the converter is only stable for the duty ratio less than 0.5 at the absence 
of the compensation ramp. 

Peak Current Mode Control 

Current mode control can be implemented in many different forms. The most popular 
among them is the peak current mode control, illustrated in Fig. 10.6. In this control 
scheme, the switch current is utilized in place of the inductor current. The switch 
current, which corresponds to the on-time inductor current, is sensed through CSN 
and blended with the compensation ramp. The peak value of the switch current, or 
equivalently the peak value of the inductor current, is used to determine the instant to 
turn off the switch; thus, the control scheme is called the peak current mode control.^ 
It should be noted that the switch current sensing is functionally identical to the 
inductor current sensing because the peak value of the inductor current is employed 
as the criterion to turn off the switch. 

There are several advantages in sensing the switch current rather than the inductor 
current. The first is the simplicity in CSN. An implementation of CSN for the peak 

trThe inductor current starts declining when the PWM modulator turns off the active switch. Thus, the 
control scheme does not use but determines the peak value of the inductor current. However, the operation 
of the peak current mode control is broadly interpreted as described above. 
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Figure 10.6 Peak current mode control. 

current mode control is illustrated in a later example. As the second advantage, the 
sensed switch current can be used for the over-current protection for semiconductor 
switches. Due to these advantages, the peak current mode control is widely adapted 
to modern PWM dc-to-dc converters. 

EXAMPLE 10.1 Sub-Harmonic Oscillation and Compensation Ramp 

This example demonstrates the sub-harmonic oscillation and effects of the 
compensation ramp. A buck converter employing the peak current mode control 
is used in this example. The circuit parameters and operational conditions of 
the buck converter are L = 40 μΗ, C = 400 μ¥, Rc = 0.01 Ω, R = 1 Ω, and 
fs - 50 kHz. The output of the converter is regulated at Vo = 4 V, while the 
input voltage is varied linearly from Vs = 16 V to 7 V, and later from Vs = 7 V 
to 16 V. Figure 10.7(a) shows the circuit waveforms where the CSN output 
alone is used for PWM without the compensation ramp. 
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Figure 10.7 Sub-harmonic oscillation and effects of compensation ramp, (a) Sub-harmonic 
oscillation, (b) Effects of compensation ramp. 

When the input voltage is Vs = 16 V, thereby yielding the duty ratio 
D = 4/16 = 0.25, the inductor current and PWM waveforms show stable 
operation. When the input voltage starts declining from Vs = 16 V to 7 V, the 
waveforms depart from the stable pattern and finally develop the sub-harmonic 
oscillation when the duty ratio is increased to D = 4/7 « 0.57. Figure 10.7(b) 
illustrates the waveforms when a compensation ramp is added to the PWM 
block. The converter shows a stable operation regardless of the change in the 
input voltage, thereby demonstrating the stabilizing effects of the compensation 
ramp. 



4 7 4 CURRENT MODE CONTROL —FUNCTIONAL BASICS AND CLASSICAL ANALYSIS 

Figure 10.8 Current sensing network with compensation ramp. 

EXAMPLE 10.2 Current Sensing Network with Compensation Ramp 

This example introduces a circuit implementation of CSN with the compensa-
tion ramp. The circuit is shown in Fig. 10.8. The switch current IQ is sensed by 
a 1 : n current transformer and converted into the voltage signal at the sensing 
resistor Rsense- The Zener diode Dz provides a path for the sensed current 
when the power switch Q is closed, and resets the current transformer when 
the switch Q is open. A first-order low pass filter is configured using Rf and 
Cf to remove the switching noise and produce an uncorrupted voltage signal 
v/. The ratio of the sensed voltage signal vj to the switch current IQ constitutes 
the current-to-voltage conversion gain of CSN, /?,· 

R -V-L--R 
IQ n 

(10.5) 

The compensation ramp is generated using RR, CR, and DR, along with the 
output of the PWM block, Vpwm. At the onset of each operational period, the 
switch-on signal is issued and Vpwm is set at VH. Then, CR is charged towards 
VH through RR. When Vpwm is reset to zero to turn off the power switch ß , 
CR is instantly discharged through DR. During the charging period, the voltage 
across CR is given by 

VrampiO = VH 
I _ e RRCR (10.6) 

which can be approximated as a linear ramp signal within the switching period 

*ramp\t) VH\1-[\ 
t 

RRCR 
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" So' (10-7) 

with the assumption Ts «: RRCR. The slope of the ramp signal is given by 

Se = -^jr (10.8) 

and the peak magnitude of the compensation ramp thus becomes 

Vm = ^ r T , (10.9) 

The ramp voltage Vramp is summed with the sensed voltage signal v/. The 
resulting signal is fed to the inverting terminal of the PWM comparator whose 
non-inverting terminal is connected to vcon. 

10.1.2 Benefits and Issues of Peak Current Mode Control 

Peak current mode control still requires the compensation ramp to prevent the sub-
harmonic oscillation. Thus, the initial attempt to remove the ramp signal from the 
PWM process is not fulfilled. Even so, peak current mode control is widely accepted 
because it offers significant advantages over conventional voltage mode control. 

Benefits of Peak Current Mode Control 

Advantages of the peak current mode control are mainly recognized in the dynamic 
performance. 

1) Improved dynamic performance: Current mode control improves the dynamic 
performance of PWM dc-to-dc converters. These benefits are most pronounced 
in boost and buck/boost converters which have the right-half plane (RHP) 
zero in their power stage transfer function. In fact, current mode control is 
indispensable to these converters for stability and performance. 

2) Reduced sensitivity of converter dynamics: Current mode control reduces the 
sensitivity of the converter performance to operational conditions. Current-
mode controlled converters exhibit less changes in the dynamic performance 
at the presence of the source impedance [1,2] or the switch over between 
CCM operation and DCM operation [3], when compared with voltage-mode 
controlled converters. 

3) Simple compensation design: Current mode control also simplifies the struc-
ture and design of the voltage feedback compensation. In contrast to voltage 
mode control requiring the three-pole two-zero compensation, current mode 
control employs a simpler two-pole one-zero circuit for all the three basic 
PWM converters. Furthermore, the voltage compensation can be standardized 
so that a single design procedures applies to all PWM dc-to-dc converters. 
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Issues of Peak Current Mode Control 

While current mode control offers the aforementioned advantages, it also complicates 
the converter dynamics and presents considerable challenges in the small-signal 
analysis and control design. 

1) Dynamic modeling and analysis: Current mode control utilizes an additional 
feedback from the inductor current on top of the existing output voltage feed-
back. Thus, in control terminology, current-mode controlled PWM converters 
are a multi-loop controlled system in which multiple feedback loops are present. 
The analysis techniques, established in Chapters 7 and 8 for the single-loop 
voltage mode control, need to be reinforced and extended to deal with the 
multi-loop controlled system. 

2) Sampling effects of current mode control: In peak current mode control, the 
control action is executed periodically at the instant the inductor current attains 
its peak value. In other words, the control action is executed by sampling the 
peak value of the fast-varying inductor current waveform. Due to this feature, 
the system exhibits the characteristics of sampled-data discrete-time systems. 
This has been referred to as the sampling effects of current mode control. The 
sampling effects deserve special attention and require pertinent analysis. 

10.1.3 Average Current Mode Control and Charge Control 

In addition to peak current mode control, two other useful variations of current mode 
control are the average current mode control and charge control. This section briefly 
discusses the functional basics of these two control schemes. 

Average Current Mode Control 

Average current mode control is illustrated in Fig. 10.9. Referring to the block 
diagram in Fig. 10.9(a) and the control waveforms in Fig. 10.9(b), the operation of 
the average current mode control is explained as follows. First, the triangular inductor 
current is sensed through the CSN. The sensed current is converted into a voltage 
signal vj and processed through the current feedback circuit, which consists of an 
op amp along with the current feedback compensation, Zj\ and Z/2. If the current 
feedback compensation meets the condition 

,~ , .m, = °° (10.10) 

the sensed voltage signal v/ is forced to follow the control voltage vcon as closely as 
possible. Readers may refer to Section 3.6.1 to validate this statement. 

The sensed voltage signal v/, which is a scaled replica of the triangular inductor 
current, is also a triangular waveform as shown in Fig. 10.9(b). Accordingly, v/ cannot 
exactly follow the control voltage vcon if vcon is a dc or slowly varying waveform. For 
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Figure 10.9 Average current mode control, (a) Functional block diagram, (b) Control 
waveforms. 

this case, v/ only tracks vcon in the average sense; in other words, the moving average 
of the scaled inductor current will follow the control voltage vcon. On the other hand, 
the output voltage is regulated at V0 = Vref as long as the voltage feedback circuit 
satisfies the condition \Z2(jO)\/\Z\(jO)\ = oo. The output of the current feedback 
compensation is given by 

Koni» = ~M0 + I 1 + ,(0 (10.11) 

The composite control signal v'con is compared with the ramp signal to produce the 
required PWM signal for the output voltage regulation. 

The average current mode control forces the moving average of the scaled inductor 
current to follow the control voltage vcon. The potential merit of this feature is not 
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Figure 10.10 PFC ac-to-dc converter and control waveforms, (a) PFC ac-to-dc converter. 
(b) Major waveforms, (c) Expanded view of iL(t) and vcon(t). 

fully revealed in dc-to-dc converters where vcon is usually an arbitrary dc waveform. 
However, there are other applications where the control voltage vcon is programmed 
into a specific waveform. A stand-out example is power factor corrected (PFC) 
ac-to-dc converters, where vcon is given by a low-frequency sinusoidal waveform. 

Figure 10.10 is the conceptual illustration of a PFC ac-to-dc converter operating 
with the average current mode control. The ac-to-dc converter is configured with a 
bridge rectifier and boost converter. The ac-to-dc converter receives an ac voltage 
from the utility line. The bridge rectifier performs the full-wave rectification and the 
resulting voltage waveform is supplied to the boost converter downstream. Accord-
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ingly, the input voltage of the boost converter is a rectified line-frequency sinusoid 
rather than a dc voltage, as illustrated by vs(t) in Fig. 10.10(b). 

Assume that the boost converter is now required to draw its inductor current ii(t) 
in a special manner so that the moving average of iL(t) becomes the same sinusoidal 
waveform as the converter's input voltage vs(t). To achieve this goal, the control signal 
vcon(t) is programmed into the line-frequency sinusoid, as shown in Fig. 10.10(b), 
and the average current mode control is adapted to the boost converter. The resulting 
inductor current waveform iL{t) is shown in Fig. 10.10(b). Figure 10.10(c) is an 
expanded comparison of the iiif) and vcon(t) waveforms. The moving average of iiit) 
tracks vcon(t), as directed by the control law of the average current mode control. 

While the detailed discussions about the PFC ac-to-dc converter are beyond the 
topic of this chapter, it is now seen that the average current mode control is a viable 
control scheme for PFC ac-to-dc converters. Operations and applications of average 
current-mode controlled PFC ac-to-dc converters are covered in [4,5]. 

Charge Control 

Another useful variation of current mode control is the charge control, shown in Fig. 
10.11(a). The switch current IQ is sensed through the CSN and the sensed current is 
immediately used to charge the capacitor C/, resulting in the voltage signal v/ shown 
in Fig. 10.11(b). When v/ intersects with the control voltage vcon, the switch-off 
signal is issued and, at the same time, the capacitor C\ is instantly discharged by 
closing the parallel switch Qj. 

One obvious advantage of the charge control is the enhanced noise immunity. The 
switch current IQ is usually corrupted with the high-frequency ringings and spikes 
which could cause false triggering. In charge control, the noisy switch current is 
effectively integrated by charging the capacitor C/, resulting in a smoothly increasing 
v/ in Fig. 10.11(b). This practically eliminates the risk of the false triggering even in 
the presence of substantial high-frequency noises. Further details about the charge 
control are given in [6]. 

10.2 CLASSICAL ANALYSIS AND CONTROL DESIGN PROCEDURES 

As previously discussed, the peak current mode control implants the discrete-time 
sampling effects into the converter dynamics. In principle, the sampling effects 
should be incorporated into the analysis and design of the peak current mode control. 
This would require discrete-time analyses using z-domain techniques. 

Conventionally, the peak current mode control has been analyzed and designed 
based on the continuous-time s-domain techniques, implicitly assuming that the 
sampling effects only cause negligible consequences on the converter dynamics. This 
simplified analysis is referred to as the classical analysis in this book. The classical 
analysis, although it does not include the sampling effects, accurately describes the 
major dynamics of the peak current mode control and provides legitimate design 
methodology for most cases. In this chapter, the peak current mode control is 
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Figure 10.11 Charge control, (a) Functional block diagram, (b) Control waveforms. 

investigated via the classical (s-domain) analysis, while postponing the analysis of 
the sampling effects to the next chapter. The classical analysis will reveal its own 
value and advantages that would support its long-time prevalence. In particular, the 
classical analysis provides step-by-step design procedures which offer stability and 
good dynamic performance for all the three basic PWM converters. 

10.2.1 Small-Signal Model for Peak Current Mode Control 

Figure 10.12 shows a general circuit diagram of PWM converters employing the peak 
current mode control. With the connections {a-X p - Y i-Z}, Fig. 10.12 represents 
the buck converter. Similarly, the connections {i-X a-Y p-Z} lead to the boost 
converter, while the connections {a-X i -Y p-Z} yield the buck/boost converter. 

Figure 10.13 is the small-signal model of the converter, obtained from Fig. 10.12 
by replacing the PWM switch, PWM block, and voltage feedback circuit with their 
respective small-signal models, and by introducing appropriate small-signal excita-
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Figure 10.12 General circuit diagram for current-mode controlled PWM converters. 

Figure 10.13 Small-signal model for current-mode controlled PWM converters. 

tions. In Fig. 10.13, a feedback path is created from the inductor current ii, even 
though the current is actually sensed from the switch. This because the control action 
is executed at the moment the switch current reaches its peak value, as such, the 
switch current sensing is functionally identical to the inductor current sensing. The 
feedback path from the inductor current iL accords with this fact. The gain block 
Fv(s) is the voltage feedback compensation 

Fv(s) = 
Z2(s) 
Zi(s) 

(10.12) 
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Table 10.1 Expressions for Slopes of PWM Waveforms 

Buck converter Boost converter Buck/boost converter 

S Vs-VoR VS VS 

„ V 0 |VS - V0\ n \V0\ 
S, -j-R, —[—R< —R· 

and Ri is the CSN gain, given by 

Ri = -Rsense (10.13) 

n 
for the circuit discussed in Example 10.2. The gain block F'm represents the small-
signal gain of the PWM block — the modulator gain of the peak current mode control. 
The modulator gain of the peak current mode control differs from that of voltage mode 
control and the notation F'm is used to emphasize the difference. 

Several different expressions for the modulator gain F'm were proposed in the past. 
While there are subtle differences in the existing F'm expressions, they do not cause 
significant consequences on the analysis and design of the peak current mode control. 
This book adopts the modulator gain proposed by F. C. Lee [7, 8] 

'•--tf.-sAn.p-, <HU4) 

where Sn is on-time slope and Sf is off-time slope of the sensed current feedback 
signal v/, while S e is the slope of the compensation ramp. Derivation of the modulator 
gain is given in Example 10.3. The expressions for Sn and S f for the three basic 
converters are summarized in Table 10.1. 

Interestingly, the modulator gain in (10.14) correctly predicts the sub-harmonic 
oscillation, which occurs when the duty ratio D exceeds 0.5 in the absence of the 
compensation ramp. It can be seen that Sn > Sf with D < 0.5, Sn = S/ with D = 0.5, 
and Sn < S/ with D > 0.5. When the compensation ramp is not present, or Se = 0, 
F'm approaches infinity with D = 0.5 and becomes negative with D > 0.5. This fact 
supports the sub-harmonic oscillation occurring with D > 0.5 and Se - 0. 

■ EXAMPLE 10.3 Modulator Gain for Peak Current Mode Control F' 
m 

This example presents the derivation of the modulator gain given by (10.14). 
Figure 10.14 shows the modulator waveforms of the peak current mode control, 
in which the inductor current is assumed to increase cycle-by-cycle so that 
ii(k + 1) > iL(k) where ii(k) is the initial inductor current at the kth switching 
period. In Fig. 10.14, the current level ion is the average value of the inductor 
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Figure 10.14 Peak current mode control waveforms. 

current during the on-time period dTs and i0ff is that of the off-time period 
(1 - d)Ts. The following relationships are derived from Fig. 10.14 

vcon-SedTs--SndTs (10.15) 

vcon-SedTs-
X-Sf(\-d)Ts (10.16) 

When the inductor current is assumed only to change slowly, ii(k) « ii(k+1), 
it becomes ion « T0ff so that either ion or T0ff can be considered as the average 
inductor current, JL(t). Furthermore, the assumption iL(k) « iL(k +1) validates 
the approximation 

SndTs = Sf(\-d)Ts (10.17) 

which is rearranged as 
(Sn + Sf)d = Sf (10.18) 

By considering J0ff as the approximation of the averaged inductor current 
Ji{t) and using (10.18), the expression (10.16) is modified as 

loffit) = Tat) = Vcan - SedTs - ~(Sn + Sf)d(l - d)Ts 

Application of the linearization process to (10.19) yields 

h + iL = (Vcon + vcon)-Se{D + d)Ts 

-l-{Sn + Sf)(D + d)(l - (D + d))Ts 

By equating the ac terms in (10.20), it becomes 

Vcon -k = lseTs + -(Sn + Sf)Ts(l - 2D)\d 

Using the steady-state expression of (10.18) 

lon(t) 

~loff(t) 

(10.19) 

(10.20) 

(10.21) 

(Sn + Sf)D = Sf (10.22) 
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Figure 10.15 Small-signal block diagram representation of current-mode controlled PWM 
converters. 

the expression (10.21) is rearranged as 

F' 
-iL (Sn-Sf + 2Se)Ts 

(10.23) 

which can be fitted into Fig. 10.13 with the assumption Rt■ = 1. 
In this derivation, it was also assumed that the slopes of the inductor current 

remain unchanged. The cases where this assumption is discarded will be 
discussed in the next chapter, which covers the sampling effects of current 
mode control. 

Figure 10.15 shows the block diagram representation of the small-signal model. 
The block diagram is constructed by extending the small-signal model of voltage 
mode control, shown in Fig. 5.26. The block diagram clearly shows the two individual 
feedback loops, one originating from the output voltage v() and the other stemming 
from the inductor current ϊι. The system is thus called a two-loop or multi-loop 
controlled system. 

In addition to the three power stage gain blocks, Gvs(s), Zp(s), and Gvd(s), asso-
ciated with the output voltage feedback, three additional gain blocks, GiS(s), Zq(s), 
and Gid(s), are necessary due to the presence of the inductor current feedback. The 
expressions for the six gain blocks of the three basic PWM converters are listed 
in Table 10.2. Now, the small-signal dynamics of current-mode controlled PWM 
converters are investigated using Fig. 10.15 and Table 10.2. 
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Table 10.2 Power Stage Transfer Functions of Three Basic Converters 

Transfer functions 

zKVi 

<2ω0 ω
2
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Qu0 ω2
0 
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£>ω0 ω2
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ZD-K, Hl· 
Quo ω2

0 
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QoJo ω2
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Expressions for dc gain and corner frequencies 

Buck converter Boost converter Buck/boost converter 

Kvs 

Kvd 

Kis z 

Kid = 

KP 

Kq 

Mesr = 

= D 

= Vs 

= D/R 

--Vs/R 

= Ri 

= -l 

IKCRc) 

ü)rhp = OO 

Mis = 

Mid = 

ωζ = 

ω0 = 

Q = * 

IKCR) 

IKCR) 

--Ri/L 

I/VLC 

RVC/Z 

1/(1-D) 

Vs/(i~D)2 

1/((1-D)2R) 

2Vs/((l-DYR) 

R,K\-Df 

-1/(1-0) 

\/(CRc) 

(1 - DfRjL 

\/(CR) 

2/(CR) 

Ri/L 

(l-D)/y/LC 

DKX-D) 

Vs/d-D)2 

D/((\-D)2R) 

Vs(l+D)/((l-D)3R) 

RiKl ~ D)2 

-1/(1 -D) 

l/(CRc) 

(l-D)2R/(DL) 

U(CR) 

(\+D)/(CR) 

Ri/L 

(l-D)/yfLC 

The expressions are approximations whose accuracy improves with the conditions R s> ft; and R s> Rc. 
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10.2.2 Loop Gain Analysis 

In current-mode controlled PWM converters, there exists two individual feedback 
loops: namely, one associated with the output voltage feedback and the other involved 
with the inductor current feedback. Furthermore, several different system loop gains 
can be defined by breaking the signal path at different locations in the system. These 
individual feedback loops and system loop gains should be first analyzed in order to 
characterize the small-signal dynamics of the two-loop controlled systems. 

Individual Feedback Loops 

From the small-signal block diagram in Fig. 10.15, two individual feedback loops 
are identified — the current loop and the voltage loop. 

Current loop Ti(s): The current loop Ti(s) is the negative gain product of the 
signal path created by the inductor current feedback 

Ti^ = " ^ Τ Τ ^ Τ ^ ^ Τ ^ = Gid(s)RiFm (10.24) 
d(s) ids) v/O) 

Using the expressions in Table 10.2, the current loop Ti(s) is determined as 

1 + - Ϊ -
Γ,·(ί) = Kid ^^RiF'm 

s ί 

= Ki ^-^r (10.25) 
s s 

βω„ (of, 

where 

Kt = Kid R, F'm = Kid R, 2 (10.26) 
{bn - b f + Lbe)l s 

Figure 10.16 is the asymptotic plot for |Γ/|. The structure and corner frequencies 
of 17/1 are fixed by the power stage parameters and only the dc gain Kj can be altered 
by the CSN gain /?/ and compensation ramp slope S e. Equation (10.26) indicates 
that the dc gain Ki is inversely proportional to Se. Thus, when Se becomes larger, 
the magnitude of the current loop |Γ/| will be decreased, as illustrated in Fig. 10.16. 
This implies that, when the slope of the compensation ramp is overly increased, the 
control scheme practically reduces to voltage mode control, even though it has the 
structure of the peak current mode control. 
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Larger Se 

Figure 10.16 Asymptotic plot for |Γ,·| and effects of compensation ramp slope. 

Voltage loop Tv(s): The negative gain product of the signal path associated with 
the output voltage feedback is referred to as the voltage loop Tv(s) 

v(s) = - T - T T T ; — 7 T = Gvd(s)Fv(s)Fm (10.27) 
d(s) v0(s) vcon(s) 

The voltage loop is directly affected by the voltage feedback compensation Fv(s). 
Thus, the structure and parameters of Fv(s) should be adequately determined in order 
to obtain desirable Tv(s) characteristics. 

Overall Loop Gain and Outer Loop Gain 

For single-loop controlled systems, only one system loop gain exists in the system, as 
is the case with voltage mode control. In contrast, for multi-loop controlled systems, 
several system loop gains can be identified. Each system loop gain has its own 
implication and distinct role in the dynamic analysis and control design. For current-
mode controlled PWM converters, two particular system loop gains are important 
and useful. Figure 10.17 illustrates these two system loop gains, which are called the 
overall loop gain and outer loop gain. 

Overall Loop Gain T\(s): The first system loop gain is defined by breaking 
the signal path at Point A in Fig. 10.17(a). By applying Mason's gain rule to Fig. 
10.17(a), this loop gain is expressed as 

Ti(s) = - ^ = Us) + Tv(s) (10.28) 

where Ti(s) and Tv(s) are defined in (10.24) and (10.27). This loop gain is called 
the overall loop gain because it is defined by breaking the signal path inside both the 
current loop and voltage loop. 

Outer Loop Gain ^ ( s ) : The other system loop gain is defined at Point B in Fig. 
10.17(b). Application of Mason's gain rule to Fig. 10.17(b) yields 

v'x(s) 1 + Ti(s) 
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Figure 10.17 System loop gains, (a) Overall loop gain, (b) Outer loop gain. 

This loop gain is denoted as the outer loop gain because the loop gain is defined at 
the outer voltage feedback path. 

EXAMPLE 10.4 Mason's Gain Rule and System Loop Gains 

This example shows the derivation of the system loop gain expressions using 
Mason's gain rule. Mason's gain rule is a general formula to find the expression 
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of a specific transfer function at the presence of multiple feedback loops 

1 n 

H{s) = ~YjMkAk (10.30) 

where 

A w 

H(s) : transfer function of interest 

Δ : 1 - (sum of the gains of all individual loops) 

+ (sum of the gain products of all two non-touching loops) 

Mk : gain of the kth forward path 

Δ* : 1 - (sum of the gains of all individual loops not touched by the kth 

forward path) + (sum of the gain products of all two non-touching 

loop not touched by the kth forward path ) 

To evaluate the overall loop gain T\ (s), Mason's rule is applied to Fig. 10.17(a), 
yielding Δ =l,M,= Gid(s)RiF'm = Ti{s\Ax^M2 = Gvd(s)Fv(s)F'm = Tv(s), 
and Δ2 = 1. The overall loop gain is now given by 

Tx = ]-(MxAx + Μ2Δ2) = TM + Tv(s) 
A 

Similarly, by applying Mason's rule to Fig. 10.17(b), it becomes that Δ = 
1 + Gid(s)RiFf

m = 1 + Ti(s)9 Mx = Gvd{s)Fv{s)F'm = Tv(s), and Δι = 1. Thus, 
the outer loop gain is resulted as 

T2 = —Μ\Δ\ 
A 1 + Ti(s) 

10.2.3 Stability Analysis 

For voltage mode control, stability analysis was performed using the single loop gain 
present in the system. In contrast, for current mode control, the overall loop gain and 
outer loop gain are both necessary and useful in determining the absolute stability 
and relative stability of the converter. 

Absolute Stability 

As discussed in Section 7.5, the absolute stability can be assessed using any closed-
loop transfer function because all transfer functions have the same denominator. The 
closed-loop input-to-output transfer function, or audio-susceptibility, is derived by 
applying Mason's gain rule to the small-signal block diagram of Fig. 10.15. 

v0(s) Gvs(l + GidRiF'J - GisRiF'mGvd 
Ms) = 

vs{s) 1 + LfidKit'm + Lrvdrvr'm 

FJs) 
(10.31) 

vs(s) 1 + GidRiF'm + GvdFvF'm 

Fp(s) 

1 + Us) + Tv(s) 
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with Fp(s) = Gvs(l + GuRiF'J - GisRiF'mGvd. 
It can be shown that the numerator of the above equation, Fp(s), does not contain 

any right-half plane (RHP) poles. Thus, the absolute stability is judged by the 
existence of any RHP roots in the following equation 

1 + Us) + Tv(s) = 0 

which is recognized as 
l + Tx(s) = 0 

Equation (10.32) is written in an alternative form 

1 + ^ ^ = 0 
1 + Us) 

which becomes 
1 + T2(s) = 0 

This analysis implies that the Nyquist criterion can be applied to either T\ (s) or ^ ( s ) , 
in order to check the existence of any RHP roots in 1 + Ti(s) + Tv(s) = 0. The result, 
of course, should be the same regardless of the choice of the loop gain; if one loop 
gain predicts stability or instability, the other loop gain should indicate the same. 

