STRUCTURAL ANALYSIS
A Historical Approach

JACQUES HEYMAN




This volume provides a concise, historical review of the methods of
structural analysis and design — from Galileo in the seventeenth century,
to the present day. Through it, students in structural engineering and
professional engineers will gain a deeper understanding of the theory
behind the modern software packages they use daily in structural design.
This book also offers the reader a lucid examination of the process of
structural analysis and how it relates to modern design.

The first three chapters cover questions about the strength of materials,
and how to calculate local effects. An account is then given of the
development of the equations of elastic flexure and buckling, followed
by a separate chapter on masonry arches. Three chapters on the overall
behaviour of elastic structures lead to a discussion of plastic behaviour,
and a final chapter indicates that there are still problems needing solution.
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Preface

The business of the structural engineer is to make a design to meet
some specified brief — for example, a steel-framed factory to house a
manufacturing activity; a bridge to span a wide estuary; a gantry to
carry an overhead cable for an electric train. Design criteria must first
be identified — heavy crane loads may be critical for the factory, wind-
induced vibrations for a suspension bridge, accurate location of the cable
for the train. To satisfy these criteria the engineer makes calculations,
and it has proved convenient, during the last century and a half, whether
explicitly recognized or not, to divide the engineer’s activity into two
parts.

In the first stage, The Theory of Structures is used in order to deter-
mine the way in which a structure actually carries its loads. There are
many alternative load paths for a (hyperstatic) structure; one of these
will be chosen by the structure, and must be discovered by the engineer.
This formulation of the problem seems to imply something more than
a dispassionate search for truth; the structure seems somehow to have
anthropomorphic qualities, and indeed nineteenth (and twentieth) cen-
tury notions such as those of ‘least work’ may colour the engineer’s
judgement. For example, in forming such ideas the designer may assume
unthinkingly that of course there is an actual state of the structure in
which it will be comfortable. It is, however, a matter of fact that the
structural equations are extremely sensitive to very small variations in
the information used in any structural analysis, and that the structural
action, the state in which a structure finds itself to be comfortable, can
show enormous variation caused by trivial imperfections in manufacture
or construction.

Be this as it may, when the engineer has determined, according to his
theories, a particular set of primary structural forces, then the second
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stage of structural design is reached. The scene is shifted from an overall
view of the structure to a detailed examination of response — for example,
can the force calculated by the designer to act at a certain cross-section be
sustained safely by the material present at that section? This examination
is carried out within the framework of what is sometimes known as The
Strength of Materials, and, conventionally, involves the calculation of
(elastic) stresses throughout the structure.

The two stages, theory of structures and strength of materials, are
logically and actually distinct, but cannot be separated in practice in
the elastic design of a hyperstatic structure. Section properties must be
assigned before primary forces can be determined; once those forces are
known, section properties can be assigned. The elastic design process is
thus circular; calculations must proceed by trial and error, by iteration,
or by following some schema known to lead to a satisfactory design.
Stresses may then be checked against given criteria; indeed until the
twentieth-century notion that ‘plastic’ information might be valuable in
approaching the design of structures, the calculation of elastic stresses
has been the main activity of the designer for the last 170 years (from,
say, 1826). The Theory of Elasticity deals with this branch of the science,
and gives rise to elegant and complex mathematics.

This mathematics is massively (if not exhaustively) explored in the well
over 2000 pages of Todhunter and Pearson’s (A history of) The theory of
elasticity (and of the strength of materials) (from Galilei to Lord Kelvin).
Prominence is given on the title page to The Theory of Elasticity, and
the three volumes are described as being by the late Isaac Todhunter,
edited and completed by Karl Pearson. (Todhunter had died in 1884,
and the volumes were published in 1886 and 1893.) Todhunter was a
distinguished Cambridge mathematician, and Pearson was a professor of
applied mathematics at University College, London.

Truesdell, in his magnificent study of The rational mechanics of flex-
ible or elastic bodies 1638-1788, which forms his introduction to two
volumes of Leonhardi Euleri Opera Omnia, cites the work of Todhunter
and Pearson, and identifies Pearson’s particular contributions. Truesdell
takes many opportunities to denigrate Pearson’s understanding of the
subject; he is particularly upset that Pearson had supplied a frontispiece
showing drawings of ‘Rupture-Surfaces of Cast-Iron’ to a work whose
title restricts it to theory.

There is no doubt that both Todhunter and Pearson (and Truesdell)
were accomplished mathematicians; what is at question here is how
mathematics should be applied to the study of structures. Whatever their
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actual understanding may have been, it is tempting to classify Trues-
dell (and perhaps Todhunter) as pure mathematicians (or ‘scientists’),
and Pearson as an applied mathematician (or ‘engineer’). Scientists and
engineers speak the same language and use the same tools, and their
activities are sometimes confused. There is, however, a clear distinction;
the scientist uses the body of scientific knowledge to deepen the un-
derstanding of a particular science, while the engineer, with the same
body of knowledge, uses it in order to do something. In the case of the
structural engineer, the theory of structures, the strength of materials
and the theory of elasticity form the body of knowledge. Of these, the
theory of elasticity is the most interesting mathematically, and Truesdell
seems content to pursue it for its own sake. Pearson, in giving pride of
place to drawings of rupture surfaces, showed that he was aware of the
primary objective of his particular science, which is to actually design,
and analyse, a real construction.

The whole matter is, naturally, not so simple as might be implied by
the last paragraph. In the first place, the engineer may find that the
present state of the body of structural knowledge is inadequate to solve
a particular problem; the engineer must then turn scientist, and attempt
as engineer to widen scientific understanding. Secondly, the pursuit of
a mathematical problem, without heed to its practical consequences,
may lead to results which are in fact of immediate application. An
outstanding example is that of the shape of the elastica; this problem
was posed by Daniel Bernoulli as an interesting piece of mathematics
involving the calculus of variations, and it was solved brilliantly by Euler,
as a mathematical exercise, in 1744. Euler himself, however, understood
that the basic result could be applied to the buckling of columns; the
work is described in Chapter 4.

This book, then, as implied by its title, is concerned with the theory
of structures as applied to the real problems of structural analysis and
design. Although it mentions building codes, it does not deal with their
development; codes are very necessary to guide practical designers, but
they reduce the theory to sets of rules which can be applied without
enquiry, without thought even, into the basis for those rules. (Such codes
have existed for well over two millennia, and the short introduction to
Chapter 1 gives glimpses of a history that is in itself a fascinating study.)
Rather, this book traces the development of theory relevant to structural
design, whether this was initiated by an engineer seeking a solution to
a particular problem, or was directed by a scientist seeking truth in a
more abstract way. The history does not attempt to cover more than the
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significant developments — ignoring tempting but misleading byways, it
traces the paths taken by reason through the dark foundations of the
subject (as Coulomb might have put it) groping towards the truth as it
is now seen.



1

Galileo’s Problem

Stresses in ancient and medieval structures are low. The stone in a Greek
temple, in a Gothic cathedral, or in the arch ring of a masonry bridge,
is working at a level one or two orders of magnitude below its crushing
strength. This is a necessary condition for survival through the centuries;
it is not sufficient. It is necessary also that the shape of the structure should
be correct, so that structural forces may somehow be accommodated
satisfactorily; this is a question of correct geometry. Thus for such
structures the calculation of stress is of secondary interest; it is the
shape of the structure that governs its stability. All surviving ancient and
medieval writings on buildings are concerned precisely with geometrical
rules. The architects had, no doubt, an intuitive understanding of forces
and resulting stresses, but this understanding was not articulated in a
form that would be of use in design; there is no trace in the records, over
the two or three millennia for which they exist, of any ideas of this sort.
Instead, the design process would have proceeded by trial and error,
by recording past experience, by venturing, more or less timidly, into
the unknown, and by the use of models. A large-scale model served
several functions — to demonstrate the design to the commissioner, for
example, and to solve constructional problems; above all, if the model
were stable, so would be the full-scale building, since the model proved
that the geometry was correct. All of this experience was recorded, and
refined into rules of construction. In modern terms, a building science
was established, and the rules expressed the theory behind the practice.
Such recording can be done verbally or by drawing. Chapters 40, 41
and 42 of Ezekiel, for example, record at interminable length the sizes of
gateways, courts, vestibules, cells, pilasters and so on, for a great temple;
part of a building manual of about 600 BC seems to be bound in with
the books of the Old Testament. Of great interest is Ezekiel 40:3 and 5: ‘I
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saw a man ... holding a cord of linen thread and a measuring rod ... The
length of the rod ... was six cubits, reckoning by the long cubit’. The long
cubit was about 20.7 inches or 525 mm, so that the measuring rod was
something over 3 m in length. The rod was the ‘great measure’, without
which (in the absence of standard units) work could not proceed on an
ancient or medieval building site. The cubits were subdivided into palms,
and the great measure could therefore be used to establish the major
dimensions of rooms as well as small individual dimensions, merely by
using the numbers so diligently listed in the chapters of Ezekiel.

All of this would have been immediately recognized by Vitruvius
(c. 30 BC), writing five centuries later; Frankl’s (1960) exegesis makes
it clear that the ordinatio of Vitruvius is nothing other than the great
measure. As an example, Vitruvius gives proportions for the construction
of temples, in which the diameter of a column is taken as the module - for
the eustyle (one of the five standard arrangements) the distance between
columns, the intercolumniation, should be two and a quarter modules,
except that the central spacing should be three modules. The columns
should be of length nine and a half modules, their bases of thickness
half a module, and so on. Such rules, generated from experience, have
ensured that Greek and Roman temples have survived.

Vitruvius was not lost in the ‘dark ages’; his book was copied again
and again for use in monastic schools and in the masonic lodges. The
‘secrets’ of the lodges were numerical, and recognizably Vitruvian; rules of
proportion were at the heart of the Gothic building. For the construction
of Milan Cathedral, for example, over a hundred years after the end
of the High Gothic period, the original great measure was of 8 braccia
(the braccio (arm), the Milanese ‘cubit’, is about 600 mm). Numerical
problems with the great measure led to an expertise in 1392, but the work
was totally stopped in 1399, when experts came from all over Europe to
decide how construction should proceed (Ackermann (1949)).

Mignot, a master from Paris, drew up a list of 54 points in which he
found the work at Milan to be defective. There are structural objections —
buttressing is insufficient; and geometrical objections — bases of piers are
not in the right proportions. Mignot seems clearly to have been checking
the work at Milan against his own lodge’s building manual; the Italian
masters had no reasoned replies, and fell back on the accusation: scientia
est unum et ars est aliud. By scientia they meant the theory embodied
in the design rules of the manual, and by ars they meant the mason’s
art, the practice of construction. That is, the [talians acknowledged that
Mignot might have had a fine set of rules, but they knew, in practice,
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how to build a cathedral. To which Mignot replied: ars sine scientia nihil
est; practice is nothing without theory.

This looks to be the first sign of a rational approach to the science
of building. In fact, Mignot had no deep understanding of his manual.
His theory was the distillation of the design rules of Greek, Roman and
medieval architects, probably codified one or two centuries earlier in the
middle of the High Gothic period. They were geometrical rules found
to be effective for buildings whose materials worked at low stresses. If
a building were satisfactory, then it would be satisfactory when built at
twice the scale.

1.1 The Dialogues

Right at the start of his Discorsi, Galileo strikes at the heart of this
medieval theory of structural design. Salviati speaks: ‘Therefore, Sagredo,
give up this opinion which you have held, perhaps along with many
other people who have studied mechanics, that machines and structures
composed of the same materials and having exactly the same proportions
among their parts must be equally (or rather, proportionally) disposed to
resist (or yield to) external forces and blows. For it can be demonstrated
geometrically that the larger ones are always proportionally less resistant
than the smaller.’

Galileo’s Dialogues concerning two new sciences were published in Ley-
den in 1638, when Galileo was 74. Five years earlier he had been convicted
of heresy, sentenced to life imprisonment and forbidden to publish any
more books on any subject. Holland was, of course, outside the reach of
the Inquisition, and the Elseviers agreed to publish Galileo’s manuscript.

The work is in the form of four dialogues (a fifth dialogue, on percus-
sive force, was added to the second, posthumous, edition of 1644). The
three Interlocutors are Salviati, who speaks for Galileo; Sagredo, who
represents Galileo as a younger man, and puts forward views on occasion
that the older Galileo has rejected; and Simplicio, who might represent a
very young Galileo, and who acts as a foil to the other two more learned
scientists. Each dialogue is supposed to span a day. The third and fourth
deal with the development of a science of (pre-Newtonian) mechanics;
it is the second day’s dialogue that is concerned mainly with structural
matters.

However, Sagredo’s ‘brain is already reeling’ at the start of the first
day when the mature Galileo, Salviati, mounts his attack on medieval
geometry. He has much more to say about the ‘square/cube law’ on day
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2 of the Dialogues, but he starts immediately by introducing an example
that is, effectively, the archetypal structural problem with which Galileo
is concerned.

Salviati imagines a horizontal wooden pole of given dimensions with
one end fitted into a vertical wall; the pole thus acts as a cantilever beam.
If the length of the pole is increased there will come a point at which
it breaks under its own weight; a shorter beam could carry additional
load, and longer beams would break at once. It is the breaking of
cantilever beams that forms the main subject of Galileo’s second day of
the Dialogues. As will be seen, he makes a structural analysis to determine
the value of the greatest bending moment in the beam, and he equates
this to the moment of resistance of the cross-section. Thus a calculation
of ‘theory of structures’ is combined with one of ‘strength of materials’
in order to solve the problem.

Immediately after the introduction, however, on the first day, Galileo
has a seeming digression concerned purely with the theory of structures.
Salviati tells a story concerning a very large marble column that was
stored horizontally, the weight being supported on two baulks of timber
near its ends. It occurred to a workman that the column might break
under its own weight at the middle, so he inserted a third similar baulk
of timber there. After a few months the column was found to be broken
precisely over the third inserted support. Salviati explains how this had
come about. It was found that one of the baulks near the end of the
column had rotted and settled, while the inserted central support re-
mained sound; effectively, then, one half of the column was unsupported.
Had the column remained supported only by the original two baulks, all
would have been well; if one baulk had settled, then the column would
merely have followed.

This glimpse of the possible behaviour of statically indeterminate
structural systems is not further discussed by Galileo. However, when,
towards the end of the second day, he has solved to his satisfaction
the problem of the breaking of a cantilever, he applies his results to
the failure of a simply supported beam (the marble column on its end
baulks) and of a beam supported on a central support.

Galileo has already stated clearly (although indeed only implicitly) in
the first few pages of the first dialogue that his subject is the fracture of
beams, and he next makes an enquiry into what is happening when a
piece of wood, or any other solid, breaks. To clarify the discussion (as
he says), he imagines a cylindrical specimen (of wood, or other material;
his accompanying illustration, fig. 1.1, appears to be of a stone pier) to
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Fig. 1.1. Galileo’s imaginary tension test.

be hanging vertically, and loaded by an increasing weight at the bottom
until it breaks, ‘just like a rope’. Thus starts a series of digressions which
make up the substance of the whole of the first day’s dialogue; Simplicio
can imagine that the longitudinal fibres (filamenti) extending the whole
length of a wooden specimen can make the whole specimen strong, but
asks how a rope, composed of fibres only two or three braccia long,
can be equally strong. Salviati explains how these short fibres are twisted
together to form a long rope, their mutual interaction conferring strength
on the whole.

However, it is to the fracture of apparently amorphous materials, such
as marble, metal or glass, that the discussion now turns. Salviati admits
the difficulty of this problem, and has the view that the particles of a
body have some inherent tenacity, and he also refers to the well-known
repugnance that nature exhibits towards a vacuum. The question of
voids arises from the experience that two slabs of material, if smoothed,
cleaned and polished, may be slid one against another but are difficult
to pull apart in tension. From this observation is developed the idea that
an apparent solid might consist of a very large number of small parts
having inherent strength, and also of a very large number of voids, both
contributing to the overall strength. Indeed, the number of voids could be
infinite, and many pages of the dialogue (say an hour or so of discussion
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Fig. 1.2. Galileo’s diagram explaining the law of the lever.

on the first day) are devoted to mathematical demonstrations concerned
with this concept — that a finite area, for example, can contain an infinite
number of voids.

One topic leads naturally to another, and Salviati is constantly re-
minded of interesting results from geometry, to the point where Sagredo
remarks on how far they have strayed from their subject. But Salviati has
been concerned with trying to explain how expansion and contraction
(due to temperature change, for example) can occur without assum-
ing interpenetration of bodies or the introduction of voids and, almost
inevitably, discussion turns to Aristotelian theories of motion.

Motion is the second new science, and is exposed on the third day of
the dialogues, but it is on the first day that Galileo makes the famous
statement that two bodies of different weights will fall under gravity at the
same speeds. Simplicio finds this hard to believe, although Sagredo says
he has made the test (it is thought unlikely that Galileo dropped weights
from the leaning Tower of Pisa). It is clear that the test had been made
somewhere; Salviati, explaining to Simplicio, notes that Aristotle says:
‘A hundred-pound ball falling from the height of a hundred braccia hits
the ground before one of just one pound has descended a single braccio.
In fact they arrive at the same time, or rather (and this is the evidence
of a test), the larger is ahead by two inches, and Salviati asks Simplicio
not to hide behind those two inches the ninety-nine braccia of Aristotle.
There follows then a long discussion of motion in dense and rarefied
media, water and air; and then of the vibration of the pendulum; and
so to the vibration of musical strings. Even Salviati, at the end of the
first day, wonders how they have allowed the discussions to be carried
on through so many hours, without tackling the main problem.

This problem is stated again clearly at the start of the second day: it
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is to find the strength of a bar when it is broken as a cantilever. The
breaking force is in fact a ‘bending moment’, an idea which relates to
Aristotle’s analysis of the lever (but which, says Salviati, was handled
better by Archimedes). Salviati has to expound the theory of moments,
and, to do this, Galileo introduces an idea which is, in essence, that of
the ‘free-body diagram’. A (uniform) baulk of timber AB, fig. 1.2, is hung
by two strings HA and IB from a rod HI (this rod is referred to later
as a ‘balance’ (balancia) or ‘steelyard’ (libra)). Evidently a string at C at
the midpoint of HI will carry the baulk AB in equilibrium. The baulk is
then imagined to be cut into unequal parts at D, and a third string ED
is introduced, attached at D both to the portion DA and the portion DB
of the cut baulk. Equilibrium will not be disturbed. Two further strings
are now introduced, at G and F, over the midpoints L and M of the
portions of the baulk, and the three original strings are removed, again
without upsetting equilibrium. Thus two heavy bodies, DA and DB, can
be supported by two strings GL and FM from a steelyard, the steelyard
itself being supported at C. Galileo shows easily that the ratio GC to
CF is as the weight of DB to that of DA. (Although algebraic equations
were acquiring modern form in Galileo’s time, he was using the classical
theory of ratios to be found in Euclid.)

After some further exploration of the lever (in the form of a crowbar
to lift weights from the ground) Galileo is finally ready to tackle the
problem; fig. 1.3 shows his illustration which has become a sort of icon
for the application of rational mechanics to the theory of structures. The
member ABCD is prismatic, and made of glass, steel, wood or any other
frangible material; when loaded at C, it is evident that if it breaks, it
will break at B where it is embedded in the wall. Now the member has a
certain ‘absolute strength’ (that is, the tensile strength to which attention
was devoted on the first day); the moment of this absolute strength
about B must equal at fracture the moment of the applied weight about
B. Galileo is considering the moment equilibrium of a cranked lever,
fig. 1.4 (he does not draw this figure); with modern notation,

W¢ = =54, (1.1)

where S is the absolute (i.e. tensile) strength of the member, which has
breadth b and depth d. (If the beam has a circular cylindrical cross-
section, then Galileo notes that the lever arm for the absolute resistance
is the radius r.)

In terms of modern ideas of stress, Galileo has evidently assumed
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Fig. 1.3. Galileo’s cantilever beam.

a uniform distribution of limiting stress oo at fracture, as indicated in
fig. 1.5. Thus, for the rectangular section, the value of S is bday, and the
section modulus implicit in the right-hand side of equation (1.1) is %bdz.

As is evident, figs 1.4 and 1.5 (which, it must be repeated, were not
drawn by Galileo) are incomplete free-body diagrams — the reactions at
the fulcrum B are not shown. Seventeenth and eighteenth century work
was concerned to ‘correct’ Galileo’s analysis in this respect; the form of
equation (1.1) is unchanged, but the factor of % was determined to have
other values by different writers. Galileo himself, however, does not make
use of the numerical value of absolute strength S; he is concerned with
calculations of relative strengths, and the quantity %S could be looked on
as a given physical parameter entering the analysis. For example, Galileo
shows easily and correctly that the ratio of loads T to X required to
break a rectangular-section cantilever beam when it is on edge and when
it is flat is simply the ratio ca/cbh, fig. 1.6; since the section modulus has
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Fig. 1.4. Conditions at fracture of a cantilever beam.
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Fig. 1.5. Stress distribution at fracture implicit in Galileo’s analysis.

been determined to be of the correct form (kbd?), the factor (k =)% in
equation (1.1) is irrelevant to the value of this ratio.

Galileo then discusses problems of other ratios of strengths — for
example, he shows that the strength of a circular cylindrical cantilever
is proportional to the cube of the diameter. Similarly, a beam breaking
under the action only of its own weight has a strength proportional to the
square of its length. Other examples follow, all effectively demonstrating
the square/cube law, culminating in Salviati’s general statement about
the impossibility of building enormous ships, palaces and temples — ‘nor
could nature make trees of immeasurable size, because their branches
would eventually fail of théir own weight’. Figure 1.7 shows the shapes
of two bones, one three times the other in length, and then thickened so
that it could function in a large animal as the smaller bone performs for
the small animal.

The breaking of a beam has been analysed with respect to a cantilever,
fig. 1.3. Galileo identifies the upper beam in fig. 1.8 as two cantilevers
back to back, and states correctly, but not clearly, that the lower simply
supported beam DEF will break under its own weight when the length
is twice that of the corresponding cantilever of critical length. (These
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Fig. 1.7. Two bones having similar functions; the large animal is three times the
(linear) size of the smaller.

Fig. 1.8. The breaking of a beam supported at its centre, and at its ends.



1.1 The Dialogues 11

B

S — \\ G

A c B

Fig. 1.10. A cantilever of ‘equal resistance’ — the curve is badly drawn.

examples refer, of course, to the stored marble column mentioned on
the first day.) Further, he then tackles clearly the problem of a stick
held in the hands and broken over the knee; the knee should be placed
at the centre of the stick. Finally, in this small digression he finds in
effect the maximum bending moment in a simply supported beam when
a transverse point load is applied at a general point in the span.
Almost the last problem to be tackled on day 2 (before moving to study
motion on days 3 and 4) is that of the correct shape of the cantilever
beam of equal resistance, that is, one that would fracture in bending
simultaneously at each of its cross-sections when loaded by a single tip
load. A full prismatic cantilever beam, fig. 1.9, loaded at its tip B, will
fail only at the root AF. If the same beam is sawn along the diagonal
FB, then the lower tapering beam FAB under its tip loading is weaker
under the bending moment acting at the general section CN than it is
under the bending moment acting at the root AF; the beam FAB cannot
therefore carry any load that would cause fracture at the root. There
must be some cut that can be made to leave a solid of equal strength
at each cross-section. Galileo shows that the beam, of constant width,
should have a depth that varies as the square of the distance from the tip,
that is, as stated by Salviati, a parabola with vertex at B. The illustrative
sketch, fig. 1.10, is badly drawn; the curve seems to have the vertex at
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Fig. 1.11. Correct shape of cantilever of equal resistance.

F, and corresponds to the path of a projectile launched horizontally at
F. The correct shape is that sketched in fig. 1.11. (As has been noted,
Galileo was not in control of the publication of his book; he had in any
case become blind before he received a printed copy.)

So ends the exposition of the first of Galileo’s two new sciences. The
mechanics of motion discussed on the second pair of days is perhaps
more formal in presentation, and contains pedagogic material in Latin
inserted in the Italian dialogues.

Todhunter and Pearson note that the ‘problem of solids of equal
resistance led to a memorable controversy in the scientific world’.



2

The Moment of Resistance

As has been seen, Galileo’s problem was the determination of the ultimate
moment of resistance of a member (wooden, stone, metal, glass) in
bending. The problem was posed by reference to a cantilever beam, acted
upon by a tip load, or its self-weight, or both; the value of the breaking
load(s) was sought. Static equilibrium requires that the moment of the
applied load(s) at the root of the cantilever must equal the moment of
resistance of the cross-section; since the problem is statically determinate,
a problem in the theory of structures is transformed into a problem of
strength of materials. Galileo, and later scientists, did not of course
think in this way; in particular, the notion of hyperstatic structures, for
example the beam on three supports or, later, the propped cantilever or
the fixed-ended beam, is not made explicit. These last two more complex
structures were in fact discussed in 1798 by Girard, and ‘correct’ solutions
were found (see Chapter 6); the solutions were, however, specific for the
problems, and Girard does not make general statements about statical
indeterminacy. Such ideas became formalized a quarter of a century
later; the date of 1826, when Navier published his Legons, is a convenient
marker, and indeed it was not until over a century after that date that the
straitjacket imposed by Navier on structural design was finally loosened.

Girard starts the introduction to his book (on the strength of materials
and on solids of equal resistance) by stating that his subject consists of
something more than rigid-body statics. Nature has not created perfectly
rigid materials, says Girard, and he foreshadows the modern general
statement that the theory of structures is concerned with the mechanics
of slightly deformable bodies. He gives a fairly comprehensive history of
the development of the theory of bending for the century and a half after
Galileo, and it is apparent that, very soon after publication of the Two
new sciences, those interested in the problem were questioning Galileo’s

13
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assumption of ‘inextensibility’. Galileo had supposed the beam to be
composed of parallel fibres along its length; at fracture at the root of
the cantilever each of these fibres would reach its ultimate strength as
given by the tension test. Galileo apparently carried out no experiments
to verify, numerically, his results (as was seen in Chapter 1, Galileo had
obtained the correct form for the expression for the moment of resistance
of a cross-section — this matter is discussed further below). The first
such experiments were apparently made in Sweden by P. Wurtz; Girard
mentions a letter of 1657 from Frangois Blondel to Wurtz referring to the
matter, but Saint-Venant (1864) in his edition of Navier’s Legons could
find no details. Wurtz was certainly interested in the question of solids of
equal resistance, broached by Galileo towards the end of the second day;
a book on the subject was published by Marchetti (1669), and heated
discussion (discussed briefly by Girard and mentioned by Todhunter and
Pearson) culminated in two publications by Guido Grandi (1712).

The search for the solution to the problem of solids of equal resistance
seems now to represent a side path in the development of structural
engineering. It was clearly attractive to scientists, involving as it did
exploration of territory that was just about to be opened by the invention
of the calculus. Further, however unreal and impractical a beam of
parabolic profile might appear, such a ‘design’ would give some sort of
basis against which any other solution could be matched.

2.1 Mariotte 1686

Galileo’s main problem, however, continued to be treated, and Mariotte
made a major contribution in 1686. He was concerned, in part 5 section
2 of his Traité du mouvement des eaux, with the strength of water pipes,
and he derived a correct expression for the wall thickness of a pipe of
given diameter to support a given pressure. In the course of his work
Mariotte made both tension and bending tests on his materials, and he
could not relate the results of the two by Galileo’s formula. He concluded
that Galileo’s assumption of inextensibility was incorrect; rather even the
hardest materials (and he had tested glass and marble as well as wood)
must show some extension when loaded. He assumed, in effect, that
behaviour was linear-elastic, and identical in tension and compression;
further, there was a maximum extension that could be imposed on a
given material, and fracture would occur if that limit were passed.
Using these ideas, and retaining Galileo’s position of the ‘neutral axis’
at the base of the section, Mariotte deduced that the stresses should be
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(a) Galileo

(b) Mariotte 1 (¢) Mariotte 2

Fig. 2.1. Stress distributions at root of cantilever.

distributed to give a triangular block, Mariotte 1 in fig. 2.1. The use
of the word ‘stress’ is anachronistic; a better idea of Mariotte’s way of
thinking, of loaded parallel ‘fibres’, is given by Girard’s illustrations of
bent levers, fig. 2.2. In this figure the upper illustration, with equal fibre
‘weights’, corresponds to Galileo’s solution, the lower to Mariotte’s. The
corresponding section modulus of a rectangular beam, b X d, is %bdz,
compared with the %bd2 of Galileo.

Mariotte immediately abandons this analysis, stating that it may be
imagined that, while the upper fibres of the cantilever beam are extended,
those on the lower face of the beam are compressed. He places the neutral
axis at mid-height of the section, Mariotte 2 in fig. 2.1; he gives no proof,
but he has stumbled on the correct solution to the problem of elastic
bending. However, he does not use such words; Mariotte was concerned
with the problem of the breaking load of a cantilever beam. In working
out the value of the section modulus corresponding to fig. 2.1(c), by a
singular inadvertence (as remarked by Saint-Venant) Mariotte dropped



16 The Moment of Resistance

N
n ”
n' !
n* m*
n" m" ‘@. 2.
", I ym~
n r: Ny
Jr‘ A
J e
urw
D
rv N B
n m.
n m'
nn nl
n" mn” .ﬁ:y- 3.
n" j\r "
n a ¥
ur'
0,
Jr"
ﬁ’,'
r"

Fig. 2.2. Girard’s figs 2 and 3. Figure 2 corresponds to Galileo’s solution
(fig. 2.1(a)), and fig. 3 to Mariotte’s (fig. 2.1(b)).

a factor of 2, and obtained his previous result of %bd2 instead of the
correct value of 1bd’.

In fact, Mariotte followed Galileo in making his calculations in terms of
relative and absolute strength rather than in terms of section modulus.
With modern notation for a material having a limiting stress ¢, the
absolute strength S for a rectangular cross-section (the maximum tensile
force that can be applied) is S = bda¢. The relative strength in bending,
that is, the moment of resistance, is obtained by multiplying S by an
appropriate fraction of the depth of the section. Thus Galileo had derived
the relative strength as %Sd, and Mariotte as %Sd; on the same basis, the
correct value should be $Sd (= tbd%ay).