■ EXAMPLE 10.5 Absolute Stability and Polar Plots of Ti(s) and T2(s) 

This example demonstrates that the overall loop gain and outer loop gain carry 
the same information about the absolute stability of the converter. Figure 10.18 
shows the polar plots of T\(s) and ^ ( s ) of a current-mode controlled boost 
converter. With a stable operating point, the polar plots of the two loop gains 
both do not encircle the (-1,0) point to confirm stability of the converter, as 
shown in Fig. 10.18(a). Now, the operating point is altered so that the converter 
becomes marginally stable. As shown in Fig. 10.18(b), both the polar plots 
identically traverse the (-1,0) point, thus indicating that the converter is on 
the verge of instability. Figure 10.18(c) is the polar plots when the operating 
point is further changed to encounter instability. For this case, the two loop 
gains encircle the (-1,0) point as the token of instability. Although the shape 
and transition pattern are utterly different, the two loop gains exhibit the same 
information about the absolute stability of the converter. 

Relative Stability 

Although the overall loop gain and outer loop gain provide the same information about 
the absolute stability, they are different s-domain transfer functions. Therefore, the 
frequency responses of the two loop gains are distinct in both the shape and evolution 
pattern, thereby producing different phase and gain margins. The stability margins 
thus should be interpreted based on their original definitions. The frequency response 

(10.32) 

(10.33) 

(10.34) 

(10.35) 
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Figure 10.18 Overall loop gain Tx and outer loop gain T2. (a) Stable case, (b) Marginally 
stable case, (c) Unstable case. 

of the overall loop gain, T\(s) = Ti(s) + Tv(s), is expressed as 

Tx(ju) = \Ti<Ju) + Τν{]ω)\ΐ(τχ(]ω) + Τν(]ω)) (10.36) 

According to the definitions in Section 7.6, the gain margin is the extra gain that 
can be added to |Γ; + Tv\ before the system becomes unstable. For example, if 
T\(s) has a 6 dB gain margin, the system remains stable until \TV + Γ/| is doubled: 
20log 2 « 6 dB. Similarly, the phase margin is the additional delay that can be put 
in L(Xi + Tv) while maintaining stability. 

The frequency response of the outer loop gain T2(s) = Tv(s)/(l + Ti(s)) is given 
by 

Τνϋω) 
T2(ju) = 

, / Tv(J<o) \ 
■\i + r / ( » / 

(10.37) 
|1 + Γ /0ω) | 

The gain margin and phase margin of T2 can be interpreted in the same manner. 
For example, the gain margin is the additional gain increase that can be introduced 
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to |Γν/(1 + Ti)\. However, the stability margins become far more informative and 
useful when Ti(s) is fixed prior to analyzing Γ2Ο). For such a case, the stability 
margins of Γ2Ο) = Tv(s)/(\ + T[(s)) are, in fact, those of Tv(s). As will be shown 
in the upcoming control design procedures, Ti(s) is indeed prefixed and Tv(s) is later 
designed for the optimal Γ2Ο) characteristics. Accordingly, the phase margin and 
gain margin of Γ2Ο) can be used to assist and evaluate the design of the voltage loop 
Tv(s). Further details about this topic are given later in Section 10.4.2. 

10.2.4 Voltage Feedback Compensation 

As shown in the previous section, the structure of the current loop Ti(s) is fixed by 
the power stage transfer functions. On the other hand, the structure of the voltage 
loop gain Tv(s) can freely be chosen by altering the voltage feedback compensation, 
Fv(s). Accordingly, Fv(s) needs to be designed for the desired Tv(s) structure. 

This section investigates the design of Fv(s) that would offer stability and good 
closed-loop performance. For simplicity, a buck converter is used in this section. 
The conclusion of this section will be extended for boost and buck/boost converters 
in the next section. 

Instability with Single Integrator 

In order to obtain insight about the Fv(s) design, it is first necessary to investigate the 
current loop Ti(s) and voltage loop Tv(s). 

For the buck converter, the expression for the current loop Ti(s) is given by 

Us) = Gid{s)RiF'm 

1 + ^ -
Mid 

R s s2 

Quo ωί 

RiF'm (10.38) 

Gid(s) 

with (UM = l/(CR). As previously addressed, the structure of the voltage loop gain 
is determined by Gid(s). 

Unlike the Ti(s) case, the expression for the voltage loop Tv(s) is directly affected 
by the selection of the voltage feedback compensation Fv(s). As the first candidate 
for Fv(s), a single integrator is considered. With Fv(s) = Kv/s, the voltage loop Tv(s) 
becomes 

Tv(s) = Gvd(s)Fv(s)F'm 

(10.39) 

Gvd(s) 
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Figure 10.19 Individual feedback loops and overall loop gain with single integrator. 

The correctness of the Fv(s) selection can be judged by investigating the overall 
loop gain T\(s) = Ti(s) + Tv(s). The magnitude plot of the overall loop gain |Γι| = 
\Ti + Tv\ is depicted in Fig. 10.19, along with the asymptotic plots of |Γ/| and \TV\. The 
asymptotic plot for |7Ί| is determined as explained below. Based on the asymptotic 
analysis, it follows that 

Γι(*) = Ti(s) + Tv(s) 

I Ti(s) at frequencies where |Γ/| » \TV\ 
(10.40) 

Tv(s) at frequencies where |Γ,·| «: \TV\ 

Thus, |Γι| follows either |Γ/| or \TV\ whichever is larger in magnitude at the given 
frequencies. However, there is one singular point which could utterly depart from 
this general trend. At the frequency where |Γ/| = |Γν|, denoted as iocr in Fig. 10.19, 
T\ is given by the sum of two equal-length vectors, T\ = Ti + TV. In this case, the 
magnitude of T\ is strongly affected by the phase characteristics of ft and fv. The 
slopes of ΙΓ/Ι and \TV\ indicate that ΖΓ/ « -90° and lTv « -270° = 90° at ω€Γ. Now, 
the magnitude of T\ at a)cr becomes infinitely small, because ft and Tv are 180° apart 
and therefore cancel each other. The sudden collapse in magnitude in turn implies an 
abrupt decrease in phase. Thus, \T\ \ prematurely crosses the 0 dB line with the phase 
far less than -180°; in short, the converter is unstable. 

■ EXAMPLE 10.6 Instability with Single Integrator 

This example demonstrates the instability of a single integrator. Figure 10.20 
shows the Bode plots of Γ,Ο), Tv(s), and T\(s) of a buck converter which 
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Figure 10.20 Examples of individual feedback loops and overall loop gain. 

employs a single integrator. The overall loop gain exhibits the dip in |Γι| and 
sudden drop in lT\ at the frequencies where |7,| « |7\,|. The converter is surely 
unstable with these loop gain characteristics. 

Two-Pole One-Zero Compensation 

As the second candidate for the voltage feedback compensation, a two-pole one-zero 
circuit 

Fv(s) = 
KJ1 + — 

■ ( ■ ♦ - ) 

is now considered. For this case, the voltage loop Tv(s) becomes 

Tv(s) = Gvd(s)Fv(s)F' 

1 + 
Vs s s 

1 + - — + -
Qco0 ω\ 

2 I \ m 

i \ "pel 

(10.41) 

(10.42) 

Gvd(s) Fv(s) 
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Figure 10.21 System loop gains, (a) Overall loop gain Tx. (b) Outer loop gain T2. 

Figure 10.21(a) shows the asymptotic plots for |Γ/|, \Τν\, and |Γι|. The asymptotic 
plot of |TV| indicates that the compensation pole ωρε is placed at the esr zero, a>pc = 
ü)esr, and the compensation zero ωζο is located before the power stage double pole ω0: 
ωΖ€ < ω0. Justifications for these selections will be given shortly. Due to a 90° phase 
boost by cozc, lTv approaches -180° at the frequency where \Tt \ = \TV\. The difference 
between iTi and lTv is 90°, and the magnitude of the overall loop gain now becomes 
|Γι| = V2 |Γ/| = V2 |7"v| without showing any eccentric behavior. Thus, the two-pole 
one-zero circuit is well suited for the voltage feedback compensation. As will be 
confirmed in the forthcoming discussions, the two-pole one-zero compensation is 
indeed the optimal structure for Tv(s), which can be adopted to all the three basic 
PWM converters. 

The asymptotic plot of the overall loop gain |7Ί| shows the design strategy for 
the peak current mode control. At low frequencies, the voltage loop should be large 
in magnitude for a tight output regulation and good closed-loop performance, as is 
the case with voltage mode control. The compensation zero ωΖ£ should be placed 



4 9 6 CURRENT MODE CONTROL —FUNCTIONAL BASICS AND CLASSICAL ANALYSIS 

before the power stage double pole ω0 for the following reason. As demonstrated in 
Section 8.4.2, the system becomes a conditionally stable system if ω0 comes prior to 
o)zc, which could encounter stability problems during transition periods in which the 
output of the feedback controller remains in saturation. To avoid this problem, ωΖ€ 

should appear before ωσ. 
At high frequencies, the current loop should prevail over the voltage loop, |Γ/| » 

|7\,| so that T\(s) = Ti(s) + Tv(s) « Ti(s). The current loop Ti(s) is inherently 
stable with a -20 dB/dec high frequency asymptote and 90° final phase. Thus, 
the dominance of Ti(s) at high frequencies insures stability for T\(s). In fact, the 
crossover frequency and phase margin of Ti(s) become those of the overall loop gain 
T\(s) if the 17/1 » |7V| condition is met at high frequencies. 

Outer Loop Gain 

The outer loop gain defined in (10.29) is now analyzed using the asymptotic method 
introduced in Section 8.1 

Tv(s) 
1 + Ti(s) 

I —— at frequencies where |Γ/| » 1 
ΤΜ (10.43) 

Tv(s) at frequencies where |7/| «: 1 
Figure 10.21(b) shows the asymptotic plot for |7,·|, |Γν|, and |Γ2|. The asymptotic plot 
for ΙΓ2Ι is constructed based on (10.43). At the frequencies beyond |Γ/| crossover 
frequency ωα, ΙΓ2Ι tracks \TV\. At frequencies lower than ωα·, ΙΓ2Ι follows the line 
segments that are created from the asymptote sketch rules given in Table 8.1 in 
Chapters: \T2\ = \TV\ - \Tt\. 

The outer loop gain ΙΓ2Ι is very different from the overall loop gain \T\ | in structure, 
magnitude, and crossover frequency. Features of ΙΓ2Ι are summarized below. 

1) The second-order power stage dynamics do not appear in ΙΓ2Ι. The second-
order dynamics, commonly appearing in both Ti(s) and Tv(s), are canceled in 
T2(s) « Tv(s)/Ti(s) and the loop gain shows the -20 dB/dec slope for a wide 
frequency range. 

2) The magnitude of ΙΓ2Ι is substantially smaller than the magnitude of |Γι|: that 
is, | r 2 | « |7-v/rf| <κ |7Ί| = irf + rv|. 

3) The crossover frequency of ΙΓ2Ι is much lower than that of |7i|. In fact, ΙΓ2Ι 
crossover occurs at the frequency where |Γν| = |Γ/|; namely, the condition 
\TV\ = \Ti\ indicates |Γ2| = |Γν|/|Γ/| = 1 = 0 dB. This frequency was previously 
denoted as tjcr. 

4) The outer loop gain has a high-frequency pole at the |Γ/| crossover frequency, 
denoted as uci in Fig. 10.21(b). For sufficient phase margin, the IT2I crossover 
frequency ucr should appear well before the high-frequency pole ωα: ucr <^ 
COci-
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Loop Gain Characteristics 

For current mode control, two system loop gains are defined at the different locations 
in the system. These two loop gains collectively provide useful information about 
the internal structure of the feedback controller, however, the informational contents 
of the two loop gains are very different. Thus, the roles of the two loop gains in 
the dynamic analysis and control design are distinct and unique. This situation is in 
sharp contrast to the case of voltage mode control, where only one system loop gain 
exists. For voltage mode control, connections between the loop gain and closed-loop 
performance are direct and explicit. Thus, the loop gain analysis is straightforward 
for this case. 

For current mode control, the loop gain analysis is rather involved because the 
connections between the loop gains and closed-loop performance are indirect and 
implicit. Furthermore, the contributions of the two loop gains to the control design 
are very different. Details about the dynamic analysis and control design using the 
two loop gains are given in the next section. 

Readers may be tempted to compare the loop gain characteristics of current mode 
control with those of voltage mode control. In that case, the comparison must be 
done with care, because a direct comparison between the loop gains of voltage mode 
control and current mode control does not provide consistent information about the 
performance of the converter or correctness of the control design. Indeed, the loop 
gain of voltage mode control usually seems superior to the outer loop gain of current 
mode control. However, this does not imply that voltage mode control outperforms 
current mode control, but does indicate that the outward message of the two loop gains 
should be interpreted differently and carefully in consideration of their connections 
to the closed-loop performance of the respective converter system. 

10.2.5 Control Design Procedures 

Based on the previous loop gain analysis, step-by-step design procedures for the 
peak current mode control are established. The design procedures are discussed 
in a general manner so that the results can be applied for all the three basic PWM 
converters. As the first step, the current loop Ti(s) is designed to offer good high-
frequency characteristics for the overall loop gain T\(s). The second step is to design 
the voltage loop Tv(s) for desirable properties of the outer loop gain Γ2Ο). 

Current Loop Design 

The general expression for the current loop is given by 
Us) = Gid(s)RiF'm 

s 1 s 

l + — l + — 
= Kid ^^RiF>m = K. ω * ! _ ( l0 .44) 

s sz s sL 

N <2ωο ωζ
0 ζ)ω0 ωι

0 

Gld(s) 
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where 
Ki = KuiRiF'm (10.45) 

The current loop Ti(s) should dictate the overall loop T\(s) at high frequencies. 
This design objective is simply achieved by placing the 0 dB crossover frequency of 
Ti(s) at higher frequencies. The crossover frequency ofTi(s) can be increased up 
to the frequencies where the validity and accuracy of the small-signal analysis are 
not severely impaired, typically 15-30% of the switching frequency. Readers may 
refer to Example 8.4 in Chapter 8 for the background of this statement. As will be 
demonstrated in the next chapter, this design strategy also prevents or minimizes the 
detrimental effects originated from the sampling effects of current mode control. 

Once the Ti(s) crossover frequency, denoted as uci in Fig. 10.21, is selected, the 
current loop design proceeds based on the Ti(s) expression in (10.44). 

1) Determine the dc gain of the current loop so that the Ti(s) crossover frequency 
occurs at the desired frequency. It is recommended to place the crossover 
frequency at 15-30% of the switching frequency. From the asymptotic plot of 
17/1 in Fig. 10.21, the following relationship can be seen 

201og £/ + 20 log ( — ) - 20 log ( — j = 0 dB (10.46) 

where Ki is the dc gain of the current loop and ωα is the desired location for 
the Ti(s) crossover frequency. The preceding equation is converted into the 
design equation 

\ω,γ//\ω„·/ 
1 = > *. = ί ^ (10.47) 

which can be used to determine the required Ki for the preselected ω67. 

2) Determine the CSN gain Rt considering hardware constraints. The product of 
the peak inductor current iLpeak a nd CSN gain Ri should fall in the allowable 
voltage range for the PWM block: iipeakRi < Vmax where Vmax is the maximum 
allowable input voltage for the PWM block. 

3) Determine the modulator gain Fm using the relationship 

Ki = KidRiF'm => K = -jTT <10·48) 

where Kici is given in Table 10.2. Once the modulator gain is fixed, the slope 
of the compensation ramp Se is determined from 

F'~-(S,-S^2SJT, - s - = ^ r ^ (io-49> 
This design procedure places the 7/(s) crossover frequency at the desired fre-

quency. The Ti(s) crossover frequency is the same as the crossover frequency of 
the overall loop gain T\(s) = Ti(s) + Tv(s), due to the condition \Tj\ » |7V| at high 
frequencies. 
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Voltage Loop Design 

The general expression for the voltage loop is given by 

Tv(s) = Gvd(s)Fv(s)F'm 

1 -
Mrhp J\ uesr) 

= Kvd± ^ J?LLFMF'm (10.50) 
S ΞΔ 

Q0Jo 0Jl
o 

Gvd(s) 

For buck converters, the RHP zero does not exist so ω^ρ = oo in (10.50). The voltage 
loop should prevail over the current loop at low frequencies. For this purpose, the 
two-pole one-zero circuit is employed for the voltage feedback compensation 

- ) 

\ ωροΙ 

*v[i + -
Fv(s)=—± ^ (10.51) 

Jpc I 

The voltage loop Tv(s) then becomes 

(!_JL)(1 + _LU(1 + . 
\ <urhp)\ (x)esr) \ 

s 

Tv{s) = Ky — * " γ*" ; ωζ\ rm (10.52) 
s sl L s \ 

1 + ^ ^ + ^ i l + Q0J0 ω2
0 \ ωρε 

Gvd{s) Fv(s) 

Referring to the asymptotic plots of the system loop gains in Fig. 10.21, the selection 
of the compensation parameters is explained below. 

1) Place the compensation pole a>pc at the lowest frequency among the RHP zero, 
esr zero, and half the switching frequency: ωρε = min {ω^ρ toesr 0.5 ωΞ). The 
compensation pole ωρ€ cancels ωΓπρ or uesr whichever comes first, and Tv(s) 
thus maintains -40 dB/dec roll-off at high frequencies. This design step is 
necessary to ensure the dominance of the current loop at high frequencies. 

2) Place the compensation zero ωΖ£ before the power stage double pole ωσ, in 
order to provide a 90° phase boost without becoming a conditionally stable 
system. As will be shown later, the position of iozc determines the speed 
of transient responses. For faster response, ωζε should be placed at higher 
frequencies, yet still not exceed the power stage double pole. As a rule of 
thumb, it is recommended a>zc = (0.6-0.8) ω0. 

3) Adjust the integrator gain Kv for design trade-off. At this stage, the current 
loop Ti(s) is fixed and the locations of the compensation pole and zero in 
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Fv(s) are determined. Now, the integrator gain Kv is the only undecided 
design parameter. By changing Kv, the magnitude of the outer loop gain, 
1̂ 21 = l̂ vl/U + Ti\, can be raised or lowered; in other words, Kv controls the 
T2(s) crossover frequency, a)cr. For design purposes, the position of ucr is first 
selected and the integrator gain Kv is determined later. 

• For buck converters, ucr can be positioned at high frequencies, approach-
ing the esr zero: ω€Τ - (0.3-1.0) ωβ8Γ. 

• For boost and buck/boost converters, ω€Γ should be selected at sufficiently 
lower frequencies than the RHP zero: cocr = (0.1-0.3) ω^ρ. 

Discussions about the selection of a>cr will be given in Sections 10.3.3 and 
10.4.1. Once the T2(s) crossover frequency, a)cr, is chosen, the integrator gain 
Kv is determined from the design equation 

KvdKv Uid 
\2 

) cocr 
1 κν = 

Kid <*>cr Ri Mzc 

KidRi (i>id \ tozc) <j)cr a>id Kvd 

Derivation of (10.53) is explained in Example 10.7. 

(10.53) 

4) Check the phase margin of T2(s) and tune the integrator gain Kv to secure a 
45°-70° phase margin. 

EXAMPLE 10.7 Design Equation for T2(s) 

This example shows the derivation of the design equation of T2(s) given in 
(10.53). Referring to Fig. 10.21(b), the magnitude of T2(s) at ωιά is given by 

\T2(jüJid)\ 
Tv(Md) 
Ti(joJid) 

( 

20 log 
Kvd — F'm 

Mid 

Kid Ri F'm 

= 20 log 
KVd Ky 

Kid Ri ^id 
(10.54) 

Figure 10.21(b) also indicates that 

KvdKv , Λ 1 _ coZc 
OJid 

20 log- - 40 log — - 20 log — = 0 dB 
KidRi ^id 

which transforms to (10.53) in the linear scale. 

Wzc 

(10.55) 

Circuit for Two-Pole One-Zero Compensation 

Figure 10.22 shows the circuit implementation of the two-pole one-zero compen-
sation. The resistance Rx is used to control the magnitude of the output voltage: 
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Z2(s) ZlW 

Figure 10.22 Circuit implementation of two-pole one-zero compensation. 

Vo = Vref(l + R\IRX). If Rx is not used, the output voltage is regulated at the ref-
erence voltage: Vo - Vref with Rx = oo. This resistance is irrelevant to the voltage 
feedback compensation. Direct circuit analysis shows that 

Fv(s) = 
Z2(s) 

Z\{s) 

\ Uzc) 

MpcJ 

(10.56) 

Kv = 

ω7ι 

1 

Äi(C2 + C3) 
1 

^2^2 
(10.57) 

ω pc I c2c3 

l c 2 + c3 
Ri 

Once the compensation parameters are selected, the circuit components in Fig. 10.22 
are determined using the above equations. Among the four circuit components, one 
can arbitrarily be chosen and the other components are found using the equations 
(10.57). The design procedures developed in this section are summarized in Table 
10.3 for easy reference. 
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Table 10.3 Design Procedures for Peak Current Mode Control 

Current loop design 

S 1 S 

1 + — 1 + — 
Us) = Kld 2aL—RiF'm = Ki ^—r with Ki = M / F ; 

s sz s sz 

1 + —— + —7 1 + —— + —T 
Qu0 ωλ

α ζ)ωυ ωι
0 

Gid(s) 

1) Select Ti(s) crossover frequency: uci = (0.15 - 0.3) ω5. 

2) Evaluate the dc gain: Ki - {ωίά ωαί)Ιω
2
0 with Ki = KidRiF'm. 

3) Select the CSN gain Rt such that iLpeakRi < Vmax where Vmax is the maximum 
input voltage for the PWM block. 

4) Evaluate the modulator gain: F'm = Ki/(KidRj). 

5) Evaluate the compensation ramp slope: Se - \/(TsF'm) + (S f - Sn)/2. 

Voltage loop design 

ii-i- i + -i-U/i + -L 

S S 

Q<*>o <J)L
0 \ Upc) 

Gvd{s) Fv(s) 

1) Set the compensation pole: a>pc = min{cürhp <j)esr 0.5ωΛ). 

2) Select the compensation zero: ωΖ€ = (0.6 - 0.8) ω0. 

3) Set T2(s) crossover frequency: 

cjcr - (0.3 - 1.0)ωβ5Γ for buck converter, and 

ü)cr - (0.1 - 0.3) ü)rhP for boost or buck/boost converter. 

4) Evaluate the integrator gain: Kv = (Kid ω€Γ Ri ωΖ€)/(ωί£ΐ Kvd). 

5) Check the T2(s) phase margin and adjust Kv for a 45° -70° phase margin. 

6) Evaluate the circuit components for voltage feedback compensation using 
(10.57). 

For buck converters, ωΓ\ιρ does not exist so ωΓ/,ρ = oo. 
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EXAMPLE 10.8 Buck Converter Design and Performance Evaluation 

This example illustrates the control design and closed-loop performance of the 
peak current mode control adapted to a buck converter. Figure 10.23 shows 
the circuit diagram of the buck converter. The converter regulates the output 
voltage at 4 V using the two-pole one-zero compensation. From the power 
stage circuit parameters, the corner frequencies and dc gains of power stage 
transfer functions are determined as 

1 l = 2π· 1.16 xlO3 rad/s 
VIC V40xl0-6470xl0-6 

uesr = = 2 = 2π ' 3.39 x 103 rad/s 
esr CRC 470x l0 - 6 0.1 

Kvd = Vs = 16 

<*>id = TTT: = -; 7— = 2π · 339 rad/s 
CR 470 x 10-6 1 

The switching frequency is ω8 = 2π · 50 x 103 rad/s. The maximum input 
voltage for the PWM block is assumed as Vmax = 5.0 V and the peak value of 
the inductor current is calculated as 

Vo , IVs-Vo ^ 
iLpeak - — + ~Z J DLs 

4 1 1 6 - 4 
= 7 + :̂ Ί7Γ—TTTS*^ ' 20 x !0"6 = 4.75 A 1 2 40 x 10"6 

Based on the proposed design procedures, the control design is performed as 
follows. 

Current Loop Design 

1) Ti(s) crossover frequency: uci = 0.2 ω5 = 0.2 (2π · 50 x 103) = In · 10 x 
103 rad/s 

2) Dc gain of Γ/: 

„ QJid uci (2π·339)(2π·10χ103) η ^ 
A/ - ; = = Z.JZ 

< (2π· 1.16 xlO3)2 

3) CSNgain: 

Ri<y«ax_ = ^ o = L 0 5 ^ ^ = 0 6 7 

l L peak 4 .75 
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-<r^c o — & ■ 

© 16 V 

40 μΗ o.l Ω 

0.1 Ω« 
1 Ω > ν0 

470//F z 
CSN 

- ^ - — K -( > 
C2 * 2 

-K-^vw-J 
*1 

-ΛΑΛ—' 

CO^/=4V 

Figure 10.23 Current-mode controlled buck converter: /?, = 0.67, Se = 1.46 x 105 V/s, 
/?, - 10 kH, /?2 = 92.3 *Ω, C2 = 1.86 nF, and C3 = 0.70 nF. 

4) Modulator gain: 

F ' - Ki - 2 · 5 2 - n τ*ς 
m KidRi 16-0.67 

5) Compensation ramp: 

T P 2 

4 0 . 6 7 - ^ 1 , 0 . 6 7 
1 | 40 x 1Q- 6 " ' " ' 40 x IQ-6 

20 x 10-6 0.235 

1.46 x 105 V/s 

Vm = seTs = (1.46 x 10D)(20 x 10"°) = 2.92 V 

Voltage Loop Design 

1) Compensation pole: ωρε - coesr = 2π · 3.39 x 103 rad/s 

2) Compensation zero: uzc = 0.8 ω0 = 0.8 (2π · 1.16 x 103) = 2π · 928 rad/s 

3) Γ2(5) crossover frequency: a)cr = ü)esr = 2π · 3.39 x 103 rad/s 
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Figure 10.24 Individual feedback loops and system loop gains, (a) Overall loop gain T\. 
(b) Outer loop gain T2. 

4) Integrator gain: 

Kv = 
Kjd Mcr Rj d)zc 

Mid Kvd 

16 (2ττ · 3.39 x 103) 0.67 (2π · 928) 
(2π· 339)16 

= 3.91 x 104 

5) Voltage feedback circuit: R\ = 10 kΩ 
=> R2 = 92.3 «2, C2 = 1.86 nF, and C3 = 0.70 nF 
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Figure 10.25 Comparison between overall loop gain T\ and outer loop gain T2. 

The performance of the converter is evaluated using PSpice® simulations. 
Whenever appropriate and informative, the theoretical predictions are com-
pared with the empirical data obtained from the computational method. Figure 
10.24 shows the Bode plots of the individual feedback loops and system loop 
gains. The Bode plots shows a close resemblance to the asymptotic plots in Fig. 
10.21. Figure 10.24(a) confirms that the crossover frequency T\(s) is located 
at the exact target frequency, ω€1 = 2π · 10 x 103 rad/s. On the other hand, 
the T2(s) crossover frequency is placed in close proximity to the design aim, 
tjcr = 2π·3 .0χ 103 rad/s. 