The tests made by Mariotte were on % inch diameter cylindrical spec-
imens of dry wood; he determined the absolute strength from a tension
test as S = 330 1b. The circular rods were then tested as cantilevers of
length 4 in, and the results were interpreted by applying, without com-
ment, the theory for rectangular beams. (The distribution of fig. 2.1(c),



2.1 Mariotte 1686 17

Table 2.1. Strength of a cantilever beam

(S =3301b;d=1} in) Relative Breaking
strength (in Ib) load (Ib)

Galileo (}5d) 41.25 103
Mariotte (4Sd) 275 6.9
‘Correct’ (;5d) 1031 26
Observed 24) 6

if applied to a beam of circular cross-section, gives a relative strength
of %Sd.) Numerical values are displayed in Table 2.1. Had he not made
his mistake with the factor of 2, Mariotte’s theoretical breaking load
would have been calculated as 3.4 1b. His incorrect value of 6.9 1b was
reasonably close to the observed value of 6 lb, and he attempted to
explain the discrepancy by assuming a time-dependency for his material;
a load of 300 Ib might have broken the tension specimen after a long
time, compared with the 330 Ib observed.

Mariotte had, as a result of his experiments on wood, a convincing
refutation of Galileo’s theory, but, because of his mistake in calculation,
only fortuitous support for his own theory. If the fracture strength of a
wooden beam in bending can be predicted from an elastic distribution
of strain coupled with a maximum-strain postulate of failure, then it will
be seen from Table 2.1 that the ‘correct’ load at which the beam should
have broken is 2.6 1b. On the other hand, if failure is supposed to occur
by the formation of a plastic hinge in accordance with modern simple
plastic theory, then the relative strength for the circular specimen would
be predicted as 25d/3n, leading to a breaking load of the cantilever of
4.4 1b, still not very close to the observed load.

Mariotte also carried out a purely ‘structural’ test as against a ‘strength
of materials’ test. He found that a circular glass rod over a 9 in span
carried a central breaking load of 1 Ib 10 oz 5 drams. The test was
repeated on a similar rod whose ends had been carefully bound with
twine before insertion into mortises; the breaking load of this ‘fixed-
ended’ beam was 3 1b 5 oz 4 drams, almost exactly double that of the
simply supported beam. He concluded that an encastré beam has twice
the strength of the corresponding simply supported beam, a conclusion
that will be approved both by the modern conventional elastic designer
and by a designer versed in plastic methods.
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2.2 Leibniz and James Bernoulli

Mariotte’s book was published posthumously in 1686, but the work was
known by 1680, and Mariotte’s disagreement with Galileo stirred the
interest of Leibniz — he set out to resolve the dispute in a paper pub-
lished in 1684 in the Acta Eruditorum of Leipzig. Leibniz examined the
‘inextensional’ and ‘extensional’ theories of Galileo and Mariotte respec-
tively, and concluded that Mariotte was correct; he placed the neutral
axis at the bottom of the section, and deduced an ‘elastic’ distribution of
stress. Leibniz added little that was new, although Girard considers that
the 1684 paper provides good evidence that Leibniz could have made a
deeper contribution had he so wished; but, as Leibniz said himself, he
would leave it to others to uncover the basic theory. It seems clear that
Leibniz had no real interest in the problem, probably because there was
little mathematical content. His closing remarks indicate his belief in the
power of mathematics to solve physical problems: ‘ut proinde his pau-
cis consideratio tota haec materia redacta sit ad puram Geometriam, quod
in physicis et mechanicis unice desideratur’: As Girard puts it, ‘il préféra
d’exercer son génie a des spéculations plus sublimes’.

The linear assumption of the Mariotte—Leibniz theory (as it came to
be called) was questioned by Varignon in 1702. He continued to place
the neutral axis at the base of the section, but he developed what might
be called a unified theory of bending. He saw no reason to accept a
priori that stresses should be linearly dependent on strains (to continue
to use anachronistic words), and proposed instead that fibre stress should
be expressed as a general function of distance from the neutral axis. As
a general expression he discussed (in effect) the formula ¢ = ke™ as a
representation of the stress—strain law; for m = 0, the stress is constant,
and Galileo’s formula is recovered, while for m = 1 the linear theory
of Mariotte is obtained. Varignon made the general integration of his
formula in order to obtain the value of the moment of resistance, but
carried the work no further.

However, this contribution by Varignon provoked another giant into
entering the discussion. James Bernoulli had been interested as early as
1691 in the problem of the shape of a bent elastic member, that is, in the
study of the stiffness of beams, discussed more fully in Chapter 4. He was,
perhaps, irritated (as a mathematician) at the inexactness of the attack
on the question of the strength of beams, and, in 1705, in his Véritable
hypothése de la résistance des solides, he set out to deal with the matter.
He sees no reason to adopt a linear theory, and he claims to be the first
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to consider compressions as well as extensions, although Mariotte had
discussed this 20 years earlier. Indeed, James Bernoulli repeats Mariotte’s
precise mistake with the factor of 2, which leads him to conclude that the
neutral axis can be placed anywhere; that is, the position is indifferent.
Bernoulli’s Mémoire of 1705 is a revised version, post-Varignon, of an
earlier 1694 Leipzig paper. Like Leibniz, Bernoulli contributes little; all
that he really shows is that the linear theory of Leibniz is no more
admissible than the uniform theory of Galileo. Nevertheless, the fact that
two such scholars should write on the problem of bending testifies both
to its importance, and to an awareness that the solution was not easy.

2.3 Parent 1713

The academician Parent made a substantial contribution to the problem
of bending (and to other branches of engineering), although his work was
almost completely ignored at the time, and continued to be little noticed.
He never advanced above the lowest grade of the Académie, that of éléve
(there were 20 each of pensionnaires, associés and éléves, together with
10 honoraires). Parent published a series of Mémoires in the first decade
of the eighteenth century, and he collected and expanded these in three
volumes of Essais et recherches in 1713. These volumes are very small
(duodecimo) and very thick, and do not encourage close attention; this
reason for neglect was advanced in the official obituary in the Histoire
de '’Académie for 1716.

Parent’s earlier papers on bending continue to place the neutral axis at
the base of the section, but he reviewed the whole theory in the collected
essays. A Mémoire in vol. 2 is entitled ‘Comparaison des résistances des
Cylindres & segmens pleins, avec celles des creux égaux en base, dans le
systéme de M. Mariotte’, that is, Parent is concerned with beams of both
solid and hollow cross-section. He comments first on Mariotte’s use of
theory for a rectangular beam to explain results obtained from a beam of
circular cross-section. He makes the integration over the circle (still with
the neutral axis at the base) and obtains a value for the relative strength
of 1%Sd instead of the value %Sd used by Mariotte. Parent observes,
justly, that had Mariotte used the slightly smaller value, the theoretical
breaking load (6.4 b, cf. Table 2.1) would have been even closer to that
observed (6 1b).

However, Parent had alieady discovered and corrected Mariotte’s mis-
take of the factor 2 in the value of the relative strength calculated with
respect to a central neutral axis; he had arrived at the value of %Sd for
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a rectangular section and he notes that Mariotte should have calculated
the breaking load as half the value shown in Table 2.1, that is, 3% Ib, ‘ce
qui seroit bien éloigné de la verité’.

Later in this same Mémoire Parent discusses in physical terms the
position of the neutral axis. Just before fracture the extreme tensile
fibre will be the most strained, and the behaviour of that one fibre
will influence the behaviour of the whole section. During the process
of fracture, as successive fibres reach their limiting strains, the neutral
axis will descend, until it reaches the base of the section, but it was
clear to Parent that it will not be found there before fracture. Thus he
distinguished clearly between the (elastic) working state of the beam, and
the ultimate condition which is governed by the weak tensile behaviour
of the material — and he is aware that the neutral axis can shift between
the one state and the other.

Parent finally, and for the first time, uses rational mechanics to deter-
mine the position of the neutral axis, rather than placing it in a ‘likely’
position. The work is contained in the 14th Mémoire of vol. 3 of the Es-
sais: ‘De la véritable méchanique des résistances rélatives des Solides ...".
As every present-day first-year student of statics knows, three equa-
tions must be written to express the equilibrium of a two-dimensional
rigid body. The equations can be written in different ways; in a form
convenient for Galileo’s beam, forces must sum to zero vertically, and
also horizontally, and there must be no net moment acting on the beam.
Galileo had achieved moment equilibrium by equating the couple exerted
by the applied load acting about the fulcrum (the neutral axis at the base
of the section) to the couple exerted by the fibres of the beam all at their
fracture limits. He had apparently ignored the other two requirements,
that forces must sum to zero both vertically and horizontally. The neglect
may indeed be only apparent; Galileo would perhaps not have thought
it necessary to remark that a vertical force must be generated at the root
of his cantilever beam.

Parent writes the all-important equation expressing horizontal equilib-
rium; there is no horizontal force acting on the beam, so that there can
be no net horizontal force acting at the root of the cantilever. He takes
a general linear strain distribution, fig. 2.3, and allows unequal elastic
moduli in tension and compression; the tensile stress in fibre AT will gov-
ern fracture, but the compressive stress in fibre BX may well be larger.
Whatever their values, Parent states that the total résistance of the fibres
of the compressive triangle CBX must equal that of the tensile triangle
CAT, these two forces acting through I and D respectively, ‘qui est une
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X
Fig. 2.3. Parent’s distribution of bending strain.

proprieté dont personne n’avoit encore parlé’. He is fully aware that his
correct statement of horizontal equilibrium is breaking new ground.

In using the distribution of fig. 2.3 to explain Mariotte’s test result,
Parent shows that the relative strength in bending is proportional to
AC, that is, to the distance of the extreme fibre from the neutral axis
of the beam. In one calculation, for example, he deduces that the ratio
AC/AB in fig. 2.3 should be 9/11 to account for Mariotte’s test, that
is, the neutral axis at fracture is close to the bottom fibre. In fact, the
calculations do not agree well with the experimental result, and it seems
that, in a series of closely written essays, Parent was moving towards
the conclusion that the calculation of the bending strength of a beam
was not necessarily a simple matter. Parent was, so to speak, forced
to consider linear-elastic behaviour but with unequal moduli in tension
and compression; similarly, Biilffinger (1729) revived Varignon’s idea
that stress might be a non-linear function of strain. Mariotte’s results of
fracture of beams were becoming less, and not more, explicable in terms
of a simple elastic theory of bending.

2.4 Bélidor 1729

Parent did not have a range of experimental results against which to
match his theory, but in the next 40 years many tests on wood, stone and
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iron are reported. In 1729 Musschenbroek published his famous Physicae
experimentales ..., giving the results of a large number of material tests
in tension, compression and bending, mainly on a variety of types of
wood; some tensile tests on metal wires are also reported. These tests
were carefully made, and full descriptions and engravings of the testing
machines are given. The tests are also notable for being apparently the
first on slender columns, where failure occurs by buckling rather than
fracture of the material.

Bélidor’s enormously influential La science des ingénieurs was also
published in 1729. Although printed in quarto, the volume is effectively a
handbook, and its six parts, each containing between 60 and 100 pages,
are numbered separately, and have individually engraved first pages.
Belidor is writing for the civil engineer engaged in practical design, and
he deals with the major topics of eighteenth century construction. Thus
book 1, de la Théorie de la Magonnerie, deals with the design of retaining
walls to hold back soil, and is in fact a treatise on the thrust of soil,
that is, on soil mechanics. However, the theory is not original; Bélidor
makes little scientific advance, but is concerned to establish the tables of
thickness and batter of retaining walls with which he concludes the book.

Similarly, in book 2, de la Mécanique des Voiites, Bélidor follows La
Hire’s analysis of 1712; the work is directed towards the calculation of
the thrust of arches, so that abutments for bridges can be designed.
(The development of arch theory proceeded almost independently of
other structural analysis, and is described in Chapter 5 below.) In both
these books Bélidor gives an early example of the engineer distilling the
findings of scientific investigation into rules of design which form a ‘code
of practice’.

In book 3 Belidor gives a qualitative discussion of the properties of
building materials, including stone, brick, lime, sand, pozzolana, plaster
and mortar. Unit weights are given for a range of materials, including
metals (iron, brass, copper, lead), various sands and clays, brick, various
building stones, and several kinds of wood, but no other quantitative
properties are given; strengths are not mentioned.

Bélidor had been teaching for a few years at the artillery school at
La Feére, and in book 4 he reports the results of tests on the breaking
of beams made by some of the students (who were, of course, army
officers). The tests were apparently designed to illustrate his lectures, and
do not seem to have been well carried out; there were eight experiments
each on three identical specimens. The tests on simply supported beams
confirmed Galileo’s finding that strength is proportional to the square of
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the depth; the tests on fixed-ended beams show only that Bélidor found
it difficult to provide sufficiently stiff fixing to cause fracture at both
ends and centre. Once again, Bélidor summarizes theory but makes no
advances. He places the neutral axis in the surface of the beam. Book
5 deals with ‘architectural’ matters, such as the classical Orders, taper
and entasis of columns, and so on. Book 6 outlines the preparation of
specifications and contracts.

Belidor’s ‘codification’ of civil engineering knowledge did not prevent
scientific advance elsewhere (his book was reprinted continually for a
century, and his Architecture hydraulique was equally popular in the
field of mechanical engineering). Other, better, material tests were made;
Buffon (1740, 1741) investigated a large range of wooden beams (and
seems to have been the first to note deflexions), and he also made
some tests on iron rods. Poleni (1748) tested the strength of iron in his
investigation of the reinforcement required for the dome of St Peter’s,
Rome; see Chapter 5 below. It was recognized that knowledge of the
basic strength of the materials used was necessary to solve the problems
of the strength of beams and the strength of columns.

2.5 Coulomb 1773

The strength of beams and the strength of columns are two of the four
‘classic’ eighteenth-century problems of civil engineering. The other two
topics are the thrust of soil and the thrust of arches, and all four are
addressed by Coulomb in his first published Mémoire, that of 1773.
Coulomb had possibly been through the school at La Fére, some 40
years after Bélidor had started teaching there; he certainly joined the
graduate school, the Ecole du Corps Royale du Génie, in Méziéres, in
1760. It is likely that Bélidor was the text-book at the school; Coulomb
knew of the earlier work of Vauban (1704, 1706), who had tabulated
thicknesses of retaining walls, and of the tests made by Musschenbroek.
His knowledge of the science of civil engineering was, however, probably
not much wider than these references imply.

Coulomb was posted to Brest after graduation. In February 1764 a
ship was sailing for Martinique, and the engineering officer who had
been assigned to overseas duty fell ill. Coulomb was drafted in his place
at very short notice, and it was not until June 1772 that he managed
to return to France. His duties on Martinique included the design of
fortifications to defend the island against possible renewed attack by the
English, and it is perhaps not surprising that, as a young graduate from
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university, he found that what he had been taught was insufficient for his
tasks. It was during the eight years on Martinique that Coulomb tried to
find solutions to the four classic problems; he wrote the Mémoire, dated
and presented in 1773 but published in 1776, for his own use (as he says
himself in the introduction). He hopes the Académie will find his small
contribution to the monument of learning to be useful; the grand design
is in the hands of great men, but lesser workers, hidden in the darkness
of the foundations, may also perhaps be of help.

The most famous section of the Mémoire is that which deals with the
thrust of soil, and Coulomb is regarded as the founder of the science
of soil mechanics — in fact, rational mechanics had been applied to the
problem since at least 1691 (Bullet). However, Coulomb’s fundamental
contribution was to assume that failure occurred by shear along a plane,
and to determine the position of that plane by the use of ‘principles of
maximum and minimum’.

In dealing with the problem of bending, Coulomb was influenced by his
teacher at Méziéres, Charles Bossut. With the hindsight of the ‘correct
elastic solution, in which the neutral axis is central for a symmetrical
cross-section, it appears that Coulomb was trying to solve the elastic
problem. The short sections in the Mémoire, however, state clearly that
they deal with the fracture of bodies. Coulomb presents two theories,
one for wood and one for stone, and he was almost certainly ignorant
of the work of Parent 60 years earlier. Instead, following Bossut, he
assumes that, at fracture of a wooden beam, stresses are proportional
to distance from the neutral axis; almost by accident he obtains what
is now thought of as the elastic solution to the problem. For stone he
makes the alternative (Galilean) assumption that all the ‘fibres’ fracture
in tension at the same stress, and he moves the neutral axis to the surface
of the beam.

However, Coulomb starts his bending analysis by considering a general
stress distribution, fig. 2.4 (Coulomb’s Fig. 6). He makes a hypothetical
vertical cut ACD of the beam (the letter D is missing from the figure),
and he states very clearly the equilibrium conditions that must be satisfied
at this cross-section. The portion CA above the neutral axis will be acted
upon by tensile forces in the direction QP, while the portion CD is
acted upon by compressive forces QP’. The forces QP are resolved into
components QM and MP, where QM (in modern terminology) represents
a shear stress and MP a longitudinal stress. Thus the portion ADKL
of the beam is acted upon by all the horizontal forces MP, by all the
vertical forces QM, and by the weight ¢. Since this portion of the beam
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Fig. 2.4. Coulomb’s Fig. 6: equilibrium of a loaded cantilever.

is in equilibrium, the sum of the horizontal forces is zero, so that the
total tensile force corresponding to the block CAB must equal the total
compressive force CeD. Further, the sum of the vertical forces QM must
equal the weight ¢; and finally, by taking moments about C, Coulomb
obtains the equation [ Pp-MP-CP = ¢ LD.

In applying these equations to determine the fracture strength of a
beam, Coulomb states clearly that the (shear) stresses QM have very
little influence, provided that the lever arm nL of the weight ¢ is much
larger than the depth on. The question of shear force is considered in
more detail in Chapter 3 below.

Coulomb considers first ‘a piece of perfectly elastic wood’; he assumes
that the material extends in proportion to the load, and that tensile and
compressive moduli are the same. Then the line fh close to the root of
the cantilever (fig. 2.4) will move to gm under the action of the load; the
stresses are represented by mu, and the tensile triangle fge must equal
the compressive triangle hme. Coulomb immediately derives the ‘correct’
value of the elastic modulus, 154

Similarly, for stone, Coulomb assumes that the member is ‘composed
of stiff fibres, that can be neither compressed nor extended’; the body
fractures by rotation about h, and the resulting section modulus is
therefore determined as %bdz. Thus Coulomb is considering the fracture
of a body whose material has a certain strength in tension, and an
infinite strength in compression. Coulomb is well aware that an infinite
compressive strength is impossible, and that a finite area, hh' in fig. 2.4,
will sustain the compressive load on the cross-section. This compressive
load will, says Coulomb, cause fracture to occur along the plane h'q,
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and he deals later in the Mémoire with the way of finding this plane.
Indeed, the next section of the Mémoire gives one of Coulomb’s major
contributions to the strength of materials (and to soil mechanics); he
shows that a masonry pier, loaded axially in compression, will fracture
in shear along a plane inclined to the axis at an angle governed by the
(frictional and cohesive) properties of the material.

Coulomb had made tests on stone specimens, both in tension and (as
near as he could manage) in pure shear. He concluded that strengths in
tension and shear were very nearly equal. His bending tests on beams
made from the same stone correlated fairly well with these tension tests,
particularly when the neutral axis was allowed to shift from the bottom
fibre h to a higher position h'. This is the point where Coulomb leaves
the problem, to move on to questions of columns, soil and arches. He
concludes that the breaking strength of a stone cantilever is governed by a
moment of resistance %S d (Galileo’s formula), and of a wooden cantilever
(Coulomb does not appear to have made tests on simply supported timber
beams) by %S d (Parent’s formula). Coulomb offers no hint that an elastic
stress distribution might be of interest in itself; indeed, the idea of an elas-
tic working state of a beam was almost certainly not considered by him.

Coulomb read his Mémoire to the Académie on 10 March and 2 April
1773, no doubt on the recommendation of his old teacher Bossut, who
was an associé of the Académie in the class of géométrie. It was the first
of 32 memoirs to be presented by Coulomb between 1773 and his death
in 1806, first to the Académie before it was abolished in 1793, and later to
the reconstituted Institut. From his return to France from Martinique in
1772 Coulomb continued his career as an army officer in the Corps Royal
du Génie, but Bossut reported (with Borda) very favourably on the first
memoir, and as a result the memoir was published in 1776 and Coulomb
was admitted to the Académie in 1774 as Bossut’s correspondant.

Coulomb’s careers in academe and in the army were not incompatible,
but he moved slowly to devoting his full time to science; in 1781 he
secured both full membership of the Académie and permanent posting
to Paris, with the rank first of Captain and then of Major. He resigned
from the army in 1790, and became a full-time salaried member of the
Académie and later of the Institut.

2.6 The early nineteenth century

Coulomb never again took up the problem of bending (the famous mem-
oirs on electricity and magnetism, for example, were written between
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1785 and 1791) - nor, it seems, did anyone else in France during the last
quarter of the eighteenth century. Girard’s book of 1798 has been men-
tioned ; he refers fulsomely to the work of Coulomb, but, like Coulomb,
he had not discovered Parent’s Essais of 1713, citing only some tests
made by Parent in 1707 and 1708. Girard, in fact, makes no advance on
Coulomb’s study of 25 years earlier; he continues to place the neutral
axis at the bottom face of the cross-section (fig. 2.2), and he could find no
place for an ‘elastic’ theory, based upon a central position of the neutral
axis, as an explanation of the experimental results. An elastic modulus
of $bd? was useless as a predictor of fracture; the value of 1bd? (Galileo)
seemed best for stone and %bd2 (Mariotte) for wood.

Citizen Girard’s book had been read by citizen Coulomb before pub-
lication in Year VI (i.e. 1798); Coulomb and Prony had been charged
by the Institut to report on the book. (Prony was one of the founders
of the Ecole Polytechnique in 1794, and he became Director of the Ecole
des Ponts et Chaussées in 1798.) Their view, that it was the most com-
plete work on strength of materials from the viewpoint of both theory
and experiment, is printed as a preface to the book. Coulomb signed this
statement; he clearly supported the view that calculations for the fracture
of beams should be based on the neutral axis lying in the surface of the
cross-section.

Thus, enshrined in the approved theory of the Polytechnique and the
Ponts et Chaussées, was a theory of bending, derived by rational me-
chanics by Coulomb, but represented by quasi-empirical formulae for the
calculation of strength. Just as Coulomb had not known of the work
of Parent, so Navier, who had graduated from the Polytechnique and
who finally taught at the Ponts et Chaussées, was not fully aware of the
work of Coulomb, nor that the position of the neutral axis was to be
found by using the condition of no net thrust at a cross-section. Indeed,
as late as 1819 Navier taught in his courses that the neutral axis was
to be located by equating the moment of the compressive forces acting
at a cross-section to the moment of the tensile forces; in this, he was
apparently following a misreading of Coulomb by Duleau (1820). (It was
not until the publication in 1826 of Navier’s Lecons that (Coulomb’s)
correct restatement of horizontal force equilibrium was given, so that the
position of the neutral axis in elastic bending could be located as passing
through the centre of gravity of the cross-section.)

Thus the neutral axis had finally moved from the face of the cross-
section, the position assumed by Galileo, Mariotte, (Coulomb) and Gi-
rard, to a ‘central’ position, that is, to the accidentally correct position for
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elastic bending of a symmetrical cross-section. French work was known
in England, and in 1817 P. Barlow followed Duleau and pre-1826 Navier
in equating the moments of the tensile and compressive stress blocks
instead of the resultant forces; Barlow corrected this mistake in the 1837
edition of his book. However, the movement of the neutral axis was still
not at this time a consequence of the search for an elastic solution to the
problem of bending; it was the fracture problem that continued to be
investigated. Thus Barlow had made tests on wooden beams (typically 2
inches square in cross-section and 48 inches long), and had observed that
the fractures involved about % of the section failing in tension and about
% in compression. By contrast, Tredgold (1822) had his own method of
calculating the position of the neutral axis; the section moduli of the
two halves of the section should have the same value, that is, the second
moment of area of the tension side of the cross-section, divided by the
maximum ordinate from the neutral axis, should be set equal to the
similar expression for the compressive side. (As usual, this calculation
leads to the ‘correct’ central position for symmetrical sections.)

Eaton Hodgkinson published two memoirs in 1824 and 1831 which
make a substantial advance in the analysis of the problem. He knows of
the work of Coulomb, and he constructs a general stress distribution to
satisfy all of the equilibrium conditions, including that of no longitudinal
force on the cross-section. He assumes that the tensile stress might be
represented by the formula

¢ =ap (X)" , 2.1)

a

where the symbols are shown in fig. 2.5; different constants (ag,d’,n’)
hold for the material in compression. For a rectangular section of depth
d = a + d', Hodgkinson shows that horizontal equilibrium is satisfied if

ooa _ ond

n+1 n+1
and he obtains a general expression for the moment of resistance.
The constants are to be found experimentally and, once they are
known, bending strengths can be predicted. As an example, Hodgkinson
found that for Quebec oak, n = 0.97 (tension) and n' = 0.895 (com-
pression); these results came from simple tensile and compressive tests.
A bending test to fracture determined the position of the neutral axis
from the experimental result a/a’ = 23/25. The value of gp was taken
as 8000 Ib/in?; tensile strengths of some other materials are taken from
Musschenbroek. Hodgkinson’s bending formula was therefore essentially

(2.2)
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Fig. 2.5. Hodgkinson’s distribution of bending stress.

empirical, although it incorporated fully the correct statements of equi-
librium. It did not use ‘compatibility’ or ‘stress—strain’ relations, although
as a matter of fact Hodgkinson assumed that strain in bending was pro-
portional to distance from the neutral axis; thus the assumed power law
was actually an assumed stress—strain relationship of the form ¢ = ke”.

2.7 Navier 1826 and Saint-Venant 1864

As was noted above, Navier correctly located the position of the neutral
axis for elastic bending in his 1826 Lecons. The analysis starts simply
by statements of the three conditions of horizontal, vertical and moment
equilibrium, and it follows that the neutral axis passes through the centre
of gravity of the cross-section. Saint-Venant edited an edition of Navier
in 1864, in which the text is expanded enormously by footnotes. As an
example of these notes, Saint-Venant remarks that Navier’s statement
of vertical equilibrium at a cross-section of a beam is muddled about
the way the shear forces act (the question of shear is discussed below in
Chapter 3). Saint-Venant goes on to tabulate the assumptions that Navier
has made, and notes that he is really dealing with pure bending in which
shear is absent. Further, in his elastic analysis in which Navier derives
the basic bending formula M/I = E/R, he has assumed tacitly that
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sections originally plane remain plane after bending, and that individual
fibres are free to expand and contract without affecting their neighbours.
Saint-Venant is, in fact, stating the assumptions of the simple theory of
elastic bending.

The linear-elastic bending formula (curvature proportional to bending
moment) had actually been assumed over a century earlier, as will be
seen in Chapter 4. Navier determined the constant of proportionality
(EI) in terms of Young’s modulus (ie. an elastic constant E from the
tension test) and a geometrical constant calculated as an integral over the
cross-section, which Saint-Venant identifies as the moment of inertia I (or
second moment of area) about the neutral axis of bending. Navier had,
then, with some help from Saint-Venant, given an account of the problem
of elastic bending in section 3 of his Lec¢ons; in section 4 he moves on to
the problem of fracture. He states that the simplest hypothesis, and the
one closest to reality, is that the greatest elastic strain, in either tension
or compression, governs the fracture.

Navier remarks explicitly that his theory of fracture is based on the
assumption that behaviour is linear-elastic right up to the point of
failure. This is a clear statement that it is necessary to make only elastic
calculations in order to determine strength. Those calculations will give
a largest elastic strain at some point in the structure, and it is there that
failure will occur. It is the linear-elastic analysis that gives the essential
result for the computation of the moment of resistance of a beam: the
section modulus can be written z = I /a, where a is the distance of the
extreme fibre from the neutral axis, so that M = 6¢z. Navier allows that
a material might behave differently in tension and in compression, and
this will involve a shift in the position of the neutral axis. (Saint-Venant
digresses at this point to examine the flexure of sections made from
material with such unequal elastic moduli.)

Thus the question of strength is an elastic problem, and Navier derives
section moduli for the rectangle ($bd?) and for the circle (3nr?), and also
for a rectangle bent about an inclined axis. This last analysis, as noted by
Saint-Venant, is wrong; Navier assumes that the neutral plane of bending
is always horizontal for vertical loading, whatever the orientation of the
rectangular cross-section. Saint-Venant gives the correct analysis, and he
acknowledges his debt to the lithographed notes of Persy, recording his
lectures in 1834 for the Ecole d’Artillerie et du Génie at Metz (Todhunter
also consulted these lecture notes). Persy was apparently the first to add
a fourth equation of equilibrium to the three demanded by the statics
of a body considered in a plane — namely the equation resulting from
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moments taken about an axis at right angles to the axis of bending. The
moment about this axis of the forces acting on the cross-section must
also be zero, and Saint-Venant shows how this leads to the determination
of principal axes, and that a correct general analysis of bending requires
the loading to be first resolved into the principal planes.

As has been noted, section 4 of Navier’s Legons purports to deal with
bending failure, but is largely a continuation of section 3 on elastic flexure.
Saint-Venant does not explicitly disagree with Navier’s view that bending
failure may be examined by a linear-elastic theory, but he has a twelve-
page footnote at this point in which the consequences of a non-linear
theory are examined. Saint-Venant mentions the work of Varignon and
Hodgkinson, and he proposes a formula similar to that of Hodgkinson,
but in the slightly different form

¢ = oy [1— (1—-2)"] : 2.3)

where the symbols are, as before, defined in fig. 2.5, and different constants
(o etc) are used for compression rather than tension. The rectangular
section is examined, and longitudinal equilibrium leads to the condition

n _ ' VWA
maao = aocy ; (24)

the value of the bending moment at the cross-section may be written
ba? n(n + 3) ba? , n(n+3)
00—t 00— -
2 (n+1)n+2) 2 W+ +2)
Saint-Venant discusses several cases. First, he takes n = n’ = 1, so that
aooy = d'oy, and the stress distribution is as sketched in fig. 2.6. Since
(a +d ) = d, the value of the bending moment may be written

M= (g) <%bd200> . (2.6)

Thus for the neutral axis on the centre line, a/d = %, and the elastic
modulus of %bd2 is recovered. For the neutral axis dropping to the
bottom of the section, M = }bd’sy, and Mariotte’s formula results, in
which it is assumed that tensile stress governs the fracture, the material
being able to resist very large compressive stresses.

For the more general group of non-linear cases, Saint-Venant assumes
that the stress diagram in bending has continuity in slope at the neutral
axis, that is,

M= 2.5)

! !
—_—a/

2.7)
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Fig. 2.6. Linear distribution of stress with unequal tensile and compressive
moduli.