Figure 10.25 compares the Bode plot of T\(s) and T2(s). The theoretical 
forecasts of the outer loop gain Γ2Ο) are compared with the empirical data. 
The predictions and empirical data exhibit a noticeable disparity in the phase 
characteristics. This difference is due to the sampling effects of current mode 
control, which are not considered in the classical analysis. Further discussions 
about this observation will be given in the next chapter. Both the loop gains 
have a sufficient phase margin; the phase margin of T\ (s) is 78° and that of T2(s) 
is 65°. The output impedance and audio-susceptibility characteristics are shown 
in Fig. 10.26. The time-domain performance of the converter is displayed in 
Fig. 10.27. Figure 10.27(a) is the transient response of the output voltage due 
to the step changes of R = 1 Ω => 0.5 Ω =» 1 Ω in the load resistance, while 
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Figure 10.26 Closed-loop performance, (a) Output impedance, (b) Audio-susceptibility. 

Fig. 10.27(b) shows the transient response with the Vs 
changes in the input voltage. 

16V=>8V=* 16V 

10.2.6 Analysis of Converter Dynamics in DCM 

As discussed in Chapter 9, the power stage dynamics alter significantly as dc-to-
dc converters cross the CCM/DCM boundary. Accordingly, it is informative to 
investigate the impacts of DCM operation on the converter performance. It will 
be shown that current mode control could alleviate the sensitivity of the converter 
performance to the operational mode, compared to voltage mode control. 
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Figure 10.27 Transient response, (a) Step load response, (b) Step input response. 

■ EXAMPLE 10.9 Converter Performance in DCM 

The performance of the buck converter used in the previous example is evaluated 
in DCM operations and compared with that of the CCM operation. For the given 
operational conditions, the critical resistance for the CCM/DCM boundary is 
determined as Rcrit - 2L/(D'TS) = 5.33 Ω. The DCM power stage model, 
developed earlier in Section 9.1.2, is combined with the small-signal model of 
the peak current mode control, resulting in the complete small-signal model 
in DCM operation. The model predictions are presented in comparison with 
the empirical data obtained from the computational method. Figure 10.28 first 
shows the outer loop gain of the converter evaluated with R = 10 Ω. 

Figure 10.29 displays the DCM outer loop gains, evaluated with R = Rcrit = 
5.33 Ω, R = 10 Ω, and R = 20 Ω, along with the CCM loop gain with R = 1 Ω. 
The loop gains exhibit relatively small changes in both the crossover frequency 
and phase margin, compared to the case of the conventional voltage mode 
control shown in Fig. 9.14. The reduced sensitivity of the loop gain can be 
explained as follows. The change in the power stage dynamics consistently 
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Figure 10.28 Outer loop gain in DCM. 

occurs in all the power stage transfer functions. In DCM operations, the split 
of the power stage double pole and reduction in the mid-band gain will appear 
in both Gvd(s) and Gid(s). For frequencies where |Γ/| » 1, the outer loop 
gain is approximated as T2(s) * Tv(s)/Ti(s) = Gvd(s)Fv(s)FJ(Gid(s)RiF;

m). 
Accordingly, the changes occurring in both Gvd(s) and Gid(s) will be canceled 
and will not show in T2(s). 

Lastly, Fig. 10.30 compares the transitional output voltage in response to 
the step changes in the load resistance: R = 0.8 Ω => 1 Ω => 0.8 Ω for CCM 
case, and R = 5.3 Ω => 20 Ω => 5.3 Ω for DCM case. When compared with 
the voltage mode control in Fig. 9.16, the changes in the transient response are 
also reduced. 

10.3 CLOSED-LOOP PERFORMANCE OF PEAK CURRENT MODE 
CONTROL 

The previous section investigated the dynamics of the peak current mode control, 
focusing on the individual feedback loops and system loop gains, along with their 
use in stability analysis and control design. Based on these analyses, step-by-step 
control design procedures are established. It was found that the two-pole one-zero 
compensation offers both stability and good loop gain characteristics. 
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Figure 10.29 Outer loop gain in CCM and DCM operations. 

4.2 r 

4.1 

2.0 3.0 

Time [ms] 

Figure 10.30 Step load response in CCM and DCM operations. 
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This section now investigates the closed-loop performance of the current-mode 
controlled PWM converters that employ the two-pole one-zero compensation. The 
audio-susceptibility and output impedance are analyzed in detail, concentrating on 
the impacts of the voltage feedback compensation. In particular, the choice of 
the integrator gain is investigated in conjunction with the position of the crossover 
frequency of the outer loop gain T2(s). 

This section also analyzes the step load response of current-mode controlled PWM 
converters. The relationship between the output impedance and step load response is 
studied, leading to practical methods for predicting the step load response from the 
output impedance characteristics. 

The analysis is presented in a general manner, and, as such, the results are ap-
plicable to all the three basic converters. This section first presents buck converter 
examples. The boost converter examples will be discussed in the next section. 

10.3.1 Audio-Susceptibility Analysis 

The audio-susceptibility denotes the closed-loop input-to-output transfer function. 
The general expression of the audio-susceptibility for the three basic PWM converters 
is derived from Fig. 10.15 

A (S) = YM = Gvs^+GidRjF'J-GisRiF'nGvd 
UK) VS(S) 1+GuRiF'n+GydFvF'n 

Using the definitions of the current loop Ti(s) = Gid(s)RiF'm and voltage loop Tv(s) = 
Gvd{s)Fv{s)F'm, the preceding expression is written as 

Au(s) = 

T 
Gvs(l + Tf) - Gis—Gvd 

1 + Tt + Tv 

Gvs + Ti lGvs p r^ - 1 

1 + Ti + Tv 
(10.59) 

Now, the audio-susceptibility is analyzed using the expression (10.59). We first 
consider buck converters and later deal with boost and buck/boost converters. 

Buck Converter 

The buck converter is a special case in which the audio-susceptibility analysis is 
performed in a simple way. For buck converters, it can be shown from Table 10.2 
that 

Gvs(s) _ Gis(s) _ D 
n ( v - „ , v - T7 (10.60) 
Gvd(s) Gid(s) Vs 

which implies 
GAs)-GifG;?S) =0 (10.61) 
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Figure 10.31 Asymptotic analysis of audio-susceptibility 

The audio-susceptibility expression in (10.59) now reduces to 

Au(s) 
Gvs(s) Gvs(s) 

1 + Us) + Tv(s) " 1 + Γ,(ί) 
(10.62) 

where T\(s) = Ti(s) + Tv(s) is the overall loop gain. Thus, for buck converters, the 
audio-susceptibility analysis is identical to that of voltage mode control. The role of 
the loop gain in voltage mode control is replaced with the overall loop gain T\(s) in 
current mode control. 

The asymptotic analysis is performed on (10.62), yielding the result shown in 
Fig. 10.31. The asymptotic plot is constructed using the Gvs(s) expression in Table 
10.2 and the |7i| structure shown in Fig. 10.21(a). According to the previous design 
procedures, the parameters of the voltage feedback compensation are selected as 
(jjpc = ü)esr and ωΖ€ < ω0. The asymptotic plot is converted into an equation for the 
audio-susceptibility 

Au(s) 
D 

VsF'mKv 1 + 

1 + 

1 + 
ω„ 

1 + 
OJri 

(10.63) 

based on the analysis technique presented in Table 8.2. The parameter ucr denotes 
the frequency where |Γ/| = \TV\, which corresponds to the crossover frequency of the 
outer loop gain ^ (^ ) . Figure 10.31 is a specific example where ucr is located below 
the esr zero: ucr < uesr. 
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Case 3 

Figure 10.32 Asymptotic analysis of audio-susceptibility. 

The audio-susceptibility analysis is generalized in Fig. 10.32 which shows the 
asymptotic plots for |GVJ|, |Γι|, and \AU\, along with |7/| and \TV\. In this general 
analysis, the integrator gain Kv of the voltage feedback compensation is varied to 
result in the following three cases: 

Case 3: cocr > ω. er -^ ^esr 

The effect of Kv is clearly seen in Fig. 10.32. The larger Kv shifts ω€Γ towards 
higher frequencies and reduces the peak value of \AU\. However, this reduction only 
happens up to the Kv value that places ω„ at ωβ8Γ. Increasing Kv beyond this value 
does not reduce the audio-susceptibility any further. Instead, it could deteriorate the 
phase characteristics of T\ (s); the phase margin will be lessened as ω€Τ approaches the 
crossover frequency ωπ·. For Cases 2 and 3, the peak value of the audio-susceptibility 
is determined as 

\K\peak = 20 log 
/ D"zc \ 
\VsF'mKv) 

(10.64) 
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For Case 1, the peak value of the audio-susceptibility is given by 

|AJ^ = 2 0 1 o g i - ^ ^ U 2 0 1 o g f i ^ U 2 0 1 o g i - ^ ^ ^ ) (10.65) 

For all three cases, the compensation zero ωΖ€ becomes the first pole in the audio-
susceptibility. As demonstrated in Section 8.4.5, this pole determines the settling 
time of the step input response, ts = 3τ = 3/uzc. Thus, ωΖ£ should be placed as high 
as possible, without exceeding the power stage double pole ω09 as explained earlier 
in the control design procedures. As a general guideline, it was recommended that 
ωζα = (0.6-0.8) ω0 in the previous section. 

■ EXAMPLE 10.10 Buck Converter Example 

This example illustrates the accuracy of the previous audio-susceptibility anal-
ysis. The integrator gain of the buck converter used in Example 10.8 is now 
modified to result in the three cases discussed in this section, while other 
compensation parameters remain the same 

. Case 1: Kv = 1.97 x 104 => ucr = 0.5 uesr 

• Case 2: Kv = 3.91 x 104 => ω6Τ = uesr 

. Case 3: Kv = 7.82 x 104 => ucr = 2.0ω,,τ 

Figure 10.33 shows the simulations of various transfer functions of the three 
cases, which validate the preceding theoretical discussions. 

Boost and Buck/Boost Converters 

For other topologies, the expression of the audio-susceptibility does not reduce 
to the simple form of (10.62). For boost and buck/boost converters, the audio-
susceptibility analysis proceeds from (10.59). At the frequencies below the Ti(s) 
crossover frequency, where |Γ,| » 1, the audio-susceptibility expression in (10.59) 
is approximated as 
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Figure 10.33 Audio-susceptibility of buck converter. 

This equation is rearranged as 

Au(s) = 

Gvs -
Gid 

l + Ti + Tv 1 + 
l + Ti 

GisGvd 

1 + Γ, 1 + Γ2 
(10.67) 

where TY(s) = 7/(s) + Tv(s) is the overall loop gain and T2(s) = Tv(s)/(l + Γ,·(Α)) is 
the outer loop gain. By the definitions of T\(s) and T2(s), it follows that 

Ι7ΊΙ = |7-f + r v | » i r 2 | = 
1 + Γ ; 

It also can be shown from Table 10.2 that 

GisGyd 

Gid 
» | G V 

(10.68) 

(10.69) 

The two inequalities of (10.68) and (10.69) further simplify the audio-susceptibility 
to 

c _ GjSGvd 

Ms) * T , „°Μ = Λ
 AutS] x (10.70) 

1 + T2(s) 1 + T2(s) 

with Aui(s) = Gvs - GisGvd/Gid. 
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Table 10.4 Expressions for Numerator of Au(s) and Z0(s) 

Aui(s) = Gvs ^ - Zoi(s) = Zp -
ZqGvd 

Gid 

π , r, 1 + SCRC 

Buck converter 0 R-

Boost converter 

Buck/boost converter 

1 + sC(R + Rc) 

1 1 + sCRc R 1 + sCRc 

2(1 - D) 1 + sC(R + Rc)/2 2 1 + sC(R + Rc)/2 

D2 1 + sCRc R 1 + sCRc 

( 1 + D X 1 - D ) 5C(/? + /?c)
 1 + D i 5 C ( / ? + Rc) 

1 + D 1+ £> 

The asymptotic analysis can now be applied to (10.70) in order to investigate 
the audio-susceptibility characteristics. In this analysis, the outer loop gain ^ ( s ) 
alone appears in the denominator while the overall loop gain T\ (s) is not involved at 
all. This is in contrast to the buck converter case where T\(s) is the only loop gain 
associated with the audio-susceptibility analysis. 

Using the power stage transfer functions in Table 10.2, the numerator of (10.70), 
Aui(s) = Gvs - GiSGvd/Gid, can be expressed in a simple form. The results are shown 
in Table 10.4. Using these expressions, along with knowledge about the outer loop 
gain T2(s), the audio-susceptibility is analyzed. Details about this analysis are given 
in the next section which deals with a boost converter. It should be reminded that 
this analysis is valid only for the frequencies below the Ti(s) crossover frequency. 
At higher frequencies where |7/| « 0 and |7V| « 0, the audio-susceptibility simply 
follows Gvs(s), as can be seen from (10.59). 

10.3.2 Output Impedance Analysis 

The output impedance is another important performance criterion for closed-loop 
controlled converters. The output impedance is analyzed in the same manner as that 
of the audio-susceptibility. The expression for the output impedance is derived from 
Fig. 10.15 

Ζ « ω = γ7ψ^¥ν = Ϊ Τ ψ ; τ Τ ν 00.71) 

This expression is simplified to 

ζρ + ΤίΙζρ-ψί) ζρ + (ΐ + Τί)(ζρ-ψ± 
Zü{s) = \ ^ L J L \ °iLL (10.72) 

o W 1 + Ti + Tv \+Ti + Tv 
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in the frequency range below the Tl(s) crossover frequency, and rearranged as 

ZqGvd 

T t \ ^P . Gid 
Zo(s) = Λ , ^ , ^ + l + Γ ί + Γν 1 + Tv 

z D -

l + Ti 

ZqGvd 

ZP +
 P Gid ( i a 7 3 ) 

1 + Tx 1 + T2 

Due to the conditions |7i| » |Γ2| and IZ^ - ZqGvd/Gid\ » |ZP|, the output impedance 
is further simplified to 

ZoW« ' T
G;\ = 7 ^ 7 1 ( i a 7 4 ) 

1 + Γ2(» 1 + Γ2(5) 
with Zoi(s) = ZP- ZqGvd/Gid. 

The numerator of (10.74), Zoi(s) - Zv- ZqGvd/Gid, is interpreted as the output 
impedance evaluated under the condition that the current loop is only closed and the 
voltage loop is broken. This is because the output impedance Z0{s) reduces to Zoi(s) 
when T2(s) = Tv(s)/(l + Γ/0)) = 0, which is true when Tv(s) = 0. The expressions 
for Zoi(s) are shown in Table 10.4. For all the three basic converters, the Zoi(s) 
expression fits into the following format 

Zoi(s) * Koi ^f- (10.75) 
1 + — 

where cuesr - l/(CRc) is the esr zero. The expressions for Koi and ωρι are given in 
Table 10.5. It should be noted that ωρι is practically identical to ω^ in the Gtd(s) 
expression in Table 10.2. The uid appears as a pole in \T2\ structure in Fig. 10.21(b). 

Table 10.5 Expressions for Koi and ωρί 

K0i 

Buck converter R 

R 
Boost converter — 

2 

Buck/boost converter 
1 + D C(R + Rc) 

1 
C(R + Rc) 

2 
C(R + Rc) 

\+D 
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Figure 10.34 Output impedance analysis. 

It can be seen from Table 10.5 that the high-frequency asymptote of \Zoi\ is the parallel 
combination of the load resistor and esr of the output capacitor 

\Zoi(jco)\ = 20\οΕ(κοι^-\ = 2 0 1 o g i ^ M = 20log(Ä || RC) (10.76) 

Now, the output impedance is investigated by performing the asymptotic analysis 
on (10.74). Figure 10.34 is the result of this analysis. The asymptotic plot is 
constructed using the expression of Zoi(s) in (10.75) and the structure of ΙΓ2Ι in Fig. 
10.21(b), with the incorporation of the fact ωρι = ω^. This analysis assumes that the 
ΙΓ2Ι crossover occurs before the esr zero: o)cr < uesr. 

Figure 10.35 shows the output impedance analysis for general cases. The integrator 
gain Kv in the voltage feedback compensation, which controls the T2(s) crossover 
frequency a)cr, is varied to result in the three cases: Case 1 with a>cr < a>esr, Case 2 
with o)cr = uesr, and Case 3 with ω€Τ > ωβ5Γ. For Cases 2 and 3, the peak value of 
the output impedance is reduced to 201og(7?||/?c), which is the theoretical minimum 
for the given power stage parameters. For Case 1, the peak value is given by 

\Z0(M\peak = 201og(*||/?c) + 201og 

= 201og( j? | | /? c —] (10.77) 

For all the three cases, the output impedance has the same first pole at the com-
pensation zero (x)zc. As will be shown later, this pole determines the speed of the 
step load response. For faster response, u>zc should be placed at higher frequency but 
should not exceed the power stage pole ω0, in order not to become a conditionally 
stable system. 

ÜJcr ) 
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Figure 10.35 Generalization of output impedance analysis. 

Figure 10.35 shows that the output impedance can be optimized by placing the 
Γ2Ο) crossover frequency at coesr. Increasing the T^O) crossover frequency beyond 
cjesr does not further reduce the peak value of the output impedance. 

The asymptotic plots in Fig. 10.35 assume that the phase margin of T2(s) is 
sufficiently large. This assumption precludes the potential peaking in the output 
impedance at the crossover frequency of Γ2Ο). Cases where the outer loop gain does 
not satisfy this assumption are discussed in the next section. 

■ EXAMPLE 10.11 Buck Converter Example 

The buck converter used in Example 10.10 is revisited in order to substantiate 
the preceding output impedance analysis. The same compensation parameters 
as those of Example 10.10 are used to result in the three cases of the output 
impedance analysis: Case 1 with <jjcr = 0.5 coesr, Case 2 with cocr = cüesr, and 
Case 3 with ω€Γ = 2.0 <jjesr. Computer simulations for the three cases are shown 
in Fig. 10.36, which exhibit a close match with the asymptotic analysis of Fig. 
10.35. 
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Figure 10.36 Output impedance analysis. 

10.3.3 Step Load Response Analysis 

The step load response is referred to as the transient waveform of the output voltage 
due to a step change in the load current. The analysis method for the step load 
response was discussed in Section 7.3.1. The step load response is investigated using 
the output impedance and its relationship to the output voltage 

v0(t) = £~l I^Za(s)\ (10.78) 

where X"1 is the inverse Laplace transformation and Istep is the magnitude of the step 
change in the load current. 

In this section, the step load response is investigated using the results of the pre-
vious output impedance analysis, along with the relationship of (10.78). As shown 
in Fig. 10.35, the output impedance is classified into three cases depending upon the 
relative location of the ^ ( s ) crossover frequency, a)cr, and the esr zero, a)esr. The 
three illustrative examples in Fig. 10.35 are arranged into Case 1, Case 2, and Case 
3 in increasing order of the T2(s) crossover frequency. However, for smoother flow 
in the analytical development, the step load response is first discussed for the output 
impedance of Case 2 with a>cr = a>esr. The analysis then continues with Case 3 of 
cocr > o)esr, and finally treats Case 1 with ω€Ύ < a>esr. The analysis now starts with 
Case 2. 
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Figure 10.37 Case 2 with cjcr = coesr. (a) Output impedance, (b) Step load response. 

Case 2: a)cr = cr — wesr 

This is the case in which the T2(s) crossover frequency falls at the esr zero. Figure 
10.37(a) shows the output impedance of this case. The expression for the output 
impedance becomes 

Z0(s) = - ^ r - (10.79) 
ÜJn, 1 + 

where cjm represents the frequency at which the initial linear segment of \Z0\ crosses 
the 0 dB line. The peak magnitude of the output impedance is given by 

\Zo(jU>)\peak = \ZoU°°)\ = 2 0 1 ° g 
OJm) 

(10.80) 

The transient response of the output voltage due to the step load change of Istep is 
evaluated as 

vo(t) = £ -1 

( \ 
I step S 1 

S Cum i + 

ω7Γ ) 

= I step 
(*>rr 

The peak overshoot of the output voltage is found as 

l^olpeak 

VoiOpeak = VO(0) = Istep— = Istepl0 20 

(10.81) 

(10.82) 
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Figure 10.38 Case 3 with cocr > ω€$ΐ. (a) Output impedance, (b) Step load response. 

The output voltage decays from its initial peak with a time constant of r = l/a>zc. 
Thus, the settling time of vo is given by ts = 3τ = 3/ωΖ€. The output voltage 
waveform is shown in Fig. 10.37(b). 

C a s e 3 : a)cr > <x)esr 

This case corresponds to the situation where the Ti(s) crossover frequency is pushed 
beyond the esr zero. Figure 10.38(a) shows the output impedance for this case. The 
output impedance is expressed as 

1 + 
Z0(s) ωΡ 

(x)zc]\ Cucr 

(10.83) 

with ωζα «: ωβ8Γ <z ucr. The peak magnitude of the output impedance is given by 

|Zo(»l/«eik = |2o0'«')| = 201og 
Ιωζα gjcr\ 

\ωΜ üjesr) 
(10.84) 



CLOSED-LOOP PERFORMANCE OF PEAK CURRENT MODE CONTROL 5 2 3 

The transient response of the output voltage due to the step load change of Istep is 
given by 

vow = r 
1 + 

lstep 

\ ü)zc)\ iücr}) 

I step (*)Zc ωεΓ 

Mcr-(i)zc (x)md)esr 

(iVesr-u^e ω*% + (ajcr-ü)esr)e "crt) 

(10.85) 

where (cüesr - ωΖ€) > 0 and (ωεΓ - iuesr) > 0. The step load response is the sum of 
the two exponentially decaying terms. The second term decays much faster than the 
first term, due to the condition OJZC «; ω€Γ. The peak deviation of the output voltage 
is expressed as 

Vo(t)peak = V O ( 0 ) = 1step— — 

l^olpeak 

= IsteplO 20 (10.86) 

Figure 10.38(b) shows the output voltage waveform. The output voltage decays 
from its initial peak with the fast rate of 1/ωΓΓ in the beginning, and with the slow 
rate of 1/ωζε after the second term diminishes. The peak overshoot of the output 
voltage is the same as Case 2, but its initial decay is faster due to the condition 
Ü)ZC <κ ω€Τ. Nonetheless, the settling time will be determined by the slow time con-
stant, ts = 3/LL>ZC. 

Case 1: ω€Γ < a)esr 

In this case, the Ti(s) crossover frequency falls below the esr zero. Figure 10.39 
shows the output impedance and the step load response for this case. The output 
impedance is expressed as 

1 + 
Z0{s) = 

ωη 1 + 

(10.87) 

with a>zc «: ω€Γ <$c a)esr. This expression is the same as (10.83), yet the order of the 
corner frequencies is different. Unlike the previous two cases, the peak value of the 
output impedance does not coincide with the high-frequency asymptote. From Fig. 
10.39(a), the peak magnitude of the output impedance is given by 

\Z0(jüj)\peak = = 20 log 
S=J(x)zc 

ΙωΛ 
(10.88) 
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ωπιωβΞΑω0Υ~ωζο) 

Figure 10.39 Case 1 with ωίΎ < a)esr. (a) Output impedance, (b) Step load response. 

On the other hand, the high-frequency asymptote is expressed as 

|Zo0'oo)| = 2 0 1 o g ( i ^ - ^ 
\ü)m üJesr 

The transient response due to the step load change of Istep is evaluated as 

'step OJZc Wcr 
vo(0 

Mcr — Mzc MmMes 

■((ü)esr-u)zc)e
 ω^ + {a)cr-ü)esr)e

 ω^) 

(10.89) 

(10.90) 

with (ü)esr - ÜJZC) > 0 and (ω€Γ - ω€ΞΓ) < 0. This description is identical to (10.85), 
but the sign of the coefficients differs. The step load response is the sum of the two 
exponentially decaying terms, the same as Case 2. However, the polarities of the 
two exponential terms are opposite; the first coefficient is positive while the second 
is negative. The second negative term decays much faster than the first positive term. 
The waveform for mis case is shown in Fig. 10.39(b). The settling time of the output 
voltage is still governed by the slow time constant, ts = 3/ωζα. 

The initial value of the output voltage is given by 

ωΖ€ ü)cr 

\Z0Ü°°)\ 
vo(0) = Istep — — = W O 20 (10.91) 



CLOSED-LOOP PERFORMANCE OF PEAK CURRENT MODE CONTROL 5 2 5 

Unlike the previous cases, the peak deviation of the output voltage, vo(t)peak, cannot 
be explicitly described in terms of \Z0\peak. Instead, \Z0\peak can be used to predict the 
upper bound of vo(t)peak· From the profile of v0(t) in Fig. 10.39(b), it follows that 

ff\\ ^ ϊ+\ ^Τ ωΖΟ Mcr((uesr - Cuzc) /ΙΠΩΙΛ 

vo(0) < v0(t)peak < I^ρ (10.92) 
Mm a>esr{ü)cr - ωΖ€) 

The last term in (10.92) is the initial value of the slow-decaying first term in (10.90). 
With the conditions uesr ^> ωΖ€ and ω€Γ » uzc, the expression (10.92) is approxi-
mated as 

vo(0) < v0(t)peak < Istep-^ (10.93) 

Finally, using (10.88) and (10.91), the above inequality is rewritten as 

|Z0Q'oo)| \Zo(JM)\peak 

Istep 10 20 < V0(t)peak < htep 10 20 (10.94) 

The peak deviation of the output voltage can be estimated from (10.94). The high-
frequency asymptote of the output impedance, \Z0(joo)l predicts the lower bound of 
vo(t)Peak, while the peak value of the output impedance, \Z0(jcu)\peak, estimates the 
upper bound. 

EXAMPLE 10.12 Buck Converter Example 

This example validates the preceding discussions about the step load response. 
The buck converter in Example 10.11 is used to generate the step load response 
for the three different cases: Case 1 with iocr = 0.5 a>esr, Case 2 with ω€Κ = uesr, 
and Case 3 with ω€Γ = 2tiü)esr. The output impedances for these cases were 
shown in Fig. 10.36. A series of step changes, 7o = 4 A = » 8 A = > 4 A , 
is introduced to the load current and the output voltage waveforms are shown 
in Fig. 10.40. While the profiles of the transient responses are different, the 
settling time can be considered to be largely the same for all the three cases 

3 3 
ts = — = -——— = 0.51 ms 

o)zc 2π - 928 

For Cases 2 and 3, the peak deviation of the output voltage is given by 

\^Jo\Peak 

VO(0peak = Is,epl0 20 = 4 · 1 (Γ 2 0 / 2 0 = 0.4 V 

For Case 1, vo(t)peak is estimated as 

|Z0(joo)| \Z0(Ju)\peak 

Istep 10 2 0 < V0(t)peak < 1'step 10 20 

= > 4 . 1 0 - 2 0 / 2 0 < V(){t)peak < 4 . 1 0 - 1 5 / 2 0 

= * 0 . 4 0 V < V0{t)peak < 0.71V 
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Figure 10.40 Step load response of buck converter. 

Compensation Design and Step Load Response 

As demonstrated in the previous section, the step load response is mainly determined 
by the voltage feedback compensation design. In particular, the output voltage 
deviation can be reduced to the theoretical minimum by placing the Ti{s) crossover 
frequency at the esr zero. Increasing the Γ2Ο) crossover beyond the esr zero does 
not reduce the peak deviation any further. Nonetheless, as shown in Example 10.12, 
the higher Γ2Ο) crossover frequency results in a faster transient response at the 
beginning, thereby reducing the total time necessary for the output voltage to reach 
a specified percentage of its final value. 

The previous analysis assumes that the phase margin of Tjis) is sufficiently large. 
In real applications, however, it is not always possible to push the Γ2Ο) crossover 
frequency to the esr zero while maintaining a large phase margin. In some cases, 
pushing the Γ2Ο) crossover frequency towards higher frequencies causes a reduction 
in the phase margin. As shown in Section 8.4.4, a small phase margin induces a 
peaking in the output impedance. If the phase margin is less than 60°, the output 
impedance exhibits a peaking at the Γ2Ο) crossover frequency, as a function of the 
phase margin φγη 
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The smaller the phase margin, the larger the peaking. The peaking in the output 
impedance is transformed into a pair of complex poles whose damping ratio is 
inversely proportional to the phase margin. These complex poles would result in an 
oscillatory transient response, as discussed in Section 8.4.4. 

As shown in Fig. 10.21(b), the outer loop gain has a pole at the Ti(s) crossover 
frequency, ωΩ· in Fig. 10.21(b). For an adequate phase margin, the Tj(s) crossover 
frequency should occur well before the Ti(s) crossover frequency. With a predeter-
mined Ti(s) crossover frequency, commonly located around 15-30% of the switching 
frequency, the T2{s) crossover frequency can be increased up to the esr zero while 
maintaining a sufficient phase margin, only provided that the frequency of the esr zero 
itself is much lower than the switching frequency. If the esr zero does not meet this 
requirement, a compromise should be made; namely, the T2(s) crossover frequency 
should be increased within the limit that does not reduce the phase margin less than 
60°. With such a design trade-off, the T2(s) crossover frequency would occur below 
the esr zero, resulting in the output impedance of Case 1. In this instance, the peak 
deviation of the output voltage is estimated from (10.94). 

The settling time of the output voltage is determined by the zero of the voltage 
feedback compensation. For small settling time, the compensation zero ωΖ£ should 
be placed as high as possible without exceeding the power stage double pole ω0. The 
design procedures recommended that ωΖ€ - (0.6 - 0.8) ωσ. 

■ EXAMPLE 10.13 Buck Converter Example 

This example illustrates the control design and closed-loop performance of 
a buck converter whose esr zero is not sufficiently lower than the switching 
frequency. In the buck converter used in Example 10.11, the esr of the output 
capacitor is decreased to Rc - 25 mO, while other power stage parameters 
remain unchanged. Now, the esr zero is located at ωβΞΓ = 2π· 1.36x 104 rad/s = 
0.27 cos. With this modification, the integrator gain in the voltage feedback 
compensation is varied between 3.90 x 104 < Kv < 3.13 x 105 to yield the four 
different designs listed in Table 10.6. The T2(s) crossover frequency spans 
between 0.2 ω68Γ < ucr < 1.0 uesr with a phase margin of 32° <φΜ< 64°. 

Table 10.6 Four Different Control Designs 

Integrator gain T2 crossover frequency T2 phase margin 

Design A Kv = 3.90 x 104 

Design B Kv = 7.82 x 104 

Design C Kv = 1.56 x 105 

Design D Kv = 3.13 x 105 

ucr = 0.2 ü)esr 

a>cr = 0Aojesr 

ü)cr = 0.6 ü)esr 

cocr = \.0ü)esr 

Φη = 64° 

A» = 57° 

Φτη = 45° 

Φτη = 32° 
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Figure 10.41 Outer loop gain of four different designs. 

The outer loop gains of the four designs are shown in Fig. 10.41. As 
the integrator gain increases, the crossover frequency shifts towards higher 
frequencies at the expense of the reduction in the phase margin. Figure 10.42 
shows the output impedances of the four designs. The output impedance 
exhibits a peaking at the Γ2Ο) crossover frequency when the phase margin 
reduces lower than 60°. Finally, the transient responses due to a series of 
step load changes, Io = 4 A => 8 A => 4 A, are shown in Fig. 10.43. The 
output voltage shows an oscillatory behavior for Design C and Design D, 
where the output impedance reveals a peaking due to the small phase margin. 
Accordingly, Design A or Design B can be considered acceptable, whose output 
impedance characteristics belong to Case 1 in the previous analysis. 

The control design procedures in Table 10.3 recommended to place the Γ2Ο) 
crossover frequency in the range of o)cr = (0.3 - 1.0)ωβ5Γ. When the esr zero is 
sufficiently lower than the switching frequency, ucr can be placed at cjesr, as is the 
case with Example 10.8. On the other hand, when uesr is not sufficiently lower than 
the switching frequency, ω£Υ should be placed before the esr zero uesr, for example, 
ü)cr = 0Aa)esr in Design B in Example 10.13. 
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Figure 10.42 Output impedance of four different designs. 
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Figure 10.43 Step load response of buck converter with four different designs. 
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It should be emphasized that the design strategy of a>cr = (0.3 - 1.0) ω^Γ only 
applies to buck converters. For boost and buck/boost converters that have a right-half 
plane zero (RHP) in their duty ratio-to-output transfer function, other constraints 
should be considered in determining the ^ ( s ) crossover frequency. Design consid-
erations for boost and buck/boost converters will be given in Section 10.4. 

Generalization of Step Load Response 

The outcome of the previous step load response analysis can be extended to all 
dc-to-dc converters in general. 

1) The output impedance characteristics for a dc-to-dc converter can be obtained 
from the small-signal analysis, computational method, or experimental mea-
surement. When the small-signal model of the converter is available, the 
asymptotic analysis can be employed to obtain the output impedance charac-
teristics. If the small-signal model is not available, either the computational 
method or the experimental measurement can be used for the acquisition of the 
output impedance data. The output impedance is displayed in the Bode plot 
format. 

2) The output impedance parameters, required for the step load response analysis, 
can be extracted from the output impedance plot. 

3) The results of the previous section are then adapted to predict the step load 
response from the output impedance parameters. 

The output impedance of practical dc-to-dc converters generally follows the pattern 
of Case 1 in the previous analysis. For this case, the settling time is given by 
ts = 3/a>zc and peak deviation of the output voltage can be estimated from (10.94). If 
a more detailed prediction is desired, the expression (10.90) can be used to derive an 
analytical equation for the output voltage. The resulting equation can be transformed 
to the output voltage waveform. An example is given below to illustrate the analysis 
procedures described above. 

■ EXAMPLE 10.14 Switched Capacitor Converter Example 

This example demonstrates the generality of the step load response analysis. 
For this purpose, a switched capacitor dc-to-dc converter [10], which performs 
the dc-to-dc power conversion using only capacitors and switches, is used 
in this example. Figure 10.44(a) is the output impedance of the switched 
capacitor converter, which was measured from the experimental converter using 
an impedance analyzer. The output impedance closely resembles the profile of 
Case 1, and therefore the corresponding analysis results are applied here. 

As shown in Fig. 10.44(a), the major output impedance parameters are 
measured as uzc = 2/r-3x 103 rad/s, \Z0\peak = -23 dB, and |Z0 (700)1 = -33 dB. 
The output of the converter is regulated at VQ = 5 V. Now, a 4 A step decrease 
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Figure 10.44 Switched capacitor converter example, (a) Output impedance, (b) Prediction 
of the equation (10.90). (c) Cycle-by-cycle time-domain simulation, (d) Measured step load 
response. 

occurs in the load current, producing a transient response in the output voltage. 
The settling time of the output voltage is predicted as 

tx = cozc 2π · 3 x 103 

and the peak overshoot is estimated as 

\Z0{joo)\ 

0.16 ms 

\Zo(j<*>)\peak 

W 0 20 < VoWpeak < W 0 20 

=> 4 · HT 3 3 ' 2 0 < Vo(t)peak <4.10-23/20 

=> 0.09 V < v0(t)peak < 0.28 V 

For a more detailed prediction, other output impedance parameters, ω€ν, 
a>esr, and ωΜ in Figs. 10.39(a) and 10.44(a), are estimated and the results are 
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put into (10.90) to obtain an analytical equation for vo(t). Figure 10.44(b) is 
the plot of the resulting equation. 

The predictions of the step load response analysis are compared with both the 
exact time-domain simulation and experimental data. Figure 10.44(c) is the step 
load response generated from an exact cycle-by-cycle time-domain simulation. 
Finally, Fig. 10.44(d) is the step load response measured from the experimental 
switched capacitor converter. The close correlation and resemblance among the 
output impedances and step load responses, obtained from analysis, simulation, 
and measurement, confirm the generality and accuracy of the step load response 
analysis. 

10.4 CURRENT MODE CONTROL FOR BOOST AND BUCK/BOOST 
CONVERTERS 

Chapter 8 demonstrated that voltage mode control is not suitable for the converters 
that have the right-half plane (RHP) zero in their power stage transfer function, 
such as the boost converter, the buck/boost converter, and all other isolated PWM 
converters derived from these two converters. Accordingly, current mode control 
can be a candidate for the control scheme of these converters. This section presents 
the feedback design and dynamic analysis of the peak current mode control adapted 
to the dc-to-dc converters with the RHP zero. A boost converter is used as an 
example to address the impact of the RHP zero on the control design and closed-loop 
performance. 

10.4.1 Stability Analysis and Control Design 

Figure 10.45 shows the circuit diagram and small-signal model of a boost converter 
employing the peak current mode control. From the small-signal model in Fig. 
10.45(b), the duty ratio-to-output transfer function is derived as 

Mrhp I \ 
Gvd(s) = -— = Kvd (10.96) 

d(s) Λ s sz 
1 + T;— + —7 

and the duty-ratio-to-inductor current transfer function is given by 

1 + -
Gid(s) = l4^ = Kid ^ (10.97) 

dis) 1 + ^ + 4 
The expressions for the dc gain, corner frequencies, and damping factor of the transfer 
functions are given in Table 10.2. Figure 10.46 shows the asymptotic plot of the duty 
ratio-to-output transfer function, Gvd(s), and voltage loop, Tv(s) = Gvd(s)Fv(s)F'm, of 
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Figure 10.45 Boost converter with peak current mode control, (a) Circuit diagram, (b) 
Small-signal model. 

the boost converter which adopts the two-pole one-zero compensation. This example 
assumes that the RHP zero comes before the esr zero, ω^ρ < ω68Γ. According to the 
control design guidelines, the voltage feedback compensation parameters are selected 
as ü)pc = tJrhp and ωΖ€ < ω0, resulting in the asymptotic plot shown in Fig. 10.46. 

With the compensation pole ωρ€ located at the RHP zero urhp, the phase of the 
voltage loop drops by -180° over urhp. The 90° phase delay caused by a>rhp is 
augmented by the additional 90° phase drop incurred by ωρ€, resulting in a -180° 
change in lTv while |Γν| stays in a -40 dB/dec slope. These phase characteristics are 
very unfavorable, mainly staying less than -180° for the frequencies after the power 
stage double pole, ω0. In particular, lTv drops to -270° at üjrhp, as illustrated in Fig. 
10.46. 

Figure 10.47 shows the asymptotic plots for the current loop |7/|, voltage loop 
\TV\, and overall loop gain |Γι|. In order to elucidate the impact of the RHP zero 
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Figure 10.46 Asymptotic plots for duty ratio-to-output transfer function Gvd(s) and voltage 
loop Tv(s). 

on stability, it is assumed that \TV\ = |Γ/| at ω^ρ in Fig. 10.47. In this situation, the 
overall loop gain at ω^ρ, i\ = fi + Γv, is given by the sum of two equal-length 
vectors with a 180° phase difference: lTv = -270° = 90° while ΖΓ, = -90°. Thus, 
17ΊΙ dips down to negative infinity and lT\ drops rapidly at ω^ρ. This implies that 
the converter is unstable with a negative phase margin. 

■ EXAMPLE 10.15 Instability with Condition |Γν| = |Γ,·| at ωτΗρ 

This example illustrates the preceding discussions about instability. Figure 
10.48 shows the Bode plots of Tv(s), Tj(s), and T\ (s) of a boost converter which 
employs the two-pole one-zero compensation with the condition |Γ/| = \TV\ at 
ü)rhp. The overall loop gain reveals the dip in |Γι| and sudden drop in lT\ at 
the frequencies where |Γν| « |Γ/|, thus confirming the converter is unstable. 

The previous analysis indicates that, for stability, the frequency at which \TV\ = 
\Ti\ should occur well before the RHP zero. The frequency where |Γν| = |Γ/| is 
the crossover frequency of the outer loop gain Γ2Ο), previously denoted as ω€Γ. 
Accordingly, the Γ2Ο) crossover frequency ucr should be placed prior to the RHP 
zero (jjrhp. 
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Figure 10.47 Individual feedback loops and overall loop gain with |Γ/| = \TV\ at iurhp. 

1 10 

Frequency [kHz] 

Figure 10.48 Individual feedback loops and overall loop gain with |Γ,·| = \TV\ at ω^ρ. 

Figure 10.49 shows the asymptotic plots for \TV\, |Γ/|, |Γ2|, and lT2 under the 
assumption that ucr < cjrhp. As shown in Fig. 10.49, the phase of T2(s) at <j)rhp 

becomes lT2 = LTV - lTt = -270° - (-90°) = -180°. This also validates the 
requirement of Dcr < ω^ρ for an acceptable phase margin at ω£Τ. In the previous 
design procedures, it was recommended that ω€Γ = (0.1 -03)üjrhp for boost and 
buck/boost converters. 
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-270 

Figure 10.49 Individual feedback loops and outer loop gain with ω€Τ < ωΗ ■hp-

The control design procedures established in the previous section are still ap-
plicable to the dc-to-dc converters with an RHP zero in their power stage transfer 
function. The same two-pole one-zero compensation is applied for the voltage feed-
back compensation. As one critical design constraint, the integrator gain should be 
selected to place the crossover frequency of the outer loop gain T2(s) in the range of 
ucr = (0.1 -0.3) curhp. 

■ EXAMPLE 10.16 Current Mode Control for Boost Converter 

This example illustrates the design and performance of the peak current mode 
control adapted to a boost converter. Figure 10.50 shows the circuit diagram 
of a boost converter which employs the peak current mode control. The output 
voltage is regulated at V0 = Vref(l + R\/Rx) = 4 (1 + 4) = 20 V with the input 
voltage Vs = 12 V. From the power stage circuit parameters and operating 
conditions, the corner frequencies and dc gains of the power stage transfer 
functions are determined as 

ω0 = 

^rhp 

Vo 
Vs 

1 -D 

VLC 

1 
\-D 

Vl60x 

(\-DfR (1 

20 
= — => 

12 

1 -0 .4 

10"6470x 

- 0.4)25 

D 

W* 

?7Γ· 1 

= 0.4 

= 2π> 

19 x 

348 

103ι 

rad/s 

rad/s 
160 x 10" 
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Figure 10.50 Current-mode controlled boost converter: Rt = 0.67, Se = 7.49 x 104 V/s, 
R2 = 19.6 kQ, C2 = 29.2 nF, and C3 = 5.38 nF. 

ω " Γ CRC 470X10-6 0.05 
2π · 6.77 xlO3 rad/s 

K vd 
Vs 12 

( 1 - D ) 2 (1-0.4)2 = 33.3 

OJid : 

Kin 

CR 470x l0" 6 5 
= 2π - 135 rad/s 

2Vc 2-12 
= 22.2 

(l-D)3R ( l - 0 . 4 ) 3 5 

The switching frequency of the converter is ω8 = 2π · 50 x 103 rad/s. The 
maximum input voltage of the PWM block is Vmax = 5.0 V and the peak value 
of the inductor current is calculated as 

Vo , 1 Vs ^ 
iLpeak ~ {l _ D)R + 2 L "'* 

20 1 12 
r0.4 · 20 x 10-6 = 6.97 A 

(1-0.4)5 2 160X10-6 

Now the control design is performed based on the proposed design procedures. 



5 3 8 CURRENT MODE CONTROL —FUNCTIONAL BASICS AND CLASSICAL ANALYSIS 

Current Loop Design 

1) Ti crossover frequency: ωα = 0.16ω9 = 2π · 8 x 103 rad/s 

2) De gain of Γ/: 

(uidCJci (2π· 135)(2π·8χ103) 

3) 

4) 

CSN gain: 

Modulator 

Ki = 

Ri 

gain: 

0% 

v max 

IL peak 

F' = -

5.0 
" 6\97 

Ki = 

(2π · 348)2 

= 0.72 => 

8.92 

*/ = < 

= 0.60 

= 8.92 

/^fl , 22.2 · 0.67 

5) Compensation ramp: 

_ 1 S / - S , 
' " TsF'a

+ 2 
2 0 - 12 12 

0.67 - — i ± — 0 . 6 7 1 | 160 xlQ-6 ' 160xl0"6 

20xl0"60.60 

= 7.50 x 104 V/s 

Vm = SeTs = (7.50 x 104) (20 x 10"6) = 1.50 V 

Voltage Loop Design 

1) Compensation pole: ωρα = ω^ρ = 2π · 1.79 x 103 rad/s 

2) Compensation zero: ωζε = 0.8 ωσ - 0.8 (2π · 348) = 2π · 278 rad/s 

3) Τ2 crossover frequency: ucr = 0.28 urhP = 0.28 (2π · 1.79 x 103) 

= 2π· 501 rad/s 

4) Integrator gain: 

Äy ~ 1?— 
Mid &vd 

22.2 (2ττ· 501) 0.67 (2ττ · 278) 
(2π· 135)33.3 

= 2.90 x 103 

5) Voltage feedback circuit: R\ = 10 kQ 
=> R2 = 19.6 kQ, C2 = 29.2 nF, and C3 = 5.38 nF 
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Figure 10.51 Individual feedback loops and system loop gains, (a) Overall loop gain T\(s). 
(b) Outer loop gain T2(s). 

Figure 10.51 shows the Bode plots of the individual feedback loops and 
system loop gains. Figure 10.51(a) reveals that the crossover frequency of 
T\(s) is precisely located at the target frequency, ωα· = 2π · 8.0 x 103 rad/s. 
The crossover frequency of T2(s) is also placed at the exact design goal of 
d)cr - In · 501 rad/s. Figure 10.52 compares the Bode plots of T\(s) and T2(s). 
The two loop gains have different phase and gain margins. The overall loop 
gain T\ has a 90° phase margin and an oo dB gain margin. In contrast, the 
phase margin of T2 is only 45° and its gain margin is merely 11 dB. 
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Figure 10.52 Comparison between overall loop gain T\ (s) and outer loop gain T2(s). 

As addressed in Section 10.2.3, the implications of the stability margins 
of the two loop gains are very different. For the overall loop gain, T\(s) = 
Ti(s) + Tv(s), the stability margins are defined for the sum of the two individual 
feedback loops. The oo dB gain margin implies that the converter never becomes 
unstable, as far as |7\,| and |Γ,·| are simultaneously increased, regardless of the 
amount of increase. However, this information is not very useful for the 
control design purpose because we do not increase |Γν| and |Γ/| at the same 
time. Instead, |Γ/| is first fixed and \TV\ is later adjusted for a design trade-off. 

The stability margin of the outer loop gain Ti(s) = Tv(s)/(l + Ti(s)) is 
directly related with the voltage feedback compensation. In the control design, 
most control parameters are routinely determined and, at the final stage, the 
integrator gain Kv is calibrated for design refinement. The stability margins 
of Ti(s) provide straightforward and explicit information about this design 
optimization. For example, the gain margin of 11 dB indicates that the converter 
becomes unstable when Kv is increased more than the factor of 1011/20 = 3.54. 
This information is critical when increasing the integrator gain to improve the 
closed-loop performance. 
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Figure 10.53 Frequency-domain performance, (a) Audio-susceptibility, (b) Output 
impedance. 

The audio-susceptibility and output impedance characteristics are displayed 
in Fig. 10.53. Referring to Section 10.3.1, the audio-susceptibility is approxi-
mately given by 

1 1 + sCRc 

Au{s) = Aui{s) 2(1 - D) 1 + sC{R + Rc)/2 
1 + T2(s) 1 + T2(s) 

(10.98) 
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Figure 10.54 Transient response, (a) Step input response, (b) Step load response. 

Figure 10.53(a) shows \Auil ΙΓ2Ι, and \AU\. As addressed in Section 10.3.1, 
the relationship (10.98) is only valid up to mid frequencies and \AU\ follows 
IGvA-l at high frequencies. 

The output impedance is approximated as 

Z0(s) 

R 1 + sCRc 

Zoi(s) ^ 2 1 + sC(R + Rc)/2 
1 + T2(s) * 1 + T2{s) 

(10.99) 

Figure 10.53(b) shows \Zoi\, ΙΓ2Ι, and \Z0\. The first pole and peak value of 
the output impedance are predicted from Fig. 10.53(b) as uzc = In ■ 400 rad/s 



CURRENT MODE CONTROL FOR BOOST AND BUCK/BOOST CONVERTERS 543 

and \Zo\peak = - 2 dB. This information will be used to predict the step load 
response of the output voltage. 

The step input response and step load response are shown in Fig. 10.54. 
Figure 10.54(a) is the transient response of the output voltage due to the step 
changes of Vs = 12 V => 8 V => 12 V in the input voltage. Finally, Fig. 
10.54(b) shows the output voltage waveform in response to the step changes of 
I0 = 4 A =» 7 A => 4 A in the load current. The settling time of the output 
voltage is predicted as 

3 3 
ts = — = ^ ττ^: = 1.19 ms 

(Dzc 2π · 400 

The upper limit of the output voltage deviation is predicted as 

VoiOpeak < Istep 1 0 | Z < ^ / 2 ° = 3 · l O " 2 ' 2 0 = 2.38 V 

10.4.2 Loop Gain Analysis 

In the previous control design procedures, all the control parameters are system-
atically selected based on the power stage parameters and operational conditions. 
However, the integrator gain is often lastly tuned for optimal closed-loop perfor-
mance. Accordingly, it would be informative to investigate the behavior of the 
overall loop gain and outer loop gain when the integrator gain varies. This would 
provide insights about the implication and characteristics of the two loop gains, as 
well as the overall dynamics of multi-loop controlled converter systems. 

■ EXAMPLE 10.17 Loop Gain Analysis 

For the loop gain analysis purpose, the boost converter used in Example 10.16 
is reintroduced. The overall loop gain and outer loop gain of the boost converter 
with the integrator gain of Kv = 2890 were shown in Fig. 10.52. Now, the 
integrator gain is successively increased from Kv = 2890 to 5780, 9900, and 
14560. Figure 10.55 shows the overall loop gain T\(s) with the four differ-
ent integrator gains. The overall loop gain exhibits rather complex behavior, 
demonstrating substantial changes in both magnitude and phase. This complex 
behavior originates from the location of the integrator gain in the loop gain 
expression 

. J_ 
Tl(s) = Ti(s) + Tv(s) = Ti{s)^Gvd{s)Ff

m
Kv ω?£ 

s - s 
1 + 

ω pc 

Fv(s) 
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Figure 10.55 Overall loop gains with different integrator gains. 

= Us)+Kv Gvd(s)F'm -
1 + 

Vpc / 

(10.100) 

The change in Kv affects both the magnitude and phase of the loop gain, because 
Kv appears as a multiplication factor in the second term only. 

Figure 10.56 shows the outer loop gain T2(s) with the four different integrator 
gains. In contrast to T\(s), the outer loop gain shows a linear change in 
magnitude only, while the phase remains unchanged. This transition pattern 
can easily be inferred from the T2(s) expression 

Gvd(s)F'n 

T2(s) = 
Tv(s) 

1 + Us) 

s 1 s 

•'pc 

l + US) 
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Figure 10.56 Outer loop gains with different integrator gains. 

n ( \EV l ωζ€ 

Gvd(s)Fm — 
M + — 

Kv 
ω pc 

1 + Us) 
(10.101) 

Here, the integrator gain Kv is the common multiplication factor in the whole 
loop gain expression. Thus, Kv linearly increases the magnitude only, without 
affecting the phase. The original outer loop gain with Kv = 2890 exhibits a 
11 dB gain margin. Accordingly, the converter is marginally stable with the 
integrator gain of Kv = 2890 · 1011/20 = 9900, and becomes unstable for the 
larger gain, Kv = 14560. Figure 10.56 shows an exact match to this analysis. 

Although the overall loop gain and outer loop gain show very different sta-
bility margins and evolution patterns, they should provide the same information 
about the absolute stability. As shown in Figs. 10.55 and 10.56, the two loop 
gains both indicate that the converter is stable with Kv = 2890 and 5780, and 
unstable with Kv - 14560. 

An important observation is made from the loop gain plots with Kv = 9900. 
The outer loop gain plot in Fig. 10.56 indicates that, when the integrator 
gain is increased to Kv = 9900, the loop gain crosses the 0 dB line at ω€Γ = 
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In · 1.70 x 103 rad/s with -180° phase angle. This implies 

TvUUcr) 
TlijUcr) = = l z -180° = -1 

1 + Treuer) 

with a)cr - 2π · 1.70 x 103 rad/s. The above equation is rewritten as 

1 + 
1 + Ti(jucr) 

which also indicates 

= 0 => 1 + Ti(ju>cr) + TvUa>cr) = 0 

Tx{jucr) = Ti(jü)cr) + r v ( M r ) = -1 = 1Z - 180° 

(10.102) 

(10.103) 

(10.104) 

Equations (10.102) and (10.104) imply that the overall loop gain and outer 
loop gain identically predict that the converter is marginally stable with the 
integrator gain Kv = 9900. This information should show up in both the Bode 
plot and polar plot of the two loop gains. 

• The Bode plots of the overall loop gain and outer loop gain both cross the 
0 dB line at the frequency ucr = 2π · 1.70 x 103 rad/s with -180° phase 
angle: T\(ja)cr) - Tidier) - lz-180°. Figure 10.57 shows the Bode plots 

m 30 
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-50 

100 

150 

200 

. ^ 7 ^ 

-180 

"Λ^Τί / - — - ■ - — _ _ _ _ _ 

0.01 0.1 10 100 

Frequency [kHz] 

Figure 10.57 System loop gains with Kv = 9900. 
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Figure 10.58 Polar plot of loop gains, (a) Overall loop gain, (b) Outer loop gain. 

of the two loop gains with Kv = 9900. The two loop gains precisely cross 
the 0 dB line at ucr = 2π· 1.70x 103 rad/s with a -180° phase angle, thereby 
confirming that T\{jci)cr) - T2(j^cr) = 1/-1800. 

• The polar plots of the two loop gains touch the (-1,0) point at ωεΓ = 
2π · 1.70 x 103 rad/s: Tx(jcjcr) = Γ2(ΜΓ) = - 1 . Figure 10.58 shows the 
polar plots of the loop gains evaluated with the four different integrator 
gains. The overall loop gain exhibits a very complex transition pattern, as 
predicted from (10.100). On the other hand, the polar plot of the outer loop 
gain expands proportionally as the integrator gain increases. In spite of 
the very different transition patterns, the polar plots of the two loop gains 
identically traverse the (-1,0) point with Kv = 9900. 

The left-hand side of expression (10.103) also indicates that ±ojcr = ±2π · 
1.70 x 103 rad/s are the roots of the characteristic equation of the converter. 
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Figure 10.59 Pole trajectory with integrator gain variation. 

Thus, a pair of the system poles lie on the imaginary axis when the integrator 
gain is increased to Kv = 9900. Figure 10.59 shows the root locus evaluated 
with respect to the integrator gain Kv 

Gvd(s)F'm 

i 1 + — 1 o)7C 

1 + 
\ + T2(s) = \+Kv-

ωΌ 

i + TM 
= o (10.105) 

On the root locus plot, the locations of the dominant poles are marked for 
Kv = 2890, 5780, 9900, and Kv = 14560. As predicted, a pair of the closed-
loop poles indeed cross the imaginary axis with Kv = 9900. The crossing 
points should be ±a)cr = ±2π · 1.70 x 103 rad/s = ±1.07 x 104 rad/s, which are 
the frequencies that satisfy 1 + T\(j<jjcr) = 1 + T^O'ov) = 0. 