The value of the bending moment may then be calculated as
R 1 n n+3 1/n+3
M=o (n’+1> Kn+2> Tk (n’+2>] @8

where
1
a n+1\?2

For the symmetrical distribution, fig. 27, n=n,k=1anda=d = %d.
The value of the fracture moment is

1 , n n+3
b= ooy (1) (22) am

The value n = 1 gives the linear-elastic case M = %bdzao; as the
value of n increases, so the value of M approaches %bdzao, which is the
maximum moment of resistance of a beam of rectangular cross-section
made from perfectly plastic material. Figure 2.7 is sketched for n = 3;
Saint-Venant sketches similar curves for various values of n, including the
value n = 10, for which the value of M is less than 2 per cent below the
full plastic value. Although Saint-Venant did not refer explicitly to the
idea of perfect plasticity, he had nevertheless derived the plastic section
modulus.




2.7 Navier 1826 and Saint-Venant 1864 33

Fig. 2.7. Non-linear distribution of stress, equation (2.3), for the case n = n/,
a = d (the sketch shows the distribution for n = 3).

Finally, Saint-Venant considers the case for which ' = 1, n is allowed
to vary, and the elastic moduli are the same in tension and compression
for very small strains (fig. 2.8). The various quantities become

n+1 : k
- () e ()
| 1 n+3 4
re T e [<n+2> * '375]
The explicit assumption is that fracture is governed by the maximum
tensile stress, and that compressive strength is not of significance. As
before, the condition n = 1 gives the elastic case M = %bdzao. As n
increases, the value of a approaches the full depth d and, in the limit,
Saint-Venant obtains Galileo’s formula M = %bdzao.

Saint-Venant points out that for n,n’ > 1, the section modulus always
lies between the limits $bd? (Coulomb) and bd’. He proposes that the
formula %abdzao, where o lies between 1 and 3, will serve as an empirical
expression for predicting rupture moments. As an example, the value of
o for cast iron is about 2, so that the value of n for the stress distribution
of fig. 2.8 would be between 5 and 6; the theory could then be applied

to the bending of non-rectangular sections, using these experimentally
derived values of the constants.

(2.11)
M
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Fig. 2.8. Non-linear distribution of stress for a material strong in compression.

Thus, whereas Navier in 1826 was firmly expounding the linear-elastic
theory of bending as also serving to explain fracture, Saint-Venant, in his
1864 notes, explored various semi-empirical non-linear theories as being
more truly applicable to the experimental results. It is not surprising that
the resulting formulae were, in a practical sense, successful. The general
stress distribution of fig. 2.5 must be such that there is no net thrust
across the cross-section, so that one condition must hold between the six
empirical constants (ao,a,n; 04, @, n’). If the stress distribution is related
to bending strains (plane sections remain plane) then a further condition
may be established by assuming that elastic behaviour is identical in
tension and compression (no discontinuity in slope at the neutral axis
in fig. 2.5). This still leaves four unknown empirical constants to be
determined from the experimental results, and an enormous range of
data can be ‘fitted’ with such freedom in the parameters.

2.8 The full plastic moment

It was, of course, Navier’s linear-elastic philosophy that became
paramount and was virtually unquestioned for a century and a half
as the correct approach to structural design. Non-linear ideas, however,
were not lost sight of, although if they were mentioned, they were treated
mainly as a matter of scientific curiosity. Ewing’s undergraduate text of
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Fig. 2.9. Ewing’s stress distributions for bending beyond the elastic limit.

1899, for example, gives an almost exclusively elastic account of The
strength of materials. He does indeed discuss the ultimate strength and
non-linear strain of tension specimens, but the structural applications
are all linear. The single exception may be found in a page mentioning
the ‘influence of bending beyond the elastic limit on the distribution of
stress’, and fig. 2.9 reproduces two of Ewing’s illustrations concerned with
the bending of a beam of rectangular cross-section.

In his Fig. 54 Ewing imagines the material to be ‘strictly elastic up to
a certain limit of stress, and then so plastic that any small addition to
the stress produces a relatively very large amount of strain’; the state of
stress of the partially plastic section is shown, together with the state of
internal (self-equilibrating) stress that would remain when the beam is
relieved from external load. In the other sketch shown in fig. 2.9 (Fig. 55)
the material is supposed to have different elastic limits in tension and
compression, resulting in a shift of the neutral axis after first yield. Ewing
gives no numerical work to correspond to the distributions of fig. 2.9,
although it seems clear that he had made the appropriate calculations.

The diagrams of fig. 2.9 are, of course, forerunners of the now familiar
‘elastic/perfectly plastic’ idealization of material behaviour for mild steel;
as the bending moment on a cross-section is increased, fig. 2.10, so the
material passes from an elastic state through a partially plastic state to a
condition of full plasticity, where the maximum bending moment, the ‘full
plastic moment’, is attained. Robertson and Cook published in 1913 the
results of a comprehensive series of tests on mild-steel specimens, and they
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Fig. 2.10. Elastic/plastic bending; (a) elastic limit, (b) partially plastic, (c) fully
plastic.

propounded a simple theory of plastic bending based on their work. As a
consequence it was now possible to calculate theoretically the behaviour
of Galileo’s cantilever beam; a complete load/defiexion curve could be
predicted as the tip load increased slowly until collapse occurred.

The essential concept for structural design, however, is not a particular
loading curve, but the fact that there is a limiting value of the moment
of resistance, the full plastic moment. The idea is particularly simple for
a material like mild steel but, as Saint-Venant saw, an empirical theory
could be adapted to predict the ultimate behaviour in bending of a beam
made of any other material. The ways in which plastic theory came to
influence the theory of structural design are discussed in Chapter 9.

2.9 Axial load

Knowledge of the value of the full plastic moment, then, is needed for the
simple plastic theory of structural design. It was realized early in the de-
velopment of that theory that the presence of an axial load could reduce
the value of the full plastic moment. Analysis of the effect is straightfor-
ward if the usual assumptions of the engineering theory of bending are
made. (A major consequence of the presence of a compressive axial load
is, of course, that the member may buckle and move into a pattern of
behaviour not so far considered; the question of the elastica forms part
of the subject matter of Chapter 4. Discussion here is confined to local ef-
fects, that is, to the calculation of the value of the moment of resistance.)

Galileo’s beam is shown in fig. 2.11, but the tip is now acted upon
by an axial load P as well as the transverse load S; it is assumed that
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Fig. 2.11. A cantilever beam acted upon by a transverse and an axial load.

the beam does not buckle. Values of P and S are sought that will cause
collapse of the beam, that is, loads that will cause a plastic hinge to form
at the root of the cantilever. If the transverse load S is replaced by the
variable M = S¢, then the ‘yield surface’ that connects the values of M
and P is to be determined. (In this simple analysis it is assumed tacitly,
following Navier, that the presence of the shear force S itself acting at
the root of the cantilever has no effect on the value of the full plastic
moment. This approximation may be valid for long beams, that is, for
relatively low values of S, but the problem is complex, and is discussed
separately in Chapter 3 below.)

In the absence of axial load, the full plastic stress distribution in
bending is as sketched in fig. 2.10(c), leading to a full plastic moment
of value My. The presence of an axial load P distorts the bending-stress
diagram to that sketched in fig. 2.12. For a rectangular section, the
value of M is given by M = (1 —o?) My, or, using a non-dimensional
expression m = M /My for the bending moment,

m=1—ao . (2.12)
Similarly the value of p = P /P, is given by
p=a, (2.13)

where Py is the value of the ‘squash load’, that is, the maximum axial
load that can be imposed on the cross-section in the absence of bending
moment. Thus the required equation of the yield surface, for m positive,
is

m+p’=1, (2.14)

and this curve is sketched in fig. 2.13, together with the corresponding
(reflected) curve for m negative.
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Fig. 2.12. Stress distribution for full plastic moment in the presence of axial load.
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Fig. 2.13. Yield surface for rectangular section subject to bending and axial load.

As will be seen in Chapter 9, Gvozdev (1936) characterized the prop-
erties of yield surfaces such as that of fig. 2.13. Firstly, they must be
convex; that is, for this symmetrical problem, the equation connecting m
and p (i.e. equation (2.14)) must be within the square m = +1, p = +1,
and outside the diagonal square marked ‘inner bound’. In fact the outer
bound can be narrowed by virtue of the ‘normality rule’ of plasticity, also
to be discussed in Chapter 9; whatever the cross-section of the beam,
it may be shown by consideration of simple deformation patterns that
the yield surface must be horizontal for p = 0 and must make an angle
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Fig. 2.14. The plastic zero-stress axis is an equal-area axis.

of tan12 (just over 60°) with the p-axis for m = 0. (The yield surface
for an I-section lies between the heavy curve shown for the rectangular
section and the outer bound.) Secondly, the fact that the yield surface
shown in fig. 2.13 is of quadratic form and is horizontal at p = 0 implies
that moderate values of axial load will have only a small effect on the
value of full plastic moment (and proportionately less for a practical
I-section than for a rectangular section); this is of obvious help in the
straightforward plastic design of engineering structures.

The ideas presented in this discussion on the influence of axial load,
but without the notion of convexity of the yield surface, were developed
by the ‘Cambridge’ team working in the 1940s and 1950s; the early work
is summarized conveniently in Baker et al. (1956). Further discussion of
the Cambridge work will be found in the next chapter and in Chapter 9.

2.10 Plastic bending about two axes

It has been seen that Navier had not discussed the idea of principal axes
for elastic bending; it was Saint-Venant, following Persy, who formulated
and solved the problem correctly. There is a corresponding difficulty for
plastic bending — that is, in describing the formation of a full plastic
moment when a cross-section is bent about an arbitrarily inclined axis.
Brown (1967) first recorded the general features of this problem.

For a cross-section having at least one axis of symmetry, the ‘principal’
plastic axes will be orthogonal, and one will lie in the plane of symmetry.
They are located by the requirement that, for no net thrust over the
section, one half must be yielding in tension and one half in compression.
In fig. 2.14, for example, the zero-stress axis is an ‘equal-area axis’, the
two shaded areas of the T-section being equal. Thus the plastic principal
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Fig. 2.15. A rectangular cross-section bent about an inclined axis.

axis in this case does not coincide with the elastic principal axis (which
must pass through the centre of gravity of the cross-section).

If the bending moment is applied about an axis which is not one of the
principal plastic axes, then, just as for the elastic problem, the zero-stress
axis will not in general coincide with the bending axis. In fig. 2.15 for the
rectangular section, the moment M acts about an axis inclined at 0 to
the co-ordinate axis Ox, while the zero-stress axis, which must of course
pass through the centre of the cross-section (in order to give equal areas
in tension and compression), makes an angle a with Ox. The section may
be thought of as being acted upon by two independent moments M, and
M,, where

_ = 24p? — 1,2
M, = M cosf = 2ab%eq (1 32)’} (2.15)

M, = Msin§ = 2a’bo, (3z),

where the notation is given in fig. 2.15 and ¢ is the value of the yield
stress of the material. Equations (2.15) are the parametric form of the

yield surface
M, 3/ M, \?
(2ab260> t3 (2a2bao> =1 (216)

tana = gz, (2.17)

From fig. 2.15,
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Fig. 2.16. Yield surface for the rectangular cross-section.
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Fig. 2.17. General cross-section.

and equations (2.15) and (2.16) hold for —1 < z < 1, that is, for |tana|
less than b/a. Similar equations may be derived by the interchange of a
and b when |tan«] is greater than b/a. The yield surface corresponding
to equation (2.16), together with the similar equation for |tan«| greater
than b/a, and both of these with signs reversed (bending in the opposite
sense), are plotted in fig. 2.16. The values of 8 and o marked in fig. 2.16
are the same as those of fig. 2.15; Gvozdev’s normality rule, mentioned
above and to be discussed in Chapter 9, identifies the direction of the
zero-stress axis. It will be seen that the values of 8 and o are the same for
0 = 0 and =n/2; the principal axes for plastic bending of the rectangular
section are, as to be expected, the axes of symmetry.
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Fig. 2.18. Skew-symmetrical yield surface for the general cross-section.

Brown extended these ideas to the plastic bending of the general
unsymmetrical section, fig. 2.17. The zero-stress axis is again an equal
area axis, and a yield surface may be constructed as shown in fig. 2.18.
This surface must be skew symmetric, and there are two values of 8 for
which o« = 6, that is, for which the axis of deformation is parallel to
the axis of the applied bending moment. These plastic principal axes are
sketched in fig. 2.18; they are located by the points of tangency of the
inscribed and escribed circles centred on the origin. The axes are clearly
not necessarily orthogonal; nor need there be any coincidence with an
elastic principal axis.



3
The Effect of Shear

The problem of the breaking strength of a beam continued to be visu-
alized in the form stated by Galileo, namely that of a cantilever beam
encastred at its left-hand end and loaded by a single weight at the free
end. From this formulation was abstracted the ‘cleaner’ problem of the
calculation of the breaking resistance of the cross-section adjacent to the
support, since clearly this was the critical section of the beam.

In calculating the moment of resistance of the beam, Galileo considered
only one of the three statical equations (or four, since Persy’s contribution
of 1834 must be included), namely that the moment of the forces acting
at the cross-section must equal the moment of the applied load. He did
not write the equation of longitudinal equilibrium (Parent (1713)) which
helps to determine the location of the neutral axis of bending, nor did
he resolve forces vertically, which leads to the idea of a shearing action
on the critical section.

As has been seen, Coulomb (1773) did realise that the forces acting on
the critical section must have vertical components in order to balance the
load applied to the tip of the cantilever. Indeed two of Coulomb’s four
problems (the strength of columns, the thrust of soil) are concerned with
shear fractures, and he tried to test his (stone) cantilever beam in pure
shear by applying the load as close as he could to the encastred end. The
experimental technique was not good, but Coulomb measured to his own
reasonable satisfaction the strength of stone in pure tension and in pure
shear, and related these two strengths by ‘Coulomb’s equation’, involving
two physical parameters, cohesion and friction.

3.1 Navier 1826, 1833
For Galileo’s problem, Coulomb stated that the shear stresses at the
critical section would have very little influence on the strength of the

43
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beam, provided that its length were much larger than its depth. Navier
repeated this proviso, and originally (1826) had nothing more to say
on the matter. However, as Saint-Venant points out in his extended
notes to the 1864 edition, Navier added short paragraphs (§§152-155,
see Table 3.1 below) to the 1833 revision of the Lecons. These were in
response to the criticism that his theory did not help with the analysis
of such structural elements as lugs, hooks, gudgeons, keys and cotters,
to which list we may well add (says Saint-Venant) brackets, flanges,
studs, pins of pulleys and blocks, gear teeth, collars, screw threads and
rivets.

It would seem that Navier was not really interested in these ‘mechanical-
engineering’ structural applications, and his added paragraphs of 1833
continue to deal only with Galileo’s problem. At the encastred end
of the beam the vertical load P will produce a ‘vertical strain’
(allongement), and clearly (il est naturel d’admettre) the magnitude of
the load P will be proportional to the magnitude of this ‘strain’ and to
the cross-sectional area of the beam. An elastic constant is introduced
to represent this proportionality and, in accordance with his assump-
tion of a greatest elastic strain, Navier states that fracture will occur
when the ‘vertical strain’ reaches a limiting value. In a notation not
used by Navier, there is therefore a maximum shear load Py that can
be imposed on the beam, and this value of Py is proportional to the
greatest ‘vertical strain’ that can be resisted by the material of the cross-
section.

For a long beam, the elastic bending moment M at the root of the
cantilever will give rise to a horizontal strain, and fracture will occur
when that (elastic) horizontal strain reaches a limiting value. Thus (again
in a notation not used by Navier), there is 2 maximum bending moment
M, that can be imposed on the cross-section of the beam in the absence
of shear force.

For the general case Navier has to deal with a horizontal strain and
a ‘vertical strain’ acting simultaneously at the encastred root of the
cantilever. Navier treats these strains as vectors; that is, the maximum
strain has value equal to the square root of the sums of the squares
of the horizontal and vertical strains. From this Navier deduces the
circular criterion of failure of the beam under the simultaneous action
of a bending moment M and a shear force P:

2 2
GG
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where, if £ is the length of the cantilever,

M = P¢, (3.2)
so that
p, Mo
P=—vw ¢ (3.3)

M2 %
(s+7)

As Navier points out, for large values of # equation (3.3) gives P£ = M,,
while for £ very small, P = P,.

3.2 Saint-Venant 1855, 1856, 1864

Navier has not, of course, distinguished longitudinal strain from shear
strain, and is not aware that strain cannot be treated as a vector. Saint-
Venant’s notes to the 1864 edition of the Legons correct all this.

Saint-Venant’s two great memoirs, on torsion and on flexure, were
published in 1855 and 1856. The first deals with what has come to be
known as ‘Saint-Venant’s problem’, namely the distribution of stress in a
prismatic member of defined cross-section under the action of torsional
couples. This memoir develops the whole basis of the theory of elasticity;
most importantly, strains are properly analysed and related in terms of
displacements of the material, and Saint-Venant obtains the well-known
solutions for torsion of bars of, for example, elliptical, rectangular and
triangular cross-section. Since he has the equations at hand, he applies
them also to Galileo’s problem, and determines the distribution of shear
stress over the cross-section. These bending solutions are developed in
more detail in the second memoir, 1856.

In editing Navier’s text in 1864, Saint-Venant deals first with the
question of strain. Shear strain is identified as an angular distortion, and
Saint-Venant gives the proper value for principal strain at a point where
the (two-dimensional) strains are ey, ey, and y, as

1 }
emax = 3 {(exx +eyy) + [(exx - eyy)Z + yﬁy] } (3.4)

He then applies this to the problem tackled by Navier, which led to
equation (3.1), or, in non-dimensional form,

m?+pt=1. (3.5)
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Fig. 3.1. Interaction diagram for moment of resistance (m) in the presence of
shear force (p).

As a numerical example for a particular value of Poisson’s ratio, Saint-
Venant replaces this circular criterion by an expression which leads to
the elliptical criterion

1.,,3 2_ 4.
e Imt g =1 (3.6)

the two criteria are sketched in fig. 3.1.

In addition to his faulty analysis of strain Navier had, in effect, assumed
a uniform distribution of shear strain across the whole depth of the cross-
section of the beam. Up to this point in his commentary, Saint-Venant
takes the same uniform distribution of shear strain, and is concerned to
give the proper analysis of combined strains. Some idea of the scope of
the ‘footnotes’ to Navier’s text is given by Table 3.1. Paragraph 156 of
Navier’s text starts a new section, dealing with torsion, and Saint-Venant’s
footnotes extend to 264 pages. He presents and develops the whole theory
of torsion of non-circular members given in his 1855 memoir; some 150
pages into these notes, he comes back to Galileo’s problem, and he
determines the distribution of shear stress at the root of the cantilever.
In his analysis he follows the approximate theory of Jouravski (1856), in
which an imaginary horizontal cut is made at the cross-section at which
a shear force P is acting, fig. 3.2. If it is assumed (and this is one of the
approximations) that the shear stress acts uniformly on this horizontal
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Table 3.1. Pages devoted by Navier and by
Saint-Venant to paragraphs 151-156 of the Legons

Paragraph no. 151 152 153 154 155 156

Navier 1 2 1 1 (6 lines) 2

Saint-Venant 12 19 9 21 — 264
A

Fig. 3.2. Imaginary cut in cross-section for analysis of shear stress.

cut, then its magnitude 7 is given by

PAy
=T

where I is the second moment of area of the cross-section, and Ay the
first moment of area of the shaded section in fig. 3.2, all referred to
the neutral axis of elastic bending. From this Saint-Venant easily shows
that the elastic shear-stress distribution over a rectangular cross-section
is parabolic, with a maximum value (at the neutral axis) of } times the
‘mean’ shear stress.

Because of his work on exact solutions of the governing equations,
Saint-Venant is well aware of the approximate nature of equation (3.7).
He notes that it will only be somewhere near the truth for non-rectangular
sections if the section is thin (that is, if the dimension b in fig. 3.2 is small
compared with the overall depth); the total force acting on the horizontal
cut will be evaluated correctly, but the stresses will not be distributed
uniformly over the cut. This restriction on the interpretation of equation
(3.7) was not always appreciated by later analysts.

3.7)



48 The Effect of Shear

——B—
.

‘b-w D

Fig. 3.3. The incorrect (‘top-hat’) distribution of shear stress in an I-section.

Saint-Venant applies the approximate elastic theory to the I-section,
and notes that it is the web that carries by far the greatest part of the
shear force P, while the flanges carry the bending moment M. Moreover
the shear stress in the web, while varying parabolically, in fact varies only
slightly. This observation has led to the simple and effective design rule
that the shear stress in an I-section beam is merely the value of the shear
force divided by the area of the web; the effect of shear on the flanges
can be neglected. (The unthinking transfer of this design procedure from
the I-section to the box-section girder proved dangerous for the design
of steel bridges of this type; see §3.3 below.)

Jouravski’s theory, accompanied by sometimes unremarked approxi-
mations, quickly passed into the standard texts. In built-up I-sections,
for example, in which the flanges are attached through angles to the web
by rivets or bolts, the theory gives a quick way of designing those bolts.
In the same way the theory may be used in elastic composite design to
determine the size and spacing of shear connectors joining a concrete slab
to a steel joist. However, Saint-Venant’s reservation about non-uniform
distribution of shear stress was not always remembered. Ewing (1899), for
example, remarks that ‘the intensity of shearing stress is nearly uniform
over the web of an I-section, and is much greater there than in the flanges
in consequence of the much smaller value of the width [of the web]’.

Case (1925, and in later editions, 1932 and 1938), realises that a hori-
zontal cut through the flange of an I-beam is not the correct approach,
but he gives no solution to the problem; indeed, he states that the stresses
in the flanges ‘are not open to calculation’. Chilver corrects this in the
post-war edition, Case and Chilver (1959). Even Timoshenko himself, in
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the fourth edition (1962) of his Elements of strength of materials (1935),
echoes Case when he states that the question of stresses in flanges ‘is too
complex to be analyzed by elementary methods’. As late as 1968 Pippard
and Baker’s text (fourth edition) illustrates the incorrect ‘top-hat’ distri-
bution, fig. 3.3, in which the shear stress in the flanges is calculated as
a mean value over the full width B. By contrast Shanley (1957), for ex-
ample, not only deals properly with the I-section but also applies correct
theory to the hollow box section.

3.3 Thin-walled sections

Designers working in the field of civil engineering structures are not usu-
ally involved with the use of thin-walled members; the flange of a steel
I-beam, for example, while not having the relatively gross dimensions
sketched in fig. 3.3, is nevertheless sufficiently thick that the magnitude
of the shear stress is not a critical design consideration. The fact that the
shear stress distribution sketched in fig. 3.3 is wrong is of no practical
consequence. Aircraft designers, however, were using thin-walled mem-
bers, and Timoshenko studied some of the problems in the 1920s and
30s; the work was taken up by Vlasov (1940) who gave a comprehensive
account.

The essential feature of the behaviour of a thin-walled member in
shear is that the shear stresses act in a direction parallel to the surfaces
of the cross-section. Thus for the channel section the cuts should be
made as shown in figs 3.4(a) and (b); equilibrium of forces acting on
the shaded sections, for which bending stresses are calculated by simple
elastic theory (just as for the general section of fig. 3.2 leading to equation
(3.7)), will then give values for the corresponding shear stresses. These
shear stresses are shown schematically in the sketch of fig. 3.4(c).

Similarly, fig. 3.5 illustrates the correct elastic shear-stress distribution
for the I-section, and fig. 3.6 that for the box section. A study of the
statics of fig. 3.6 reveals that the flanges of a box section can be subject
to high transverse compressive forces, and they must be designed to resist
buckling.

3.4 Plastic solutions

The analysis of shear stress leading, for example, to the sketch of
fig. 3.4(c), relies on a knowledge of the distribution of bending stress
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Fig. 3.4. Elastic shear stresses in a channel section. (@) and (b): cuts corresponding
to fig. 3.2; (c) shear stresses are linear for the flanges, parabolic for the web.
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Fig. 3.5. Elastic shear-stress distribution for the I-section.

at the cross-section. Thus if a linearly varying distribution of bend-
ing stress is introduced into the equations (of equilibrium), then all the
approximations entailed in Navier’s simple elastic bending theory are
carried through to the calculation of shear stress. The procedure allows
the evaluation of stresses at a local section (the root of the cantilever in
Galileo’s problem); some criterion of failure (for example, that of Navier,
i.e. maximum strain) is then applied to give an indication of the critical
condition.

From Saint-Venant’s commentary, it may be inferred that he was well
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Fig. 3.6. Elastic shear-stress distribution for the box section.

aware that such a ‘solution’ to Galileo’s problem was incomplete. By
inspection, it is reasonable to assume that the root of the cantilever
is the most critical section, but examination of that section alone is
insufficient; a full analysis requires the evaluation of stresses throughout
the cantilever. As will be seen, this observation is not trivial or pedantic.
(In passing, it may be repeated that Galileo stated his problem as that of
finding the value of the tip load that would break a cantilever, but that
he himself transformed this problem of the theory of structures into one
of strength of materials — the evaluation of the moment of resistance at
the root of the cantilever.)

From the engineering point of view, however, what is needed is an
investigation of the effect of shear force on the value of the moment of
resistance at the root of Galileo’s cantilever. Those concerned with the
development of plastic theory were aware that shear stress would have
an effect on the value of the full plastic moment, in some way similar
to the effect of axial load discussed at the end of the previous chapter.
Given the imprecise thinking about shear stress as late as the 1940s and
50s, it is not surprising that the problem proved difficult.

It is indeed difficult, since the analysis must be three-dimensional, and
not confined to the cross-section at the root of the cantilever. Some
experimental evidence was available, and it seemed that the plastic hinge
formed at collapse of the cantilever involved outer plastic zones failing in
pure tension and compression, and a central ‘shear’ zone, in which failure
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Fig. 3.7. Collapse of a rectangular cross-section cantilever, from Baker et al.
(1956).

was actually under combined shear and bending stresses. Figure 3.7, from
Baker et al. (1956), illustrates these zones, sketched for convenience for
the rectangular cross-section.

At a section such as D;E; in fig. 3.7 the outer zones may be shown to
be yielding in pure tensile or compressive stress, as sketched in fig. 3.8, the
shear force being carried by shear stresses in the elastic central core. The
usual simple theory gives the expected distributions in those portions
of the cross-section that remain elastic. For sections such as D3E; in
fig. 3.7, a study of the equilibrium equations enables the extent of the
inner plastic zone to be determined. The analysis was made by Horne
(1951), and this type of approach gives, according to plasticity theory
(see Chapter 9), a ‘safe’ lower-bound estimate of the collapse load of
the cantilever. Horne’s solutions were incomplete, but the lower-bound
estimate was good. Neal (1961a, b) gave full solutions leading to true
lower bounds; these are discussed below.

Horne’s analysis can be applied without change to I-section beams,
provided that the flanges are fully plastic, and fig. 3.9 compares the
reduction in carrying capacity of a beam of rectangular cross-section
with that of an 8 in x 4 in I-section. It will be seen that, as confidently
assumed by Coulomb and Navier, it is only the very shortest beams for
which, in an engineering sense, any significant effect may be noted.

For the engineering design of the I-beam, Heyman and Dutton (1954)
proposed an empirical approach based upon the practical approximation
already noted, namely that the shear stress may be considered to be
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Fig. 3.9. Reduction in carrying capacity due to shear stress.

uniformly distributed over the web. At full plasticity, the assumed stress
distributions are as sketched in fig. 3.10, with the flanges fully stressed to

the yield stress gy, and the web subjected to combined stresses ¢ and ,
where

o? + ki = g}, (3.8)

and the constant k may be either 3 or 4 according as the von Mises
or the Tresca yield condition is taken. In fact, for any value of k, if
the maximum allowable shear force sustainable by the web is denoted
Py, then the moment of resistance corresponding to the distribution of
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9

Fig. 3.10. Approximate stress distributions corresponding to full plastic moment
formed in the presence of shear force.

fig. 3.10 in the presence of a shear force P may be written

213
1— (P%) ] M,, (3.9)

where M; and M, are the full plastic moments of the flanges and web in
the absence of shear force, so that, using the previous notation,

M=Mf+

Mo =M, + M,. (3.10)

In non-dimensional form, equation (3.9) for the moment of resistance
may be written

m=mf+(1—p2)%mw, (3.11)

and this curve is sketched in fig. 3.11. This interaction diagram may be
compared with those of fig. 3.1 due to Navier and Saint-Venant.

Curves such as those shown in figs 3.1 and 3.11 are not true yield
surfaces in the sense required by plasticity theory (Heyman (1970)). Neal
presents both upper and lower bounds to the solution to the problem,
and curves for the first quadrant are sketched in fig. 3.12. For the upper
bounds, Neal used velocity fields similar to those proposed by Leth
(1954); Green (1954) also evaluated upper bounds. If it were possible to
construct a proper yield surface for the variables M and P, the bending
moment and shear force acting at a cross-section, then that yield surface
should be convex; it is at once apparent that no convex curve can



3.4 Plastic solutions 55

°T

0 1

Fig. 3.11. Approximate interaction diagram for the full plastic moment of an
I-section in the presence of shear force.
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Fig. 3.12. Interaction diagram for I-section (after Neal).

be constructed to lie between the upper and lower bounds marked in
fig. 3.12.

The fact is that Galileo’s cantilever has only one loading parameter, the
tip load P; the bending moment M is, in effect, the same variable, since
M = P¢. The exact solution of the plastic collapse problem for Galileo’s
cantilever is difficult, but it is certainly possible to determine upper and
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Fig. 3.14. Empirical curve for an I-section compared with Neal’s bounds.

lower bounds for the value of the tip load for a given cantilever of length
£. These bounds could be recorded on an m/p diagram, fig. 3.13, for a
cantilever of length ¢;; similar points could be plotted for a cantilever
of length £, and so on, and the points connected to give an interaction
diagram. This diagram is not, as has been mentioned, a proper yield
surface.

Neal, following Leth, made calculations on the US rolled I-section
8WF40. The results are shown in fig. 3.14 with the approximate curve
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Fig. 3.15. Typical bending moments for a continuous composite beam.

of equation (3.11) (fig. 3.11) superimposed. The radial lines represent
different length/depth ratios of the cantilever; steel beams for which
Z/D < 2 are not of much practical importance, although in the composite
steel/concrete construction of continuous beams it is possible for points
of contraflexure to lie quite close to supports, giving an effectively short
‘Galilean’ cantilever, fig. 3.15.



4
Elastic Flexure and Buckling

It has been noted that James Bernoulli (1694, 1695) discussed the problem
of finding the moment of resistance of a cross-section in bending. This
same paper makes a fundamental contribution to the problem of the
elastic flexure of a member. Bernoulli remarks that Galileo had contended
(wrongly) that the deflected form of the cantilever was a parabola.
Saint-Venant, in his annotated edition of Navier’s Legons, repeats this
attribution to Galileo, but in fact there is no such contention to be
found in the Dialogues of 1638. The first discussion of an elastic deflected
form seems to be that of Pardies (1673), and he indeed asserts that the
parabolic form is correct.