10.5 SUMMARY 

Current mode control employs an additional feedback from the inductor current on 
top of the output voltage feedback. Using the two feedback signals, current mode 
control offers substantial improvements over conventional voltage mode control. Ac-
cordingly, modern PWM dc-to-dc converters extensively adapt current mode control. 
Now, current mode control truly holds the prime position in PWM dc-to-dc power 
converter control methodologies. This chapter presented a comprehensive analysis 
and design of current mode control. 

Peak current mode control is the most common form of current mode control. 
The peak current mode control senses the switch current and uses its peak value to 
execute the PWM function. Since the switch current is the on-time inductor current, 
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the switch current sensing can be conceptually replaced with the inductor current 
sensing for the purpose of dynamic analysis and control design. The analysis and 
design of the peak current mode control are presented using the inductor current 
sensing. 

Current mode control is a multi-loop control scheme in which multiple system 
loop gains exist in the system. Two particular system loop gains, the overall loop gain 
and outer loop gain, are identified and utilized for the dynamic analysis. The two 
loop gains are used, collectively in some cases and individually in other cases, for 
the analysis and design of current node control. The respective role and implication 
of the two loop gains are addressed throughout this chapter. 

Systematic non-iterative design procedures are formulated for the peak current 
mode control adapted to all the three basic PWM converters. The current feedback 
circuit is designed to place the crossover frequency of the overall loop gain at the 
target frequency. The voltage feedback circuit is constructed using a two-pole one-
zero compensation. The compensation parameters are selected for stability and good 
closed-loop performance. In particular, the integrator gain is determined for the 
desired location of the crossover frequency of the outer loop gain. Step-by-step 
design procedures for the three basic PWM converters are given in Table 10.3. 

The performance of the peak current mode control adapted to the buck converter 
and boost converter is analyzed in detail. In particular, the step load response 
is thoroughly analyzed, leading to a practical method for predicting the transient 
response of the output voltage from the converter's output impedance characteristics. 
It was shown that the results of this step load analysis can be extended to all dc-to-dc 
converters in general. A specific example is given in Example 10.14 where the step 
load response of a switched capacitor converter is presented. 

The use and implication of the overall loop gain and outer loop gain in the stability 
analysis are demonstrated using a boost converter example. The outward information 
of the loop gains should be interpreted based on the definition of the corresponding 
loop gain. Although the two loop gains have utterly different shapes, stability margins, 
and transition patterns, they provide a coherent message on the internal information 
about the converter stability. This analysis is covered in Example 10.17. 

The analysis presented in this chapter is called the classical analysis because the 
analysis does not include the sampling effects of the peak current mode control and 
has become less prevalent than the past. A new analysis method that includes the 
sampling effects has emerged an alternative to the classical analysis. Even so, the 
classical analysis is still valuable because it duly and conveniently describes the major 
dynamics of current mode control. The next chapter deals with the new analysis to 
include the sampling effects into the converter dynamics. Whenever appropriate and 
informative, the results of the new analysis will be compared with those of the current 
classical analysis. 
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PROBLEMS 

10.1* The current sensing network (CSN) discussed in Example 10.2 is employed in 
the buck converter operating with the following conditions: 

VS=24Y V0 = 12V L = 80/iH R = 4 Ω 

C = 400 μ¥ Rc = 0.01 Ω fs = 50 kHz 

The circuit parameters of the CSN are shown in Fig. P10.1. 

a) Sketch the waveforms of the switch current IQ, sensed voltage signal v/, 
and compensation ramp Vramp for the two operational periods. Show the 
maximum and minimum values of the waveforms. 

b) Sketch the composite signal, Vramp + v/, control voltage vcon, and PWM out-
put Vpwm for the two operational periods, in order to illustrate the waveforms 
of the peak current mode control. 
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ΙμΈΤ^ Vt 

+ U/w-J 
100 Ω 

Fig. P10.1 

10.2** As discussed in Section 10.2.1, several different expressions for the modulator 
gain, F'm, can be formulated, depending on the way of relating the average 
values of the on-time and/or off-time inductor currents, ion(t) and io//(0 given 
below 

lon\t) — Vcon ~ ^ edl s ~ ^ ^ ndl s 

ioffit) = vcon - SedTs - -Sy(l - d)Ts 

to the average value of the inductor current, TL(t) 
a) Show that one modulator gain expression is given by 

F' 
(2Se + Sn)Ts 

by assuming Ti(t) = Ton(t) and linearizing the following equation 

h(t) = vcon - SedTs - -SndTs 

b) Prove that another modulator gain expression is formulated as 

2 
Ff 

(2Se-Sf)Ts 

by linearizing 

1 
idO = i0ff{t) = vcon - SedTs - 2SAl ~ d)T* 

c) Finally, show that the other modulator gain expression is found as 

1 
Ff = 

b el s 
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by linearizing the following weighted average of ion(t) and i0ff(t) 

h(t) = dion(t) + (1 - d)Toff(t) 

Vco SedTs--Snd
2Ts--Sf(l-d)2Ts 

10.3 Derive an exact expression for the duty ratio-to-inductor current transfer func-
tion, Gid(s), for the buck, boost, and buck/boost converters that contain the 
parasitics resistance of the reactive components, Ri and Rc in Fig. 10.13. Com-
pare the exact expressions with the approximations given in Table 10.2. 

10.4**Figure PI0.4 shows the circuit diagram of a current-mode controlled buck 
converter. 

200/^H 0.01 Ω 

lokn 

2.5 kH 

Fig. P10.4 

a) Find the expressions for the current loop Ti(s) and voltage loop Tv(s). 
b) On semi-log graph paper, sketch the asymptotic plot for \Tl-\ and \TV\ in order 

to construct the asymptotic plot for the overall loop gain \T\ | and outer loop 
gain ΙΓ2Ι. Predict the 0 dB crossover frequency of T\(s) and Γ2Ο). 

c) Use the results of b) to construct the factorized expressions for T\(s) and 
T2(s). 

10.5**Shown in Fig. P10.5 is the circuit diagram of a current-mode controlled buck 
converter. 
a) Consider the following power stage parameters and operational conditions 

for the buck converter: 

Vs = 24 V Vref = 2 V L = 80 μΗ Rt = 0.01 Ω 

C = 400 μ¥ Rc = 0.1 Ω R = 2 Ω /?, = 0.5 

Determine the slope of the compensation ramp, S e, to place the 0 dB 
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L R, 

jrrr\ ^ 

10 ka 

2.5 kn 

Fig. P10.5 

crossover frequency of the current loop at the 20% of the switching fre-
quency, ωα = 0.2 ω8. Also, determine values for [Ci R2 C3} to place the 
0 dB crossover frequency of the outer loop gain at the esr zero, ucr = uesr. 
Construct the asymptotic plots for |Γ,·|, |Γν|, |Γι|, and ΙΓ2Ι on semi-log graph 
paper, in order to confirm the compliance with the design requirements. 

b) Repeat a) for the converter operating with 

VS = 18V Vref = 1.2V Ζ, = 60μΗ Rt = 0.01 Ω 

C = 600//F RC = 0AQ. /? = 3Ω tft = 0.7 

for the design aims of ω£ί = 0.2 ω5 and ω€Τ - 0.8 ω6ΞΤ. 

c) Repeat a) for the converter operating with 

V 5 = 4 8 V Vref = 6V Ι = 300μΗ Ri = 0.01 Ω 

C = 600^F ^ = 0.05Ω R = 6Q Rt = 0.2 

for the design target of ω^ = 0.2 ω8 and a>cr - Luesr. 

10.6**Figure P10.6 shows the four different output impedances of a current-mode 
controlled PWM converter. For each case, sketch the general profile of the 
output voltage vo(t) when a step decrease of AIstep = 5 A occurs in the load 
current. Show all the prominent features of vo(t) including the estimations for 
the peak overshoot and settling time. 

10.7* Shown in Fig. P10.7 are the Bode plots for |7U |Γν|, \ΖΡ\, and |GV5| of a current-
mode controlled buck converter. 
a) Construct the asymptotic plot for |Γι|, ΙΓ2Ι, \Z0\, and \AU\ on Fig. P10.7. 
b) Use the result of a) to extract the factorized expressions for Ti(s), 72(s), 

Z0(s), and Au(s). 
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10.8**Perform the asymptotic analysis to evaluate the closed-loop performance of 
the current-mode controlled buck converter shown in Fig. P10.8. 

^ c o—e 

Φ 48 V 

Fig. P10.8 

200//H 0.01 Ω 

-mm w 
0.02 Ω< 

470/ /F; 
5 Ω : 

\Ri=°-25\^l^f] 
S =4.3xlOH V/s 

^PWM 

, 20 μ& 188 pF 
—If 

7.5 nF 51 kH 
- I f 

^ / = 4 V Ö 

- lOkQ 

:2 .5kQ 

a) Sketch |Γ;|, |Γν|, \ΖΡ\, and |GVJ| on semi-log graph paper. 
b) Use the results of a) to construct the asymptotic plots for \T\ |, ΙΓ2Ι, |Z0|, and 

\AU\. 
c) Use the outcomes of b) to extract the factorized expressions for T\ (s), ^2(5), 

Z0(s), and Au(s). 

10.9* Figure PI0.9 shows the circuit diagram of a current-mode controlled boost 
converter. 
a) Find the expressions for the current loop Γ/0) and voltage loop Tv(s). 
b) On semi-log graph paper, sketch the asymptotic plots for |Γ/| and |7V| and 

construct the asymptotic plot for the overall loop gain \T\ \ and outer loop 
gain ΙΓ2Ι. Estimate the 0 dB crossover frequency of the loop gains. 

c) Use the results of b) to extract the factorized expressions for T\(s) and 
T2(s). 

10.10*Shown in Fig. PIO.IO is the circuit diagram of a current-mode controlled boost 
converter. 
a) Consider the following circuit parameters and operational conditions for 

the boost converter: 

Vs = 24 V Vref = 9.2 V L = 160 μΗ Rt = 0.01 Ω 

C = 400 μ¥ Rc = 0.05 Ω R = 10 Ω Rt = 0.45 

Determine the slope of the compensation ramp, Se, to place the OdB 
crossover frequency of the current loop at the 20% of the switching fre-
quency, ωα = 0.2ω8. Also determine values for {C2 R2 C3} to place the 
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0 dB crossover frequency of the outer loop gain at the 20% of the RHP 
zero, a>cr = 0.2a>rhp. Construct the asymptotic plots for |Γ/|, \Τν\, \T\\, and 
ΙΓ2Ι on semi-log graph paper, in order to confirm the compliance with the 
design requirements. 
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b) Repeat a) for the converter operating with 

Vs = 30 V Vref = 9.6 V L = 80 μΗ Ri = 0.01 Ω 

C = 860//F Rc = 0.05 Ω R = 10 Ω /?,· = 0.15 

for the design aims of ω€1 - 0.2 ωΞ and a>cr = 0.15 cjrhp. 

c) Repeat a) for the converter operating with 

Vs = 12 V Vref = 5.6 V L = 240 μΗ tf, = 0.01 Ω 

C = 400^F Rc = omn R = IQ /?f = 0.3 

for the design target of ωπ· = 0.2 ω5 and ωΓΑ- = 0.3 ω ^ . 



CHAPTER 11 

CURRENT MODE CONTROL — 
SAMPLING EFFECTS AND NEW 
CONTROL DESIGN PROCEDURES 

Peak current mode control is a sampled-data process because the control action is 
periodically executed by sampling and holding the error signal produced by the fast-
varying inductor current waveform. Due to this feature, current-mode controlled 
converters exhibit sampled-data system characteristics, which is referred to as the 
sampling effects of current mode control. The dynamics of current-mode controlled 
converters, at the presence of the sampling effects, can be investigated via sampled-
data modeling and z-domain analysis. However, the results would be too complex to 
expose any easy insights into converter dynamics or design strategy. In fact, several 
attempts had been made to fully characterize the converter dynamics in terms of z-
domain expressions but the outcomes were not widely accepted due to their apparent 
complexity. 

Traditionally, peak current mode control has been analyzed and designed using 
s-domain techniques, implicitly assuming that the sampling effects simply have 
negligible consequences. This classical analysis was explored in the previous chapter. 
It has been proven that the classical analysis duly predicts major dynamics of current 
mode control and provides correct design procedures for most cases. The classical 
analysis prevailed until the late 1980s. 

Pulsewidth Modulated Dc-to-Dc Power Conversion. By Byungcho Choi 559 
Copyright © 2013 IEEE, Published by John Wiley & Sons, Inc. 
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Figure 11.1 Peak current mode control adapted to three basic PWM converters. 

In the early 1990s, a new class of dynamic models emerged, which accounts for the 
sampling effects only using conventional s-domain descriptions. These new models, 
which are called the s-domain model for current mode control in this book, rekindled 
interest and attention to the sampling effects of current mode control. Using this 
new s-domain model, several new facets of current mode control are revealed, which 
supplement and reinforce the outcomes of the earlier classical analysis. 

In this chapter, we investigate the sampling effects with the aid of the s-domain 
model for current mode control. The consequence of the sampling effects on con-
verter dynamics will be studied in detail. Based on the analysis results, new design 
procedures for current mode control will be developed. The predictions and perfor-
mance of the new design will be compared and contrasted with those of the classical 
design, which does not consider the sampling effects. We will explore the correlation 
between the new design procedures and the classical design procedures. Finally, as a 
practical application example, the design and evaluation of a flyback converter with 
an optocoupler-isolated peak current mode control will be discussed. 

11.1 SAMPLING EFFECTS OF CURRENT MODE CONTROL 

This section presents the origin, nature, and consequence of the sampling effects. It 
also introduces an s-domain model for current mode control, which will be used in 
this book to account for the sampling effects. 
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11.1.1 Origin and Consequence of Sampling Effects 

Figure 11.1 shows the peak current mode control adapted to the three basic PWM 
converters. As discussed in Section 10.2.1, this model could represent each of the 
three basic converters with the respective connections of the power stage configura-
tion. For peak current mode control, the switch current is sensed with the current 
sensing network (CSN). As explained in the previous chapter, the switch current 
sensing is identical to the inductor current sensing, as far as the control mechanism 
is concerned. For the convenience of graphical illustration and analytical treatment, 
the peak current mode control is described in terms of the inductor current sensing. 

Origin of Sampling Effects 

The sampling effects are invoked by the operation of the PWM modulator. The 
sampling effects of current mode control are investigated using the PWM waveforms 
shown in Figs. 11.2 and 11.3. Figure 11.2(a) shows the structure and waveforms 
of the PWM modulator, where the peak current mode control is represented by the 
inductor current sensing. The CSN gain is assumed unity without loss of generality 
so v/ = ii for this case. Figure 11.2(a) is transformed into the equivalent form in Fig. 
11.2(b). 

The control waveforms in Fig. 11.2(b) are modified into Fig. 11.3, in order to 
illustrate the evolution of the perturbed inductor current, i'L, in comparison with 
the original inductor current ii. The sampling effects originate from the fact that 
the control action is periodically executed by sampling and holding the error signal 
generated by the fast-varying inductor current. The initial perturbation ii{k) = 
i'L(k) - iL(k), occurred in the inductor current at the instant of its peak value in the kth 

period, propagates to ensuing switching periods and generates the continuous error 
signal, ti(t) = i'L{t) - iL(t). During the (k + l)th period, the error signal is sampled at 
the moment when i'L intersects with the composite signal, vcon - Vramp' The sampled 
error signal iL(k + 1) is held constant until the next sampling instant. The PWM 
modulator samples and holds the error signal in synchronization with the switching 
period. The TL{t) at the bottom of Fig. 11.3 is a conceptual representation of the 
sampled-and-held error signal in the PWM modulator. 

Consequence of Sampling Effects 

The sampling effects penetrate into the converter dynamics and induce phenomena 
that the classical analysis is unable to predict. The sampling effects are mainly 
pronounced at higher frequencies, near or above the half the switching frequency, 
because the PWM modulator samples and holds the error signal at the rate of the 
switching frequency. 
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Figure 11.2 Structure and waveforms of peak current mode control, (a) Peak current mode 
control with unity inductor current sensing, (b) Alternative representation. 
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Figure 11.3 Evolution of perturbed inductor current. 
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Figure 11.4 Loop gain of boost converter. 

■ EXAMPLE 11.1 Consequence of Sampling Effects 

This example demonstrates the consequence of the sampling effects on the loop 
gain characteristics. Figure 11.4 shows the Bode plots of the loop gain of a 
current-mode controlled boost converter, obtained from two different dynamic 
models. The thin curve is the prediction of the classical analysis that does not 
consider the sampling effects. The thick curve is the outcome of the new model 
that will be developed in this chapter to account for the sampling effects. Along 
with the model predictions, the empirical loop gain curve obtained using the 
computational method is also shown in Fig. 11.4. The switching frequency of 
the converter is fs = 50 kHz. The loop gain plots do not show any noticeable 
differences at low frequencies. However, they exhibit notable deviations at high 
frequencies, particularly in the frequencies around and above half the switching 
frequency, fs/2 = 25 kHz. Apparently, the new model better correlates with the 
empirical data in both the magnitude and phase characteristics. The improved 
accuracy of the new model is a direct consequence of including the sampling 
effects of current mode control. Detailed discussions about the consequence 
of the sampling effects will be given in Sections 11.2.3 and 11.3. 

: prediction of new model 
: prediction of classical model 
: empirical data 
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11.1.2 Modeling Methodology for Sampling Effects 

In current-mode controlled PWM converters, the circuit variables are classified into 
two categories: the slow-varying variable and fast-varying variable. The output 
voltage and control voltage are smoothly-filtered slow-varying variables. In contrast, 
the inductor current is a triangular-shaped fast-varying variable. 

The sampling effects are discrete-time phenomena which need to be investigated 
via sampled-data modeling and z-domain analysis. The sampling effects are initially 
invoked by the fast-varying inductor current, and therefore the sampled-data modeling 
needs to be applied to the inductor current feedback circuit. On the other hand, it 
is unnecessary to apply the sampled-data modeling for the remaining part of the 
converter circuit, where only the slow-varying circuit variables prevail. For this part, 
the discrete-time analysis will not yield much different results from those of the 
classical analysis based on the averaging method. In fact, voltage mode control is 
also a sampled-data process in the sense that the duty ratio is only updated once in 
every switching period. Nonetheless, the averaging method offers sufficient accuracy 
because all the circuit variables involved with the PWM process vary slowly. 

One effective modeling methodology for current mode control is to utilize the 
existing s-domain models as much as possible and to make only necessary modifica-
tions or additions to accommodate the sampling effects. In this practice, the sampling 
effects are first modeled as a discrete-time process and the resulting z-domain model 
is later transformed into an equivalent s-domain representation. The equivalent s-
domain representation is then amalgamated with the existing s-domain models for 
slow-varying circuit variables. The final s-domain model for the entire converter 
provides both the simplicity of s-domain analysis and the accuracy of sampled-data 
analysis. The s-domain converter model accepts all the classical analysis techniques 
and provides the results in s-domain expressions. The analysis results will be accu-
rate up to the Nyquist frequency, i.e., half the switching frequency of the converter, 
because the model duly accounts for the sample and hold function of the peak current 
mode control. 

11.1.3 Feedforward Gains 

In addition to the sampling effects, there exists another mechanism that needs to be 
considered in analyzing current mode control, but is not included in the classical 
analysis. In peak current mode control, the changes in the input or output voltage 
instantly affect the duty ratio. This feature is illustrated in Fig. 11.5 which shows the 
inductor current and modulator waveforms of the buck converter with two different 
input voltages. The thin line is the inductor current with the original input voltage. 
The thick line is the inductor current when the input voltage is decreased while the 
output voltage remains in regulation. The variation in the input voltage alters the 
slope of the inductor current and the duty ratio is instantly changed. 

In the classical analysis in Example 10.3, the modulator gain of the peak current 
mode control was derived assuming the slopes of the inductor current remain un-
changed. This hypothesis is now discarded to improve the fidelity and accuracy of 
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Figure 11.5 PWM waveforms with different input voltages. 

the small-signal model. The slopes of the inductor current are affected by both the 
input voltage and output voltage, and the resulting slope changes immediately alter 
the duty ratio. This functional dependency is modeled as the feedforward gains from 
the input and output voltages in the new model. 

11.1.4 Complete s-Domain Model for Current Mode Control 

The complete s-domain small-signal model for current-mode controlled PWM con-
verters is obtained by adding the necessary gain blocks to the small-signal model 
introduced in Section 10.2.1. Figure 11.6 shows the resulting small-signal model. 
In this new small-signal model, four gain blocks are added or modified to repre-
sent the sampled-data feature of current mode control, while the voltage feedback 
compensation Fv(s) and CSN gain /?,· remain unchanged. 

1) Sampling effects: The s-domain representation of sampling effects can be 
either merged into the PWM block, resulting in a new s-domain modulator 
gain F^O), or included as a separate s-domain gain block, He{s), located in 
the inductor current feedback path. 

2) Feedforward gain: The gain block kf represents the influence of the input 
voltage and kr is the feedforward gain from the output voltage. 

Once the four additional gain blocks are identified, the complete s-domain model 
for current mode control is established. WithF^O) = F'm,He(s) = l,and£/ = kr = 0, 
Fig. 11.6 reduces to the model used in the classical analysis in Chapter 10. 

11.1.5 Two Prevalent s-Domain Models for Current Mode Control 

Two distinct s-domain models for current mode control are being widely used. The 
first s-domain model was proposed by R. B. Ridley [1]. In Ridley's model, the 
sampling effects are incorporated as a separate s-domain gain block, He(s), while the 
modulator gain is modeled as a constant. The sampled-data feature of current mode 
control is initially described as a z-domain transfer function and later transformed 
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Figure 11.6 Complete s-domain small-signal model for current-mode controlled PWM 
converters. 

into the equivalent s-domain representation, He(s). The modulator gain includes the 
slope of the compensation ramp, yet does not contain any frequency-dependent term. 
The feedforward gains from the input and output voltages are also included. The 
expressions for the gain blocks of Ridley's model for the three basic PWM converters 
are listed in Table 11.1. 

Another s-domain model was later proposed by F. D. Tan [2]. In Tan's model, the 
sampling effects are incorporated into the modulator gain as a frequency-dependent 
term, while the current feedback loop only contains the CSN gain, namely, He{s) = 1. 
This model also contains the feedforward gains from the input and output voltages. 
The gain blocks for Tan's model are also shown in Table 11.1. 

The two s-domain models for current mode control, Ridley's model and Tan's 
model, have allowed the sampled-data feature of current mode control to be analyzed 
using only s-domain techniques. However, these two models have subtle differences 
in their modeling approaches and final results, and therefore have become a subject 
of comparisons and clarifications. Although the exactness of these two models is still 
an issue of rigorous assessment, either of them can be selected as a reference model 
in studying the sampling effects. Each model has its own theoretical developments 
and provides the correct design procedures for current mode control. 

In this book, Ridley's model is chosen as the reference in studying the sampling 
effects. In the next section, the gain blocks of Ridley's model will be studied. Then, 
the dynamics of the peak current mode control are analyzed in an attempt to establish 
new design procedures. Several design examples are given. The predictions and 
performance of the new design will be compared with those of the classical design 
developed in Chapter 10. The new control design procedures will be contrasted with 
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Table 11.1 Two Prevalent s-Domain Models for Current Mode Control 

Ridley's model Tan's model 
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Snis the on-time slope and Sf is the off-time slope of the sensed current feedback voltage v/, while Se is 
the slope of the compensation ramp. 
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Figure 11.7 Modified small-signal model for current mode control. 

the classical design procedures to reveal the connection between the two different de-
sign approaches. Lastly, the design and performance of an off-line flyback converter 
with an optocoupler-based peak current mode control will be discussed. 

11.2 EXPRESSIONS FOR S-DOMAIN MODEL FOR CURRENT MODE 
CONTROL 

This section presents analytical details about the Ridley's s-domain model. Ex-
pressions for the gain blocks representing the sampled-data feature of current mode 
control are provided. 

11.2.1 Modified Small-Signal Model 

In order to facilitate the derivation of the gain blocks, the s-domain model in Fig. 
11.6 is modified into an alternative form shown in Fig. 11.7. The modifications 
incorporated into Fig. 11.7 are as follows. 

1) In the modified model, the modulator gain is represented by F*m in place of 
F*m(s) because the modulator gain is a constant in Ridley's model. 

2) In the original model in Fig. 11.6, the feedforward gains, kf and kr, are derived 
from the input voltage and output voltage of the converter. On the other hand, 
in the modified model, the feedforward gains are derived from the small-signal 
sources von and v„ff. The small-signal source von represents the voltage that 
appears across the inductor terminals during the on-time period and v0ff is the 
(negative) inductor voltage during the off-time period. With these changes, the 
feedforward gains are renamed as k' and k'r. 
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Figure 11.8 Small-signal model of buck/boost converter with current mode control. 

The purpose of the above modifications is to simplify the analysis of the feedforward 
gains. Advantages of the modified model will be explained later in Section 11.2.4. 

The modified model in Fig. 11.7 is now adapted to the buck/boost converter. The 
resulting model is shown in Fig. 11.8. For the buck/boost converter, the modified 
model is identical to the original model in Fig. 11.6, because von - vs and v0ff = v0 

for this case. The voltage feedback compensation Fv(s) is not included in Fig. 11.8 
because the Fv(s) is predetermined and does not affect the small-signal models of 
current mode control. The CSN gain Rt is also known in advance. 

The four gain blocks, F*m, He(s), k' and k'r, can be derived from Fig. 11.8. Once 
the four gain blocks are identified, they should be converted into the new expressions 
that can be put into the original small-signal model of Fig. 11.6. By comparing the 
two small-signal models of Fig. 11.6 and Fig. 11.7, it is apparent that the expressions 
for F*m and He{s) remain the same. However, the feedforward gains, k'f and k'r, need 
to be converted to the expressions for kf and kr because von Φ vs and v0ff Ψ v0 in 
general; the buck/boost converter is a special case where von = vs and v0ff = v0 so 
kf = k'r and kr = k'r. The conversion of the feedforward gains will be discussed later 
in Section 11.2.4 

When the four gain blocks, F*m, He(s), kf, and kr, are inserted into Fig. 11.6, 
the s-domain small-signal model for the three basic converters can be obtained by 
appropriately arranging the connections in the power stage circuit configuration. 
Figure 11.8 itself is the small-signal model of the buck/boost converter with kf = k'f 
and kr = k'r. 
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Figure 11.9 Modulator waveforms with perturbed control voltage. 

The next section presents the derivation of F*m, He(s), k'f and k'r, using Fig. 11.8. 
In the forthcoming model derivations, the CSN gain is assumed to be unity, Rt■ = 1, 
unless stated otherwise. 