Pardies starts his book on Statics with clear and accurate statements
of basic laws — the law of the lever, for example (in which his pre-
sentation follows exactly that of Galileo, fig. 1.2), moments of forces,
the laws of pulleys, the forces in windlasses, gear trains and so on. He
then moves on to discuss the question of the shape of a hanging uni-
form cord, and he establishes the powerful ‘Pardies’ theorem’, namely
that the tangents at any two points on the cord intersect at a point
directly below the centre of gravity of the portion of the cord between
the two points. He states that the shape of the hanging cord is not a
parabola, and settles finally for the hyperbola (he had, of course no
knowledge of the calculus. Leibniz (1691) published the solution of the
catenary).

Extraordinarily, however, Pardies states, and in a muddled way proves,
that if a weightless hanging cord is subjected to loading that is uniformly
distributed horizontally (instead of along the cord) then the shape will
indeed be that of a parabola.

Pardies also extends Galileo’s discussion of the cantilever beam of
equal resistance. He notes Galileo’s design — a beam of uniform width

58
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and parabolic depth — and adds the design of a section of uniform
depth and linearly tapering width. For Pardies, fracture occurs because
of extension — or, to use modern terminology, the attainment of a
maximum tensile strain. As an example of the application of this criterion,
Pardies has a brief section on the difficulty of breaking an egg (in
the hand) by applying pressure from end to end. Pardies’ argument is,
typically, unconvincing and non-mathematical, although the observation
is exact; pressure along the axis tends not to bend the shell of the
egg, and only bending will produce tensile strain leading to fracture. By
contrast, pressure along the smallest diameter of the shell will engender
bending.

4.1 James and Daniel Bernoulli

James Bernoulli (1691) made the first analytical contribution to the
problem of elastic flexure of a beam. He published a logogriph: Qrzumu
bapt dxqopddbbp ..., whose secret he revealed in 1694; a letter is replaced
by the next in the Latin alphabet, the second by the letter three away,
and the third by the letter six away, so that aaaaa ... would be encoded
bdgbd ... The logogriph thus reads ‘Portio axis applicatam ...°, and
the decoded statement is that the radius of curvature at any point of
an initially straight beam is inversely proportional to the value of the
bending moment at that point.

All this was amplified in Bernoulli’s Explicationes of 1695, in which he
considers the relative inclinations of two neighbouring cross-sections of
the beam. The neutral axis is taken at the face of the section, but this does
not affect the result that curvature is proportional to bending moment.
Bernoulli does not make the assumptions of small slopes, and hence
the differential equation for the elastic curve is not soluble in terms of
elementary functions. However, his equation is, after manipulation, of first
order only and hence easily soluble in terms of a series expansion. (Saint-
Venant shows that, by a suitable choice of axes, the general second-order
differential equation of bending can always be integrated once without
approximations.)

James Bernoulli, then, was the first to give a solution to the problem of
the shape of a bent elastic strip of uniform cross-section — the problem of
the elastica. The mathematical difficulties lie in the fact that the general
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expression for curvature referred to rectangular axes is

d*y
Ix2
__QT, (4.1)
dy
1+ <t—i;> :|
or (what is the same thing)
dry , (ds\*
) <E§> , 4.2)

where s is length measured along the strip. If the bending moment is taken
as a linear function of x (Galileo’s problem of a tip-loaded cantilever),
then Bernoulli’s first integration gives

dy x?

where ¢ is a constant involving the tip load and the flexural rigidity
of the cantilever. Bernoulli integrated equation (4.3) in terms of infinite
series, and obtained approximate answers (in fact, very close bounds) by
evaluating those series numerically.

As opposed to an approximation to the solution to the bending problem,
Daniel Bernoulli (1741-43), nephew of James, seems to have been the
first to propose the ‘engineering’ approach, in which the approximation
is made to the fundamental equation rather than to the exact solution.
Daniel Bernoulli saw that if deflexions were small and if the x-axis was
taken along the length of the cantilever, then ds ~ dx in equation (4.2),
so that the curvature was now simply d*y/dx? and the equation for
Galileo’s cantilever was

2

EI %x—}z) = Wx. 4.4)
Daniel Bernoulli wrote this equation, which is simply integrable in
quadratures, and obtained the proper cubic equation for the deflected
form and hence the value of the tip deflexion under a load W. His work
is actually a preliminary to a deeper and more difficult study, namely
that of determining the modes and frequencies of vibration of a uniform
cantilever. (He is aware from his solutions that overtone frequencies of
the cantilever are not simple multiples of the fundamental, but are ir-
rational with respect to the fundamental; dissonance of a tuning-fork is
inevitable.)
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4.2 Euler and the elastica

Saint-Venant states that it was Navier who first formulated clearly the
fact that small-deflexion theory of elastic bending could always be made
to lead to simple equations, such as equation (4.4), which were easily
integrable. All that is necessary is to take the x-axis as tangent to some
point of the (deflected) beam; (dy/dx)? can then be neglected compared
with unity.

Euler did not locate his axes in this way; usually he oriented them
with respect to the applied loading. In any case, his great work on the
problem of the elastica does not make the assumption of small deflexions.
The problem had been under lively discussion since the time of James
Bernoulli, but it was Daniel who wrote to Euler in 1742 suggesting
his intervention (in fact, effectively challenging him to intervene). Daniel
Bernoulli had found that the vis viva potentialis laminae elasticae, [ ds/ R?,
where R is the radius of curvature, was a minimum for the elastic curves
of his uncle James (that is, the strain energy in bending was a minimum).
He proposed that Euler should apply his calculus of variations to the
inverse problem of finding the shape of the curve of given length so
that the function [ds/R?> was a minimum. The two endpoints of the
curve were to have specified positions and slopes, and the strip was to
be unloaded except at those ends.

Euler (1744) makes the analysis in the ‘Additamentum I, De Curvis
Elasticis’ to his book Methodus inveniendi lineas curvas ..., which is, in
fact, a book on the calculus of variations. Following Daniel Bernoulli’s
suggestion, Euler immediately obtains the fourth-order differential equa-
tion, and then, with the utmost brilliance, integrates it three times to
obtain

2_ 2.2
dy _ (al—c + x?) | 5)
dx (2 —x2)* (2a2 — 2 +x2)?

(cf. James Bernoulli’s equation (4.3) for Galileo’s cantilever). The deriva-
tion has been purely mathematical, but Euler then shows that equation
(4.5) can be derived directly (without using the calculus of variations)
from James Bernoulli’s basic statement that moment is proportional to
curvature. With this physical interpretation, the external load (applied
through the ends) can be reduced to a single force P, and a*> = 2EI/P,
where EI is the flexural rigidity of the elastic strip.

The constant ¢ in equation (4.5) is a constant of integration, and the
form of the solution of the equation is strongly governed by the relative
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Fig. 4.1. Elastic curves of the second, fourth, sixth and eighth classes (after Euler
(1744)).

magnitudes of a and c. At the origin, the slope of the elastica is

d 2 __ A2
[_y] = a—cl’ (4.6)
dx]0 ¢ (2a2 - ¢?)?

and for a = c, for example, this slope is zero, while for ¢? > 2a® the curve
cannot cut the y-axis at all. Euler proceeds, with very little calculation
at this stage, to distinguish nine classes of solution of equation (4.5),
of which his classes 2, 4, 6 and 8 are sketched in fig. 4.1. Classes 3, 5
and 7 are unique solutions representing transition curves between those
sketched in fig. 4.1, while classes 1 and 9 represent the endpoints of the
analysis.

For ¢ very small, for example, the deflexions are of the pattern of
fig. 4.1(a), but those deflexions are also very small. For ¢ = 0 Euler shows
easily that the infinitesimal deflexions are sinusoidal, and that they can
only be maintained for a certain finite value of the force P, equal to (the
‘Euler buckling load’) n?EI/¢2. (Euler imagines a string AB connected
to the elastica; the string must of necessity carry this finite force.)

For the general second class, fig. 4.1(a), the force necessary to maintain
equilibrium is greater than n2EI/¢2. The class arises for 0 < ¢ < a,
and, from equation (4.5), it is clear that the curve is confined to lie
between x = tc. Class 3 is the special case ¢ = g, and class 4 occurs for
a < c*/a® < 1.651868, fig. 4.1(b). At the upper limit, class 5, points A and
B coincide, and the curve has the form of a figure 8; for larger values
of c, the general shape is as shown in fig. 4.1(c). At ¢?> = 24, class 7,
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the curve becomes asymptotic to the y-axis, and for class 8 it lies wholly
to the right of that axis, fig. 4.1(d). Finally, for ¢ very large, class 9, the
elastica is bent into a portion of a circle. All these curves represent the
elliptic integrals which arise from the basic equation, and Euler obtains
solutions in power series of ¢?/a?, from which he calculates numerical
results (to a large number of significant figures).

It is, of course, the fundamental result of class 1, that of the Euler
buckling load, that has been of importance for the structural design of
columns. Euler himself was fully aware of this importance, and he gave
specifically the (Euler) buckling load for a pin-ended column. He returned
to the matter in his Berlin Mémoire of 1757, in which, in the manner of
Daniel Bernoulli, he approximated the governing equation rather than
its solution, and wrote directly (for class 1, small deflexions) the familiar
engineering equation

2
EIZT); = —Py. 4.7)
Euler did not explore the higher modes which are implicit in equation
(4.7). It was Lagrange (1770-73) who showed that the buckling load of
a pin-ended column could be expressed as m*n2EI/¢?, where m is any
integer; his discussion is along the lines that are followed by a standard
elementary text of today.

4.3 Buckling of columns: the nineteenth century

Euler’s basic result, that buckling of a column is inversely proportional
to the square of the length of the column, had been established experi-
mentally somewhat earlier. As mentioned in Chapter 2, Musschenbroek
(1729) had published the results of a very large number of material tests,
mainly on wood, using his own designs of testing machines to apply
tension, compression and bending. The bending tests confirm Galileo’s
result that the ultimate strength of rectangular beams is proportional
to the width and to the square of the depth of the cross-section. The
compression tests are the first recorded for struts.

Coulomb (1773) specifically rejects Musschenbroek’s formula (and,
therefore, Euler’s also, although he does not mention Euler’s work on
buckling); Coulomb’s own tests, on masonry columns, indicated that
the breaking strength was independent of length. Indeed, stocky stone
columns do not buckle; their failure load, as Coulomb found experi-
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mentally, and for which he provided theory, is merely proportional to
cross-sectional area.

The introduction of iron into structural design prompted tests on that
material. For example, Duleau (1820) carried out bending tests, and
also made compression tests on slender struts, confirming the form of
expression for Euler’s buckling load. A little later, Hodgkinson (1840)
reported similar tests, and he also confirmed that Euler’s formula could
be applied to slender columns. Moreover, his experiments covered sat-
isfactorily ‘pinned’ and ‘fixed’ end conditions, and he deduced that the
buckling loads of a pin-ended column and of a fixed-ended column of
twice the length were the same. However, shorter columns no longer
obeyed Euler’s rule, and Hodgkinson established empirical formulae for
such columns, which were used for some time in the nineteenth century as
the basis for design. It was clear, of course, that short columns would in
theory buckle at very high stresses if Euler’s formula were to be applied
without modification — stresses larger than any possible failure stress of
the material.

Lamarle noted this. The second part of his Mémoire (1846) deals
with axial loading; he transforms Euler’s formula into terms of a critical
stress g,

2
6, = "—EZ (4.8)
(¢/r)
where r is the radius of gyration (about the weaker principal axis) of the
cross-section, so that I = Ar?, and ¢/r is the ‘slenderness ratio’ of the
(pin-ended) strut. Lamarle proposed that Euler’s formula should be used
provided that o, were less than the elastic limit oo for the material, that
is, for a strut whose slenderness ratio was greater than the value given

by
2
(f) _=E (4.9)

60
For shorter struts, the maximum stress that could be carried would be
09, and the strut ‘design curve’ of fig. 4.2 emerges.

There is no record of Lamarle’s proposal having been used in practice,
but Gordon’s empirical formula, as given in Rankine’s handbook of
the middle of the nineteenth century (1862 and many later editions
through to the twentieth century), gives the same stresses as Lamarle
for small and large slenderness ratios. The strut is imagined to bend,
so that the maximum stress (always for a pin-ended strut) results from
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Fig. 4.2. Design curves for struts.

the superimposition of a direct compressive stress and a stress due to
bending. If this maximum stress is set equal to oy, then the empirical

formula is determined as
2
1+a (é) } s (4.10)

00

—_—.
1+a(f)
-

Gordon’s curve, equation (4.11), is sketched in fig. 4.2. Gordon (as quoted
by Rankine) gave proposals for values of 6o and the constant a for various
materials (wrought iron, cast iron, timber) making use of Hodgkinson’s
experimental results, and allowance was made for both fixed and pinned
ends. For example, for a pin-ended wrought-iron strut,

36 000
e (Y
9000 \ r
where the stress is measured in Ib/in?. (For a fixed-ended column of the

same material, the constant in the denominator is 36000 rather than
9000.)

P
0'0=Z

so that

cr

@.11)

G = 4.12)
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4.4 Perry-Robertson

The Gordon/Rankine formula, still embedded in some building codes,
was abandoned in the UK in favour of the Perry—Robertson approach.
Ayrton and Perry (1886) analysed a centrally loaded column which
has some initial curvature, giving an initial small displacement a at
mid-height. If the initial shape is sinusoidal (or, indeed, if attention is
confined to the first term of a Fourier expansion for a more general
shape, since that term dominates the analysis) the simple theory (i.e. a
modified equation (4.7)) shows that the deflexion a increases under end

load P to
P
/I E
a—a(PE_P), (4.13)
where P; is the Euler buckling load of the pin-ended strut, or, what is
the same thing,
’ Ok
= . 4.14
d=a (GE — 0) (4.14)

The total maximum compressive stress at mid-height is therefore made
up of an axial stress ¢ together with a bending stress due to the moment

Pd'; that is
P
a+—1“—c (0“_‘30), (4.15)
E

where ¢ is the distance from the neutral axis of the section to the
outermost compression fibre. Setting I = Ar?, and assuming that failure
of the strut occurs when the total stress reaches the elastic limit o,
expression (4.15) gives

ao=a(1+% T ) (4.16)
rre.—o

This is a quadratic for the value of the critical stress o, viz.
l—0¢ [6o0 + (1 + 1)os] + 690 =0, 4.17)

where n = ac/r*. Equation (4.17) is the Perry formula from which, if the
value of # is known, the value of critical stress that will cause failure of
the strut may be calculated.

For struts of similar geometrical cross-section, the value of c is pro-
portional to that of r, so that the value of # may be written

ac a a
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where A is the slenderness ratio //r. Robertson (1925) made his own
extensive theoretical and experimental investigation of the strut problem,
and he reviewed the work of others. He concluded that a/¢ was roughly
constant for practical columns used in building — the crookedness of a
strut was proportional to its length. An average value of y was (10_3) A,
and the worst (most conservative) value (3 X 10‘3) A. This last value is
the one used in compiling the tables for the 1969 British Standard for steel
design (or rather, for an unexplained reason, the value used is 0.3(1/100)2.
With the particular numbers chosen, both the linear and the quadratic
form give the same value of ¢ from equation (4.17) for A = 0 and 100).
The general solution of equation (4.17) is of the Gordon/Rankine form
sketched in fig. 4.2.

(For the purposes of practical design, the Steel Structures Research
Committee, whose work will be referred to again in Chapter 9, recom-
mended in the 1930s that a safety factor on stress of value 2.36 should
be introduced. That is, for a certain value of ¢ calculated from equation
(4.17), the maximum permitted stress should be 1/2.36 of this value. The
figure of 2.36 was reduced in later British building codes, to 2 and then
to 1.7, before being replaced by the concept of a factor on the applied
loads rather than a safety factor on stress.)

It will have been noted that all of this work directed to the solution of
the problem of design of a column in a practical building has concentrated
on the behaviour of a pin-ended strut (although, from Rankine onwards,
it was always stated that a column with ‘flat ends’ has four times the
buckling load of the corresponding pin-ended member). The formulae,
combining as they do an ‘Euler’ flexural analysis with the idea of a
limiting ‘squash load’, have introduced empirical constants, but two major
modifications are necessary before they can be applied to a practical
structure. Firstly, neither the pinned nor the fixed end represents reality;
a practical column will be connected to other members which may
provide both positional and flexural restraint. To allow for different end
conditions the idea of ‘effective length’ is used — the idea can in fact
be traced back to Euler in 1759. Thus a fixed-ended column buckles at
four times the load for a pin-ended column and, since Euler buckling
depends on the inverse square of the length, the effective length of a
fixed-ended column is one-half of that of the same member with pinned
ends. Similarly, Galileo’s cantilever under axial load has an effective
length of twice that of the pin-ended column. The designer working to
a code will assess an effective length of a particular column in a real
construction and use that value in the formulae.
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Secondly, the practical connexions to a column, instead of restraining
the ends, may induce bending — or, indeed, the column may be part of
a frame and be required to contribute bending strength as well as to
carry axial load. For the purposes of a simple practical design method,
a number of codes adopt a kind of Perry approach; that is, the stress
due to axial load and the stress due to applied bending moment must
together not exceed a certain limit. The code referred to above (British
Standard 449: Part 2: 1969 (The use of structural steel in building) with
amendments through to 1989) gives a formula

fople oy, (4.19)

De Dr
where f, is the calculated average compressive stress,
p. is the allowable compressive stress in axially-loaded
struts (i.e. the value of ¢ which results from equa-
tion (4.17)),
fo is the resultant compressive stress due to bending
about both rectangular axes
and P, is the allowable compressive stress for members
subject to bending.

The interaction diagram implied by inequality (4.19) is sketched in fig. 4.3;
a ‘safe’ design is supposed to lie on the origin side of the straight line.
(As noted below, British Standard 5950: Part I: 1990 (Structural use of
steelwork in building), while still making use of Perry—Robertson ideas,
has a more sophisticated approach to the design of columns.)

4.5 Lateral-torsional buckling

The ‘allowable compressive stress’ in bending, p,., which appears in in-
equality (4.19), is not a constant, but is a function of the slenderness ratio
of the column about its minor axis. The eighteenth-century discussion
of the flexure of the elastica was concerned with a member of uniform
cross-section, perhaps assumed to be rectangular but in fact not usually
specified. However, implicit in these analyses was that bending was tak-
ing place about what is now called the minor axis of the cross-section,
and it has been seen that Navier (1826), or more clearly Saint-Venant
(1864), discussed the general case of such flexure. No mention was made
at that time of the possible instability of a beam when it was bent about
the major axis. It seems that in 1899 both Prandtl and Michell, working
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Fig. 4.3. Design chart for column subjected to combined bending and axial load
(BS449: 1969).

independently, found solutions to the problem of the buckling of a thin
deep rectangular cross-section bent about the major axis.

Timoshenko (1936) discusses Prandtl’s work. Figure 4.4 is reproduced
from Timoshenko’s text on stability, in which he gives a simple account of
the lateral buckling, accompanied by twisting, of a thin deep rectangular
strip under pure bending. The equation governing the angle of twist ¢ is

)

a2

where M is the value of the applied moment, and EI and C are, respec-

tively, the flexural rigidity about the minor axis and the torsional rigidity

of the cross-section. (The value of I is of course hb*/12. The value of C

is approximately 3hb3G where G is the shear modulus of the material,

but see below for a discussion of ‘Saint-Venant’ and warping rigidities.)

Equation (4.20) is exactly analogous to Euler’s ‘engineering’ equation

for buckling under axial compression; it has the trivial solution ¢ = 0
unless

+—¢ 0 (4.20)

M—?JHC (4.21)

in which case ¢ varies sinusoidally and has indeterminate amplitude
(which are, of course, characteristics of the Euler problem).

The value of M given by equation (4.21) gives the critical condition
for lateral-torsional buckling of a rectangular beam in pure bending. The
analysis may be repeated for the cantilever under end load W (Galileo’s
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(b)

Fig. 4.4. Thin deep rectangular strip buckling under the application of equal end
couples M (from Timoshenko (1936)).

problem) — the beam buckles out of plane with combined bending and
twisting at a load determined by the equation
d’¢

S+ (C—2P¢=0, (4.22)

where the origin of co-ordinates is taken at the left-hand (fixed) end of
the cantilever. According to Timoshenko, Prandtl (1899) solved equation
(4.22) in terms of infinite series, which he summed numerically to find
the critical load W, (for which a solution exists other than the trivial
¢ = 0). In fact, as noted by Michell, the solution of equation (4.22) can
be obtained in terms of Bessel functions of order 1 and and the

3
equation giving the critical load is

( we >=0, (4.23)

1
4

J

-

2JEIC

of which the lowest root is
4.013

2 JEIC. (4.24)

These and other solutions are discussed by Timoshenko (1936) and in
the second edition of the same text by Timoshenko and Gere (1961). The
solutions apply to thin deep beams in which warping of the cross-section
is of little consequence.

For the more general cross-section, a beam twisted by end couples will
tend to warp — an initially plane cross-section does not remain plane, but
will distort to follow the helical pattern of the twisting deformation. If

W, =
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this warping is not restrained in any way, then the torsional rigidity C
(in equations (4.20) and (4.21) for example) is the ‘Saint-Venant’ rigidity;
Saint-Venant (1855) gave the first correct examination of torsion under
these conditions. Timoshenko (1905, 1906) realised that if warping were
prevented (by the ends of the beam being constrained to remain plane, for
example, or, in general, by the interaction of neighbouring cross-sections),
then a bending deformation of the cross-section would be introduced that
would increase the resistance of the beam to twisting.

Timoshenko examined the problem of torsion of an I-beam; he did not
establish a general theory, but calculated an extra torsional rigidity C,
by estimating the bending contributions of the flanges of the beam. The
‘warping rigidity’ C; is now sometimes called the Vlasov rigidity; Vlasov
(1940) gives a full and connected account of the torsion of thin-walled
bars of any general cross-section, and shows how the rigidity C; should
be calculated. However, Timoshenko (1905) analysed the general problem
of torsion correctly, and deduced that if the rate of twist of the beam
were d¢/dz, then the resulting torque would be

d a2
CE(ZE — Cld—z(f. (4.25)

Thus for the case of pure bending of a beam of general cross-section,
the governing buckling equation is equation (4.20) if the warping rigidity
is neglected. If equation (4.25) is used, however, then the governing
equation becomes

e 2 M

Y _cii I sp=0. 4.26
Qs PR I (4.26)
The general solution of this equation is
¢ = Ay sinmz + Ay cosmz + Az sinhnz + Ascoshnz | 4.27)
where
2_ (.2 i
m? = (« +ﬂ)1 o, 4.28)
nt=(2+p) +a,
and
C M?
=_— = . 42
“=3¢ = TG (4.29)

The four constants of integration are found from the boundary condi-
tions.
If the ends of the beam cannot rotate about the z-axis (cf. fig. 4.4)
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but are free to warp; then both ¢ and d*>¢/dz? are zero at z = 0,¢. The
constants A> and A4 are both zero, and

Ay sinmf + Az sinhnf =0 (430)
and — m?A; sinm¢ + n*Az sinhn = 0. ‘
Thus a non-trivial solution can occur only if
(m? 4+ n?) (sinhn¢) sinm¢ = 0, (4.31)

that is, sinm/ = 0, or m = n/¢ for the lowest buckling mode. The critical
value of the bending moment is then determined as

Mcr =71 E/IC9 (4.32)
where
1
C 2\ 2
p=n (1 + é%) : (4.33)

Equation (4.32) reduces to equation (4.21) if the warping rigidity C; is
set equal to zero.

Similarly, for Galileo’s problem, allowing for warping, equation (4.22)
is replaced by

4 2 2
clg—cg-%(/—z)2¢=o. (4.34)

Timoshenko (1910) solved this equation in terms of an infinite series to
give

VEIC
Wer =72 o (4.35)
and he tabulated values of y, as a function of #2C/C;. He also showed
that, for large values of #2C/Cj, the value of y, was given approximately
by

4.013
2 = - (4.36)

(-]

cf. equation (4.24).

These specific solutions of problems of elastic buckling show that, for
cases likely to be of practical importance, lateral-torsional buckling must
be considered — the analysis must not be confined to the original plane
of the member. Moreover, if these elastic studies were to be incorporated
in an engineering design process, then account would have to be taken of
the limiting yield stress of a real material (it was seen that the empirical
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approach of equation (4.19), from British Standard 449, introduced an
interaction between buckling and yield).

4.6 Horne 1954

As has been seen, the Perry—Robertson approach aims at the calculation
of a critical stress ¢ in terms of the values of yield stress on the one
hand and an elastic buckling stress on the other. Equation (4.17), for
example, introduces the Euler buckling stress (about the minor axis) o¢
and the yield stress g¢ into a quadratic equation for ¢. The analysis is
formulated in terms of stress, but the equations derive from the evaluation
of bending moment at a critical cross-section; that moment must be such
that buckling of the member as a whole does not occur. The (reasonable)
philosophy underlying such an analysis is that a column on the point of
becoming unstable has little reserve of strength; once a certain value of
bending moment has been reached at a critical cross-section, buckling is
imminent. Some remarks are made on this matter in Chapter 10.

In general, the column in a building frame may be acted upon by
an axial load in the presence of bending applied at both ends about
both axes of the cross-section. Unless bending is confined entirely to the
minor axis, failure of the column will occur by lateral-torsional buckling.
This problem was investigated in the 1950s by M.R. Horne, who was
concerned with the development of the plastic methods for the design of
steel frames, and his work is reported extensively in Baker et al. (1956).

Horne’s basic (I-section) column is illustrated in fig. 4.5, and he distin-
guishes nine cases of significantly different end conditions, as shown in
fig. 4.6. The symbol O, implies that no bending is applied about the major
axis of the section (and similarly for O, and the minor axis). The symbol
E denotes an elastic member connected to the column, which could per-
haps provide restraint about the appropriate axis, while P (which derives
from ‘plastic’) implies the application of a fixed and limited bending
moment such as would be engendered in the plastic collapse of a frame.

Thus the case 0,0, is the pin-ended axially loaded ‘Euler’ column.
The case E,O, is perhaps the one envisaged by the building codes as
of significant importance; the column, part of a building frame, is acted
upon by beams supporting loaded floors. The case PP, is discussed
extensively by Horne (together with its subclass P,0,) — the column
length is loaded as in fig. 4.5, with known and fixed values of the
end couples and a known value of the axial load. A design method,
making use of the analyses described earlier in this chapter, is needed to
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Fig. 45. Column length subjected to known axial load and known terminal
bending moments (from The Steel Skeleton 1I).

predict (and of course obviate) the onset of buckling. Horne combines
ingeniously the results of sophisticated theory (such as that of Prandtl
and of Timoshenko) with a practical approach reminiscent of Rankine
and Perry.

He starts by considering the case of uniform bending about the major
axis (M, = M}) and no bending about the minor axis (Px0,), and
quotes a semi-empirical ‘safe’ interaction formula

7N\ 2
@) e

where P is the Euler buckling load (about the minor axis), that is
P, = n2EI v/ #2, and M is the lateral-torsional buckling moment given by
equation (4.21), i.e. M2 = n2EI,C/¢2. The case of non-uniform bending,
M, = BM,, where —~1 < B < 1, is dealt with by defining a moment
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Fig. 4.6. Classification of column end conditions (from The Steel Skeleton 1I;
paragraph numbers refer to Chapter 15 of that book).
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Fig. 4.7. The factor 1/ \/I_'" gives an equivalent uniform moment for buckling
analysis (from The Steel Skeleton II).

M, = M//\JF, where 1/./F is most easily expressed numerically as a
function of f, fig. 4.7. The interaction formula (4.37) then becomes

2
@G s

For the full case of bending about both axes (PxPy), Horne exploits the
simplifying idea of replacing non-uniform bending about the minor axis
by similarly using the function 1/ \/17 . The equivalent uniform moment
M, is then represented (very accurately) by the first term of a Fourier
half-range series, so that the lateral deflexion u of the column due to
bending (without axial load) can be written

4 My?\ . mz
u= <a+ = El, ) sin 7 (4.39)

where asin nz /¢ represents the initial (Perry—Robertson) lack of straight-
ness of the column.
If now the column is acted upon by a uniform moment M, (actually
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equal to M’ /./F) and an axial load P, and if

M\? [P
&) e

(cf. equation (4.38)), then it is easily shown that the lateral deflexion of

the column increases to
u
!

u = . 4.41
11—, )
When M, = 0, then the equation (4.41) reduces to the familiar expression
Py
W=u—"— 442
P.—P) (442

From this point the analysis effectively follows that of Perry—Robertson;
both the minor-axis bending moment and the major-axis bending mo-
ment are calculated at mid-height of the column, and the total stress
there related to the yield stress of the material. The whole analysis can
be represented by a single chart which can be used for design; conditions
at the ends of the column are also checked.

The whole of Horne’s analysis, summarized briefly above, can be seen
to have developed logically from the elastic theories of the eighteenth
century. The work is applied finally to columns in which one end (or both)
has developed a plastic hinge (a case which is important, for example,
in the design of industrial portal frames). As will have been seen, the
work is based firmly on an accurate mathematical description coupled
with empirical variables which allow for practical imperfections (which
are known only on a statistical basis). Many components of the analysis
(for example, torsional stiffnesses and warping factors, Perry—Robertson
constants, equivalent factors for non-uniform bending moments) are
incorporated in British Standard 5950: Part 1: 1990 (Structural use of
steelwork in building).

The design method may be used for any case for which the end
conditions for a particular column length can be specified. If a particular
section appears to be marginally unsatisfactory, then the substitution of
a slightly larger section for the column (very often without penalty of
weight or cost) is likely to ensure stable behaviour. However, the exact
specification of the conditions for which a column must be designed is
not necessarily a simple matter. This question is also addressed further
in Chapter 10.



5
The Masonry Arch

As was mentioned in Chapter 2, Coulomb’s memoir of 1773 made
contributions to each of the four major problems of civil engineering in
the eighteenth century — the strength of beams, the strength of columns,
the thrust of soil and the thrust of arches. In all four of these topics
Coulomb made advances by considering closely the basic equations of
equilibrium, both for the structure overall and at imaginary internal cuts.
The work on the fracture of beams has been summarized in Chapter 2.

For the next two problems, columns and soil, Coulomb studies failure
planes along which slip is occurring, resisted by the cohesion and friction
of the material. That is, just as for the beam problem, solutions are
obtained from equilibrium equations combined with a knowledge of
material properties. These solutions, and their relation to previous work,
are described further in Heyman (1972). By contrast, Coulomb’s solutions
for arches make only marginal reference to the strength of the material
(masonry), and his exploration of the stability of the arch is based solely
on considerations of equilibrium, coupled (as is made explicit in the title
of his memoir) by principles of maximum and minimum. Indeed the arch
seems to have been regarded as a problem separate from other studies
in the development of structural mechanics, at least until the end of the
nineteenth century.

The arch problem was enumerated by Gautier in 1717, in his book on
bridge abutments, when he listed ‘cing Difficultez proposées aux Sg¢avans,
a resoudre’, namely

1. the thickness of abutment piers for all kinds of bridges;

2. the dimensions of internal piers as a proportion of the span of the
arches;

78
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3. the thickness of the voussoirs between intrados and extrados in the
neighbourhood of the keystone;

4. the shape of arches; and

5. the dimensions of retaining walls to hold back soil.

Coulomb’s fourth problem, the thrust of arches, was directed to the
determination of the abutment thrust, so that the abutments themselves
could be designed; this is Gautier’s problem No. 1, and it is the problem
to which the whole of the analysis was directed. In his problems 2, 3 and
4, Gautier recognizes that the solution requires the examination of both
the shape and the thickness of the arch.

There is no question here of fracture or of ultimate load of the
structure, as there is for Galileo’s beam; that is, the strength of the arch
is not under examination. (In fact, as will be seen, ideas of fracture were
introduced quite early in order to clarify the analysis, but these ideas
did not stem from failure of the arch itself.) Rather it was the ‘working
state’ that was considered; that arches thrust against their abutments was
obvious, and what was needed was a way of calculating numerically the
value of that thrust.

5.1 Robert Hooke 1675

Robert Hooke knew, in a physical sense, how arches worked. It was
his job as Curator of Experiments to the Royal Society to prepare
demonstrations for that body; he held the post from 1663 to his death 40
years later. Among the host of such demonstrations in all fields of science
he showed experiments on model arches, but he could not, at the time (or,
indeed, at any time), provide the corresponding mathematical analysis.
Instead, he published in 1675, in a totally unrelated book (on helioscopes
and other instruments), a series of anagrams ‘to fill the vacancy of the
ensuing page’. Among these, No. 2 yields the famous ut tensio sic vis;
No. 3 is concerned with ‘the true Mathematical and Mechanichal form
of all manner of Arches for Building’, and, deciphered, reads ‘ut pendet
continuum flexile, sic stabit contiguum rigidum inversum’.

As hangs the flexible line, so but inverted will stand the rigid arch. This
solution to the anagram was not published until after Hooke’s death, but
Hooke knew that if he could solve the problem of the shape of the
catenary, he would at the same time have found the shape of the perfect
arch to carry the same loads in compression. The problem of the catenary
was not easy; as has been noted, Leibniz appears to have obtained the
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solution in 1691, and indeed Huygens and John Bernoulli also seem to
have solved the problem at about the same time. In the climate of extreme
secrecy and competition in which these scientists worked, however (the
same climate that led Hooke to cloak his discoveries in the disguise
of virtually indecipherable anagrams), their statements were not fully
supported by mathematical proofs. It fell to David Gregory to publish
the mathematics in 1697.

Gregory made mistakes in his analysis, but it seems clear from his
commentary why Coulomb should have cited the paper some 75 years
later. In Ware’s (1809) translation (from the Latin), Gregory states:

In a vertical plane, but in an inverted situation, the chain will preserve its figure
without falling, and therefore will constitute a very thin arch, or fornix; that
is, infinitely small rigid and polished spheres disposed in an inverted arch of a
cateneria will form an arch; no part of which will be thrust outwards or inwards
by other parts, but, the lowest part remaining firm, it will support itself by means
of its figure ... And, on the contrary, none but the catenaria is the figure of a true
legitimate arch, or fornix. And when an arch of any other figure is supported, it is
because in its thickness some catenaria is included. Neither would it be sustained
if it were very thin, and composed of slippery parts. From Corol. 5 it may be
collected, by what force an arch, or buttress, presses a wall outwardly, to which
it is applied; for this is the same with that part of the force sustaining the chain,
which draws according to a horizontal direction. For the force, which in the chain
draws inwards, in an arch equal to the chain drives outwards.

Here, then, is Gregory’s complete grasp of the end to which the analysis
of the arch is directed; the horizontal component of the abutment thrust
of an arch has the same value as the horizontal pull exerted by the
equivalent hanging chain. Further, the italicized statement (italics added
by Ware) is extremely powerful; in modern terms, Gregory asserts that
if any thrust line can be found lying within the masonry, then the arch
will stand.

5.2 La Hire 1695, 1712

Gregory’s approach to the arch problem, by finding a solution to the
analogous problem of the hanging chain, was, as will be seen, explored
further some 50 years later by Poleni in his study of the dome of St Peter’s,
Rome. Immediately, however, a direct solution was attempted — La Hire
(1695) considered the statics of a semi-circular arch assembled from stone
wedges (voussoirs). The difficulty lay in the assumptions to be made
about the behaviour of the voussoirs; La Hire assumed that the joints
between the stones were frictionless. He then set himself the problem of
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finding the weights of the voussoirs (for the arch of known semi-circular
geometry) so that equilibrium should be maintained. The solution lay in
La Hire’s invention of the force polygon and the corresponding funicular
polygon for the arch (which is nothing more than the line of thrust, or
the shape of the inverted hanging chain, although La Hire did not use
these terms). For an arch with smooth voussoirs the line of thrust must
be perpendicular to the joints, so that the funicular polygon is fixed by
the shape of the arch; working backwards, the force polygon can be
constructed, and finally the weights of the voussoirs found.

If the springing lines of the arch are horizontal it follows that the
weights of the springing voussoirs must be infinite; a finite arch of this
form with smooth voussoirs cannot stand. La Hire reached this con-
clusion as a result of an unrealistic assumption about the behaviour of
the material, and in fact he noted that in practice friction between
the voussoirs would confer the necessary stability. However, he left
the matter there for the time being; the solution to the arch prob-
lem was not much advanced, although some valuable tools had been
invented.

La Hire returned to the arch in 1712, and he abandoned the assumption
of smooth voussoirs; instead, friction was taken to be so large that sliding
could not occur. Thus the direction of the line of thrust within the arch
was no longer fixed as being perpendicular to the joints, and there was no
such simple starting point for the statical analysis. La Hire introduced,
apparently for the first time, a clarifying idea of great power. The object
of the analysis was to determine the value of the arch thrust, so that
the abutments could be designed; if those abutments were too weak, and
gave way slightly, how would the arch behave? La Hire stated that the
arch would break at a section somewhere between the springing and the
keystone.

In fig. 5.1 the joint LM is taken to be critical, and, at that joint,
the (slightly) increased span is accommodated by a ‘hinge’ developing
between the voussoirs at L. Thus contact between the upper portion
LMF of the arch and the lower portion LMI is only at the point L, and
it is through this point that the forces within the arch must pass. This
concept unlocks the statics of the arch; in fig. 5.2, the thrust P at the
hinge point L must act tangentially to the intrados, and, knowing the
weight of the upper portion LMF of the arch (fig. 5.1), the value of all
the forces may be found. Finally, by taking moments about H for the
lower portion of the arch and the pier, fig. 5.2, an expression to check
the stability of the whole structure can be obtained.
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Fig. 5.1. The mechanics of the semi-circular arch (after La Hire (1712)).

La Hire gave no rule for finding the critical point L. Moreover, the
presence of two hinges, L and N in fig. 5.1, does not (as will be seen) imply
that the arch is necessarily in a critical state. However, La Hire’s analysis
is a major contribution to the problem, and the resulting estimate of the
abutment thrust is greater than the minimum necessary for stability, so
that the calculation is, as it happens, ‘safe’.

As was noted in Chapter 2, Bélidor’s section on arches in his Science
des ingénieurs (1729) is based firmly on this work of La Hire. There are
some differences — the weakest section of the arch, LM in fig. 5.1, is taken
to be at 45° (i.e. half-way between the springing and the crown), and
the thrust acts not at L but at the midpoint of LM. Thus the abutment
thrust has value \/fW, where W is the weight of the ‘voussoir’ LMF,
and this value is again ‘safe’. Bélidor’s intention, here as elsewhere in his
manual of civil engineering, was not necessarily to advance theory, but
to establish sets of engineering design rules based upon existing scientific
work.
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Fig. 5.2. The statics of the arch (after La Hire (1712)).

5.3 Couplet 1729, 1730

It was against this background that Couplet wrote his two remarkable
memoirs on arch thrust, in 1729 and 1730. The first of these papers
effectively repeats La Hire’s analysis of the frictionless case, and Couplet
was aware that the work was of little practical application. However, he
did make an interesting calculation on the forces imposed by an arch
on its centering during construction (Heyman (1976)); this important
practical problem had been tackled by Pitot in 1726.

Couplet made a major advance in his second memoir. In his introduc-
tion he states precise assumptions about material behaviour — he notes
that friction in practice locks the voussoirs together against sliding, while
no resistance is offered to separation of the voussoirs. He does not re-
mark on the strength of the stone of which the voussoirs are made, and
by implication he assumes that ambient stresses are so low that crushing
strength is of little importance.

Thus Couplet makes in effect three key postulates about the behaviour
of masonry — it has no tensile strength, infinite compressive strength,
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Fig. 5.3. An arch that cannot collapse under a vertical load at the crown (from
Couplet (1730)).

and sliding failure cannot occur. Further, Couplet demonstrates in his
work the two ways of approaching any structural problem — through
equilibrium (statics), in which thrust lines are considered, and through
deformation (mechanisms) in which patterns of hinges are constructed.

His proof of his first theorem in the 1730 memoir contains precisely
these dual aspects of structural analysis. The theorem states that an
arch will not collapse if the chord of half the extrados does not cut the
intrados, but lies within the thickness of the arch. Couplet has in mind a
semi-circular arch of negligible self-weight subjected to a single vertical
point load at the crown A, fig. 5.3. Whatever the magnitude of the load,
supporting forces can be generated directly from the abutments B and C,
following the straight thrust lines AFB and AGC. Further, says Couplet,
for the arch to collapse the angle BAC must open, and this can occur
only as a consequence of spread of the abutments (which is ruled out);
there is in fact no arrangement of hinges in the extrados and intrados of
the arch sketched in fig. 5.3 that is both compatible with thrust lines for
the load and also gives rise to a mechanism of collapse.

The next problem tackled by Couplet is to find the least thickness of a
semi-circular arch, carrying only its own weight. The arch, says Couplet,
will collapse by separating into four pieces, attached to each other by
hinges R, T, A, K and F, fig. 54. The hinges T and K at the haunches
are placed at 45°; Couplet considers the equilibrium of the arch in this
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Fig. 5.4. Semi-circular arch of minimum thickness collapsing under its own weight
by the formation of hinges (from Couplet (1730)).

state, and finds a single expression relating the thickness of the arch
to its (mean) radius R, namely t/R = 0.101. The statics are evident in
fig. 5.4. For the equilibrium of the piece AK of the arch, the horizontal
thrust at A combined with the weight acting through H leads to a thrust
at K in the line GK. Now GK is not tangential to the intrados at K,
implying that, impossibly, the thrust should escape from the masonry.
Couplet misses this point, but the work is otherwise correct. (The intrados
hinges actually form at 31° from the springing rather than at 45°, but
the analysis is not sensitive to their exact position, and the correct value
of t/R is increased only to 0.106.)

Later, in order to determine the value of the abutment thrust for a
more general shape of arch, Couplet abandons this kind of collapse
analysis, and reworks the La Hire/Bélidor approach; forces are referred
to the centre line SX of the arch, fig. 5.5. The thrust at the crown acts
horizontally at S, and the weight of half the arch in the line LR; a
simple triangulation of forces then gives the magnitude of the abutment
thrust, acting in the line LX. Finally, the dimensions of the piers can be
calculated so that the whole construction is stable.

Couplet’s contribution is outstanding. He had clear ideas of lines of
thrust, and of mechanisms of collapse caused by the formation of hinges;
he made explicit his simplifying assumptions; and he used these ideas
to obtain an essentially correct and complete solution to the problem of



86 The Masonry Arch

Eéél 207
H
Fig. 5.5. Couplet’s force system for design of abutments (from Couplet (1730)).

arch design. His work was noted immediately, and found its way into
standard texts (for example, that of Frézier (1737-39)).

In 1732 Danyzy obtained experimental confirmation of the correctness
of Couplet’s approach. The work was done in Montpellier, and published
obscurely and not until 1778. However, Frézier has a plate based upon
one of Danyzy’s illustrations, showing the collapse of arches made from
plaster voussoirs, fig. 5.6. (Figure 241 is half of Couplet’s arch, fig. 5.3.)
All the arches shown are on the point of collapse, the piers having min-
imum dimensions. Figure 235, for example, corresponds to the collapse
mechanism predicted by Couplet, fig. 5.4. The flat arch of Figure 240 is,
within the framework of the assumptions, infinitely strong; it is collapsing
only because the abutments are tilting.

5.4 The dome of St Peter’s

By about 1740, then, the mechanics of the arch was well understood
— not only had this structural problem been solved, but the theory
could be applied more generally to the analysis of masonry. Poleni was
appointed in 1743 to report on (Michelangelo’s) dome of St Peter’s, Rome,
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Fig. 5.6. Danyzy’s experiments on model arches (from Frézier (1737-39)).

constructed two centuries earlier, and his Memorie istoriche, published in
1748, gives a comprehensive review of the existing state of knowledge.
He knew the work of La Hire and of Couplet; from fig. 5.7 it will
be seen (fig. XII) that he knew of Hooke’s hanging chain. He also
quoted Gregory, and an interesting development of Gregory’s work by
Stirling (1717). (Fig. XI, an inverted catenary formed by the balancing
of smooth spheres, is based closely upon an illustration by Stirling.)
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Echoing Gregory, §5.1 above, Poleni states explicitly that in order for an
arch to be stable, all that is necessary is that the line of thrust should lie
everywhere within the masonry.

The dome of St Peter’s had developed cracks running up from the
drum along generators, and dying out near the crown; these meridional
cracks divided the dome into portions approximating half-spherical lunes
(orange slices). Poleni sliced the dome hypothetically into 50 such lunes,
one of which is shown schematically as the tapering half arch of fig. XIII,
fig. 5.7; he then considered the equilibrium of this quasi two-dimensional
arch tapering to zero thickness at the crown. The thrust line was deter-
mined experimentally by loading a flexible string with a series of unequal
weights, each weight being proportional to that of a segment of the lune
(due allowance was made for the weight of the lantern surmounting
the eye of the dome). Figure 5.8 shows the experimental result; the in-
verted chain lies within the thickness of the dome. The sliced arches were
therefore safe, and so, a fortiori, was the whole cracked dome.

In 1743 Le Seur, Jacquier and Boscovich, the tre mattematici, had
made an alternative study of the dome and had concluded that extra
ties were needed at the base to contain the horizontal thrust. They had
made an estimate of this thrust by an early application of virtual work (a
technique which has become of increasing importance, as will be seen in
Chapters 7 and 9). Poleni agreed that extra ties should be installed; his
own estimate of tie force came from the horizontal pull of the hanging
chain.

5.5 Coulomb 1773

Coulomb provided the final pieces of mathematical rigour to complete
the theory of masonry arches, and he did this without knowing of the
work of Couplet or of Poleni, although La Hire’s analysis had found a
place in Bélidor’s handbook, as has been seen. However, Coulomb as a
young man had lived in Montpellier, and he knew Danyzy there; it seems
certain that he knew of the collapse of arches by the formation of hinges.
Indeed, he concludes that in practice failure will always occur by hinging
between voussoirs, and he makes the assumption of slip being prevented
by friction. His work on the fracture of columns makes him aware of the
possibility of crushing at a hinge point, and he shows how to allow, if
necessary, for a finite area involved in transmitting a thrust (in order to
avoid the theoretically infinite stresses induced by line contact).

Figure 5.9 reproduces one of Coulomb’s figures of 1773; the half arch
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Fig. 5.7. Illustrations of the mechanics of masonry arches (from Poleni (1748)).
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Fig. 5.8. The hanging chain applied to the analysis of the dome of St Peter’s,
Rome (from Poleni (1748)).

is maintained in equilibrium by a horizontal thrust H at the crown
(supplied by the other half arch) acting through the point f. Failure is
occurring at the joint Mm between voissoirs. Coulomb considers first that
hinging occurs about point M in the intrados, and he writes a general
expression for the value of H. He then shows that the position of M
must be chosen so that the value of H is maximized; the hinge cannot
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Fig. 5.9. The equilibrium of the arch, as considered by Coulomb (1773),

be placed arbitrarily (as, for example, at 45°). Moreover, this maximum
value of H, once found, is the minimum value for which the arch will be
stable. Similarly, if failure is occurring by hinging about the point m in
the extrados, then m must be chosen so that the value of H is minimized,
and this is the maximum value for which the arch will be stable.

This seems to be the first statement that bounds could exist on the
value of a structural quantity. The idea was demonstrated physically at
the Institution of Civil Engineers by Barlow (1846), who started his paper
by acknowledging the work of Coulomb. He knew of the equivalence of
the line of thrust and the hanging chain, and he showed models of arches
of minimum thickness for stability. In another experiment six voussoirs
were assembled as in fig. 5.10, with the ‘mortar’ in each joint in the
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Fig. 5.10. Barlow’s model voussoir arch (1846) demonstrating alternative posi-
tions of the thrust line.

form of four small pieces of wood, each of which could be withdrawn by
hand. Three out of the four pieces were then indeed removed, in different
configurations, and alternative positions of the thrust line were thus made
‘visible’; three positions were sketched by Barlow in his illustration. The
steepest curve, touching the crown at the extrados, is called by Barlow
‘the line of resistance’, and the flattest curve ‘the line of impression’. They
represent the limits corresponding to the least and greatest values of the
horizontal component of the abutment thrust.

Coulomb’s work was assimilated slowly into the technical education
of French engineers. The Ecole des Ponts et Chaussées, for example, was
well aware of his contributions, and the second edition (1833) of Navier’s
Légons devotes about 50 pages to arch theory. (Prony had taken forward
Coulomb’s work on soil mechanics in 1802.) Development of graphic
statics in the nineteenth century, which made lines of thrust part of the
designer’s stock in trade, took place after the masonry arch had become
obsolescent; the 1830s saw the construction of the last of the large span
masonry bridges.

A definitive exposition of arch theory was given in 1845 (published
1854) in a long memoir by Yvon Villarceau. He knew that the arch
was essentially statically indeterminate, and that there existed therefore
an infinite number of equilibrium states; he developed a ‘safe’ design
method by requiring the centre line of the arch to coincide with one
of the possible lines of thrust for the given loading. This inverse design
method requires the numerical solution of the equations, and the results
are presented in the form of tables which can be used immediately in
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standard calculations by the bridge designer. As a design method there
is really nothing to be added.

5.6 The plastic theorems

As will be noted in Chapter 7, Castigliano (1879) applied his elastic en-
ergy theorems to, among other practical examples, the masonry bridge;
he obtained solutions that made use of the elastic properties of the
stone and mortar, and allowed for cracking should the thrust line fall
outside the ‘middle-third’ of the cross-section. Similarly Pippard et al.
(1936, 1938) made careful tests in the 1930s of model arches with steel
voussoirs, and showed that the slightest imperfection of fit (e.g. at the
abutments) converted an apparently hyperstatic into a statically determi-
nate three-pin arch. However, Pippard attempted to interpret his results
by principles of minimum elastic energy. The justification for the ‘equi-
librium’ approach of Poleni, Coulomb, Barlow and Yvon Villarceau is
provided by the twentieth-century plastic theorems (to be discussed more
fully in Chapter 9).

The necessary assumptions for the application of plastic theory to
masonry are that

(i) masonry has no tensile strength,
(i) masonry has infinite compressive strength,
and (iii) sliding does not occur.

These are, of course, the assumptions made from Couplet onwards;
Coulomb discussed necessary modifications if the stone were in danger
of crushing. On the basis of these assumptions Kooharian (1953) showed
that the analysis of masonry could be interpreted within the framework
of plasticity (see e.g. Heyman (1995)).

In fig. 5.11(a) a hinge is opening in a voussoir construction; if the
axial load being transmitted at the hinge is N, then the effective moment
has value |[M| = hN. The lines M = +hN define a permissible region,
fig. 5.11(b), which is in fact a yield surface of plastic theory. A point in the
M, N diagram represents a state of the cross-section being considered. If
M| < hN, the eccentricity of the thrust is less than h, and no hinge is
formed; for |[M| = hN a hinge forms in the extrados or intrados; and
[M| # hN as thrusts must lie within the masonry.

If the stone of infinite strength is replaced by the real stone with a finite
crushing strength, then the yield surface AOB is replaced by the curved
boundary OCDEOQ, formed by two parabolic arcs. However, only a small
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Fig. 5.11. The yield surface for masonry.

portion of this real yield surface applies to practical masonry structures.
A typical value of permitted stress used in nineteenth-century design of
large bridges is 10 per cent of the crushing strength (Yvon Villarceau);
nominal stresses are likely to be less than this, but even at 10 per cent
the portion of the yield surface is the slightly curvilinear triangle OCE.

Whether or not the straight or slightly curved boundaries are used,
the ‘safe’ theorem of plasticity states that if all stress resultants lie within
the yield surface (i.e. within the triangle OCE), then the construction is
indeed safe, and cannot collapse. The power of this theorem lies in the
fact that it is sufficient to find any one such safe state. In terms of arch
construction, if any one of the infinitely many lines of thrust equilibrating
the applied loads can be shown to lie within the arch profile, then this
is proof that the arch cannot collapse under those loads. This theorem
was, as has been seen, stated explicitly by Poleni in his examination of
the dome of St Peter’s.

Thus design rules for low-stressed masonry construction should be
directed to the goal of ensuring that the shape of the structure conforms to
the shape required by statics — the two surfaces of the arch must be able to
contain the inverted hanging chain. These are rules of geometry, effective
for materials working at low stresses (stone, timber), but ineffective, as
Galileo saw, for structures that work their materials harder.



6

Elastic Beams and Frames

It was clear to Galileo that a beam resting on three supports (which,
in modern terminology, would be hyperstatic) could be subjected to
forces not envisaged by the engineer. That is, an accidental imperfection
(and Galileo used the word accidente), such as decay of one of the end
supports, could lead to a set of forces that would break the beam. He
was equally clear that no such accident could happen to a beam on two
supports; if the supports sink then the beam follows — the statics of a
statically determinate beam are unique.

However, it does not seem that Galileo was concerned with any con-
cepts that might stem from the consideration of what is now known
as the hyperstatic structure. His objective was, as has been described,
to calculate the breaking strength of beams, and for this purpose he
determined the greatest value of bending moment in a beam, whether
that beam were simply supported or a simple cantilever. The value of
bending moment having been found, the problem then became one of
the strength of materials, and the historical notes given in Chapter 2 are
concerned with the correct way of calculating the moment of resistance
of a cross-section.

6.1 Girard 1798

It was noted in passing in Chapter 2 that Mariotte made tests on fixed-
ended beams, and that he concluded from his experiments that their
strengths were twice those of corresponding simply supported beams.
Mariotte gave no theoretical explanation for this result, and the problem
of the strength of the hyperstatic beam seems to have remained unex-
plored throughout the eighteenth century. However, in 1798 Girard (in
his book to which reference was made in Chapter 2) gave the analysis for

95



96 Elastic Beams and Frames

Fig. 6.1. Girard’s diagram for the analysis of the breaking strength of a fixed-
ended beam.

the breaking strength of a fixed-ended beam and of a propped cantilever;
in fig. 6.1 is reproduced his diagram, showing a ‘virtual’ displacement he
used in his calculations.

Figure 6.2 shows the beam sketched in a more modern convention;
it is simply supported at the points V and Z. If the beam has moment
of resistance B at the loading point, then in the case M = N = 0 the
collapse load has value

(g+f)

P=B s (6.1)
If, however, the loads M and N have positive values, then the value
of the collapse load P will be increased, and Girard uses the sketched
displacement of fig. 6.1 to solve this problem. He then considers the case
in which the value of N is just sufficient to cause fracture at the support
V, where the moment of resistance has value B’, and similarly for the
load M, and he shows that the total load that can be sustained is

(g+f) + B’g+B’f‘

P+P =B 6.2)
gf gf (
Further, for a prismatic beam B’ = B’ = B, and
p+p —258t)) (6.3)
gf

which completes the proof that the strength of a fixed-ended beam, with
ends restrained at V and Z, is twice that of the simply supported beam.
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Fig. 6.2. Figure 6.1 redrawn.

Finally, Girard shows that the strength of a uniform cantilever (fixed at
V and simply supported at Z) is

(g +f)

P+P =B
gf

(6.4)

6.2 Navier 1826

Girard’s results, then, are those of a collapse analysis; the idea of an
ultimate moment of resistance is accepted, and an examination of the
structure then follows. Girard extends his method briefly to a discussion
of a continuous beam resting on a number of equally spaced supports.
It fell to Navier, some 25 years later, to examine the problem of the
continuous beam from the point of view of elastic behaviour.

As was mentioned in Chapter 4, it seems that Navier was the first
to formulate a general small-deflexion bending theory by taking one of
the co-ordinate axes to lie along the initial direction of the (straight)
member. The curvature under the action of a bending moment M can
then be approximated by d?y/dx?, leading to the basic elastic equation

d?y

If the bending moment M is a function of x only, this equation is
straightforward, and it was seen that Daniel Bernoulli (1741) had in fact
written the equation for a cantilever, equation (4.4), and integrated in
quadratures to obtain an expression for the deflected shape. Similarly
Euler (1757) had solved equation (6.5) for the case M = —Py, and
obtained directly ‘Euler’ buckling loads.

Navier in his Legons of 1826 assimilates all this information in his
notes for the students of the Ponts et Chaussées. The second volume of
this text discusses problems in fluids and in design of machine elements.
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Fig. 6.3. Propped cantilever with a single redundancy.

The first volume is divided into four sections, the first of which is
concerned with ‘strength of materials’; it was this section alone that
Saint-Venant expanded at such length, and that was discussed in Chapter
2 in connexion with Galileo’s problem. The second section of Navier’s
first volume deals with geotechnical problems, and the third with the
behaviour and design of masonry arches.

The fourth section is concerned with the behaviour and design of
timber structures. Beams in 1826 were, of course, in general made from
wood, and it is this section of Navier’s Lecons which deals with bending.
After establishing equation (6.5), Navier tackles problems of hyperstatic
indeterminacy in connexion with trusses, and this work will be referred
to again in Chapter 7. For his first bending problem, that of a propped
cantilever, fig. 6.3, Navier introduces a single redundant quantity (an
unknown reaction Q at the simple prop), so that the bending equation,
the second-order differential equation (6.5), contains one unknown. A
double integration introduces two further unknowns, and three boundary
conditions (zero deflexion at both ends and zero slope at the fixed end)
suffice to evaluate the three unknown quantities and to solve the problem.
Navier’s notation is very close to that used today, and his methodology
for finding the elastic solution remains unchanged, although different
techniques of calculation were soon developed.

For example, Navier wrote separate differential equations for the por-
tions AC and CB of the beam in fig. 6.3, and matched solutions by
ensuring that they gave the same slope and deflexion of the beam at
the common point C. Thus in fact four constants of integration are
involved, and it was not long before techniques were introduced to deal
economically with discontinuities such as are engendered by the point
load P in fig. 6.3.

The beam sketched in fig. 6.4 is acted upon by a series of point loads,
which divide the length into sections 1, 2, .... The differential equations
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Fig. 6.4. Long beam acted upon by several loads.

of bending for the first two sections may be written

d’yy
EI e —Rx,
(6.6)
2
and Eld—l}z = —Rx+ F(x — a),
dx?

and integration of these equations will give rise to four arbitrary con-
stants, two of which may be found by expressing continuity of slope and
deflexion at x = a. However, Clebsch (1862) showed that the equations
could be written with only two constants, independently of the number
of sections of the beam being considered, if they were integrated in the
form

Rx3
Ely, = ——g +ax + B,
(6.7)
Rx* F
Ely, = __Tx + g(x«a)3 +ax + 8.

Evidently at x = a (and at x = b and so on) the required continuity is
achieved. It is also evident that a (hyperstatic) beam resting on several
supports can be analysed in the same way.

6.3 Slope-deflexion equations

Navier made explicit the elastic basis of calculation of such hyperstatic
structures. The equations of equilibrium are insufficient to determine
the required structural quantities, and have to be afforced both by the
(elastic) laws of deformation of the members, e.g. equation (6.5), and
by the conditions of compatibility (members must be joined to each
other in a prescribed way, and the structure has to satisfy specified
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Fig. 6.5. Notation for slope-deflexion equations.

support conditions). Deeper examination of the hyperstatic structure —
the idea that such a structure is capable of sustaining states of self-stress
— seems not to have been undertaken by Navier. However, the principles
were clear, and, as with Clebsch noted above, attention continued to be
directed to reducing the labour of calculation.

It was appreciated that the equations to be solved were linear in the
force quantities (loads and reactions, and bending moments); the problem
was how to simplify the solution of a large number of linear simultaneous
equations. Clapeyron (1857) was the first to write elementary ‘slope-
deflexion’ equations. In fig. 6.5 a uniform beam is acted upon by a
uniformly distributed load w and end couples M and M’; then the end
slopes (clockwise positive) may be written

6EI0 = iws>— (2M + M) ¢,
(6.8)
and —6EIf = iws* — (M +2M')¢.

Clapeyron then considers a continuous beam of n spans, so that 2n
equations may be written involving, linearly, 4n quantities like 6, 6’, M and
M'’. At each support the moments and slopes are equal, so that a further
2(n — 1) equations may be written, and there are thus (4n — 2) equations
for 4n unknowns. If, for example, the two ends of the continuous beam
are simply supported, then two values of the bending moment are known
to be zero, and the problem may be solved; alternatively, a clamped end
will introduce a known zero slope, and again the number of equations is
sufficient.

Bertot (1855) is sometimes credited with ‘Clapeyron’s’ theorem of
three moments, since (acknowledging Clapeyron) he applied equations
(6.8) to a continuous beam, simply supported at its ends, and showed
how numerical solutions could be easily found. If the slopes given by
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equations (6.8) are equated at each support in turn, then

2(¢1 + )My + (2M, = 1 (wif] + wof3)
(6.9)
HMy + 262+ 43) My +63M3 = % (Wz/% +W3/g)

and so on.