11.2.2 Modulator Gain F* 
m 

The modulator gain F*m is derived by graphically relating the perturbation in the 
control voltage, vcon, to the change in duty ratio, d. Figure 11.9 shows the modulator 
waveforms where a perturbation is incurred to vcon at the onset of the second oper-
ational period. The solid line represents the modulator waveforms with the original 
control voltage, vcon, and the dashed line is the waveforms with a perturbed control 
voltage, v'con. The perturbation in the control voltage, vcon = Vcon - vcon, causes a 
change in the on-time period, dTs. From the geometry of the modulator waveforms, 
highlighted in Fig. 11.9 with an expanded view, the following relationship is seen 

SndTs + SedTs = (Sn + Se)dTs (11.1) 

where Sn is the on-time slope of the inductor current and Se is the slope of the 
compensation ramp. The above equation is arranged as 

Ft 
1 

(Sn+Se)Ts 
(Π.2) 

to yield the modulator gain. 
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Figure 11.10 Simplified s-domain model for current mode control. 

11.2.3 He(s): s-Domain Representation of Sampling Effects 

The sampling effects of current mode control are modeled as a separate gain block 
He{s) located in the current feedback path. For the purpose of He{s) derivation, the 
input and output voltages are fixed so that vs - v0 = 0 in Fig. 11.8. Accordingly, Fig. 
11.8 is simplified to Fig. 11.10. The expression for He(s) is now derived from Fig. 
11.10 through the following three steps. 

Step One: The expression for the transfer function from the control voltage to 
inductor current, ///(s) = iL(s)/vcon(s), is derived in two different ways, thereby 
yielding two alternative expressions for the transfer function. The gain block He(s) 
is included in one of the two //,·( J) expressions. 

Step Two: By equating the two different Hi(s) expressions, the gain block He{s) 
is derived as He(s) = sTs/{esTs - 1). 

Step Three: The He(s) expression is subsequently approximated to He{s) = sTJ(esTs-
1 ) ^ 1 + s/(ü)nQz) + s2l(x)2

n with Qz = -2/π and ωη = n/Ts, based on Taylor series 
expansion of the complex exponential. 
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Figure 11.11 Inductor current dynamics, (a) Propagation of inductor current perturbation. 
(b) Effects of control voltage perturbation. 

1) Step One: Two Distinct Expressions for Hi(s) = iL(s)/vcon 

Direct application of Mason's gain rule to Fig. 11.10 results in the first expression 
for the control-to-inductor current transfer function ///(s) 

Hi(s) = -
Vcon(s) 

7* k(s) 

d(s) 

1 + Ft4^-RiHe(s) 
(11.3) 

d(s) 

For the formulation of the second Hi(s) expression, the dynamic behavior of the 
inductor current is illustrated in Fig. 11.11. Figure 11.11(a) shows the propagation 
of the inductor current perturbation with the assumption Rt = 1, while Fig. 11.11(b) 
depicts the effects of the control voltage perturbation. The inductor current dynamics 
under the perturbations in both the inductor current and control voltage are described 
by a difference equation 

tL(k + 1) = kiiL(k) + k2vcon(k + 1) (Π.4) 

The first term in the right-hand side of (11.4) represents the propagation of the inductor 
current perturbation. The inductor current perturbation at (k + l) t h period, izX&+1)> is 
affected by the previous inductor current perturbation, ii{k). This term is the natural 
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Figure 11.12 Propagation of inductor current perturbation: natural response. 

response. The second term describes the impact of the control voltage perturbation 
on the inductor current. The disturbance in the control voltage at (k + l)th period, 
vCon(k +1), instantly affects the inductor current, ti(k +1), without any delay. This 
second term is the forced response. The two proportionate coefficients in (11.4), k\ 
and &2, are evaluated by analyzing the natural and forced responses. 

Natural Response 

Figure 11.12 shows the propagation of the inductor current perturbation, ii(k) = 
i'L(k) - iL(k), into the next sampling instant. From the geometry of the PWM wave-
forms, the following relationships are established 

-iL(k) = (Sn + Se)dTs (11.5) 

and 
iL(k+l) = (Sf-Se)dTs (11.6) 

From (11.5) and (11.6), it follows that 

iL{k+\) = Sf-Se 

tL(k) Sn + Se ' 
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Figure 11.13 Effects of control voltage perturbation: forced response. 

which is arranged as 

with 

iL(k+ 1) = -aiL(k) 

Sf-Se 

(11.8) 

(11.9) 
^ n "+" ^ e 

Equation (11.8) is the natural response of the inductor current. 

Forced Response 

Figure 11.13 illustrates the effect of the control voltage perturbation. From the 
geometry of the modulator waveforms, the following relationships are established 

and 

vcon(k+\) = {Sn + Se)dTs 

RitL(k+l) = (Sn + Sf)dTs 

(11.10) 

(11.11) 
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By eliminating dTs from (11.10) and (11.11), it follows that 

RiUk+l) = ^^f Vcanik+l) = (l + y^Avcanik+l) (11.12) 

which is rearranged as 

W £ + l ) = ^ ( l + t t ) v c o w ( f c + l ) (11.13) 

where a = (S f - Se)/(Sn + Se) was defined earlier in (11.9). The above equation is 
the forced response. 

Complete Response 

By summing the natural response and forced response, the complete response of the 
inductor is given by 

iL(k + 1) = kih(k) + k2 vcon(k + 1) (11.14) 

where k\ - -aandfe = (1+ar)//?,· witha = (S f-Se)/(Sn+Se). The final expression 
for the inductor current now becomes 

tdk+l) = -aiL(k)+^-(l+a)vcon(k+l) (11.15) 

By taking the z-transformation of (11.15) 

ziL(z) = -aiL(z) + —{\+a)zvcon(z) (11.16) 

the z-domain control voltage-to-inductor current transfer function, ///(z), is derived 
as 

Hi{z) = ^ - = ^ ( 1 + < * ) — (11.17) 

The continuous-time representation of ///(z) is obtained from (11.17) by multiply-
ing (1 - e~sTs)/(sTs) and replacing z with ei7s [3] 

Hi(s) = l~s
e
T

SSHi(z = esT*) 

ll+°<"-1 (11.18) 
Ri sTs esT* + a 

It is well known that this z-domain-to-s-domain conversion is only valid for the 
frequencies below the Nyquist frequency, ωη = 0.5 a>s = n/Ts. Equation (11.18) is 
the second s-domain expression for the control voltage-to-inductor current transfer 
function. This second Hi(s) expression is developed from the modulator waveforms 
and therefore does not include the He(s) gain block. Recall that the first Hi(s) 
expression, given by (11.3), contains the He{s) block. 
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2) Step Two: Identification of Gain Block He(s) 

Two independently-driven descriptions for ///($), (11.3) and (11.18), are now ob-
tained. By equating these two expressions, the expression for He(s) is derived as 

eSl.s - 1 

Details about this derivation are given in Example 11.2. 

EXAMPLE 11.2 Derivation of He(s) 

This example illustrates the derivation of (11.19). By equating (11.3) and 
(11.18), it follows that 

" * , ) . i i ^ - i ( 1 L 2 0 ) 

d(s) 

The objective of this analysis is to find the expression for He(s) that satisfies 
(11.20). First, from the simplified s-domain model in Fig. 11.10, the duty-
ratio-to-inductor current transfer function is derived as 

tjß = Y^D± (11.21) 
d(s) D sL 

The expression for Vap, the voltage between the active and passive terminals 
of the PWM switch, is derived from Fig. 11.14 

Vap = Vai + Vip (11.22) 

The voltages Vai and Vip are related to the on-time and off-time slopes of the 
current feedback signal 

Figure 11.14 PWM switch and terminal voltage definitions. 
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Sn^^Ri (H.23) 

Sf=^Ri (H.24) 
L 

From (11.22) through (11.24), it follows that 

L 

~Ri 

By merging (11.21) and (11.25), it follows that 

iL(s) _ 1 Sn + Sf 

d(s) ~ Ri s 

From (11.26) and F*m = l/((Sn + Se)Ts), it becomes that 

FJ_ds) 1 lSn + Sf 
md(s) (Sn + Se)TsRi s 

1 1 + a 

Vap = -(Sn + Sf) (11.25) 

(11.26) 

Ri sTs 

(11.27) 

with a = (Sf - Se)/(Sn + Se). Using (11.27), the expression (11.20) now 
becomes 

1 1 + a 
R- ?T 1 1 + a esTs - 1 
Kl sls - ( 1 L 2 8 ) 

Ri sTs 

which can be solved for He(s) to yield the expression (11.19), as shown in 
Problem 11.2 at the end of this chapter. 

3) Step Three: Approximation of Gain Block He(s) 

As the last derivation step, the s-domain representation of the sampling effects He(s) 
is approximated to 

esl* - 1 ωηζ)ζ ω
ι
η 

with 

Qz = -- (ΐΐ·30) 
π 

and 
ωη = ψ (11.31) 

based on the Taylor series expansion of the complex polynomial. The procedures of 
this approximation are given in Example 11.3. 
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EXAMPLE 11.3 Approximation of He(s) 

This example illustrates the derivation of (11.29). First, the complex exponen-
tial function is approximated as 

Ts * Λ π 1 / π 
s— s— 1 + 5 — + - \s 

esTs = 
ω, 2 \ ω 

Ts π 1 / \2 
— 1 π 1 / π \ 
cos \-s— + -z\s—\ 

ü)s 2 \ ω3 j 

(11.32) 

using the identity ex = 1 + x + JC2/2! + · · · with x « : 1. This approximation is 
accurate for frequencies ω <$c ωΞ/π. The above expression is further modified 
to 

o*Ts 

1 π 1 π 

l + s— + -\s— 
\ s i s 

1 + — rr +f 2/'π a>s /2 \ ω 5 / 2 

π_ }_l f_\ \ s_ ( s X 

u)s 2\ w j 2/πω.ν/2 \ωχ/2ΐ 

(11.33) 

by accepting the approximation of π2/2 « 4.935 « 4. Using (11.33), He{s) is 
written as 

He(s) = 
sTs 

,sT, _ ! 

2π 

1 

2 / π ω 5 / 2 \ω3/2 
1 5 

2 / π ω ν / 2 (ω5/2) ) 

1 
1 

(11.34) 
2/πω8Ι2 \ωχ/2) 

which can be put into the expressions (11.29) through (11.31) using ωΞ - 2n/Ts. 

The s-domain representation of the sampling effects is valid only for the frequen-
cies below the Nyquist frequency, due to the z-domain-to-s-domain conversion in 
(11.18) and assumptions used in (11.32). Figure 11.15 compares the Bode plots of 
the original expression of He(s) and its low-frequency approximation of (11.29). 

The s-domain representation of the sampling effects, given by (11.29), is a double 
zero function with a negative damping factor, Qz = -2/π « -0.637. The double 
zero is located at the Nyquist frequency, ωη = n/Ts = 0.5 ων. Accordingly, He(s) 
exerts negligible effects at low frequencies and only becomes influential at the high 
frequencies. As shown in Fig. 11.15, He{s) does not cause any practical impacts 
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PQ 

Ό 

Figure 11.15 Bode plot of the original He{s) and its low frequency approximation. 

at frequencies below ω5/20. The maximum impact of He{s) occurs at the Nyquist 
frequency where \He{jü))\ increases about 4 dB and LHe(jcu) drops by 90°. This 
observation is consistent with Fig. 11.4 which illustrates the consequence of the 
sampling effects on the loop gain characteristics. The sampling effects are only 
pronounced at the frequencies near or above the Nyquist frequency. This fact also 
supports the prevalence of the classical analysis which ignores the sampling effects. 
If the control bandwidth is well below the Nyquist frequency, the sampling effects do 
not interfere with the control design and closed-loop performance. 

EXAMPLE 11.4 Circuit Model for He(s) 

Figure 11.16 shows a simple circuit model for He(s). The unique feature of the 
circuit model is the existence of a negative resistance, which can be accepted 
by most circuit simulators including PSpice®. The transfer function of the 
circuit is given by 

π 1 2 
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2 G>S cos 

cos 

\ s Is 
Figure 11.16 Circuit model for He(s) = 1 - — — + —— 

2/πω,/2 \ωχ/2 

This circuit model can be used to simulate the small-signal dynamics of the 
converter with the presence of the sampling effects. 

11.2.4 Feedforward Gains 

Among the four small-signal gain blocks for current mode control, the modulator gain 
F*m and sampling effect He(s) are identified. This section now presents derivations 
of the feedforward gains, k'f and k'r. Similar to the case of He(s) development, two 
different expressions for the inductor voltage-to-inductor current transfer function 
are formulated. By equating these two alternative expressions, the descriptions for 
the feedforward gains are extracted. 

Feedforward Gain k' 

The feedforward gain is derived from the modulator waveform of the peak current 
mode control, shown in Fig. 11.17. It can be seen from Fig. 11.17 that 

RilL = Vcon - SedTs - - 5 / (1 - d)Ts (11.36) 

where ii denotes the average inductor current. The off-time slope of the sensed 
inductor current is given by 

sf = -f-tf, (11.37) 

where v0/f is the (negative) inductor voltage during the off-time period. The flux-
balance condition on the inductor is written as 

vondTs = voff(\ -d)Ts (11.38) 

where von is the on-time period inductor voltage. The above equation provides the 
expression for the duty ratio in terms of the inductor voltages 

Voff 

Von + V0ff 
(11.39) 
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dTs {\-d)Ts 

Figure 11.17 Steady-state modulator waveforms. 

By incorporating (11.37) and (11.39) into (11.36), and linearizing the resulting 
equation with respect to ϊι and von, the following equation is obtained 

Gon(s) = ^ = - £ - 2 — - ^D2 

Ri Vc ap 2L 
(11.40) 

where Vap = Von + WQff is the sum of the respective dc component of the on-time 
inductor voltage and off-time inductor voltage. Equation (11.40) is the first equation 
for Gon(s) = \ιΙν0η- Derivation of (11.40) is given in Example 11.5. 

■ EXAMPLE 11.5 Derivation of Gon(s) 

This example shows the derivation of Gon{s) in (11.40). Incorporation of 
(11.37) and (11.39) into (11.36) yields 

KflL — Vcon " e* s 
Voff -¥?-**, 

Von + Voff 2 L Von + Voff 

Differentiation of (11.41) with respect to von results in 

(11.41) 

dvnn Ri OVon \Von + Voff) 2 L ÖVon \v0n + Voff) 

l-seTs ^ 
Voff 

Ri S (von + V0ff)
2 2L (von + Voff)

2 
(11.42) 

which can be arranged in the form of (11.40) by considering the steady-state 
circuit variables: D = V0ff/(V0n + Voff) and Vap = Von + Vo//. 

The second expression for Gon = h/v0n is obtained from the simplified small-
signal model of the converter, shown in Fig. 11.18. The feedforward gains only 
describe the low-frequency averaged dynamics of the PWM block. Therefore, the 
high-frequency modulator dynamics, such as the sampling effects, can be ignored. 
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Figure 11.18 Small-signal model for derivation of feedforward gains. 

Figure 11.18 is the small-signal model constructed for low-frequency averaged dy-
namics, based on the following observations. 

1) The gain block He{s) is approximated by unity: He{s) = 1. 

2) The average value of the inductor voltage is zero, as such, the inductor behaves 
as a short circuit at low frequencies. 

3) The output voltage of the converter is constant: v() = v0ff = 0. 

4) The control voltage remains constant: vcon = 0 

From Fig. 11.18, the following relationship is established 

y an 
(vonk'f - RiiL)F*m 

D 
= ~Va (11.43) 

by noting that the transformer windings are shorted. Equation (11.43) is rearranged 
as 

IL 1 / D 
(11.44) 

to yield the second expression for Gon(s). By equating (11.40) and (11.44) with 

incorporation of F*m = l/((Sn + Se)Ts\ the feedforward gain is obtained as 

k'f 
DTsRi / D K) (11.45) 
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Figure 11.19 Small-signal model for feedforward gain conversion. 

Feedforward Gain k'r 

By repeating the same process for the off-time inductor voltage, the feedforward gain 
k' is evaluated as 

w = (1 - D)2TsRi 

2L 
(11.46) 

Conversion of Feedforward Gains 

As discussed in Section 11.2.1, the feedforward gains, k'f and k'r derived in the 
previous section, should be converted to the original feedforward gains, kf and kr 

defined in Fig. 11.6. Figure 11.19 shows the small-signal model that will be used to 
find the relationship between {£' k'r] and {kf kr}. This model is derived from Fig. 11.7 
with the condition v/ = vcon = 0. 

In Fig. 11.19, the input signal to the modulator gain block F*m is expressed as 

Vfeed = k'fVon + k'rVoff (11.47) 

The conversion from {k'f k'r) to {kf kr) is now explained using the buck converter. For 
the buck converter, the following relationships hold 

Voff = V0 

Equations (11.47) and (11.48) are combined 

Vfeed = k'f(vs - v0) + k'rv0 = Wfvs + (-£} + k'r)v0 

yielding the relationship 

with 

Vfeed = kfVs + krV0 

kf = k'f and kr = -k'f + k!r 

(11.48) 

(11.49) 

(11.50) 

(11.51) 



584 CURRENT MODE CONTROL — SAMPLING EFFECTS AND NEW CONTROL DESIGN PROCEDURES 

Table 11.2 Inductor Voltage Relationships and Feedforward Gains 

Buck converter Boost converter Buck/boost converter 

Von VS ~ VO VS 

Voff V0 V0 ~ VS 

kf kj- kj - kr 

Kr K r T K K r 

Expressions (11.51) are the original feedforward gains for the buck converter, 
shown in Fig. 11.6. The same process is applied to the boost and buck/boost convert-
ers. The results of this analysis are shown in Table 11.2. The feedforward gains, k'f 
and k'r derived in (11.45) and (11.46), are now converted into the original gains, kf 
and kr in Fig. 11.6. Table 11.2 is used for this conversion. The final expressions for 
the feedforward gains of the three basic converters are shown in Table 11.1. 

The analysis of the small-signal gain blocks is performed using the modified model 
of Fig. 11.7 rather than the original model of Fig. 11.6. The advantage of Fig. 11.7 
is that k'r and k!r are derived only once and the outcomes are adapted to the three 
basic converters to provide their respective kf and kr expressions. If Fig. 11.6 is used 
for this analysis, the derivation should be repeated three times for the three basic 
converters. 

11.3 NEW CONTROL DESIGN PROCEDURES FOR CURRENT MODE 
CONTROL 

In the previous section, we identified the expressions for the small-signal gain blocks 
for the peak current mode control. This section presents the analysis of current mode 
control using these gain blocks. The objective of this analysis is to establish new 
design procedures that incorporate the sampling effects of current mode control. 

11.3.1 New Power Stage Model 

Figure 11.20(a) shows the complete small-signal model for current-mode controlled 
PWM dc-to-dc converters. The analysis will be facilitated by defining a new power 
stage model. The block of the small-signal model, enclosed by the solid line in Fig. 
11.20(a), is considered as the new power stage model. The new power stage model 
is in fact the small-signal model of power stage amalgamated with the gain blocks of 
the peak current model control. Figure 11.20(a) is converted into the block diagram 

vs 

vo 

k' 
Kf 

K 
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(a) 

" vs\s) 

io(s) ~ 

iconic 

Aii (s) 

ZoiM 

Gvci (s) 

F (^ pv\ ^J 

+,r^ 
+ h 
/ 

) 1 + 

voC0 

(b) 

Figure 11.20 Small-signal model for current-mode controlled PWM converters, (a) Circuit 
model, (b) Block diagram representation. 

representation in Fig. 11.20(b) by defining the following composite gain blocks for 
the new power stage model 

Gvci(s) ■. 
v0(s) 

Vcon(s) current loop closed 

Aui(s) = T 

and 

vs(s) 

Zoi(s) = T 
his) 

current loop closed 

current loop closed 

(11.52) 

(11.53) 

(11.54) 

Each transfer function is evaluated under the condition that only the current 
feedback is activated and the voltage feedback path is broken. Referring to Fig. 
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11.20(b), the loop gain is defined as 

Tm(s) = (-)Gvci(s)(-)Fv(s) = Gvci(s)Fv(s) (11.55) 

Once Gvci(s) is identified, the voltage feedback compensation Fv(s) can be designed 
for the loop gain offering both stability and good closed-loop performance. 

The audio-susceptibility is given by 

Au(s) = 
Aui(s) 

1 + Tm(s) 

and the output impedance is determined as 

Zoi(s) 
Z0(s) = 

1 + Tm(s) 

(11.56) 

(11.57) 

The above descriptions can be used to investigate the closed-loop performance using 
the asymptotic analysis method discussed in Chapter 8. Details about such analyses 
can be found in [4]. 

11.3.2 Control-to-Output Transfer Function with Current Loop Closed 

The most important gain block in Fig. 11.20(b) is the control-to-output transfer 
function evaluated with the current loop closed, Gvc/(s) = v0(s)/vcon(s). Knowledge 
of this gain block is essential to the loop gain design. 

Derivation of Gvci(s) 

The expression for GVCi(s) is derived from the new power stage model with the 
condition vs(s) = i0(s) - 0. Figure 11.21 shows the power stage model modified for 

d 

Power stage 
model 

1 

k 
L 

· = ■ 

K 

kf 1 

J 

*/ 

1 
He(s) 

VT , 

HPL·^ T V 

_ 

s<+ J* 

L· K Ύ 

0 

Figure 11.21 Small-signal model for Gvci(s) evaluation. 
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the Gvci(s) evaluation. From Mason's gain rule, GVCi(s) is described as 

Gv,(s) = ^ψ- = ^ τ ^ ^ (11.58) 
U i ) l-krF*j£±+RiHe(s)F*m'fl 

d(s) d(s) 

Although the above description is rather involved, it can be reduced to a simple 
expression with some practical assumptions on power stage parameters and opera-
tional conditions. As will be illustrated in Example 11.6, GVCi(s) is casted into the 
following third-order approximation 

\ ωρ1)\ 0,ρωη ω2
η) 

Gvci(s) * Kvc-r^ r f ^ ^ ^ T (11.59) 

The expressions for Qp, ωη, and ω€8Γ are common to all the three basic PWM 
converters 

QP = ——A r (1L6°) 
4 + ^ - o , ) 

ω„ = ψ (11.61) 
* S 

and 

^ , r = — (11.62) 

The other three parameters, Kvc, ωρι, and ωΓπρ, vary with the converter topology. 
Expressions for these parameters for the three basic converters are shown in Table 
11.3. 

EXAMPLE 11.6 Derivation of Gvci(s) for Buck Converter 

The GVCi(s) expression for the buck converter is obtained by evaluating (11.58) 
with some simplifying assumptions. As the first step, the modulator gain is 
expressed as 

F™ = re ^ητ = ^ c T (11.63) 
(bn + be)Is mcSnls 

with 

mc = l + -^- (11.64) 
The modulator gain is further modified as 

F'^ mcVs(l
L-D)RiTs

 ( 1 1 6 5 ) 
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based on the relationship 

Vs-Vn Vs(l-D) 
sn = -J-r

2-Ri = L Ri (11-66) 

Using (11.65) and the expressions of v0(s)/d(s), iL(s)/d(s), and kr for the buck 
converter, given in Table 10.2 and Table 11.1, Gvci(s) in (11.58) is evaluated as 

GVci(s) = 

I - « ^ + Ä , W ; W J ) 

d(s) d(s) 

1 + sCRr 
VS-mcVsD'RiTs A(s) 

TsRj L 1 + sCRc RjL Vs 1 + sCR 
2L mcVsD'RiT, S A(s) + mcVsD'RiTs R A(s) 

(11.67) 
where 

D' = 1 - D 

and 
2 

A(s)=l + -?- + L· (n.68) 
Qu0 ωλ

0 

with Q = R Λ/C/L and ω0 = 1/ VZc. The expression (11.67) is rearranged as 

Gvci(s) = ± l + sCRc = (11.69) 
' mcTsD'A(s) + - ( 1 + sCR)He(s) - -^(1 + sCRc) R 2 

Now, using the expression He(s) = 1 + s/(Qzun) + s2/ω% with Qz = -2/π 
and ωη = n/Ts, the expression (11.69) is written as 

where 

a = mcTsD
f + - - y = Ts(mjy - 0.5) + -

L L / „ ΤΛ 7 \ „ L 
b = mc 

JSD'- + - [CR - -^ - -^CRC « -CR - -^-CRC * LC 
R R\ 2 ) 2 R 2 

^~,r^ L(T* CRT c = mcTsD'LC + -
RW 2 

CRTA _ „ „ Γ , 
2 CTSD'LC + ^ i - ^ 1 ) = mcTsD'LC - LC-

R\ 2 J 

d = -CR^r=LC^r (11.71) 
R πι πι 
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with the assumptions CR » Ts/2, CR » mcD'Ts, L/Rc » Ts/29 and 
CRTJ2 » Τ2/π2. 

Based on the approximation a + bs + cs2 + ds3 « «i 1 + (&/a)sj( 1 + (c /^s + 

(d/b)s2) with the conditions fr » c and b ^> d, Gvci(s) is factorized as 

Gvci(s) - KV( 

\ ωρι)\ ()ρωη ω2) ωρι}\ ζ)ρωη ω2 

For the buck converter, ω^ρ does not exist so it becomes 

<*>rhp = ° ° 

The esr zero is given by 

OJesr ~ 
1 

CRC 

The other parameters are evaluated as 

K - L l -
L 

Ri 

R 

Ts(m cD> 

1 

- 0.5) + 

1 

L 
~R 

Ri 1 + ^{mcD>- 0.5) 

(11.72) 

(11.73) 

and 

OJpl 

Ts(mcD' - 0 . 5 ) + -

LC 

= 7T^ + T^,(mcD' - 0.5) 

««=td = 
LC π_ 

\LC^ 

ζ)ρωη 
LC 1 

C mcTsD>LC-LCT-± ^D^-0.5)TS 

2 
yielding the expression 

QP = 
1 

n(mcD'- 0.5) // Se\ \ 

(11.74) 

(11.75) 

(11.76) 

(11.77) 
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Figure 11.22 Asymptotic plot for Gvci(s). 

The assumptions used in the previous derivation, CR » Ts/2, CR » mcD'Ts, 
L/Rc » Ts/2, and CRTs 12 » Τ^/π2, are easily met in practice. The accuracy 
of the GVCi(s) approximation will be demonstrated in a later example. 

For the boost and buck/boost converters, GVCi(s) can be derived in the same way 
and the results are shown in Table 11.3. 

Predictions of GVCi(s) 

For the asymptotic plot construction, the Gvc; expression is repeated below 

Gvci(s) = KV( 

s 
Mrhp 

1 + 
CO» 

1 + 
OJpl 

1 + 
QpOJn 

(11.78) 

The noticeable feature of the transfer function is the existence of the quadratic term 
in the denominator. The quadratic term, which originated from the sampling effects 
of current mode control, introduces a double pole at half the switching frequency, 
ωη = n/Ts. The double pole produces a peaking by the amount of 20 log Qp. Figure 
11.22 shows the asymptotic plot for |GVC7| with conditions ωρι «: ω^ρ <̂  ωβΞΓ «: ωη 

and Qp > 0.5. 

EXAMPLE 11.7 Accuracy of Gvci(s) Analysis 

This example demonstrates the accuracy of the Gvcz(s) approximation. Figure 
11.23 compares the predictions of (11.78) and the exact small-signal simula-
tions using Fig. 11.20(a). The buck converter used in Example 10.8 is revisited 
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Table 11.3 Expressions for Gvci(s) for Three Basic Converters 

Control-to-output transfer function 

Gvci(s) - Kvt 

( ' - - ) ( ' ♦ - ) 

\ u>rhp I \ o)esr) 

\ ωρΐ)\ 

S 5" 
l+n + — 

For all three converters: Qp = 
n((\+Se/Sn)D' -0.5) 
π 
T 
1 s 

CRC 

Buck converter 

Kvc — 
R 1 
Ä i l + ^ k ( m c D / _ 0 . 5 ) 

^ = <k + Ii{mcD'-°5) 

Orhp : 

Boost converter 

KVi 
D'R 
2Ri D'3RTS 

1+ „ . (mc-0.5) 2L 

2 TSD'3 

iorhp = D'2-

Buck/boost converter 

Kvc — 
D'R 

(l+D)Rt D'3RTS , 
1 + - ^ r ( m c - 0 . 5 ) (1+D)LV 

1 + D TsD
fi 

CR LC 

D'2 R 

(mc - 0.5) 

"rhp 
D L 

For the buck converter, ω^ρ does not exist so ω^ρ = oo is used. 
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Figure 11.23 Accuracy of Gvci(s) approximation with Qp = 16,4, and 1. 

and three different values for Qp are considered in this analysis: Qp = 1,4, 
and 16. The thick curves are the plot of the approximated GVCi(s) expression 
in (11.78). The thin curves are the results of the exact small-signal simula-
tion. Figure 11.24 also shows the GVCi(s) prediction of (11.78) for the case 
of Qp = 1.0, in comparison with the empirical data of the computational 
method. The close match between the Bode plots and empirical data confirms 
the accuracy of the GVCi(s) approximation. 

11.3.3 Control Design Procedures 

The most important role of GVCi(s) is its use in the control design. Figure 11.25 shows 
the asymptotic plots for |GVC7| and loop gain \Tm\. This figure assumes the two-pole 
one-zero circuit for the voltage feedback compensation 

FAS) = 
KJI + -

s 1 + 
ωΌ 

(11.79) 
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Figure 11.24 Accuracy of Gvci (s) approximation with Qp-\. 
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Figure 11.25 Asymptotic plot for |GVCI-| and \Tm\ with two-pole one-zero compensation. 
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The compensation pole is located at the RHP zero, upc - corhp. The compensation 
zero is placed after the low-frequency pole of Gvc/-, ωρι, but before the loop gain 
crossover frequency. Details about the compensation parameters will be explained 
shortly. 

The structure and circuit components for the two-pole one-zero compensation were 
given in Fig. 10.22, along with the equations (10.57) in Section 10.2.5. The profile 
of the loop gain is very similar to that of the outer loop gain in the previous classical 
analysis. However, the loop gain has a double pole at half the switching frequency. 
The double pole produces a peaking of 20 log Qp at ωη - n/Ts. If the peaking is large, 
the loop gain crosses the 0 dB line at ωη = n/Ts, thereby destablizing the converter^ 
This becomes the theoretical background for the high-frequency oscillations, often 
encountered with current mode control. As a simple example, the peaking becomes 
infinite 

1 
^π((1 +Se/J~n)D' -0.5)j 

20 log Qp = 20 log |_„ 1 , c / c ΛΓ>, A g , ) = °o dB (11.80) 

when the compensation ramp is absent, S e = 0, and D' - 0.5, which are the conditions 
for the onset of the sub-harmonic oscillation. 

The previous discussions naturally conclude that the damping ratio of the double 
pole, Qp = l / ίππ ΐ + Se/Sn)D' - 0.5jj, should be properly controlled to avoid 
instability due to the excessive peaking. The idea of properly damping the double 
pole at half the switching frequency leads to an easy and practical design methodology 
for current mode control. 

Current Loop Design 

The theme of the current loop design is to control the damping ratio Qp = 1/(π((1 + 

se/sn)iy-0.5)). 

1) Determine the CSN gain /?/ such that iLpeakRi < Vmax where Vmax is the 
maximum allowable input voltage of the PWM block. The CSN gain Rt affects 
the on-time slope, Sn, of the current feedback signal. 

2) Determine the slope of the compensation ramp, Se, to provide a damping ratio 
between 0.3 < Qp < 1.3 for the double pole at ωη = n/Ts 

0.3 < < 1.3 (11.81) 
; r ( ( l+S e /S I I )D / -0 .5) 

This prevents an excessive peaking at half the switching frequency, which 
could trigger high-frequency oscillations. 

trThe 0 dB crossing due to the peaking would cause an abrupt decrease in the phase so that the polar plot 
violates the Nyquist stability criterion. 
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Voltage Feedback Compensation Design 

The voltage feedback compensation is designed to achieve the desirable loop gain 
characteristics. With the two-pole one-zero compensation, the loop gain is given by 

Tm(s) = Gvci(s)Fv(s) 

'- * - ( 1 + M( 1 + · + 4 ) J , ^ ) <1182) 

\ ωρι)\ ()ρωη ω2
η) \ u>pc) 

Gvci(s) F V (J) 

The design procedures for the voltage feedback compensation are formulated as 
follows. 

1) Place the compensation pole ωρε at the lowest frequency among the RHP zero, 
esr zero, and half the switching frequency: ωρ€ = mm{ojrhp 0Jesr 0.5 ω5}. 

2) Locate the compensation zero ωζο at the frequencies higher than ωρι, but lower 
than the power stage double pole ω0\ cozc = (0.6 - 0.8)ωο. Expressions for the 
power stage double pole ω0 are given in Table 10.2. 

3) Select the 0 dB crossover frequency, denoted as cocr in Fig. 11.25, of the loop 
gain and determine the integrator gain Kv required for the selected ucr. The 
position of ω€Γ is chosen based on the guidelines established in Chapter 10: 
o)cr = (0.3 - 1.0) ω ^ for buck converters and cjcr = (0.1 - 0.3) ω^ρ for 
boost and buck/boost converters. From Fig. 11.25, the following relationship 
is formulated 

(201ogA:vc + 20log — | - 40log — - 20log — = 0 dB (11.83) 
\ ωρΐ) ωρΙ U>zc 

The first term in (11.83) is the magnitude of the loop gain, \Tm\, evaluated at 
Mpl· \Tm(JMpi)\ = 20\og(KvcKv/a>pi). The above equation is converted into 
the design equation 

«ΚΛ2ω, = 1 (1184) 
Mpl \<*>Zc) OJcr 

from which the integrator gain is determined as 

(x)7r COrr 

Kv = Jc cr (11.85) 
Kvc ωρι 

The above design procedures are summarized in Table 11.4. 
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Table 11.4 New Design Procedures for Peak Current Mode Control 

Current loop design 

1 

7 r | | l + | l | Z y _ 0 . 5 

1) Select the CSN gain /?, such that iLpeakRi < Vmax, where Vmax is the maximum 
input voltage for the PWM block. 

2) Determine Qp: 0.3 < Qp < 1.3 

3) Evaluate the compensation ramp slope: 

& e — »J r 

' - L + 0 . 5 ^ 

D' 

Voltage loop design 

' Mi + - M K. i + -L 
v Mrhp ) \ Mesr I \ ωζ 

0JPi)\ 0Ρωη ω2
η) \ ωρί 

Gvci(s) Fv(s) 

1) Set the compensation pole: ωρ£ = min{urf,p (oesr ω5/2}. 

2) Select the compensation zero: uzc = (0.6 - 0.8) ωσ. Expressions for ω0 are given 
in Table 10.2. 

3) Set the loop gain crossover frequency ωίΤ: 

CÜCT = (0.3-1.0) (uesr for buck converter 

o)cr = (0.1-0.3) (jjrhp for boost and buck/boost converters. 

4) Evaluate the integrator gain: 

(x)zc ix)cr 

Kv Kvc ωρι 

5) Check the phase margin and adjust Kv to secure a 45°-70° phase margin. 

6) Evaluate the circuit components for voltage feedback compensation using (10.57) 
in Chapter 10. 

For buck converters, ωΓπρ does not exist so ω^ρ = oo is used. 
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EXAMPLE 11.8 Buck Converter Design Example 

This example illustrates the adaptation of the new design procedures developed 
in this section. The peak current mode control, employed to the buck converter 
in Example 10.8, is redesigned in this example. The corner frequencies and 
operational conditions of the buck converter are ω0 = 2π · 1.16 x 103 rad/s, 
CL>esr = In - 3.39 x 103 rad/s, and D = 0.25. The switching frequency is 
<JL)S = 2π - 50 x 103 rad/s. The maximum input voltage for the PWM block is 
assumed as Vmax = 5.0 V and the peak value of the inductor current is calculated 
as iLpeak - 4.75 A. Based on the new design procedures, the control design is 
performed below. 

Current Loop Design 

1) CSNgain: 

Ri<-
_ _5Ό_ 

iLmax 4.75 

2) Damping ratio of double pole: 

1 

1.05 Ri = 0.67 

QP 

Sn = 

= 1 with 

VS-Vn 10-4 , 
5
 τ °Rt = Λη , „ , 0 . 6 7 = 1.01 x 105 V/s 

& e — «J n 
*Qp 

40 x 10"6 

+ 0.5 

Ό' 

1.01 x 105 

( 1 
—■ + 0.5 
π 1 

0.75 
- 1 = 9.2 x 103 V/s 

Vm =SeTs = (9.2 x 10J) (20 x 10"°) = 0.18 V 
, Se Λ 9.2 xlO3 

mc = 1 + — = 1 + = 1.09 
Sn 1.01 x 105 

The slope of the compensation ramp, Se = 9.2 x 103 V/s, is noticeably smaller 
than that of the conventional design in Example 10.8, Se = 1.46 x 105 V/s. 
Detailed comparisons between the current design and the earlier design in 
Example 10.8 will be given later. 
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Voltage Loop Design 

The voltage loop design is performed as follows. 

1) Compensation pole: upc = ωεΞΓ = 2π · 3.39 x 103 rad/s 

2) Compensation zero: ωζα = 0.8 ω0 = 2π · 928 rad/s 

3) Loop gain crossover frequency: ω€Γ - o)esr = 2π · 3.39 x 103 rad/s 

4) Integrator gain: 

(L)ZC COcr 

Kv = with 
Kvc ωρι 

KV( 
R 1 

* i l + *Zl(mcD'-0.5) 

J l- = 1.29 
0.67 1-20X1Q- ? 5 _ 

40 x 10"6 ) 

■^- + ^-(mcD' -0.5) 
CR LC 

1 20 x 10-6 

470 x 10~61 40 x 10~6 470 x 10~6 

• (1.09 · 0.75 - 0.5) = 2π · 392 rad/s 

TK v (2π·928)(2π·3.39χ103) 4 

Thus, Kv = /Λ ^ ^——— = 3.91 x 10 
(1.29)(2π·392) 

5) Voltage feedback circuit: R\ = 10 kQ 
=» R2 = 92.3 kQ, C2 = 1.86 nF, and C3 = 0.70 nF 

The design results are the same as those of the classical design in Exam-
ple 10.8, except for the reduced compensation ramp slope. The theoretical 
background for this sameness will be discussed in the next section. 

Performance of Current Mode Control 

The performance of the buck converter with the newly-designed peak current 
mode control is now evaluated to show the validity of the design procedures and 
accuracy of the new model. Figure 11.26 shows the loop gain of the converter. 
The prediction of the new model is compared with the empirical data of the 
computational method, along with the prediction of the classical model which 
does not include the sampling effects but has the same control parameters as 
those of the new model-that is, the control parameters of the new design. 
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Figure 11.26 Loop gain of buck converter: predictions of new and classical models. 

The existence of the double pole at half the switching frequency, which was 
theoretically predicted by the new model, is well supported by the empirical 
data. The new model accurately correlates with the empirical data and thus 
demonstrates notable improvement over the classical model. More specifically, 
the new model correctly predicts the double pole at half the switching frequency, 
which is well damped by the design goal of Qp = 1. 

The loop gain crossover frequency is located at the exact target frequency of 
d)cr = 2π · 3.39 x 103 rad/s with sufficient phase margin. Figure 11.27(a) shows 
the output impedance characteristics of the converter. The predictions of the 
new model and classical model both show a good match with the empirical data. 
Figure 11.27(b) depicts the audio-susceptibility of the converter. The audio-
susceptibility curves show the impacts of the feedforward gains in the new 
model. The new model shows improved audio-susceptibility characteristics 
compared to the classical model which assumes the zero feedforward gain. 

Comparison between New Design and Classical Design 

The performance of the new design is compared with that of the previous 
classical design which was done in Example 10.8 without considering the 
sampling effects. For this comparative study, the new model developed in 
this chapter is used for the theoretical predictions of the two designs. The 

: prediction of new model 
: prediction of classical model 
: empirical data 
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Figure 11.27 Frequency-domain performance of buck converter, (a) Output impedance, (b) 
Audio-susceptibility. 

theoretical predictions are compared with the empirical data. Figure 11.28 
compares the loop gain of the two designs. Although the new design and 
classical design both predict stability with a sufficient phase margin, they show 
discernible disparities at high frequencies. 

As will be demonstrated in the next section, the classical design is in fact 
an exact match to the new design that is executed with the target of Qp = 0.4. 
Accordingly, the classical design corresponds to the new design with Qp = 0.4, 
while the current design was performed with the design goal of Qp = 1.0. The 
difference in Qp is well reflected in the loop gain characteristics. The classical 
design shows more gradual changes in high-frequency phase characteristics 
with a small damping ratio of Qp = 0.4, while the new design exhibits a gain 
boost at high frequencies with Qp = 1. 
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Figure 11.28 Loop gain of buck converter: comparison of new and classical designs. 

Figure 11.29 shows the output impedance and audio-susceptibility of the two 
designs. As shown in Fig. 11.29(a), the two designs do not show any noticeable 
difference in the output impedance characteristics. However, the new design 
offers improved audio-susceptibility characteristics. This improvement is due 
to the reduction in the compensation ramp slope. The compensation ramp slope 
of the new design, Se = 9.2 x 103 V/s, is much smaller than that of the classical 
design, Se = 1.46 x 105 V/s. Referring to Section 10.2.2, the smaller ramp 
slope increases the magnitude of the current loop. The enhanced current loop 
in turn provides more attenuation for the audio-susceptibility. However, this 
improvement only occurs in the buck converter. It was shown in Section 10.3.1 
that, in the case of the buck converter, the audio-susceptibility is governed by 
the overall loop gain which is directly affected by the current loop. In contrast, 
for boost and buck/boost converters, the audio-susceptibility is dictated by the 
outer loop gain which is not largely influenced by the current loop. 

Figure 11.30 compares the time-domain performance. For this analysis, the 
same time-domain model is used for both the new design and classical design. 
The only difference is the slope of the compensation ramp. Figure 11.30(a) is 
the transient response of the output voltage due to the I0 = 4 A => 8 A => 4 A 
changes in the load current, while Fig. 11.30(b) shows the transient waveform 
of the output voltage in response to the Vs = 16 V => 8 V => 16 V changes 
in the input voltage. The step load responses are identical in both designs, 
as predicted from the output impedance analysis. On the other hand, the new 
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Figure 11.29 Frequency-domain performance of buck converter, (a) Output impedance, (b) 
Audio-susceptibility. 

design shows an improved step input response. This result is consistent with 
the audio-susceptibility analysis and demonstrates the benefits of the enhanced 
current loop magnitude. 

EXAMPLE 11.9 Boost Converter Design Example 

The new design procedures are now applied to the boost converter that was used 
in Example 10.16. The small-signal parameters and operational conditions are 
ω0 = 2π · 348 rad/s, corhp = In · 1.79 x 103 rad/s, uesr = In · 6.77 x 103 rad/s, 
and D = 0.4. The switching frequency is a)s = In ■ 50 x 103 rad/s and the 
maximum input voltage of PWM block is Vmax = 5.0 V. The peak value of 
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Figure 11.30 Time-domain performance of buck converter, (a) Step load response, (b) Step 
input response. 

the inductor current is iLpeak = 6.97 A. The new design procedures are now 
adapted to these conditions. 

Current Loop Design 

1) CSNgain: 

R. < YuEL· = | £ = 0.72 => % = 0.67 
iLpeak 0.97 

2) Damping ratio of double pole: 

1 
QP = 

4i+s&'-°-5) 
1 with 
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-Ri 
12 

160 x 10"6 

/ 1 

0.67 = 5.03 x 104 V/s 

nQP 
+ 0.5 

σ 

= 5.03 x 104 
'-L+0.5 

π 1 
0.6 

- 1 = 1.83 x 104 V/s 

=> Vm = SeTs = 1.83 x 104 20 x 10~6 = 0.37 V 

1 Se Λ l .83x l0 4
 Λ„ 

™c = I + ir = I + T-Tz——r = 1.36 
Sn 5.03 x 104 

Voltage Loop Design 

1) Compensation pole: upc = ω^ρ = 2π · 1.79 x 103 rad/s 

2) Compensation zero: <jzc = 0.8 ω0 = 2π · 278 rad/s 

3) Loop gain crossover frequency: cjcr = 0.28 ω^ρ = 2π · 501 rad/s 

4) Integrator gain: 

with 

D'fl l 

Kv 
Mzc COcr 

Kvc copi 

2Ri D'3RTS 

l + ^ . (mr-0.5) 2L 
0.6-5 
2-0.67 0.635-20x 10~6 

l + 
2.12 

2- I60x l0" 6 (1.36-0.5) 

t>/7/ -

2 7\D'3 

7 ^ + - b r - ( ^ c - o . 5 ) 

20xl0"60.63 

470 x 10-6 5 (160 x 10~6) (470 x 10"6) 

■(1.36-0.5) = 2π· 143 rad/s 

Thus, Kv = 
(2π·278)(2π·501) 

2.12(2π·143) 
= 2.88 x I0j 

5) Voltage feedback circuit: R\ - lOkQ 
=>#2 = !9.6kQ, C2 = 29.2nF, and C3 = 5.38 nF 

The design results are identical to those of the classical design in Example 
10.16, except for the reduced compensation ramp slope. The compensation 
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Figure 11.31 Loop gain of boost converter: prediction of new and classical models. 

ramp slope of the new design is Se = 1.83 x 104 V/s, while that of the classical 
design is Se = 7.50 x 104 V/s. 

Performance of Current Mode Control 

The loop gain of the boost converter is shown in Fig. 11.31. The loop gain 
is displayed using the new model and the classical model, together with the 
empirical data. The loop gain exhibits an exact match to the design target of 
o)cr = 2π · 501 rad/s with sufficient phase margin. The new model also shows 
good correlations to the empirical result and demonstrates improved model ac-
curacy over the classical model. The double pole at half the switching frequency 
is evident in the new model prediction and empirical result. Figure 11.32 shows 
the output impedance and audio-susceptibility of the boost converter. Here, 
both the classical model and new model show good correspondence to the 
empirical data. 

Comparison between New Design and Classical Design 

In Fig. 11.33, the loop gain characteristics of the new design are compared 
with those of the classical design which was done in Example 10.16 without 
considering the sampling effects. The new model incorporating the sampling 
effects is used to access loop gain characteristics of the two designs. Both 

prediction of new model 
prediction of classical model 
empirical data 
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Figure 11.32 Frequency-domain performance of boost converter, (a) Output impedance. 
(b) Audio-susceptibility. 

designs show good loop gain characteristics and also exhibit close agreement 
with the empirical data. It can be shown that the classical design is an exact 
match to the new design with Qp = 0.32. On the other hand, the current design 
is done with the goal of Qp = 1.0. This apparent difference in Qp values is 
well shown in the loop gain characteristics. 

11.3.4 Correlation between New and Classical Design Procedures 

The control design procedures developed in this chapter are different from those 
of Chapter 10. The new design procedures explicitly incorporate the sampling 
effects of the peak current mode control. In contrast, the classical design does 
not consider the sampling effects at all. Nonetheless, the two design procedures 
showed remarkable similarity, as illustrated in Examples 11.8 and 11.9. Theoretical 
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Figure 11.33 Loop gain of boost converter: comparison of new and classical designs. 

backgrounds behind this similarity are explored in this section. The current loop 
designs are first investigated and the voltage loop designs are subsequently compared. 

Current Loop Design 

The goal of the new current loop design is to provide a predetermined value for Qp. 
On the other hand, the classical design targets to place the crossover frequency of 
the current loop at the desired frequency. Although the objectives of the two designs 
are distinct, the means of obtaining their goal is the same. Once the power stage and 
CSN parameters are determined, the only remaining design freedom is the slope of 
the compensation ramp. 

The new design attempts to provide a desired Qp value by adjusting the compen-
sation ramp slope Se in the following expression 

''""((i+fc)D'-°·5) 
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The classical design aims to adjust the ratio of the current-loop crossover frequency 
to the switching frequency, ωα/ω9, by controlling Se in the following equation 

KidRi 
ωΐ 

(jjr: (jJid (Sn — S f + 2S e)Ts 

— = — A ; — — - (11.87) 
(jjs 2π 

The above design equation is obtained from (10.47) and (10.48) in Chapter 10. An 
explicit correlation between the new and classical designs can be established using 
(11.86) and (11.87), as illustrated in the following example. 

■ EXAMPLE 11.10 Buck and Boost Converter Examples 

The buck converter in Example 11.8 is used as the first example to illustrate 
the connection between Qp in the new design and ωα/ω5 in the classical 
design. Figure 11.34(a) is the Qp-(jJcil<j)s curve, obtained by relating (11.86) 
and (11.87) with the given power stage parameters and operational conditions. 
First, the required Se value for a specific Qp is calculated using (11.86). The 
ratio of (jL>ciIcos is then evaluated from (11.87) using the calculated S e value. By 
repeating this process, the continuous Qp-ü)Ci/a>s curve is obtained. The curve 
is evaluated for 0.3 < Qp < 1.3. Figure 11.34(a) reveals a linear relationship 
between Qp and ωα/ωΛ. For one example, the goal of Qp = 0.5 in the new 
design requires the Se value that offers the condition ωαί/ωχ = 0.25 in the 
classical design. As another example, the design aim of Qp = 1 in the new 
design translates to the condition ωα/ων = 0.5 in the classical design: that is, 
placing the current loop crossover frequency at half the switching frequency. 
Furthermore, selecting the damping ratio between 0.3 < Qp < 1.3 in the new 
design is equivalent to placing the constraint 0.15 < ω67/ωι9 < 0.65 in the 
classical design. 

Figure 11.34(b) shows the Qp-ü)Cilü)s curve for the boost converter used 
in Example 11.9. Interestingly, the curve is identical to that of Fig. 11.34(a). 
The sameness in Fig. 11.34(a) and Fig. 11.34(b) is actually the expected and 
logical consequential effect of a general relationship that links Qp and ωα/ων. 
The exact description of this relationship is given below. 

As demonstrated in the previous example, a direct correlation exists between the 
new and classical designs. In fact, it can be proved that the following relationship 
holds true 

i ± = % (11.88) 
Ms 2 

for all the three basic dc-to-dc converters, regardless of the operational conditions 
and power stage parameters. The sameness between Figs. 11.34(a) and 11.34(b) is 
now self-evident from (11.88). The verification of (11.88) is given in Example 11.11. 
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Figure 11.34 Relationship between Qp and ω€ί/ω5. (a) Buck converter in Example 11. 
(b) Boost converter in Example 11.9. 

EXAMPLE 11.11 Derivation of o)ci/cus = Qp/2 for Buck Converter 

This example shows the validity of (11.88) using the buck converter. First, the 
following two identities are derived for the buck converter 

1 

K z? ω1 _ ys PLC _ Vs p 

ojid R 1 L 

~CR 

(11.89) 

and 

(S n-Sf + 2Se)Ts (Sn(2mc - 1) - Sf)Ts 
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I Ri(2mc - 1) -

L 2 

2RiVs (mcD' - 0.5)7, 

mc = 1 + — 
v n 

■τ*)Γ· 

(11.90) 

with 

Using (11.89) and (11.90), the equation (11.87) is written as 

KidRi-KidRi — 
<*>id 

(H 

(Sn-Sj 

2π 

T 
1 s 

L 

2RiVs (m( 

2 
* + 

Ό' 

2Se)Ts 

2 ) 
- 0.5)7, / 

2π 
Ts 

1 - 1 1 = % (H.91) 
27r(mcD'-0.5) II Se\ \ 2 

The same procedures can be applied to the boost and buck/boost converters 
to show that the relationship ω α /ω, = Qp/2 is always valid for all the three 
basic PWM converters. 

Voltage Loop Design 

The objective of the voltage loop design is to select the three parameters, ωρο, ωζα, 
and Kv, for the two-pole one-zero compensation. The selection of ωρ€ and uzc is 
same in both the new design and the classical design. The only difference exists in 
the selection of Kv. 

In the new design, the integrator gain Kv in (11.85) is selected from 

Κν = —^—ωζαωακ (11.92) 
Kvc ωρι 

where ω€Γ is the desired crossover frequency of the loop gain Tm(s). In the classical 
design, Kv in (10.53) is determined from 

1 

Kyd 

KidRi 

Kv = — ü)zcucr (11.93) 
■0>id 
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where u)cr is the desired crossover frequency of the outer loop gain Tiis). For most 
designs, the following relationship holds true for the three basic PWM converters 

Kvcupl*-^-uid (11.94) 

as will be shown in Example 11.12. Accordingly, if the same ωεκ is selected in the 
two designs, the required Kv is practically identical. Now, all the three parameters, 
ωΡα, ωζ ο and Kv, are the same in the two design approaches. 

EXAMPLE 11.12 Buck Converter Example 

This example shows the validity of (11.94). For the buck converter, it follows 
that 

K" = W RT l * f ( 1 L 9 5 ) 

*M + ̂ ( m c D ' - 0 . 5 ) Ri 

with the condition 1 » RTs{mcD' - 0.5)/L. In addition, it becomes that 

ω'' = ά + ζέ(^'-°·5)*ά ( 1 1 · 9 6 ) 

with the assumption \/(CR) » Ts{mcD' - 0.5)/(LC). On the other hand, from 
the power stage transfer functions, it can be shown that 

Kvd R (11.97) 
KidRi Ri 

and 

% = ~ (H.98) 

From the expressions (11.95) through (11.98), the relationship (11.94) is in-
ferred 

κ^*=ΊΓ7^*ΊΓΒω» (1L99) 

/v; C/v A / J / V J 

This approximation is very accurate because the conditions 1 » RTs{mcD' -
0.5)/L and l/(CR) » Ts(mcD' - 0.5)/(LC) are well satisfied for most designs. 
The validity of (11.94) was demonstrated in Examples 11.8 and 11.9. 

Final Remarks 

The analysis of the sampling effects has led to the new design procedures for the 
peak current mode control. This alternative design controls the damping ratio in the 
control-to-output transfer function so that the sampling effects neither cause stability 
problems nor interfere with the closed-loop performance. The rationale of the new 
design is utterly different from that of the previous classical design which does not 
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consider the sampling effects at all. Nonetheless, the results of the two designs 
markedly resemble each other. 

The voltage loop designs in the two approaches yield identical results, given that 
the loop gain crossover frequency of the new design is the same as the crossover 
frequency of the outer loop gain in the classical design. 

The current loop designs are intimately connected by the relationship, ωνί/ω5 = 
Qp/2. If this information is incorporated in the current loop design, the results of 
the two designs should be the same. More importantly, if the conservative design 
constraint, 0.15 <ωα·/ω5 <0.3, is imposed on the classical design as recommended 
in Chapter 10, the performance of the converter is not adversely affected by the 
sampling effect of current mode control. This is because the design constraint of 
0.15 < cjCi/ü)s < 0.3 is the same as the requirement of 0.3 <QP< 0.6, which avoids 
the detrimental consequence of the sampling effects. Now, the conservative design 
guideline of 0.15 < ωα·/ω9 < 0.3 is relaxed to a less restrictive condition of 
0.15 < uCilus < 0.65 with the knowledge of the sampling effects of current mode 
control. 