If now some value is assumed for M, the first of equations (6.9) may
be used to calculate M, the second will give M3, and so on, until finally
the last equation will give a value of M, which should in fact be zero.
A second assumed value for M, will give a different value for M, ; since
the problem is linear, interpolation will give the correct value for M; for
which M, is zero, and hence correct values for all the other unknowns.

6.4 Hardy Cross 1930

Such numerical techniques were pursued in various guises for the best
part of the following century — elastic theory applied to beams and frames
generated large numbers of linear simultaneous equations, which had to
be solved by hand calculation. For example, more than 50 years after
Clebsch (1862), the ‘discontinuity’ notation was tidied up by Macaulay
(1919), was generalized by Wittrick in 1965 to include problems involving
axial load, and was embraced by Lowe in 1971 in his Classical theory of
structures.

Pursuing a different path, Hardy Cross developed in 1930 his method
of moment distribution, in which a partial solution for a modified frame
is altered systematically to lead to the correct solution. Although the op-
eration of the method involves, apparently, some (imaginary) adjustments
to the actual structure, it is in reality yet one more way of obtaining ap-
proximate solutions to a set of linear equations; the approximation may
be made as exact as is wished by carrying the process on for a sufficient
number of stages.

Some preliminary lemmas are needed, of which two are illustrated in
fig. 6.6; these lemmas follow directly from equations (6.8). In fig. 6.6(a) a
number of members, whose remote ends are clamped, are all connected
together rigidly at a single node. The stiffness of each member in bending
is defined as k = EI/¢, where EI is the flexural rigidity in bending and
¢ the length of the member. If, then, a couple M is applied to the node
causing the ends of all the members meeting there to turn through the
same angle, then an end couple will be induced in member r of magnitude
M, = (k, /Ek,) M ; the bracketed term is the ‘distribution factor’ of
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Fig. 6.6. Structural elements for the moment-distribution process.

the member. A second application of equations (6.8) is illustrated in
fig. 6.6(b). If a moment M, is applied to the end of member r, then a
moment %M, is induced at the far, clamped, end; the ‘carry-over factor’
is % (More complex expressions for distribution and carry-over factors
may be written for members carrying axial load, and for members having
their remote ends pinned rather than fixed.)

The example of a three-span uniform beam, fig. 6.7(a), will make
the method clear. The first stage in the process is to apply external
‘clamps’ to each joint, so that the continuous beam is replaced by three
separate fixed-ended sections. The external loads are then applied — in
this example, the single point load will induce ‘fixed-end moments’ of
value 300 (arbitrary units) as shown in fig. 6.7(b). The left-hand fixed
end can supply the required fixed-end moment of 300, but evidently
the moment of 300 acting on the clamp at B must be supplied by some
external agency. The clamp at B is now ‘released’, that is, an anticlockwise
moment of 300 is applied at B, fig. 6.7(c). By the two lemmas of fig. 6.6,
the moment of 300 splits as 150/150 at B since the two members meeting
there have equal stiffnesses, and moments of 75 are induced at both A
and C. Figures 6.7(b) and (c¢) are now superimposed to give the state
of fig. 6.7(d), in which joint B is now ‘in balance’, but joint C requires
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Fig. 6.7. The first stage of a moment-distribution process. (a) The loading, (b) all
joints clamped, (c) external couple applied at B and (d) joints reclamped.

the application of an external couple of magnitude 75. Joint B is now
‘reclamped’, and joint C is ‘released’ (ie. a clockwise couple of 75 is
applied), inducing ‘carry-over’ moments at B and D.

The whole process can be tabulated easily, as shown in Table 6.1. The
process has been abandoned with joint C slightly out of balance, but
it will be noted that convergence is rapid. The computational method
can be extended to complex frames consisting of arrays of beams and
columns, and full allowance can be made for lateral deflexions (sway) of
such frames.

Hidden in the example of fig. 6.7 is a fundamental distinction between
the force and displacement methods of elastic structural analysis. In the
conventional view of a hyperstatic structure, the three-span beam with
fixed ends has four redundant force quantities, whose values are to be
determined. There is some choice as to how these four quantities are
assigned physically, but they could be the four bending moments in the
beam at the fixed ends 4 and D and at the internal joints B and C.
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Table 6.1. Moment distribution for the beam of fig. 6.7

A B C D
Distribution
factors R 1
Fixed-end
moments —300 300
Balance B -175 —150 | =150 -175
Balance C 18.8 375|375 18.8
Balance B —4.7 —-94 | =94 —4.7
Balance C 1.2 23124 1.2
Balance B -0.3 —0.6 | —0.6 —0.3
Stop.
Totals: —380 140 | —140 —40.2 | 39.9 20
Exact values —380 140 | —140 —40 | 40 20

Table 6.2. The problem of fig. 6.7 solved in symbols

A B C D

Apply x at B Ix Ix

=
=

ENTERNTE
=
[N

and y at C

‘=
ol
‘=
N
‘=

Indeed, it is the values of these four bending moments that are displayed
in the last line of Table 6.1.

However, the Hardy Cross method works in fact with displacement
rather than force variables; although it is not immediately apparent,
the beam of fig. 6.7 is regarded as having only two unknown quantities
whose values are to be determined, and these are the rotations of the
beam at the internal supports B and C (whose values are not actually
calculated). Thus a system of four simultaneous equations is replaced
by only two equations in Hardy Cross’s method, as will be evident if
the distribution process of Table 6.1 is carried out with symbols, as in
Table 6.2.

If the values of x and y in Table 6.2 are such that ‘balance’ has been
achieved exactly, then

at B 300+x+3y=0 } (6.10)

and at C x+y=0,

from which x = —320 and y = 80, giving the last line of Table 6.1.
The starting quantities for the moment distribution process are the
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‘fixed-end moments’. The first line of Table 6.1 gives these moments for
a single central point load on span AB, fig. 6.7, and it is clear that
any other loading on the beam can be dealt with span by span for the
clamped configuration of fig. 6.7(b) — all that is needed is a straightfor-
ward calculation for a single-span clamped beam in order to give the
required fixed-end moments. Bendixen (1914) had introduced fixed-end
moments in his development of slope-deflexion equations for the solution
of continuous beams and frames; these equations are written in terms of
displacement variables (rotations at the joints), but he did not anticipate
Hardy Cross in proposing a systematic method of approximate solution.

In retrospect, Hardy Cross’s method could be classified as a ‘relax-
ation’ technique. Southwell (1940) developed his relaxation methods for
dealing, in general, with (two-dimensional) continuum problems; the gov-
erning partial differential equation for a given problem is replaced by
finite-difference equations whose solutions are sought at a large number
of discrete nodal points embracing the field under study. These finite-
difference equations are, in effect, linear simultaneous equations, and the
relaxation technique gives an orderly procedure for reducing to zero the
‘residuals’ at each node — in Hardy Cross’s beams, for reducing to zero
the out-of-balance moments at the joints.

6.5 Reciprocal theorems

The methods described in this chapter for dealing with problems of
bending (beams and frames) were developed against the background of
the establishment of a more general elastic theory of structures. Cas-
tigliano’s theorems of 1879, for example, are applicable to frames as well
as to trussed frameworks; they were in fact developed first for trusses,
and will be discussed in Chapter 7. Application to trusses is reasonably
straightforward; computations can be arranged in an orderly way, and
techniques were devised for dealing with arrays of ‘vectors’ (a list of
bar forces, for example, or of joint displacements). The application to
bending problems was not so easy, since heavy algebraic manipulation is
involved in the calculation of integrals.

However, the reciprocal theorems that apply to elastic structures gave
fruitful results when used for the analysis of beams and frames. The
fullest statement of the reciprocal theorem is that of Betti (1872), and the
proof may be given simply, if anachronistically, by using the equation
of virtual work. (Virtual work is exposed more fully in Chapter 9.)
Figure 6.8 shows a simple frame, for which two statements will be made.
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Fig. 6.8. (a) Bending moments M" in equilibrium with external loads W, ; (b)
curvatures x compatible with displacements y;.

In fig. 6.8(a) loads W, are applied, and bending moments M~ in the
frame are in equilibrium with those loads. In fig. 6.8(b) the frame has
been distorted in bending, the curvatures x giving rise to displacements
¥k Then the equation of virtual work states that

W, yk =/M‘de. (6.11)

The essential feature of this equation is that there is no necessary con-
nexion between the equilibrium statement (W, M*) and the geometrical
statement (yx, k).

The bending moments M* will, for an elastic frame, give rise to
curvatures x*, where M* = Elx", so that equation (6.11) becomes

EWink = /EIK'de. (6.12)

If now the roles of the two sketches of fig. 6.8 are interchanged, then,
using the same arguments,

EWiye = /EIKK‘dx. (6.13)
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Fig. 6.9. Maxwell’s reciprocal theorem: a;; = aj.

Comparison of equations (6.12) and (6.13) leads to Betti’s reciprocal
theorem:

Wy = ZWiyy. (6.14)

In words, if two states (one starred and one unstarred) of an elastic body
are considered, then the work done by the loads W, of the first state on
the displacements y; of the second state is equal to the corresponding
work done by W; on y;. :

Maxwell’s reciprocal theorem (to be stated in Maxwell’s original form
in Chapter 7) follows at once from equation (6.14). In fig. 6.9(a) a unit
load applied in a specified direction at section i of a frame produces
an elastic deflexion aj; in a specified direction at section j of the frame.
Similarly, fig. 6.9(b), an elastic deflexion a;; results at section i from the
application of a unit load at section j. Insertion of these statements into
equation (6.14) gives Maxwell’s result at once:

aij = 4ajj. (615)

Miiller-Breslau’s principle (1883) results from a similar application of
equation (6.14). Figure 6.10(a) illustrates Miiller-Breslau’s own example
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Fig. 6.10. Miiller-Breslau’s discussion of a statically indeterminate beam.

of a simply supported beam with an additional internal support, the
system being thus once statically indeterminate. It is required to find the
reaction C due to the external load P. In fig. 6.10(b) a small displacement
c* of the supposedly rigid support at C has ben imposed on the otherwise
unloaded beam, inducing reactions A*, B* and C" at the three supports
(as sketched in fig. 6.10(b), the reaction C* will have a negative value). If
equation (6.14) is applied to the two states sketched in fig. 6.10, then

(4)(0) + (P)(¥") + (C)(—¢") + (B)(0)

= (4)(0) + (C")(0) + (B*)(0), (6.16)
that is,
c=2p. (617)
C

Thus for an arbitrary unit displacement ¢* = 1 of the internal support,
and for a unit load P, the value of the reaction C at the internal support
is equal to y°.

There is therefore an immediate application to the construction of
(elastic) influence lines. As a unit load crosses the beam of fig. 6.10(a),
then the plot of the reaction at C — the influence line for the reaction at
C —is given to some scale by the deflected shape of fig. 6.10(b)..

6.6 Indirect model tests

Miiller-Breslau’s principle may be used to determine internal forces in an
elastic frame. In fig. 6.11, for example, an imaginary arbitrary (unit) ‘kink’
has been introduced at the internal support of the same beam, in order
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Fig. 6.11. Extension of Miiller-Breslau’s principle.

to determine the value of the bending moment M at that support which
results from the application of the load P. Once again, the sketched
deflected form of the beam in fig. 6.11(b) gives the influence line; that is,
fig. 6.11(b) is a plot to some scale of the value of the bending moment
M against the position of the point load P.

The right-hand side of equation (6.16) is zero since the supports in the
original real beam of fig. 6.10 are rigid. Any system of deformation similar
to that of fig. 6.10(b), for which imaginary displacements are introduced
at supports that are in fact rigid, or similar to that of fig. 6.11(b), in which
an imaginary internal dislocation is imposed, will lead to an equation of
the form

IWiy, =0, (6.18)

cf. equations (6.14) and (6.16). Since equation (6.18) is homogeneous
in the starred deflexion components, it would be possible to make the
imaginary displacements, not on the real structure, but on a scale model
having the same flexural characteristics as the real structure. All that is
required is that the scale model should have flexural rigidities that are
the same constant proportion from section to section as those of the
original.

Beggs (1927) proposed that, instead of imaginary deformations, real
deformations should be imposed on a carefully made and properly scaled
celluloid model. Such a model can be cut from a plastic sheet of uniform
thickness, the depths of the members being varied to ensure correct
values of the flexural rigidities. The required coefficients (e.g. y* and
¢* in equation (6.17)) can then be obtained experimentally; internal
discontinuities can be introduced to determine thrust, shear and bending
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moment at a cross-section. Observations of this kind can be very accurate,
and acceptable estimates are obtainable even from beams and frames cut
from cardboard.

6.7 General structural theory

The developments summarized in this chapter have been concerned with
one type of structure, the beam (or frame) which resists external loads by
the bending of its members. These developments took place, of course,
within the evolving general theory of (elastic) structures, but their main
concern was with the construction of ingenious methods for the ap-
proximate solution of large sets of linear simultaneous equations (Hardy
Cross’s method of moment distribution, for example), or for obtaining
experimental solutions (Beggs’s indirect model tests). This kind of activity
was brought to an end by the invention of the electronic computer. The
heavy labour of obtaining solutions to the equations could be undertaken
by machine, and approximate solutions were no longer needed.

Matrix algebra had of course been applied to the solution of sets of
linear equations, but in the 1950s specific attention was given by struc-
tural engineers to the formulation of structural theory (essentially elastic
structural theory) in matrix terms. A leading figure in the development
of this approach was Argyris; he gives a comprehensive summary in his
review of 195455, where the work is strongly directed to the solution of
aircraft structures. Livesley was concerned with early developments, and
his book (1964) presents the theory with respect to beams and framed
structures, and also to more general continuum problems in which the
‘structure’ is modelled by finite elements.

The construction of a general elastic theory, applicable to any struc-
tural type rather than the beams and frames considered in this chapter,
emerged from a consideration of the trussed framework. As usual, Navier
(1826) provides a convenient starting point for a description of contribu-
tions to the theory.
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The Trussed Framework

7.1 Navier

In section 4 of Navier's 1826 Lecons he tackles the problem of the
redundant truss. The example used is that of a weight IT supported from
the ground by a number of bars, fig. 7.1, and the problem is to determine
the forces in the bars. Navier states that if the number of bars is more
than two in the same plane, or more than three not in the same plane,
then the equations of equilibrium do not determine the values of the bar
forces. Navier shows how the problem may be solved, using the three-bar
plane-truss example of fig. 7.1.

There is first a short digression in which Navier attempts to estimate
limits within which the bar forces must lie. If, for example, all bars are
removed from a plane truss of the type sketched in fig. 7.1, except for
the two necessary to carry the load, then the forces in those two bars
may be found from the equations of statics. By considering different
arrangements of bars to produce such statically determinate trusses, a
greatest load may be found for a particular bar; the stability of that
bar against buckling may then be checked, using the ‘Euler’ theory of
a previous section of the Legons. (These observations are, of course,
incorrect. Even in the absence of the load Il, a turnbuckle tightened in
bar A’C will produce compression in the two outer bars, and buckling of
one or the other will eventually occur. The ability of a redundant truss
to sustain self-stress was certainly known to Maxwell (1864).)

Navier then lays out clearly the three groups of equations required for
the elastic solution of the problem. The equilibrium equations, for the
three-bar truss of fig. 7.1, are

/ ’ 17 "o _
pcosa+p cosa’ +p’cose” = TI } (11)

and psina+p'sined +p”sine” = 0,

111
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Fig. 7.1. Three-bar truss (after Navier (1826)).

where p, p’ and p” are the compressive forces in the three bars. No more
equilibrium equations can be written; the truss has a single redundant
bar.

Progress is made by Navier by writing a second group of equations, the
compatibility equations. Navier supposes that, under the action of the
load, the point C moves very small distances h and f, horizontally to the
right and vertically downwards. Then the changes in lengths (shortening)
of the bars compatible with these displacements are

fcosa— hsina,
fcosad' —hsind, (7.2)
and fcosa” —hsina”.

Since the lengths of the bars are (a/cosa) etc, then the strains in the
bars are

(f cos?a — hsinacosa) /a

and so on.

Finally, these elastic strains may be related to the bar forces by a
third group of equations, those involving the ‘elastic forces’ F of the bars
(where in usual modern notation F = EA, the area of the bar being 4
and Young’s modulus E). Thus

p=F (fcos’ « — hsinacosa) /a,
P =F (fcos’d — hsino cosd) /a, (7.3)
4

and p”=F"(fcos?a’ —hsina” coso”) /a.
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Equations (7.1) and (7.3), five in number, now give sufficient information
to find the values of the three bar forces and the two displacements.

It may be noted that Navier keeps the equations completely general
(e.g. three ‘elastic forces’ F, F’ and F”) and also completely symmetrical
— that is, he writes all three of expressions (7.2) for example, when in
fact any one of the three conveys the necessary information. Further,
Navier attaches a sign to the values of «, o and o”; angles are positive
clockwise measured from the downward vertical at C. Thus, if Navier’s
fig. 7.1 is interpreted literally, and numbers are inserted in equations (7.1)
to (7.3), the sign of terms containing sina (but not sina’ or sina”) must
be reversed.

7.2 Maxwell 1864

Figure 7.1 represents just about the simplest structural problem involving
a trussed framework: there are only three bars, and the truss has a
single redundancy. Even so, the analytical work is already heavy, and
it increases enormously for a practical structure with many more bars
and with perhaps several redundancies. For Navier’s problem, in order
to determine the three bar forces it was necessary to introduce two
further unknown quantities (the components of the joint displacement),
together with the three unknown bar extensions. Thus, in total, eight
expressions, (7.1), (7.2) and (7.3), were formulated, in order to solve
the prime structural problem, that of finding the three bar forces. The
analytical methods for the solution of truss problems that were developed
during the nineteenth century sought ways to reduce the number of
unknown variables (in the same way that economy was sought in the
solution of corresponding beam and frame problems, Chapter 6).

The history of the truss problem has been traced by Charlton (1982).
Navier does not give ‘priority’ to forces or displacements in setting up his
equations. However, his method, of introducing unknown displacements
of joints in terms of which the (elastic) equations for the bars could be
formulated, leads directly to what is now known as the equilibrium ap-
proach, or the displacement method. The formulation of these equations
involves a more or less complex analysis of the geometry of the truss (the
results of which are recorded, for example, in expressions (7.2) above).
The use of the equation of virtual work transforms this problem from
one of analysis of deformation to a simpler one of statics.

Maxwell (1864) used the equation of virtual work, although his analysis
was confined to elastic trusses; his statement and proof of the method
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Fig. 7.2. Trusses to illustrate Maxwell’s arguments (from Charlton (1982)).

are therefore restricted, although his technique is powerful. Instead of
working with unknown displacements (Navier), Maxwell selects bar forces
as unknown quantities whose values are required for the solution of a
hyperstatic structure; equations of compatibility are written in terms
of these ‘redundant’ quantities, and the method is now known as the
compatibility approach, or the force method.

As a background to his work, Maxwell had knowledge of Clapeyron’s
theorem, as expounded by Lamé (1852). Clapeyron published his work
formally in 1858, but his ‘theorem’ had been formulated by him some 30
years earlier, namely that the work done by the external forces acting on
an elastic body is equal to the strain energy stored in the body. It was
the brilliant way that Maxwell used this theorem that created the force
method of analysis.

Maxwell published his 1864 paper without illustrations; fig. 7.2 copies
Charlton’s diagram to illuminate Maxwell’s thought. He starts with a
statically determinate truss, fig. 7.2(a), as a first step in the transformation
of a problem of geometry to one of statics, and he makes the following
highly condensed statement:
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If p be the tension of piece A due to a tension-unity between the points B
and C, then an extension-unity taking place in A will bring B and C nearer by a
distance p.

This sentence records two distinct operations on the truss, and may be
written, in more modern terms, as a statement of statics and a separate
statement of geometry.

(i) Statics. (If) Equal and opposite unit loads applied at B and
C in the line BC induce a tension p in bar A.

(i) Geometry. (Then) As a separate matter, a unit extension of
bar A (only) will cause points B and C to approach by a
distance p.

A modern proof by virtual work might be presented as

(i) The tension X in A is in equilibrium with applied loads Y
in the line BC.
(ii)) An extension x of A causes an extension y of the line BC.

Then Xx 4+ Yy =0; but X = pY, so that y = —px.

This is almost exactly the proof given by Maxwell, except that he
writes the work equation as %Xx + %Yy = 0, summing the elastic work.
However, it may be noted that in Maxwell’s condensed statement, and in
both sets of statements (i) and (ii) above, there is no mention of material
properties. Maxwell’s statement is in fact completely general, and holds
for an inelastic truss.

Maxwell then proceeds to a second subsidiary problem on the statically
determinate truss, namely an examination of the relative movement of
two joints D and E in fig. 7.2(a) caused by the application of a force
F in the line BC. This force causes a tension Fp in bar A, and if the
(elastic) ‘flexibility’ of the bar is e, then the bar extension is Fep. This
is the geometrical statement to be used by Maxwell in (ii) below. The
equilibrium statement arises from consideration of the effect of unit loads
applied in the line DE; the resulting tension in bar A is ¢q. Thus

(i) Statics. Equal and opposite unit loads applied at D and E
in the line DE induce a tension ¢ in bar A.

(i) Geometry. A bar extension Fep in bar A leads to an exten-
sion of the line DE, say é.

Then, by virtual work (as before), 6 = —Fepq.
If all the bars of the truss are considered, then the extension of the
line DE is —FZX(epq); for the special case of line BC the extension is
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—FX(ep?). Maxwell notes that p and q always enter the equations in
the same way, so that a general (elastic) theorem may be established:
the extension in BC due to a unity of tension along DE is equal to the
extension in DE due to a unity of tension along BC. This is Maxwell’s
reciprocal theorem, which was stated in the shorthand form a;; = aj,
equation (6.15), fig. 6.9; the theorem is true for redundant as well as for
statically determinate elastic structures.

These two ‘lemmas’ of Maxwell are prerequisites for his main prob-
lem, which is to find the bar forces in a statically indeterminate truss;
Charlton’s representation in fig. 7.2(b) shows redundant bars R,S, T ....
Maxwell starts by removing these redundant bars, reducing the truss to
its statically determinate form, having tensions p and q in the typical bar
A due to unit loads in the lines BC and DE, as before. Still using these
lemmas, unit loads applied to the statically determinate truss in the lines
of the (removed) bars R, S, T... will produce tensions r, s, ¢ in the typical
bar A. If the actual tensions in the redundant bars are R,S,T ..., and
their flexibilities are p, o, 7..., then Maxwell states that

the tension in A is Fp+Rr+Ss+ Tt +...
the extension of A is e(Fp+Rr+ Ss+Tt+...)
the extension of R is —FZepr — RZer? — SXErs — TZErt—...=Rp

Similarly, the extensions of S and T are given by

So = —FZeps — RXers — SXes* — TZest — ...
Tt = —FXept — RXert — SZest — TZet’> —...

and there are enough equations (three for three redundancies R, S and
T) to determine the unknown quantities. Finally, the extension x of the
line DE may be calculated from

x = —FXepq — RXeqr — SXeqs — TXeqt — ... (74)

It may be noted that if point E (say) is actually a fixed point of the truss,
and if this point is remote (‘the centre of the earth’), then the value of x
calculated from the equation (7.4) will give the (vertical) deflexion of D
due to a load F applied at that point.

7.3 Virtual work

It will have been seen that Maxwell’s method, as outlined above, involves
only statics for the solution of problems; the coefficients p, ¢ and so on
are determined from the consideration of equilibrium, and the geometry
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of deformation does not have to be tackled directly. The method is really
one of virtual work, although this is disguised by the fact that Maxwell
considers only linear elastic systems. Fleeming Jenkin (1869) extended
Maxwell’s method with a more exposed use of ‘virtual velocities’, although
once again he analysed only elastic trussed frameworks.

The particular application considered by Jenkin may be illustrated by
reference to fig. 7.2(a), in which the abutment 0’ is now considered to
be rigid, and hence capable of sustaining a horizontal abutment thrust
H. Indeed the value of H may be considered as the single redundancy
of the problem, whose value is required as the result of the application
of a specified loading system. Jenkin imagines the truss to be freed from
horizontal restraint at 0'; a unit horizontal load applied between the
abutments will give rise to a bar force ¢ in a particular bar. Again, an
extension x of the particular bar, considered in isolation, may be related
to the virtual horizontal displacement y of 0’ with respect to 0, since, by
virtual work,

1-y=gqx (7.5)

Now the force in the typical bar under the specified loading (say V, where
V is representative of all the applied loads) may be written as (pV +qH),
so that the bar extension is

x =e(pV + qH), (7.6)

that is,
y =elpgV + ¢°H). (1.7)
Equation (7.7) is written similarly for all bars of the truss; the summation

Xy must be zero, since in reality the abutments do not move relative to
each other. Thus

(7.8)

The work of Maxwell and Jenkin did not at first receive wide attention;
it was unknown to Mohr (1874), who developed an analysis along very
similar lines. Mohr’s work was, by contrast, widely accepted, and after
Mohr’s acknowledgement of Maxwell’s priority, engineers described the
analysis as the Maxwell-Mohr method.
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7.4 Energy methods

Mazxwell cited ‘Clapeyron’s energy theorem’, but antecedents can be
traced to at least a century earlier. It was seen (Chapter 4) that the
Bernoullis, and Euler, had used the idea of strain energy in bending to
solve the problem of the shape of the elastica. However, it was Castigliano
(1879) who gave a full formulation of the use of energy principles as
a general method for finding solutions for elastic structures. In fact,
unknown to Castigliano, some of this work had been anticipated by
Cotterill (1865); Charlton traces thoroughly the various contributions in
the second half of the nineteenth century.

Castigliano develops the theorems that bear his name with reference
to trussed frameworks (he extends the work later to cover beams and
arches). He first formulates expressions for the internal strain energy W,
in terms of the applied loads F, acting at the various nodes of the truss;
at these nodes the displacements are r, (measured in the direction of F,).
If a typical bar has tension P, length ¢ and ‘elasticity’ AE, then

1 1_P%%
Then Castigliano’s first theorem, part 1, is
ow,
- =F, 7.10
5, = (7.10)
and part 2 of the same theorem is
oW,
- =r,. 7.11
oF, * (1D

Castigliano’s proof of equation (7.10) is straightforward. He imagines
the force F, to be increased by an amount dF,, resulting in an increase
dr, in the displacement r, of the node. Then (neglecting products of
infinitesimal quantities), the increase in total internal work will be

dW, =XF,dr,; (7.12)
but since
dw, = Za—%drp, (7.13)
or

P
and since equations (7.12) and (7.13) must hold for arbitrarily selected
values of dr,, then equation (7.10) follows.

Similarly, if W, is considered as a function of the applied forces F,,

dw, = z%?ﬁde = ZF,dr,. (7.14)

4
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But from equation (7.9),

AW, = %Zr,dF, + %ZF,dr,, (7.15)

and, using equation (7.12),
XF,dr, = Zr,dF,. (7.16)

Thus equations (7.14) and (7.16) combine to give

ow

Eog-dF, = ErdF, (7.17)
p

and, as before, equation (7.11) follows.

Castigliano’s second theorem, the theorem of least work, follows easily
from part 2 of the first theorem. If the truss has a number of redundant
members (say R,S, T ... following Maxwell’s notation), then the theorem
states that the values of the forces in those bars, R,S, T ... say, will be
such that the internal strain energy is a minimum, that is

ow, oW, _ow;,

a_R —_ ﬁ -_ a_T —_— e
To prove the theorem, Castigliano removes a redundant bar connecting
two nodes, say bar R, and replaces it by equal and opposite forces R
acting at those nodes. The expression dW,/0R for this modified truss
then gives, from equation (7.11), the relative displacement of the nodes,
and this must be exactly equal to the extension of bar R, namely R//AE.
Now this expression is also given by dW,/dR from equation (7.9), and
the first of equations (7.18) for the original unmodified truss then follows
immediately. There are, of course, exactly as many equations (7.18)
as there are unknown (redundant) quantities whose values are to be
found.

An essential feature of this proof is that the truss, before loading,
consists of bars each of exactly the correct length. If a bar or bars are
of incorrect initial length, then the (redundant) truss will be in a state
of self stress, and Castigliano shows how to calculate this state from the
known values of misfit (including misfits due to differential temperature
changes).

The term strain energy was used by Castigliano to denote the in-
ternal energy stored in a linear-elastic system. Engesser (1889) showed
that equation (7.11) still held for non-linear systems provided that W,
was interpreted as the complementary energy (the area shaded in the

=0. (7.18)
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Fig. 7.3. Non-linear force/extension curve for a truss member; complementary
energy is represented by the shaded area.

force/extension diagram sketched in fig. 7.3), ie.

W, = / rdF. (1.19)

However, by far the greatest use of Castigliano’s theorems was for the
solution of linear-elastic structures, and the more general application
of virtual work was ignored. Maxwell used virtual work in an elastic
context; Fleeming Jenkin had a broader view, although he still dealt with
elastic structures; Mohr and Engesser were well aware of the idea. It
seems unlikely that Castigliano appreciated the use of virtual work as
a fundamental tool — certainly his theorems can be proved more simply
and more elegantly by its use.
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Galileo’s concern was with the breaking strength of a cantilever beam.
The behaviour of such a structure is determined by the equations of statics
and by the strength of the material; there is only one internal force system
in equilibrium with the applied loads and, for the bending problem,
collapse will occur when the value of the largest internal bending moment
reaches the moment of resistance of the cross-section. Thus the problem
of finding the actual state of a statically determinate structure and the
problem of calculating its strength are, effectively, one and the same.

This is, of course, not so far the hyperstatic structure. Historically,
three types of hyperstatic structure were examined (and the theories
have been described in previous chapters) — the (masonry) arch, the
continuous beam and the trussed framework. It is of interest that the
early (eighteenth-century) work on arches did not concentrate on the
‘actual’ state — rather, limiting states were examined in order to determine
the value of one of the main structural parameters, the abutment thrust.
This approach continued through the nineteenth century until Castigliano
applied his elastic energy theorems to both iron and masonry arches in
order to calculate the same structural parameter. Thereafter, arch analysis
was seen to fall within the mainstream techniques for the elastic design
of hyperstatic structures.

Similarly, specialized elastic techniques were developed for redundant
beam systems. Statics alone did not give enough information; the second-
order differential equation of bending introduced the elastic properties
of the sections; and the boundary conditions (clamped ends, rigid sup-
ports) provided the geometrical information leading finally to sufficient
equations to solve the problem. These general methods led to compact
analytical techniques (for example, the theorem of three moments, which
is an example of the compatibility approach, in which the redundant
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quantities are taken as unknown bending moments), and later on to tech-
niques of numerical computation (for example, Hardy Cross’s method of
moment distribution, which is an example of the equilibrium approach).