In conclusion, either the classical design or the new design can be adapted for 
the three basic PWM converters, as long as the design constraint 0.15 < (oCi/ü)s < 
0.65 is used in the classical design, or the equivalent condition 0.3 < Qp < 1.3 is 
incorporated in the new design. For this case, both the new and classical design 
offer stability and good closed-loop performance. Furthermore, there is an exact 
one-to-one correspondence, matched by the condition ω€ί/ω5 - Qp/2, between the 
two designs. For example, the classical design with ωα/ω9 = 0.5 can be interpreted 
as the new design with Qp = 1 because they are in fact the same design. 

11.4 OFF-LINE FLYBACK CONVERTER WITH 
OPTOCOUPLER-ISOLATED CURRENT MODE CONTROL 

This section deals with the design and analysis of the optocoupler-isolated peak 
current mode control. A flyback converter, which functions as a rear-end dc-to-dc 
converter in an off-line power supply, is used to illustrate all the details involved with 
practical applications of the peak current mode control. 

11.4.1 Off-Line Power Supplies 

Off-line power supplies refer to the power converters that receive an ac voltage from 
the utility line and provide a dc voltage to the load. Figure 11.35 is the functional di-
agram of a typical off-line power supply. The system consists of an ac-to-dc rectifier, 
filter capacitor C>, and dc-to-dc converter. The front-end ac-to-dc rectifier converts 
the ac utility voltage into an intermediate dc voltage. The rear-end dc-to-dc converter 
then alters the intermediate voltage into the voltage level required by the load. 
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Figure 11.35 Structure of off-line power supplies. 

The ac-to-dc rectifier comes in a wide variety in structure and function, ranging 
from simple line-frequency rectifiers to sophisticated power factor corrected (PFC) 
ac-to-dc converters. An introduction to a PFC ac-to-dc converter was given in Section 
10.1.3. A large filter capacitor Cp is connected at the output of the ac-to-dc rectifier 
to stabilize the intermediate dc voltage. 

The rear-end dc-to-dc converter is required by law to provide galvanic isolation for 
practical reasons such as safety. The isolation should be provided in both the power 
stage and feedback controller. For the power stage isolation, one of the transformer-
isolated topologies is employed. For the feedback isolation, the controller typically 
employs an optocoupler which couples the infrared diode and photo-transistor in 
order to transmit the control signal with isolation. This optocoupler-isolated feedback 
control is widely adapted to cost-sensitive applications such as off-line power supplies 
for consumer electronics. 

11.4.2 Current Mode Control for Flyback Converter with 
Optocoupler-isolated Feedback 

The flyback converter is widely used for off-line power supplies because it provides 
the power stage isolation with minimal component count. The off-line flyback 
converter usually adapts the peak current mode control using the optocoupler-isolated 
feedback technique. 

Figure 11.36 shows the conceptual circuit diagram of an off-line power supply 
configured using a flyback converter with an optocoupler-isolated feedback control. 
A simple bridge rectifier converts the ac line voltage to a dc voltage for the flyback 
converter downstream. An EMI filter is placed in front of the bridge rectifier and 
a large filter capacitor Cp is employed at the output of the rectifier. The flyback 
converter employs the peak current mode control implemented with an optocoupler-
isolated feedback controller. 
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+ 1 r 

Figure 11.36 Optocoupler-isolated current-mode controlled flyback converter. 

Optocoupler-lsolated Feedback Circuit 

The flyback converter adopts the standard optocoupler-isolated feedback circuit, 
illustrated in Fig. 11.36. The resistor Rx is employed to adjust the output voltage Vo 
with a fixed reference voltage Vref Vo = Vref{\ + Z\(jO)/Rx). The infrared diode 
in the optocoupler is powered by the output voltage vo through the current limiting 
circuit, represented by its impedance Zo(s) in Fig. 11.36. The dc voltage Vj and 
resistance Rj allow the photo-transistor in the optocoupler to deliver the current ij 
in proportion to the infrared diode current /#. The two gain blocks, Z\(s) and Z2O), 
represent the impedances of the passive circuit components in the voltage feedback 
circuit. 

The electrical characteristics of the optocoupler are specified by two parameters. 
The first is the ratio of the photo-transistor current i> to the infrared diode current 
io- This ratio is referred to as the current transfer ratio, CTR = IT/ID- The other 
parameter is the parasitic capacitance between the collector and emitter terminals 
of the photo-transistor, denoted as Cy. Because these parameters could vary widely 
with the operational conditions of the optocoupler, their actual values at the given 
operating point need to be experimentally measured. A simple method to measure 
the CTR and Cj of an optocoupler is described in Example 11.13. 
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Figure 11.37 Measurement of optocoupler parameters, (a) Measurement circuit, (b) 
Measurement result. 

EXAMPLE 11.13 Measurement of Optocoupler Parameters 

Figure 11.37(a) shows a simple circuit to measure the current transfer ratio 
CTR and parasitic capacitor C7 of an optocoupler. The circuit parameters, RT, 
VT, RD, and VD, are selected to result in the actual operational conditions of 
the optocoupler in the converter. Under this condition, the ratio iT to iD is 
measured to yield the current transfer ratio, CTR = IY/*D· In this experiment, 
the small-signal source vs(t) is not activated. 

Next, the small-signal source vs(t) is activated and the frequency response 
of \vc(jü))\/\vs(jaj)\ is recorded using an impedance analyzer. Figure 11.37(b) 
shows an example of such measurements. The frequency response exhibits the 
first-order low-pass filter characteristics, whose corner frequency is given by 

fP = 
1 

2nCjRT 
(11.100) 

under the condition CS(RS || RD) «: CjRT. This equation can be used to 
determine the value of Cj with a predetermined Rj. 

Peak Current Mode Control 

The peak current mode control is adapted to the optocoupler-isolated feedback circuit, 
as shown in Fig. 11.36. The switch current is sensed with the current sensing network 
(CSN) and combined with the compensation ramp Vramp. The resulting signal is 
compared with the output of the optocoupler-isolated feedback circuit, vcon, in order 
to generate the PWM output. The techniques for the analysis and design of the 
conventional peak current mode control can be readily extended to Fig. 11.36 with 
minor modifications, as will be illustrated in later sections. 
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Figure 11.38 Simplification of power stage circuit, (a) Flyback converter, (b) Reflection 
of input voltage and magnetizing inductance, (c) Modified circuit, (d) Equivalent buck/boost 
converter. 

Small-Signal Model 

As discussed in Chapter 9, the flyback converter can be transformed into an equivalent 
buck/boost converter. Figure 11.38 shows the steps of the circuit transformation 
described in Section 9.1.3. 

Figure 11.39 shows the small-signal model of the flyback converter, obtained by 
merging the small-signal model of the equivalent buck/boost converter and s-domain 
model for current mode control. In the small-signal model, the CSN gain is given by 

% = nR; (11.101) 

where Rj is the CSN gain of the original flyback circuit and n is the turns ratio of 
the transformer. This modification is necessary because the current feedback signal 
is extracted from the secondary side in the small-signal model, while the current 
feedback is actually employed to the primary side in the original flyback circuit. The 
gain block Fv(s) represents the transfer function of the optocoupler feedback circuit. 
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Figure 11.39 Small-signal model of flyback converter. 

Optocoupler-lsolated Feedback Circuit 

The optocoupler feedback circuit in Fig. 11.36 is redrawn in Fig. 11.40(a). This 
circuit can be configured into the two-pole one-zero circuit 

FV(S) = 
/Ji + - ) 

V " p e l 

(11.102) 

or three-pole two-zero circuit 

TO 
Kv 1 + 

ω, ;)K) (11.103) 

by appropriately selecting the impedances, ZD(s), Z\(s\ and Z2(s). Figure 11.40(b) 
shows the circuit implementation of the two-pole one-zero circuit, while Fig. 11.40(c) 
depicts the three-pole two-zero circuit. The expressions for the dc gain and corner 
frequencies of the two transfer functions are shown in Table 11.5. Derivations of the 
equations (11.102) and (11.103) are given in Example 11.14. 
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Figure 11.40 Optocoupler-isolated feedback circuit, (a) Voltage feedback circuit, (b) 
Two-pole one-zero circuit, (c) Three-pole two-zero circuit. 
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EXAMPLE 11.14 Analysis of Optocoupler-Isolated Feedback Circuit 

This example shows the derivation of the transfer function of the optocoupler-
isolated feedback circuit. Referring to Fig. 11.40(a), the voltage feedback 
compensation is given by 

„ , Λ vcon(s) tD(s) tT(s) vcon(s) 
Fv(s) = —T-r-r = -^ττ-ττ-ττ^-ττ- (11.104) 

v0(s) v0(s)iD(s) iT(s) 
The first term in the right-hand side of (11.104) is evaluated as follows. By 
recognizing that the inverting terminal of the error amplifier is the virtual ground 
for the ac signal, the relationship between v0 and ΐρ is given by 

tD(s) = \ \ J/ (11.105) 

which is rearranged as 

v0(s) ZD{s) >(s)\ Z,(s)) 
(11.106) 

The second term in (11.104) is the current transfer ratio CTR of the optocoupler. 
By considering the photo-transistor as a small-signal current source fr in 

Fig. 11.40(a), the following relationship is formulated 

vcon(s) - - ί ^ - || RT || (/?, + * 2 ) ) ( ^ ^ W ( * ) (11-107) 

yielding the description 

Vcon(s) RT II (R\ + Rl) 

h(s) l + sCj(RT II (Ri + R2)) [Ri+Ri) 
(11.108) 

By combining (11.106) and (11.108), the transfer function of the feedback 
circuit is given by 

T, , . Ri RT \\(R\ +Ri)„r^ 
™ - Ri+R2 ZD(s) C T R 

\λ+ζΜ—r-1 ^ (iuo9) 

\ Zi(s)J l+sCj[RT \\(Ri +/?2)) 
The above transfer function can be converted into either the two-pole one-zero 
or three-pole two-zero circuit. The circuit in Fig. 11.40(b) becomes the two-
pole one-zero compensation with the selection of ZD{s) = RD, Z\ (S) = Rc\, and 
Z2(s) = l/(sCc\). The resulting transfer function is denoted as Fv(s) in Table 
11.5. On the other hand, in the circuit in Fig. 11.40(c), where Zp(s) = RD II 
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Table 11.5 Expressions for Dc Gain and Corner Frequencies of Optocoupler-Isolated 
Feedback Circuit Transfer Functions 

Transfer function 

Fv(s) = —± ^- F'v(s) = V ' V zc/ 

,11 + ^ - , 1 + — 1+ " r) 
pel 

K = R2 ^ I I W + / ? 2 ) C T R 1 
R] + 7?2 RD CC\RC 

1 

Cj(RT\\(Rl+R2))
 PC CciRa 

1 , 1 
Cc\Rc\ ZC CC2(RC2+RD) 

\RC2 + 1 l(sCci)\ Z\ (s) = Rc\, and Z2O) = 1 /(sCc\), a pole-zero pair is added 
to the previous two-pole one-zero compensation, thus yielding the three-pole 
two-zero compensation. This transfer function is described as F'v(s) in Table 
11.5. 

Control Design Procedures 

The control design procedures established in the previous section are now applied 
to the small-signal model of Fig. 11.39. Detailed design steps are illustrated in the 
following example. 

EXAMPLE 11.15 Current Mode Control for Off-Line Flyback Converter 

Figure 11.41 shows the circuit diagram of a flyback converter which employs 
the peak current mode control using the optocoupler-isolated feedback. The 
feedback controller is implemented using a PWM chip, optocoupler, and op 
amp, along with other passive components. A simple resistive sensing is used 
for a low-cost CSN implementation. The switching frequency of the flyback 
converter is us = 2π · 65 x 103 rad/s and the turns ratio of the transformer is 
n = 6/62 = 0.097. From the information given in Fig. 11.41, the small-signal 
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Figure 11.41 Off-line flyback converter with optocoupler-isolated peak current mode 
control: Vs = 220 V2 V, V0 = 10 V, Lm = 1.5 mH, n = 6/62 = 0.097, C = 910 //F, 
Rc = 0.04 Ω,/? = 2Ω,/?ο = 393 Ω, RCi = 2 kn, CCi = 0.1 //F, Vref = 2.5 V, /?, = 667 Ω, 
CTR = 0.236, Cj = 2.3 nF, RT = 20 kn, flj = 55 kn, fl2 = 25 kn, 7?com = 6.4 kn, 
A*«™ = 0.67 Ω, Rramp = 18 kn, Vrflmp = 2.3 V, Γ5 = (65 x 103)"1 s, and PWM chip: NCP1230 
from On Semiconductor®. 

parameters and operational conditions are determined as follows 

Vo = D 
Vs 

Mrhp = 

\-D 
10 D 

220 V2 l -£> 
1 - D 

0.097 =» D = 0.25 

^n2LmC 
1 - 0.25 

V0.09721.5xl0"3910xl0-6 

( 1 - D ) 2 /? 

= 2π· 1.05 xlO3 rad/s 

D rc2L„ 
(1-0.25)2 

= In · 5.07 x 104 rad/s 
0.25 0.09721.5xl0-3 

ττ^- = 7^7:—77ΓΤ77ΤΤΤ = 2*" · 4 · 3 7 x 103 rad/s CRC 910 xlO"6 0.04 
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The maximum value of the switch current is evaluated as 

Vo 1 
lQn 

1 Vs 
+ -—DTS R 1 - D 2Lm

 s 

= 0.097 
10 1 + 1 T 2 2 0 V 5 1 

2 1-0.25 2 1.5X10-3 ' 65 x 103 

1.05 A 

The maximum input voltage for the PWM block is given as Vmax = 1.0 V. 
The four resistances inside the PWM chip are prefixed: Rramp = 18 kQ, 
RT = 20 kQ, #i = 55 kQ, and R2 = 25 kQ. In addition, the PWM chip 
provides a ramp signal whose magnitude is fixed at Vramp = 2.3 V. The ramp 
signal is divided by the three resistors, Rramp, Rcom, and Rsense, and the resulting 
signal is applied to the PWM block as the compensation ramp Vramp. 

Current Loop Design 

The current loop design involves the selection of resistances for Rcom and RsenSe 
in compliance with the design specification, while using the predetermined 
resistances Rramp = 18 kΩ and Vramp = 2.3 V. 

1) CSNgain: 

p Vmax 1.0 
Ki < " = 7~nc 

iQmax LUD 

2) Damping ratio of double pole: 

= 0.95 Ri = 0.50 

QP = 

Sn = 

1 
= 0.6 

»"* „S, = Λ°?,7.-2.205.0.097 .0.5 = ,.04 x ,0' V/s 
n2L, 

•J e — & n 

0.0972 1.5 x l O " 3 

/ 1 

*QP 

+ 0.5 

D' 

= 1.04 x 105 

/ l
 + 0 .5 ^ 

ττθ.6 
0.75 

- 1 = 3.89 x 104 V/s 

KflW/7 = ^ = 3 . 8 9 x l 0 4 ^ - ^ = 0.60 V 

, Se Λ 3.89 x l O 4
 Λ^ 

mc = 1 + — = 1 + = 1.37 
Sn 1.04 x l O 5 
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where V'ramp denotes the magnitude of the actual compensation ramp applied 
to the input of the PWM block. 

3) Selection of Rcom and RsenSe with the assumptions of Rsense <£ Rramp and 
ft sense "^ ftcom-

j w _ , , Kcom "·" ftsense ^ x r ft-com 
ramp ~ v ramp p p p ~ y ramp p „ 

K ramp "·" ^ com "·" ft sense ft ramp "·" ft com 

=> 0.6 = 2.3 Rrnm 

18xl0 3 +/? c o m 

=» tfcom = 6.4 kQ 

r> _ R sense „ 

^ramp "·" ^com "Τ ^sense 

ftsense D 

ft ramp ' ft com 

0.5 = J ^ -18 x 103 

18x l0 3 + 6 .4xl0 3 

Rsense = 0.68 Ω 

Control-to-Output Transfer Function with Current Loop Closed 

Referring to Table 11.3, the control-to-output transfer function of the flyback 
converter with the current loop closed is given by 

1 -

Gvci(s) = KvcT-± ^ ^ ~ca' ' 2 v (11.110) 

\ ωρι)\ Qpun ω2
η) 

where 

ωη = γ = 2π · 32.5 x 103 rad/s 

_ D'R 1 
ftvc — {\+D)nRi D*RTS , 

l + r . n , L (mc-0.5) 
(l+D)n2Lm 

0.75 · 2 

(1+0.25)0.097-0.5 
1 

0.75» 2 (65x10*)-' 
(1 +0.25)0.0972 1.5 x 10-3 u ; 
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Figure 11.42 Control-to-output transfer function with current loop closed. 

15.1 

1 + D TSD'3 

1 + 0.25 

0.5) 

9 1 0 x l 0 ~ 6 2 

(65 x IQ3)-1 0.753 

+ 0 .09721.5x 1 0 - 3 9 1 0 x l 0 " 6 (1 .37 -0 .5 ) 

= 2/r-179rad/s 

Figure 11.42 shows the control-to-output transfer function evaluated with only 
the current loop closed. The theoretical prediction is shown in parallel with 
empirical data obtained using the computational method. 
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Figure 11.43 Loop gain characteristics of flyback converter. 

Voltage Loop Design 

The voltage feedback circuit constitutes the two-pole one-zero compensation 
shown in Fig. 11.40(a) 

where 

Fv(s) = 

- ) 
Upc) 

i l l 

1 
MDC = pc Cj{RT\\(Rx+R1)) 

1 
ω7£ - Cc\Rc\ 

Kv = 
R2 RT\\(Ri+Ri2CTR 1 

fll +/?2 Rr Cc\Rc\ 

(11.111) 

(11.112) 

(11.113) 

(11.114) 

1) Compensation pole: ωρα = m i n l ^ ^ uesr 0.5 ω8) = ioesr = In · 4.37 x 
103 rad/s. By evaluating (11.112) with the given resistive parameters, the 
desired capacitance is determined as C, = 2.3 nF. The collector-emitter 
parasitic capacitance of the optocoupler was measured as 1.2 nF. Thus, an 
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Figure 11.44 Step load response of flyback converter, (a) Simulated response, (b) Measured 
transient response. 

external capacitance Cext = 1.1 nF is added across the collector and emitter 
terminals in order to obtain the required capacitance 2.3 nF. 

2) Compensation zero: a>zc = 0.76 ω0 = 2π · 800 rad/s. One circuit parameter 
is initially selected as Rc\ - 2 kQ. Then, CQ\ - 0.1 μ¥ is determined from 
(11.113). Finally, Rx = 667 Ω is selected to produce the desired output 
voltage V0 = 10 V with Vref = 2.5 V: V0 = Κ,/Ο + Rc\/Rx) => 10 = 
2.5(1+2xl03/667) . 

3) T2 crossover frequency: tjcr = Ο . ΐόω^ = 2π · 8.12 x 103 rad/s 

cozc ucr (2π · 800) (2π · 8.12 x 103) 
4) Integrator gain: Kv = 1.51 x 104 

Kvciopi 15.1 (2π· 179) 
The current transfer ratio of the optocoupler is measured as CTR = 0.236. 
Accordingly, the last compensation component is determined as Ro = 393 Ω 
from (11.114). 
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Figure 11.45 Loop gain characteristics of flyback converter in CCM and DCM operations. 

Performance of Current Mode Control 

Figure 11.43 compares the theoretical and empirical loop gains. The loop gain 
should be evaluated at Point A in Fig. 11.41. Point A is the only place that 
provides the correct loop gain information. The loop gain closely meets the 
design target of a>cr = 2π · 8.12 x 103 rad/s with sufficient phase margin. 

Although the loop gain magnitude does not show any sign of the peaking at 
the Nyquist frequency due to the design goal of Qp = 0.6, the phase charac-
teristics advocate the existence of the double pole. Figure 11.44 compares the 
simulated and measured step load responses due to the step changes between 
R = 1 Ω and R = 2 Ω. 

Performance in DCM Operation 

When the load resistance is increased beyond the critical value 

2n2LM _ 2 · 0.0972 1.5 x 1Q~3 

crit " (1 - D?TS ~ (1 - 0.25)2 (65 x 103)"1 " 

the flyback converter enters DCM operation. Figure 11.45 shows the loop gain 
characteristics of the converter in DCM operations, in comparison with those 
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of the CCM operation. The DCM loop gains with R = 3.3 Ω, 10 Ω, and 20 Ω 
are compared with the CCM loop gain with R = 2 Ω. Although the mid-band 
gain and 0 dB crossover frequency are reduced, the loop gain curves confirm 
that the converter maintains stability in DCM operations with sufficient phase 
margin. 

11.5 SUMMARY 

The sampling effects of current mode control originate from the fact that the control 
action is periodically executed by sampling and holding the error signal produced 
by the fast-varying inductor current. In other words, the PWM modulator samples 
and holds the error signal at the rate of the switching frequency. The sampling 
effects, ignored in the preceding classical analysis, need to be duly addressed to 
accurately describe the high-frequency dynamics of current mode control. This 
chapter presented comprehensive analyses of the sampling effects using Ridley's 
s-domain model for current mode control. 

The analysis of the sampling effects culminates with the derivation of the control-
to-output transfer function evaluated with the current loop closed 

Gvci(s) = Kvc 
Mrhp I \ Cuesr / 

s \( s s 
1 + — 1 + - + 

Mpl ) \ QpMn ω; 

The most distinctive feature of the transfer function is the presence of the quadratic 
term in the denominator. As an ultimate upshot of the sampling effects, the quadratic 
term introduces a double pole at half the switching frequency. This term is common 
to all the three basic PWM converters and constitutes the foundation for the control 
design for all the PWM converters. 

The transfer function produces the peaking of 20 log Qp at half the switching 
frequency ωη = n/Ts. This peaking could cause the loop gain to violate the Nyquist 
stability criterion, thereby destabilizing the converter. To prevent such a consequence, 
the damping factor of the quadratic term needs to be controlled between 0.3 < Qp < 1.3. 
The idea of adequately damping the double pole at half the switching frequency leads 
to a simple and practical design methodology for current mode control. These new 
design procedures are illustrated in Section 11.3.3. 

The goal of the new design procedures is to provide a predetermined value for Qp. 
On the other hand, the classical design in Chapter 10 targets to place the crossover 
frequency of the current loop ω€1 at the desired frequency, thereby achieving a prefixed 
value for the ratio of the current loop crossover frequency to the switching frequency, 
cüci/üjs. These two apparently different design goals are intimately linked by the 
equation 

Mci _ Qp 

ω, 2 
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Therefore, there exists an exact one-to-one match between the new design and clas-
sical design. For example, selecting Qp = 1 in the new design is identical to placing 
the current loop crossover frequency at half the switching frequency in the classical 
design. This rather surprising fact was also verified in [2] using an entirely different 
approach. 

The quadratic term in the control-to-output transfer function - emerging as the 
ultimate outcome of the sampling effects-can also be exploited to investigate high-
frequency converter dynamics. For example, the 20 log Qp peaking at half the switch-
ing frequency can be used to account for sub-harmonic oscillations which could occur 
even with a duty ratio less than 0.5. Furthermore, the control-to-output transfer func-
tion can be used to investigate the converter dynamics when the converter is connected 
to general load systems other than a pure resistor [5]. 

This chapter presented several analysis and design examples of the peak current 
mode control adapted various of PWM converters, including the off-line flyback 
converter with an optocoupler-isolated feedback control. The outcomes of these 
examples can be readily adapted to all types of isolated or non-isolated PWM dc-to-
dc converters for real applications. 
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PROBLEMS 

ll.l**In Example 10.3 in Chapter 10, the modulator gain of the peak current mode 
control was derived from the expression 

hit) = Vcon ~ SedTs - ~{Sn + Sf)d{\ - d)Ts 

with the assumption that the slopes of the inductor current remain unchanged. 
Now, discard this assumption and introduce the perturbation to both Sn and Sf, 
in order to derive the feedforward gains from the input voltage/output voltage 
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to duty ratio. Show that the feedforword gains are given by 

n v v m-D)TsRj , n 

Buck converter: kf = kr = 0 
1 2L 

D(\-D)TsRi 
Boost converter: kf = 0 kr - -■ 2L 
„ , n , D(\-D)TsRi 
Buck/boost converter: kf = - -

kr = ~ 

2L 
D(\-D)TsRi 

2L 

The above expressions differ from those of Ridley's model, but they coincide 
with the feedforward gains of Tan's model, as can be confirmed in Table 11.1. 

11.2 Solve the expression (11.28) 

1 \+a 
Ri sTs 1 \+aesT*-\ . u Sf-Se 

with a = J 

Ri sTs 

in order to derive the expression for He(s) given in (11.19) 

sTs 
He(s) = 

esT, _ I 

11.3* Modify the procedures given in Example 11.5 to derive the expression for the 
feedforward gain from the output voltage, given in (11.46) 

v (\-D)2TsRi 
kr = 2L 

11.4* The procedures for casting the control-to-output transfer function into the 
third-order expression 

Gvci(s) = Kvc 

\ Mrfip ) \ Uesr J 

1 | s W | s ^ s2\ 
ωρι)\ ξ)ρωη ω2

η] 

are illustrated in Example 11.6. 
a) Follow the procedures of Example 11.6 to derive the control-to-output 

transfer function of the boost converter given in Table 11.3 

K _D'R 1 

2Ri , D'3RTS 

1 + - ^ ( m c - 0.5) 
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2 T D'3 

^/ = ĉ  + i^(mc-°-5) 

Specify the restrictions for the power stage parameters and operational 
conditions, which will improve the accuracy of the approximations. 

b) Repeat a) for the buck/boost converter 

K - D'R l 

(1 + D)Ri D'3RTS , 

ω"' = ΎΓ + -τα-{^-0-5) \+D TSD'3 

LC 

D'2R 
ωΗι"-~5Ί 

11.5** Adaption of the new design procedures to a buck converter was illustrated in 
Example 11.8. Redesign the feedback controller for Qp = 0.4, while keeping 
other design criteria unchanged. Compare the results of your design with those 
of Example 10.8. 

11.6* Redesign the boost converter used in Example 11.9 with Qp = 0.32, while 
keeping other design criteria the same. Compare the outcomes of your design 
with those of Example 10.16. 

11.7* Example 11.11 proved the relationship 

0>ci __ Qp 

cos 2 

for the buck converter. Show that the above relationship also holds true for the 
boost and buck/boost converters. 

11.8 Example 11.12 illustrated the relationship 

&vc Wpl ~ „ p Mid 
&id*<i 

for the buck converter. Verify that this relationship is also valid for the boost 
and buck/boost converters. Specify the conditions that enhance the accuracy 
of the approximation. 

11.9* Figure PI 1.9 shows the off-line flyback converter with an optocoupler-isolated 
peak current mode control. The switching frequency of the converter is a>s -
In - 65 x 103 rad/s. Perform the control design to meet the specifications 
of Qp - 0.8 and ω€Κ = Ο. ΐω^, while adapting the other design guidelines 
practiced in Example 11.15. Specify values for {Rsense Rcom Cci RD CJ}. 
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