As has been seen, the force method (the compatibility approach) was
exploited for the elastic solution of the trussed framework. Once the forces
in the redundant bars had been determined — directly by virtual work, or
by using Castigliano’s energy theorems — then the forces in all the bars
could be found, and the actual state of the structure determined. Progress
towards a general theory of structural analysis was made to a great extent
with respect to trusses, and perhaps the main reason for concentration
on this type of structure was its increasing and widespread use in railway
engineering. A technical reason was mentioned in Chapter 6, namely
that the vectors of bar forces, bar extensions and joint displacements
could be assembled and manipulated in an orderly way. By contrast, the
differential equations involved in the discussion of beams and frames
could lead to heavy mathematical labour.

Whatever the type of structure, whether truss or beam, the purpose
of analysis was clearly defined by Navier in 1826 — it was to determine
the values of the internal stress resultants, whether bar forces or bending
moments, and to ensure, in the first instance, that the sections provided
gave adequate strength. (Other structural criteria were not neglected;
deflexions could be calculated, and ‘Euler’ stability could be checked.)
With the objectives stated in this way, no thought seems to have been
given to the uniqueness of the solutions for hyperstatic structures. That
is, a statically determinate structure has a straightforward solution; bar
forces in a truss resulting from the applied loads can be found at once.
Similarly, the structural techniques of Navier and Maxwell determine the
values of bar forces for a statically indeterminate truss; the solution is
not straightforward, but nevertheless values of the bar forces result.

Once this ‘actual’ state of a structure, whether statically determinate
of hyperstatic, had been found, then Navier was again quite clear how
the strength check should be made — the stresses at any section of the
structure should not exceed a certain proportion of the limiting stress of
the material (yield or fracture), that is, the material should remain elastic.
There is no hint in Navier’s work that some initial state of self-stress in
a redundant truss might lead to different final values of the bar forces.

8.1 Secondary stresses
In the same way, although Castigliano, half a century later, was well
aware that initial lack of fit of bars in a truss could lead to substan-
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tial values of bar forces, he assumes in his worked examples of real
structures that no such lack of fit occurs, and seems untroubled by
any thought that imperfections of manufacture or construction might
invalidate his calculations. On the other hand, he shows how to cal-
culate stresses due to a differential rise in temperature — stresses which
are, of course, exactly equivalent to those arising from a practical
imperfection.

Thus, in his worked example of an iron truss of 48 m span, which
has three statical indeterminacies because of its attachment to rigid
abutments, he assumes explicitly that the truss was assembled at 15 °C
without prestress; he calculates the primary forces resulting from dead
and superimposed loading of 126 kg/m?, of which snow load forms
approximately one half. Castigliano then examines the effect of variation
in temperature between -10 and +40 °C, the abutments remaining rigid.
The calculations are done separately, that is, Castigliano determines a
self-stressing system of bar forces in the absence of external load and,
since the equations are linear, this system of ‘secondary’ forces may
be imposed (‘by the principle of superposition’) on the primary forces
calculated previously. The resulting bar forces turn out to be quite large,
although Castigliano observes that there would be no snow load if the
temperature were 40 °C.

The term ‘secondary stresses’ usually denotes a different set of
self-equilibrating stresses which can arise in a structure, and in par-
ticular in trusses. From the time of Navier and Maxwell the forces in
the bars of a truss were calculated on the assumption that the members
were pin-ended, so that purely axial forces arise. The bars in a real truss
are connected to each other by gusset plates and a number of bolts or
rivets, making the joints more nearly rigid than pinned. The pin-ended
calculations give primary forces from which primary stresses may be
determined; on these stresses must be imposed the ‘secondary’ effects due
to the rigidity of the joints. Charlton gives a brief account of the de-
velopment of this sort of calculation, starting with Asimont (1880), who
coined the terms. Several famous names are associated with the work,
including Manderla (1880), Engesser (1879 and 1892), Winkler (1881),
Miiller-Breslau (1886) and Mohr (1892).

The first analysis of the pin-jointed truss gives the primary forces, and
also the displacements of the joints. The real joints of the stiff truss are
then assumed to occupy these same displaced positions, but this involves
bending of the bars in order to maintain compatibility of rotation at each
of the rigid connexions. Thus, in Manderla’s work, the ‘slope-deflexion
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equation’
1
¢1 = —
6EI
emerges, involving the rotation ¢; (with respect to the chord) of one
end of a member when subjected to couples M; and M, at the two ends
(cf. equation (6.8), written with a different sign convention); a similar
equation is written for the rotation ¢,. Mohr, on the other hand, inverts
these equations, to give

(2M; — M3) (8.1)

My =22 01 + ) (5.2

he can then write conveniently the equilibrium equation for the joint as
IM; =0, where the summation is taken over all members meeting at the
joint. Exactly enough equations can be written to determine the values
of these secondary bending moments, and hence the secondary stresses
can be calculated. It may be repeated that these secondary stresses,
like Castigliano’s temperature stresses, are self-balancing; they are in
equilibrium with zero external load applied to the truss.

It will be appreciated that the number of equations involved in this
analysis is very large; further, the primary calculation of the deflexions
of the joints is also complex, and ingenious contributions were made to
lighten the burden of this part of the analysis. The methods evolved (of
course for hand calculation before the advent of the electronic computer)
persisted for 50 years, and they formed a substantial part of the design
process for large trussed bridges (for example, the Sydney Harbour
Bridge, 1928-32; see Pain and Gilbert Roberts (1933-34)).

Although all this work was complex, the objective remained that
of Navier in 1826. The total stress at the end of a bar of the truss
was calculated from the primary axial force, and to this were added
temperature stresses and secondary bending stresses; the total was not
allowed to exceed a certain fraction of the yield stress. (Depending on
the terms appearing in the final total, the fraction could be increased in
sympathy with Castigliano’s ‘no snow at 40 °C’ observation.) Once again,
those making the calculations were not troubled by any thought that
the stresses might be in any sense ‘unreal’ — that practical imperfections,
of manufacture or assembly, might lead to an observable state different
from that calculated. The fact was that, in general, no observations were
made to confirm the correctness of the structural theory. That theory was
self-evidently correct: the equilibrium equations were written properly;
material parameters (elasticity and yield strength) were known; and the
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geometry of the structures could be described in a straightforward way. It
seems simply not to have been appreciated that if a hyperstatic structure
were built with only minute variations from the prescribed geometry,
either internally or in its connexions to the foundations, then very large
variations in stress would result.

8.2 Nineteenth-century experiments

An exception to this lack of experiment has been noted in Chapter
4; Euler’s buckling formula was confirmed for slender columns. And
other structural experiments were in fact made in the nineteenth century,
but these provided solutions to problems for which little or no theory
was available. Fairbairn, for example, had made many material tests in
the 1830s, particularly on cast and wrought iron, and had developed a
convenient testing machine (Fairbairn’s lever). His experimental expertise
was sought in 1845 by Robert Stephenson to assist with the solution of a
structural problem, that of the design of the tubular spans proposed for
the Britannia and Conway bridges (see Fairbairn (1849)). The tubes were
large enough for trains to run inside them, and preliminary experiments
had shown that failure occurred by compressive buckling of the thin
plates forming the section. The extensive experimental programme led to
efficient design rules for these tubular girders, including the provision of
stiffeners to the plates. Construction of the Britannia bridge had started
before these experiments were complete, and the masonry towers between
which the tubes spanned had been built sufficiently high that the tubes
could be given additional support by suspension chains. However, the
final design was strong enough for these chains to be omitted, the tubes
acting as beams carrying their own weight and the superimposed loads.

Jouravski (1860), whose work on shear stresses in beams was noted in
Chapter 3, also made buckling experiments, and as a result had comments
to make on the design of the Britannia bridge. For example, the stiffeners
to the sides of the Britannia tubes were vertical, whereas the maximum
compressive stresses causing buckling acted at 45° — the stiffeners would
be better employed at that angle. Further, Jouravski seems to be the first
engineer to test specimens not made of the same material as the real
structure; elastic buckling is more easily observed in materials having
small elastic moduli, and Jouravski used thick paper and cardboard to
achieve this end. All such nineteenth-century experiments, however, were
made in areas of structural engineering for which mathematical theory
was lacking — where a problem had been ‘solved’ (the solution for the
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continuous beam, the calculation of bar forces in a redundant truss) there
was apparently no thought of making confirmatory tests.

Evidence from the previous two centuries is mixed. There is no record
of bending tests made by Galileo, but Mariotte (1686) did make tests
on simply supported beams and he produced accompanying theory;
his concern was to establish correct values for the ultimate moment of
resistance. As such, these tests are not really structural; their concern is
with a problem in strength of materials. Similarly, the nineteenth-century
experiments (Eaton Hodgkinson (1824, 1831) and others referred to in
Chapter 2) were directed to the solution of ‘Galileo’s problem’ and not
to the advance of structural theory. The fixed-ended beam, on the other
hand, is a problem in the theory of structures; but when Mariotte tested
such beams, and established that they could carry twice as much load as
the corresponding simply supported beams, he did not support this result
with any theory. Girard (1798) attempted some analysis, but he reported
no experiments. It would seem that over a hundred years more were
to pass before any tests were made to support (or disprove) established
theory; it was in 1914 that Kazinczy published (in Hungarian) his ‘Tests
with clamped beams’.
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9.1 Kazinczy

Kazinczy (1914) tested two steel beams, each about 6 m long, which were
embedded at their ends in substantial abutments; the loading, which
consisted of increasing numbers of courses of bricks, was uniformly
distributed. The steel beams were in fact encased in concrete, but Kaz-
inczy easily dissects out the conclusions that apply to the steel alone.
If the ends of the beam in fig. 9.1(a) were perfectly fixed, then con-
ventional elastic theory gives the bending-moment diagram sketched in
fig. 9.1(b); the beam must be designed for a maximum bending moment
of value w#?/12. The explicit question asked by Kazinczy, to which the
experiments were designed to provide the answer, was whether the end
embedment may be taken to be complete and, if not, what degree of
fixity may be assumed.

The concrete provided an effective tell-tale to monitor the progress
of the experiments. As the loading was increased, cracks in the casing
first appeared at the ends of the beams, indicating yield at those points.
However, the beams could carry further load, and it was not until a
substantially greater weight had been added that deflexions became very
large. Upon unloading, each beam was found to have permanent kinking
deformation, at the two ends and at the centre. Kazinczy called these
kinks ‘hinges’, and he states that a fixed-ended beam cannot collapse
(undergo increasing deflexions) until three hinges have formed. Two
(end) hinges merely transform the fixed-ended into an effectively pin-
ended beam; the third central hinge is necessary for collapse. Moreover,
says Kazinczy, the degree of end clamping is irrelevant, provided the
embedment is strong enough to allow the hinges to develop. Thus a
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Fig. 9.1. Collapse of a fixed-ended beam under uniformly distributed load.

crucial, if surprising, answer has been given to the question for which the
experiments were designed.

As a result of these tests, Kazinczy concludes that such beams could
be designed for a largest bending moment of value w¢?/16, fig. 9.1(c).
Indeed, he states that the moment is %(w/2/8); the carrying capacity
of a fixed-ended beam is twice that of the equivalent simply supported
beam. It is clear that Kazinczy is thinking of wf?/8 as the value of the
‘free’ bending moment for an equivalent simply supported beam, and
that the carrying capacity for the fixed-ended beam can be found by
superimposing a suitable base line on the free bending-moment diagram.

9.2 The 1936 Berlin Congress

Progress on plasticity theory, as it came to be called, was resumed in the
1920s, after World War I, mainly in central Europe (Germany, Poland,
Austria) and also to some extent in Switzerland and France. The Interna-
tional Association for Bridge and Structural Engineering (IABSE) held
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a first Congress in Paris in 1932; by the time of the second Congress,
in Berlin in 1936, eight papers in the general field of plasticity formed
one section of the proceedings. Some of these papers are non ‘structural’
— that is, they are concerned with the strength-of-materials aspect of
the formation of plastic hinges; Galileo’s problem is re-examined in the
light of non-linear behaviour (seemingly in ignorance of Saint-Venant’s
exploration of the subject). More generally, the collapsing structure is
examined in a ‘historical’ way; that is, the elastic solution is studied and
modified as the loading is increased on the structure. It is, of course,
not surprising that engineers in the 1930s should start from a conven-
tional elastic approach in attempts to describe the actual behaviour of
structures.

As an example of this approach, Kazinczy himself provided a summary
paper in the final Proceedings of the 1936 Congress. He comments on
the contributions from Maier-Leibnitz and by Melan, discussed below,
and he states that it is a major achievement of plastic theory to conclude
that imperfections, such as settlements of supports or residual stresses
due to manufacture, may be ignored in the calculation of collapse loads.
However, in describing the way in which this calculation is done, he
states that bending moments must first be determined according to
elastic theory, and then the base line may be shifted in order to equalize
the largest moments. This notional procedure is of course based on the
behaviour of structures when actually loaded to collapse.

Kazinczy is more penetrating in his discussion of allied matters — for
example, the need to increase the size of members if there is danger
of instability. Or again, it was clear in 1936 that if a framed structure
had a number n of statical indeterminacies, then a number » of hinges
would make the structure determinate, and (n + 1) hinges are required
for collapse. Kazinczy superimposes on this the need for the hinges to be
of the right signs, so that a kinematic chain is possible, and these ideas
embrace the possibility of partial collapse. Indeed, Kazinczy foreshadows
the weak-beam/strong-column philosophy of design of structural frames
— the beams may be designed plastically to have minimum sections, while
the columns are deliberately strengthened to guard against buckling.

9.3 Maier-Leibnitz

Maier-Leibnitz, of Stuttgart, knew of Kazinczy’s early work, and his own
paper in the 1936 TABSE proceedings reports a large number of tests
on continuous beams; the paper reached significant conclusions and, as



130 Plastic Theory

will be seen, was influential in the development in the United Kingdom
of plastic methods for the design of steel structures. He defines what
is meant by ‘carrying capacity’, distinguishing between the attainment
of yield at a single cross-section and the development of large (ductile)
deflexions at a higher load (as had already been noted by Kazinczy).
In one particular series of tests, Maier-Leibnitz loaded to collapse three
beams, each 4.8 m long, supported at their ends and also centrally. In the
first test the three supports were level. In the second, the central support
was lowered (before the application of the central load) to a point where
the bending stress at the support had the yield value; the beam was then
loaded to collapse. In the third test the central support was raised by
the same amount, again generating the yield stress, and the beam was
again loaded to collapse. In this third test, conventional elastic theory
would prohibit the addition of any external load. The actual collapse
loads in the three tests (that is, the loads at which deflexions became
large) were 13.1, 13.0 and 13.45 tonnes respectively. These three tests (and
Maier-Leibnitz quotes others, made by himself and by other workers)
confirm that collapse occurs when hinges form in sufficient numbers to
form a mechanism, and provide a demonstration that the collapse load is
essentially unaffected by initial imperfections, such as sinking of supports.

Maier-Leibnitz sketches bending-moment diagrams in the way shown
in fig. 9.2 (illustrating the three tests described above), that is, they are
combinations of ‘free’ and ‘reactant’ diagrams. (It should be remarked
that this construction for bending-moment diagrams was proposed by
Bertot (1855), and described so carefully as to make it likely that the con-
struction originated with him.) The single redundancy has been thought
of as the bending moment at the central support; with this set to zero,
the free moments for the two simply supported spans may be drawn.
Superimposed on these moments is the reactant line arising from the
presence of the actual moment over the central support. Although the
diagrams are drawn in this way, however, the reactant line is placed
initially as the result of an elastic analysis, and the value of the central
moment is then traced as the external load is increased and plasticity
develops.

Maier-Leibnitz’s paper gives a comprehensive bibliography, and it is
of interest that the name of W. Prager is mentioned, but not referenced;
Prager’s work is discussed below. Also of interest is that one collapse test
on a portal frame is noted, by K. Girkmann (1932); this seems to be the
first such test reported in the literature. The pin-based frame, carrying
a single central vertical load, collapsed by the formation of three hinges
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Fig. 9.2. Bending-moment diagram for two-span beam, after Maier-Leibnitz
(1936).

in the beam; again the analysis is carried out ‘historically’, by recording
the movement of the ‘thrust line’ from its elastic position as the load is
increased.

9.4 F. Bleich

Maier-Leibnitz also gives three references to the work of F. Bleich,
and Bleich contributes another paper to the 1936 IABSE proceedings.
This summary paper is concerned to a great extent with the plastic
behaviour of beams and frames when they are subjected to a specified
range of alternative loading conditions; the presentation leads on to
the phenomenon of shakedown, as will be seen. However, Bleich starts
the paper with statements of a number of concepts crucial to plastic
methods.

First, he abandons the idea of an elastic factor of safety on stress.
Instead, he introduces the idea of load factor, defined as the ratio of the
collapse load to the specified design working load. It is assumed tacitly
that all loads acting on a structure have applied to them the same load
factor. In later descriptions, this is known as proportional loading; all
loads are imagined to be increased by the same multiplying factor A, and
collapse occurs when A reaches the ultimate value A..

Second, Bleich defines the type of material needed for a plastic theory
of design: an elastic stress—strain relationship must be followed by indef-
initely large deformation at the plastic limit, that is, the material must be
ductile. If this ideal plastic limit is reached at a yield stress g, then the
full plastic moment of a section in bending will be M, = zoo, where z is
the value of the (plastic) section modulus.
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It is apparent from these two statements that, in 1936, the plastic
method of design was seen to arise from the idea of a (beam or framed)
structure acted upon by certain specified working loads, with those loads
then increased in proportion by a factor A until collapse occurs by the
formation of plastic hinges, sufficient in number to turn the structure
into a mechanism. Bleich, however, saw much deeper into the method,
and made an alternative formulation which obviated the need to imagine
a hypothetical increase in load leading to collapse. His calculations are
carried out (as for elastic design) with working values of the loads, but
with the value of the yield stress (and hence proportionally the value
of the full plastic moment) reduced to g¢/Ac. As he points out, this will
ensure the attainment of the required reserve of strength expressed by
the load factor A.

Third, he makes use of the fundamental property of hyperstatic struc-
tures, namely that they are capable of self-stress in the absence of external
load. Moreover, he notes that such states of self-stress can arise from
first loading a structure into the plastic state, and then unloading. He
then states (what is now known as) the lower-bound theorem for the
general case of a structure acted upon by variable and repeated loads.
At each of the critical cross-sections of a beam or frame the greatest
and least bending moments, .#™* and .#™", are calculated by the usual
elastic theory for statically indeterminate structures. The structure will
be capable of carrying the prescribed loads if self-stressing moments m
can be found such that, at each cross-section,

%max+ms Mp }

and /™" +m > —M,, G

where, of course, the required load factor A can be applied either to the
elastic moments .# or inversely to the values of the full plastic moment
M,,. Bleich does not prove this theorem, but refers to the proof by Melan
(see below).

Further, and crucially, Bleich observes that elastic calculations are
not necessary for the case of fixed loads (he actually envisages a wider
class of loading, where the loads may vary but are always positive —
the phenomenon of incremental collapse is not in consideration here).
For these calculations it is not necessary to use the elastic moments .#,
but merely to compute bending moments for an equivalent statically
determinate structure. This leads to the kind of diagram sketched in
fig. 9.2, in which free and reactant moments are superimposed in such a
way that the net moment |M] is less than M, at every cross-section.
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Fourth, Bleich notes that practical imperfections (e.g. settlements of
supports) give rise to self-stressing moments, and that since the plastic
solution requires the adjustment of the values of self-stressing moments
(in order to satisfy equations (9.1)), then those practical imperfections
can have no influence on the safety of a statically indeterminate structure.
He identifies temperature variations as giving rise to similar self-stressing
moments, but, since such variations may be repeated indefinitely, he is
unwilling to ignore their influence. This is because he is not satisfied
with the evidence on fatigue loading of plastic structures, although he
concedes that fatigue fractures of building frames are ‘scarcely known’.
Until such evidence is available, Bleich advises that moments arising from
temperature changes should be taken as contributing to .#™* and ./#™®
in a ‘shakedown’ analysis.

The second half of Bleich’s paper is taken up with examples of practical
calculation of three different cases of continuous beams, and of a pitched-
roof fixed-base portal frame. He cautions specifically against the use
of plastic methods for the design of lattice girders, since compression
members tend to buckle and do not have the required structural ductility.

9.5 Melan

A third paper of great significance in the ‘plasticity’ section of the
1936 Berlin Congress was presented by E. Melan, of the Technische
Hochschule, Vienna. The title is simply ‘Theory of statically indeterminate
systems’ (Theorie statisch unbestimmter Systeme), and its two sections deal
with structures made of ideally plastic material, and of material that
exhibits linear strain-hardening. It is not easy to determine which parts
of the very rich material presented originated with Melan, and which
summarize common intellectual property in the 1930s. Melan refers to
the early twentieth-century contributions of von Karman, von Mises and
Hencky; equally, he is aware of the work of Fritsche, Griining, Kazinczy,
H. Bleich and F. Bleich, Hohenemser and Prager, and it is clear that these
in turn were well aware of Melan’s own work.

Thus the opening paragraphs of the paper may do no more than collect
together common ideas of 1936, but the statements do not seem to have
been made earlier with such precision and clarity. The first sentence
confirms that the object of statics as applied to steel structures is to
determine the internal stresses and deformations of systems composed
of slender members. The ‘theory of steel structures’ defined in this way
is therefore not a branch of continuum mechanics; ‘slender members’
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imply that only a single stress resultant is being considered. For example,
Hooke’s Law applied to a beam or framed structure states that curvature
is proportional to bending moment — applied to a truss, that elongation of
a bar is proportional to axial load. Melan in fact presents his mathematics
with respect to trussed frameworks (he repeats Bleich’s warning about
buckling), so that the use of integrals is avoided, and simple equations
can be written, with the use of summation signs if needed (Melan employs
a kind of summation convention used in tensor notation). However, he
states that the results obtained with this less complex mathematics may
be applied to bending problems.

The second sentence of Melan’s paper notes that only three groups
of equations are available for solving structural problems — equilibrium
equations, geometrical equations (compatibility) and stress—strain rela-
tions. For statically determinate systems the equilibrium equations by
themselves suffice to determine the internal stress resultants, but all three
groups of equations must be used for indeterminate systems to solve the
same prime structural problem. All this may appear to be, and indeed is,
self-evident, but the statements of the purpose and techniques of struc-
tural analysis are particularly clear. For example, Melan notes that usual
‘text-book’ theory assumes elastic behaviour, but that this assumption
has in fact no influence on the determination of stress resultants in stati-
cally determinate structures. By contrast, the calculations for hyperstatic
structures give results that depend on the actual stress—strain relationship
that is used in the analysis. Melan then gives a condensed but compre-
hensive survey of theories involving non-linear stress—strain assumptions,
particularly that of the ‘ideal-plastic’ material sketched in fig. 9.3, where
the axes may be stress and strain, or moment and curvature.

In particular, Melan notes that some of the properties of elastic sys-
tems are lost if non-linear behaviour is assumed. For example, the law
of superposition is lost for all but the forces in statically determinate
structures, so that, for example, influence lines cannot in general be con-
structed. Crucially, it is impossible to define the stress state of a statically
indeterminate structure unless its previous loading history is known; if
the elastic limit has been exceeded, in some unknown and undefined
way, then an unknown state of residual stress will exist in a hyperstatic
structure. It is precisely this state of residual stress which may enable
a structure to ‘shake down’ under the application of specified random
loading. Melan’s proof of the shakedown theorem, expressed essentially
by inequalities (9.1) above, is perhaps the major contribution he makes
in his paper; he attributes the theorem to H. Bleich (1932), although Ble-
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Fig. 9.3. Ideal-plastic stress—strain relationship.

ich gave only a limited proof. A simplified statement of the shakedown
theorem is given in §9.10 below.

Finally, Melan quotes the principle of virtual work (and uses it in
his proofs) which makes use only of the first two structural equations
(equilibrium and geometry), and is not concerned with any statement of
material properties. Written in terms of the trussed framework discussed
by Melan,

Equilibrium: Internal bar forces T are in equilibrium with ex-
ternal loads W applied at the nodes of the truss.

Geometry: Bar elongations e are compatible with movements
é of the nodes of the truss.

These are two independent and unrelated statements for the truss
under consideration. Then the principle of virtual work states that

IW-8=XTe. 9.2)

9.6 J.F. Baker

In the UK the application of plastic theory to the design of steel-framed
buildings is associated with the name of J.F. Baker (Sir John Baker;
Lord Baker). Steel frames had been in existence since the start of the
twentieth century; they were designed on the basis of elastic theory,
transmuted into codes of practice for the benefit of the hard-pressed
engineer. There were many such codes in use throughout the world, and
they contained conflicting rules; in 1929 the British steel industry set up
the Steel Structures Research Committee to try to bring some order into
practical steel design. The SSRC included eminent academics and officers
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from government research stations, and leading representatives from the
consulting and contracting professions. Baker was the full-time technical
officer, and it was his task to assemble technical information, to write
or commission papers developing theory, and to oversee the collection
of experimental evidence. The findings of the Committee are collected
in the three volumes published in 1931, 1934 and 1936, and some of the
work is summarized in volume 1 of Baker’s The Steel Skeleton (1954).

These papers reveal the state of understanding, in the UK in 1936, of
the structural design process, as indeed does Baker’s own text-book (writ-
ten with A.J. Sutton Pippard) published in that same year. Design and
analysis are completely elastic processes, and the tools available include,
for example, Maxwell’s reciprocal theorem, the theorems of Castigliano
and Hardy Cross’s method of moment distribution. It was to be many
years before the basic principles of virtual work crossed from Europe
(via the US) to the UK, and standard texts in English, although learned,
were in a sense somewhat rigid. An exception lies, perhaps, in the treat-
ment of beam-columns, that is, of members subjected both to bending
and to axial thrust. Baker’s own papers in the SSRC volumes, and the
corresponding chapter in his 1936 text, contain ingenious developments
of solutions of the fundamental equations.

However, the outstanding contribution of the Steel Structures Research
Committee to the question of structural design lay in experimental work.
New steel buildings were being constructed in the 1930s, and the Com-
mittee arranged for tests to be made on (among other structures) a
nine-storey hotel block, an office building and a block of residential flats.
The results are reported in the three volumes published by the SSRC,
and may be found also in volume 1 of The Steel Skeleton. For the first
time stresses in real structures were measured (and the development of
suitable strain gauges was an essential part of the work). In summary,
the real stresses bore almost no relation to those calculated by designers
using the available elastic methods. The SSRC were not slow to find
the reason; small errors of manufacture and erection were enough to
invalidate the elastic calculations, which are extraordinarily sensitive to
small imperfections of geometry or lack of fit. As has been noted, these
conclusions would have caused no surprise to Melan in 1936.

Thus Baker, as Technical Officer of the SSRC, knew that their Final
Recommendations for Design were deeply flawed, and, moreover, applied
only to the simplest regular array of beams and columns. In a sense, his
1936 text with Pippard is a final exposition of structural analysis as he
knew it at that time, offering no possibility of advance or development.
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(In fact, the text ran through several editions, and a chapter on plastic
methods was added in 1943.)

The elastic designer makes the assumption that the structure is perfect;
the calculations, then, refer to that perfect structure, and not to any
real construction. The elastic designer’s assumptions do, however, seem
reasonable, even though they lead to apparently unobservable elastic
states; common sense would lead to the belief that a trivial defect cannot
really affect the strength of a structure. Common sense is in this instance
correct, and the paradox is resolved by concluding that the calculation of
elastic stresses is not relevant to the prediction of strength. The strength
of a real structure does not depend on an elastic stress reaching some
limit at one point in the structure; it is given by the steady development
of unacceptably large deformations. It was precisely the study of such
behaviour that was reported in the section on plasticity in the 1936 Berlin
Congress of the International Association for Bridge and Structural
Engineering. Baker went to Germany in the wake of this Congress, and
learned from Maier-Leibnitz of the collapse tests on continuous beams.

As has been noted, the collapse loads of such beams are virtually
unaffected by practical imperfections of the kind identified by the SSRC.
Baker at once set up an intensive investigation of the plastic behaviour
of steel structures, first in Bristol in 1936, where he had been appointed
professor, and from 1943 in Cambridge. By 1948 the British Standard
449 (The use of structural steel in building) had been altered by the
insertion of a clause permitting plastic design.

The work by Baker is summarized in The Steel Skeleton volume 2,
of 1956. His approach was essentially experimental; he repeated Maier-
Leibnitz’s tests on continuous beams, and made the first substantial
series of tests on portal frames (and later on multi-storey structures). A
spectacular application of the theory was to the design of the Morrison
shelter, which was installed in over a million households in the UK
in World War II. The shelter was designed to absorb the energy of a
collapsing house by rotation of plastic hinges, allowing the occupants to
remain safe within.

Despite this energy calculation, the plastic analysis of beams and
frames was tackled by Baker as a problem in statics; that is, solutions
were obtained by drawing bending-moment diagrams. The aim was to
represent a mechanism of collapse by the superposition of free and reac-
tant bending moments, in the way shown for example by Maier-Leibnitz,
fig. 9.2. A very simple example, reproduced from The Steel Skeleton vol-
ume 2, is shown in fig. 9.4. The free bending moments for the propped
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Fig. 9.4. The collapse of a propped cantilever, after The Steel Skeleton II.

cantilever are drawn for the equivalent simply supported beam; the max-
imum bending moment, Wab/¢, occurs under the load. The reactant line
is positioned to represent the formation of a plastic hinge (full plastic
moment M,) both under the load and at the fixed end, thus creating
an elementary mechanism of collapse. It is then a simple problem in
geometry to determine the value of M, as Wab/(¢ + b).

The mechanism of collapse is immediately evident for the beam of
fig. 9.4, but it is not so evident for more complex beams and frames.
However, the structures that were studied, and the frames designed
in practice, were usually simple enough for trial-and-error methods to
be adequate. It was of course appreciated that if a structure has n
redundancies, then (n + 1) hinges will transform the structure into a
‘regular’ collapse mechanism. For partial collapse, the number n must
be taken to refer to a part only of the structure; many real frames
reach the collapse state locally, and become statically determinate there,
while the remaining portions remain hyperstatic. Before the late 1940s
no principles were generally known that could be applied to the problem
of the proper analysis of such cases of partial collapse.

Much of the effort of Baker’s teams was therefore directed to other
very necessary aspects of practical plastic design, such as the effects of
axial load and of shear force on the formation of plastic hinges, which
were described in Chapters 2 and 3. Most importantly, elastic/plastic
buckling was studied, and this work has been summarized in Chapter 4.
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9.7 Gvozdev 1936

The general mathematical principles needed to underpin plastic theory
were made available through the activities of W. Prager’s group at Brown
University. Attempts to establish such principles are evident in the papers
of the 1936 Berlin Congress, but the extreme unrest of the times (which
led to World War II) put a brake on further theoretical advances. Some
of the scholars retired; some of the younger workers left Europe. Prager
had not presented a paper in Berlin, but his work was referred to at the
1936 Congress; he left Germany before the outbreak of war, and arrived,
via Turkey and India, in the US in 1941. There, at Brown University, he
established a Division of Applied Mathematics (with close connexions
to the School of Engineering) that attracted outstanding faculty and
students. Central to the work of the Division was the advancement
of knowledge in the field of plasticity, building on the accumulated
knowledge of the 1930s in central Europe.

It turns out that work on plasticity was simultaneously being pursued
in the USSR; A.A. Gvozdev presented a paper to a conference on the
subject in 1936, which was not however published (in Russian) until
1938. This paper by Gvozdev contains what appear to be the earliest
statements and proofs of the fundamental theorems of plasticity (or limit
theorems, as they came to be called in the US).

Gvozdev considers an elastic/perfectly plastic material, with a stress—
strain (in general, stress resultant-strain resultant) relationship of the
type sketched in fig. 9.3; indeed he deals with a rigid/perfectly plastic
material, and is precise in his assumption that elastic displacements
may be ignored. Specifically, deformation of a structural element can
take place only when yield is occurring and, at yield, deformations can
increase indefinitely at constant values of the external forces. The set
of external forces corresponding to all possible modes of deformation
determines the yield condition.

Thus a structural element may be acted upon by a set of generalized
forces sy,s5...s,, where these forces might be, for a bending element,
bending moments M, and M,, axial loads N, and so on. (Equally, the
forces sq1,52... could be taken to represent external loads acting on a
structure.) A plot may then be made in a space of n dimensions of
the yield condition, that is, of those combinations of sy,s,...s, which
will permit unlimited deformations; fig. 9.5(a) shows a two-dimensional
plot of this sort. Similarly, a plot may be made in a space of n di-
mensions where the axes are the corresponding generalized displacement
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Fig. 9.5. (a) Yield surface. The vector s represents a combination of forces causing
plastic collapse. (b) Corresponding strains; the vector ¢ represents a mode of
plastic deformation (after Gvozdev).

components ey, ey, ...e, of the (unit) vector ¢ which gives the plastic de-
formation, fig. 9.5(b). For a particular displacement vector ¢ the internal
work has a certain calculable value, say T, and this must equal the work
expended by the force vector s, that is

T=¢"s (9.3)

Equation (9.3) is represented graphically in fig. 9.5; the ends of all vectors
s, representing combinations of forces to produce plastic deformation,
must lie on a (hyper)plane orthogonal to ¢'. This is the normality condition
of plasticity theory.

When all possible modes of deformation are considered, a set of
hyperplanes is created that define the yield condition; three such planes
are shown in fig. 9.5(a) defining a limiting yield surface. If only discrete
modes of deformation are possible, the yield surface will be polygonal;
otherwise, the boundaries of the yield surface may be curved. In all cases
the yield surface is convex enclosing the origin of the n-dimensional
space; points within the surface represent combinations of forces for
which yield is not occurring.

Gvozdev then proceeds to statements and proofs of the bound theorems
of plasticity theory. (The proofs are simply based on the use of virtual
work, and are very similar to those given below.) The loading on the
structure is taken to be proportional, so that all loads may be specified
in terms of one of their number, P say. Gvozdev specifies the three
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conditions that must be satisfied at collapse, and these may be labelled

Equilibrium condition
Yield condition
Mechanism condition IT (Kinematically admissible).

} I (Statically admissible) 9.4)

(The bracketed terms ‘statically admissible’ and ‘kinematically admis-
sible’ were introduced by Greenberg and Prager (1952).) The problem is
to determine the value P. of the collapse load at which all three of the
conditions are satisfied.

Gvozdev first considers states 1 of the structure for which the equilib-
rium and yield conditions are satisfied, say at a load P,. Evidently there
will be a largest value P™*. If now a displacement of the structure is
considered that is caused solely by deformations of the plastic zones, then
a value of load P; may be calculated by equating the work done by P
on the displacements of the structure to the internal plastic work. When
all possible deformations are considered, then a smallest value P™® may
be determined. Since at collapse all three conditions must be satisfied,
then

P™* > p. > pmin, (9.5)
A simple reductio ad absurdum argument, given below, shows that
PImax — Plllnin’ (9.6)
from which the basic theorems follow:

A: Uniqueness. The collapse load has a definite value
P.= PImax — Plllnin‘

B: Upper bound. A value P; calculated from a possible mode of
plastic displacement is an upper bound on the value of the
collapse load, that is, P; > P..

C: Lower bound. A value P, calculated from an equilibrium state
which satisfies the yield condition is a lower bound on the value
of the collapse load, that is, P, < P..

9.8 Proofs of the plastic theorems

These fundamental results obtained in 1936 by Gvozdev were unknown
outside Russia, and little noticed within that country. The static (or lower-
bound, or safe) theorem was restated in 1948 in Russian by Feinberg,
but without proof, and came to the attention of Prager. Greenberg and
Prager supplied proofs in 1949 of the upper and lower bound theorems
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(published 1952), and Horne (1950) added a proof of the uniqueness
theorem. These mathematical theorems provided the rigorous backing
for Baker’s advances in engineering plasticity; Baker and Prager met in
1947, and there followed fruitful collaboration between Cambridge and
Brown Universities.

The proofs of the theorems follow, as has been indicated, from straight-
forward applications of the equation of virtual work, and can perhaps be
given most easily in terms of the simple framed structure. (The theorems
hold, subject to the usual assumptions of small displacements and stable
behaviour, for more general continuum structures.) Figure 9.6(a) shows
a rectangular portal frame acted upon by loads W ; all loads are acted
upon by the same multiplying load factor 1. The value A at collapse is
sought. In terms of this frame Gvozdev’s three conditions (9.4) may be
written as:

Equilibrium: Internal bending moments M in the frame are in
equilibrium with the external loads W.

Yield: The values of M are less than, or at most equal to,
the value of the full plastic moment M.

Mechanism: There is an arrangement of plastic hinges which will
permit deformation of the frame.

Figure 9.6(b) shows a mechanism of deformation, and the rotations 0
are compatible with displacements 6 of the loading points. The internal
work dissipated at a plastic hinge is M;|6|, which is always positive; the
value of M, may vary from point to point round the frame.

Uniqueness. It will be supposed that, for a given loading on a frame,
there are two different collapse mechanisms formed at different load
factors A* and A*". For the first mechanism the collapse bending moments
round the frame are given by a distribution M”*, where the equilibrium
equations are satisfied and |[M*| < Mp; the mechanism of collapse is
(6%,6%). A similar statement may be made for collapse at the load factor
A**, so that

A: (XW,M") satisfy the equilibrium and yield conditions
B: (A" W,M™) satisfy the equilibrium and yield conditions
C: (8%,6") describes a mode of plastic deformation

D: (6“,0"‘) describes a mode of plastic deformation.

9.7)

The collapse equation for the first mechanism may be written by
combining statements A and C in the equation of virtual work:

TIWS =IM'6". (9.8)
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Fig. 9.6. (a) A typical frame acted upon by loads W. (b) A typical mode of
plastic deformation.

The value of |M’| at each hinge position is equal to M,, so that the
collapse load factor A" is given by

AZWE =ZIM,|60°|. 9.9)

Statements B and C in (9.7) can also be combined by the equation of
virtual work:

ACIWE =ZTMTE. (9.10)
The bending moments M** satisfy the yield condition; that is, if mecha-
nisms 6° and 6°" have a common hinge, then [M™| = M, at that hinge,

but otherwise |M™*| < M, at the hinge points of the mechanism 6. Thus,
in equation (9.10),

IM™O < IM,|0°|, (9.11)
so that
AUIWE < IM,|6|. (9.12)
Comparing equation (9.9) with inequality (9.12),
A< A (9.13)

Statement D in (9.7) has not been used, and if the arguments are
repeated with statement D instead of statement C,

<A, (9.14)
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Thus A* and A** have the same value, namely the collapse value A.. This,
with a different notation, is essentially the proof given by Gvozdev for a
generalized plastic body. It may be noted that the proof has shown only
that the load factor at collapse is unique. Nothing has been proved about
the mode of deformation, and indeed it is possible for different modes to
exist at the same value of collapse load factor.

The upper bound theorem (the unsafe theorem). The theorem states
that if a plastic mode of deformation is assumed, and the work done by
the external loads is equated to the internal work dissipated, then the
resulting load factor A’ is always greater than, or at best equal to, the
true load factor A.. The following statements will be used:

E: (AW, M,) is the actual collapse distribution
F: (&,0') is the assumed collapse mechanism. } 6.15)
The work equation for the assumed collapse mechanism is
VEIWS =ZIM,|0']. (9.16)
Statements E and F of (9.15) combine to give
AEWS =IM.0. (9.17)
Now [M,| < M,, so that, following the previous arguments,
AIWE < M,y|¢], (9.18)
and comparison of (9.16) and (9.18) shows that
A< . (9.19)

The lower bound theorem (the safe theorem). The theorem states that if a
set of bending moments can be found that satisfies the equilibrium and
yield conditions at a load factor A”, then A” is always less than, or at best
equal to, the true load factor A.. The following statements will be used:

G: (A"W,M") represents a set of bending moments
satisfying the equilibrium and yield conditions

H: (AW, M,) is the actual collapse distribution (9:20)
J: (6, 0c) is the actual collapse mechanism.
Statements H and J give
AZIW S, = TM 0. = ZM, |0, (9.21)

while G and J give
A'EW S, =EM"0, < TM,|6,| (9.22)
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as before. Hence

< e (9.23)

Thus Gvozdev’s three conditions (9.4) that must be satisfied at collapse
of a plastic body may be displayed compactly as the three theorems:

Equilibrium condition 1<
A=A} Yield condition = e
Mechanism condition A=A

(9.24)

9.9 Methods of calculation

With fundamental theorems available from about 1950, the way was open
for the development of techniques of calculation. These were devised first
for use by hand, but they coincided with the wide-scale development of
electronic computing, and rapid progress was made in methods of plastic
design of framed structures. These are now part of the general vocabulary
of standard texts, and Neal and Symonds are responsible for advances in
at least two areas. One of these, the method of combination of mechanisms,
powerful as a hand method but easily programmable, is based on the
fact that very few independent equilibrium equations exist for a framed
structure. Indeed, if a frame has a number R of statical indeterminacies
(the frame in fig. 9.7(a) has 18 redundancies), and there are N possible
critical sections at which plastic hinges might form (36 in fig. 9.7), then
there exist (N —R) equilibrium equations connecting the values of the
bending moments at the critical sections with the magnitudes of the
applied loads.

Neal and Symonds (1952) made use of the fact that an equilibrium
equation can be generated, through the use of virtual work, from a
corresponding mechanism. There is thus a one-to-one correspondence
between an independent equilibrium equation and an independent mech-
anism; just as all possible statements of equilibrium for a frame can
be deduced from the independent equilibrium equations, so all possible
mechanisms of collapse can be built up from the independent elementary
mechanisms. Thus (N —R) has the value 18 for the frame of fig. 9.7, and
these 18 mechanisms comprise 6 of elementary beam type, of which one
is sketched in fig. 9.7(b), 3 sways, one of each storey, of which one is
sketched in fig. 9.7(c), and 9 degenerate joint mechanisms (expressing the
fact that the moments acting on the ends of members meeting at a joint
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Fig. 9.7. (a) Multi-storey multi-bay frame. (b) Typical elementary beam mecha-
nism. (c) Typical storey sway.

must sum to zero). From these simple elements can be built up a highly
complex final collapse mechanism.

It will be seen from statements (9.24) above that the method is ‘unsafe’;
mechanisms are examined, and the objective is to reduce to its minimum
the value of the loading parameter. The simplicity of the method derives
from the fact that only one of the three collapse conditions is examined;
no attempt is made to satisfy (during the course of the calculation) the
equilibrium or yield conditions. As a trivial example, the rectangular
portal frame of fig. 9.8 has members of uniform full plastic moment
M,,; it is required to find the collapse value A; of the load factor A. The
frame has 5 critical sections and 3 redundancies; the two independent
mechanisms may be taken as those sketched in fig. 9.8(b) and (c), and
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Fig. 9.8. (a) A simple rectangular portal frame. (b) and (¢) Two independent
modes of deformation. They combine to give mode (d).
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give the collapse equations

(9.25)

Ve
/17 = 4Mp
and AHh=4M,,.

Only one combination is possible; fig. 9.8(d) results from the super-
position of (b) and (c), eliminating the hinge at corner B, and the
corresponding collapse equation is

A (Yz—{ + Hh) = 6M,,. (9.26)
From the upper-bound theorem, that mechanism is correct (for given
loads and dimensions of the frame) which gives the smallest value of 1
from the three equations (9.25) and (9.26).

More generally, if the bending moment at section i (i = A,...,E) has
value M;, then (with an appropriate sign convention) the two independent
mechanisms (b) and (c) of fig. 9.8 give the equilibrium equations

Ve
Mg —2M¢ + Mp =,17 9.27)
and MA—-MB +MD—-ME = AHh.
To these equations may be added the yield condition
—Mp, < M; <M, (9.28)

It will be seen that the first of equations (9.25), for example, may be
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derived from the first of (9.27) by maximizing, numerically, the value of
the left-hand side; that is, the value of A from equations (9.27), and from
all other possible equilibrium equations, is made as large as possible.
The smallest value of A from all these possibilities is then the correct
value, A.. This ‘minimax’ behaviour was, as has been seen, remarked on
by Coulomb (1773).

In fact, Neal and Symonds (1950-51) had proposed earlier a solution
of the plastic problem working from equations such as (9.27) and (9.28),
that is, based on the satisfaction of the equilibrium and yield conditions.
This is a ‘safe’ approach, and the problem posed in this way is a standard
one of linear programming; Charnes and Greenberg (1951) identified this
application.

9.10 Shakedown and incremental collapse

According to Neal (1956), both Griining (1926) and Kazinczy (1931)
recognized that a structure might fail under repeated loading by excessive
plastic flow, even though no single load combination were severe enough
to cause plastic collapse. Inequalities (9.1), as stated by Bleich, may be
written

AM™F 4+ m < M,

e ins i ) 02)

where the device of a proportional load factor A has been introduced.
A conventional elastic solution is obtained for the various specified
loads acting on a frame, and the bending moments .#™* and .#™" are
calculated at each cross-section to give the greatest and least values; these
values are then multiplied by the factor A.

The shakedown (lower-bound) theorem states that if a set of self-
stressing moments m can be found so that inequalities (9.29) are satisfied,
then the structure will shake down at a load factor A. That is, although
some plastic deformation may occur under initial applications of the
applied loading, the structure will eventually resist further loading solely
by responding elastically. Inequalities (9.29) are clearly necessary if plastic
flow is not to occur; the shakedown theorem states that they are also
sufficient.

From inequalities (9.29),

My =A™ > m > —M, — AM™", (9.30)

thatis, A (4™ —./™") < 2M,. (9.31)
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Fig. 9.9. Development of an incremental collapse mechanism. (a) Side load causes
small rotations of hinges A and B. (b) Side and vertical loads cause small rotations
of hinges D and E. (c) State of frame after a few cycles of loading.

Inequality (9.31) describes the first way in which plastic failure might
occur under repeated loading; if it is not satisfied at a particular cross-
section, that section would be bent back and forth, yielding in first one
sense and then the other, with the possibility of low-cycle fatigue failure.
For normal loading on usual civil-engineering structures, such alternating
plasticity is unlikely, although it is certainly possible in constructions such
as pressure vessels.

The second way in which plastic failure might occur is by incremental
collapse. At some stage in the loading cycle, equality is reached in one
of the inequalities at one or more critical sections of the frame, so that
a plastic hinge is formed and plastic rotation occurs. There are not,
however, sufficient hinges to turn the whole frame into a mechanism of
collapse, so that plastic deformation is constrained to be small by those
portions of the frame remaining elastic. Under a different loading com-
bination other hinges might form, and again irreversible plastic rotation
could occur. Thus in fig. 9.9 the side load AH might produce plastic
hinges at A and B, whereas on some other occasion loads AH and AV
might produce hinges at D and E. Neither fig. 9.9(a) nor (b) represents a
mechanism of collapse, but after a few repetitions of such cyclic loading
the incremental collapse mechanism of fig. 9.9(c) could be well developed.

Melan (1936) gave a proof that inequalities (9.29) were sufficient to
prevent such incremental collapse — his proof was for pin-jointed trusses
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(assuming stable behaviour in compression). The proof was later sim-
plified by Symonds and Prager (1950), and Neal (1951) adapted it for
frames, as follows.

A small change is considered in the values of the applied loads. This
variation of the loads may cause some yielding to occur, so that not only
will the elastic moment change to (.#; + 5.4), but the residual moment
m; at the same section i may change to (m; + dm;). During this process
the change of curvature (0.4;+ om;) /EI at each section of the frame
that remains elastic will be compatible with any hinge rotations 60 that
may occur at the yielding sections k. Thus, since m; is a set of bending
moments in equilibrium with zero external load, the equation of virtual
work gives

m,é}—;—?ds + / mi%"lﬂds + Zmdby =0, (9.32)
where the integration extends over all portions of the frame that remain
elastic during the change in applied loading, and the summation includes
all hinge rotations that occur.

The moments .#; are bending moments computed for a frame that is
wholly elastic, so that the changes of curvature 6.#;/EI give a compatible
set of deformations of the frame; a second and separate application of
virtual work shows therefore that the first integral in equation (9.32) must
be zero.

A set of self-stressing bending moments satisfying inequalities (9.29)
will be denoted m;. Exactly the same arguments then show that

EI
and equations (9.32) and (9.33) combine to give

/ 7.9 ds 1 T80 = 0, (9.33)

/ (m; — ;) %nl—ids 45 (my, —7) 66 = 0. (9.34)

It is now supposed that at a particular section k where yield is occurring,
the current value of my is such that m; < my, that is

(m — ) < 0. (9.35)

The first of inequalities (9.29) gives
AME™ 47y < (Mp)k , (9.36)
thatis AP +my < (Mp), (9.37)

where, in inequality (9.37), the possibility of equality no longer exists.
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Since, however, it was supposed that yield is occurring at the section,
it must be under the negative value —(Mp) , (ie. the second inequality
(9.29) must just be satisfied), and the corresponding value 66, of the
hinge rotation must also be negative. Thus, using (9.35),

(my —my) 66, > 0. (9.38)

In the same way, if it is assumed that m; > i, then of necessity 66, > 0.
If my, = my, the sign of 8, cannot be determined, but in all cases

(my, — M) 66, > 0. (9.39)
Hence from equation (9.34)
6m,‘
Now the quantity
_ f (mi— m;)°

is positive definite, and inequality (9.40) states that, as the loading on
the frame changes, U < 0. Thus the value of U can only decrease if
any plastic deformation occurs, and it remains constant otherwise; the
value of U either must become zero, in which case m; = m; everywhere,
or must settle down to a definite positive value. All further changes in
the applied loading will then be resisted purely elastically, and the frame
will have shaken down.

As for the case of fixed static loading, simpler calculations result
for variable loading if attention is concentrated on possible incremental
modes of plastic deformation, rather than on solutions satisfying the
yield condition, inequalities (9.29). A particular mechanism is assumed,
say that of fig. 9.9(c), where the hinges are actually formed at different
stages in the loading cycle, figs 9.9(a) and (b). If the hinge rotation §; at
one of the hinges is positive, say +0;", then a hinge will form when

AMT™ 4+ m; = (M), (9.42)
and if the rotation is negative, say —0;", then
AP+ m; = — (M), (9.43)
If equation (9.42) is multiplied through by +6;, and equation (9.43) by
—0;, then either

/I./ll?‘a"(?;“ + m,‘e,‘ = (Mp)i |0,| } (944)

or  —AMPO +mb; = (Mp), 0.
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Equations (9.44) can now be summed for all hinges of the assumed
incremental collapse mechanism, and since, as usual, Tm;8; = 0, then

AZMTR0F —Z M0 =T (M), 164, (9.45)

This is the incremental collapse equation and, using arguments similar to
those involved in the proof of the upper-bound theorem for static loading,
it is easily shown that the value of A resulting from equation (9.45) is an
unsafe estimate of the true incremental collapse (or shakedown) factor
As, 1.6,

A> . (9.46)

It may be noted that for fixed loading leading to static collapse at a
load factor A, equation (9.45) gives

AEM G = (My), 16i]; (9.47)

the static plastic collapse load factor for a given mechanism ¢ may be
calculated immediately from the elastic solution .#.

It seems apparent, and indeed is so, that the value of A calculated
from the incremental collapse equation (9.45) cannot exceed the value of
A¢ calculated from the static equation (9.47), in which all loads are given
their fixed maximum values. That is, variable loading is always more
critical for a structure than fixed loading of the same magnitudes. This
matter was discussed by Ogle (1964); see also Heyman (1971).

9.11 Coda

It is, of course, not necessary to obtain first the elastic solution in order to
make a collapse analysis for a structure, as might be implied by equation
(9.47). Historically this was in fact the approach, as may be seen in the
work of Maier-Leibnitz and Bleich reported to the 1936 Berlin Congress.
However, equation (9.22) may be rewritten

ZMw0 = ZMp|0), (9.48)

and this may be regarded as the basic equation for making a plastic
design of a frame. Here My represents any set of bending moments in
equilibrium with the (factored) loads acting on the structure; the external
loading has been replaced by this equilibrium set My. Since equation
(9.48) represents an ‘unsafe’ design for an arbitrarily assumed mechanism
of deformation @, all such mechanisms must be examined, and that one
is correct which gives the largest value of M.



9.11 Coda 153

The elastic bending moments .# are, naturally, in equilibrium with the
external loads; equation (9.47) is merely a special, but very interesting,
case of equation (9.48).

It will have been noted that, in the proofs of the theorems, sets of
self-stressing moments are introduced which are superimposed on the
moments (M, say, as in equation (9.48) above) that equilibrate the
applied loads. These self-stressing moments could be induced in the
structure by plastic yield on first loading, or by the forcing together of
members during manufacture to rectify imperfect geometry, or by set-
tlement of supports, or by temperature strains, or by the firm bolting
together of members at a connexion that is regarded as pinned (sec-
ondary stresses). However they arise, states of self-stress, by definition in
equilibrium with zero external load on the structure, cannot affect the
simple plastic theorems. The collapse load for a ductile structure whose
members do not become unstable is unique, and is independent of any
initial or induced state of self-stress.
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Navier (1826) identified the three, and only three, groups of equations
that can be formulated to analyse a structure. Foremost are the equations
of equilibrium, which relate the internal forces to the given externally
applied loads. If these equations alone determine the internal forces, then
the structure is, by definition, statically determinate.

In general, a structure is hyperstatic, and the other two sets of equa-
tions must be used in order to solve the prime structural problem, that
of finding the internal forces. Statements must be made about how the
internal forces are related to internal deformations — a ‘stress—strain’
relationship must be specified, and, until the advent of plastic methods,
this relationship was usually taken to be linear-elastic. Other material
properties may also come into play in calculating the internal deforma-
tions — for example, strains due to temperature. Finally, the equations
of compatibility are used to make geometrical statements; the members
are constrained to fit together, internal deformations must be related
to external movements of the structure, and the structure as a whole is
constrained by its attachment to its environment.

10.1 Hambly’s paradox

Hambly (1985) posed a pedagogic problem to illustrate the difficulties of
design of a hyperstatic structure:
A milkmaid weighing 600 N sits on a three-legged stool. For what basic force
should each leg of the stool be designed?
The stool is supposed to be symmetrical, the milkmaid sits at the centre
of the seat, and so on. The answer to the question is, of course, 200 N.
The same milkmaid now sits on a square stool with four legs, one at
each corner, and again the stool and the loading are symmetrical. For

154



10.2 The elastic design process 155

what force should each leg of the stool be designed? The answer of 150 N
is not necessarily correct. A robust, nearly rigid milking stool, standing
on a firm, nearly rigid milking-shed floor, will rock; three of the legs
will appear to be in contact, supporting the weight of the milkmaid, but
the fourth will be clear of the floor. If this fourth leg is clear by only
a fraction of a millimetre, then it is certain that the force it is carrying
is zero. By simple statics, the force in the leg diagonally opposite will
also be zero, even if it seems to be touching the floor. The weight of the
milkmaid is in fact supported symmetrically by the other two legs of the
stool, and each must therefore be designed to carry a force of 300 N.

Now the stool may be imagined to be placed on a randomly rough
floor, and there is no way of deciding a priori which legs are in contact —
all legs must therefore be designed to carry a force of 300 N. This is the
paradox — the addition of a fourth leg implies an increase, rather than a
decrease, in the force for which each leg must be designed.

10.2 The elastic design process

Only three equations of equilibrium are available for the four-legged
stool, and there are four leg forces to be found. For this simple problem
the leg forces are equal to the supporting reactions from the floor,
Ry, Ry, R; and Ry say. If the milkmaid sits centrally but no assumption
is made about any consequent symmetry in the values of the reactions,
then at least it is known that their sum must be 600 N. The two further
equations, obtained by taking moments, show that diagonally situated
legs carry equal loads, i.e. Ry = R; and Ry = R4. Thus R; + R; = 300, but
no further information results from the equilibrium equations. However,
the physical problem requires that both R; and R, be positive, so that
0 < Ry, R; < 300.

(It may be remarked that the statement that only three equations of
overall equilibrium are available for analysis of the stool results from a
preliminary simplification in the modelling of the problem. For example,
the designer will have assumed that the legs make point contact with
the floor — the leg-ends are rounded, perhaps. Further, it will have been
assumed that the reactions on the legs from the floor are vertical — the
floor is smooth. If in fact contact is rough, then horizontal forces may act
at the feet of the legs; extra equations of equilibrium may be written, but
the degree of structural indeterminacy rises sharply. Such considerations
may or may not be of importance in the final assessment of the design
requirements for a leg of the stool.)
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The four-legged stool, then, cannot be solved by statics alone, and
Navier showed the way to proceed. Elastic information must be intro-
duced - the flexural properties of the slab forming the seat of the stool
must be specified, as must the axial compressibility of the legs. The analy-
sis at once becomes complex, since the flexure of a square slab supported
at four corners is not a simple problem. In fact, the designer might well
wish to make the common-sense assumptions that the slab is rigid and
the legs are incompressible, but no solution would then be possible — an
elastic analysis requires a knowledge of elastic constants. A compromise
would be to assume a rigid slab, but to allow elastic compressibility of
the legs. A straightforward analysis then results; no matter what value
of the elastic constant is taken for the legs, the force in each leg is found
to be 150 N.

This result has been obtained, of course, on the assumption, without
consideration, of uniform boundary conditions; the floor is rigid and
level, and all legs of the stool are of the same initial length so that they
make the same contact with the floor. In fact, as has been noted, the
boundary conditions are unknown and unknowable — the milkmaid will
place the stool randomly on a rough floor. It may well be concluded
that trivial irregularities can really have no significant influence on the
problem of designing a safe stool, but elastic analysis does not support
this common-sense view. If the stool is analysed with one leg clear of the
floor, then profoundly different values for the elastic leg forces will be
found for clearances of say 0.01, 0.1 and 1 mm. These different values
will be confirmed by experiment; if tests are carried out, with gauges
attached to the legs, then the load in a leg may be found to have any
value lying between 0 and 300 N, and a fair number of experiments will
record the load as exactly 0 or 300 N.

It was precisely observations of this sort that were made by the Steel
Structures Research Committee in the 1930s, and their conclusion was
that the host of geometrical imperfections in structures made elastic
analysis the wrong tool for design. It was these observations, coupled
with the experimental work of Kazinczy, Maier-Leibnitz and others, that
led to the plastic method of structural design for steel structures (or
indeed of a structure made of any ductile material).

10.3 Simple plastic design

The essence of the words ‘plastic’ and ‘ductile’ is that a limiting stable
behaviour is implied. For the simple example of a transversely loaded
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steel beam, an imagined slow increase in load will lead to the development
of a plastic hinge. Rotation can take place at this hinge leading to large
structural deflexions, but the process is quasi-static, with the applied
loads remaining constant. Reinforced concrete shows this same kind of
behaviour, at least for the range of displacements experienced by usual
structures. In fact any material (aluminium alloy, wood) used in practical
design is ductile in this way, as opposed to brittle materials (glass, cast
iron) which will crack if overstrained and could lead to catastrophic
collapse. Galileo’s marble column fractured when stored on its side in an
accidentally hyperstatic situation.

If, then, a plastic analysis is to be made of the stool, it must be ensured
that the final failure of a leg is ductile. This implies that each leg should
be ‘stocky’, and capable of sustaining a limiting ‘squash load’ without
exhibiting unstable behaviour. The loading history of such a stool may
now be followed (as might have been done in the mid-1930s) as a point
load at the centre is slowly increased.

Initially, in general, only two legs will carry the load. If the squash
load of each leg is P, then these two legs will yield, and compress stably,
when the point load has value 2P. The compression of the yielded legs
will allow the unloaded legs to make contact with the floor, and the point
load may then be increased above the value 2P — in fact, to the value 4P.
At this final stage all four legs are carrying their maximum loads, and a
large displacement of the seat of the stool will follow. The plastic design
of the stool to carry a milkmaid of 600 N would therefore require the
value of P to be 150 N, and this is the force for which each leg should be
designed — of course, with a suitable factor. (It may be that a load factor,
say 3, has already been incorporated; that is, the stool is actually being
designed for the sole use of the milkmaid’s daughter, who weighs 200 N,
and the milkmaid herself is a fiction. Alternatively, Bleich’s approach
may be adopted; the milkmaid is real, and weighs 600 N, so that each
leg of the stool will be manufactured with a strength three times that
calculated, that is, with a squash load of 450 N.)

The plastic solution — each leg to be designed for 150 N — has been
obtained by following the particular loading history outlined above, but
other histories are possible. For example, one leg may be initially only
just clear of the floor, and application of the load may bring this leg
into contact through elastic shortening of the two loaded legs. However,
further increase of loading will eventually, in the symmetrical case, cause
two legs to yield, and the load can be increased until collapse occurs,
once more at a value of 4P. Or again, the stool may be positively pinned
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to the rough floor, so that the legs can take both tensile and compressive
forces; initial installation will induce a state of self-stress, in which two
opposite legs carry the same value of tensile force, while the other two
carry the same force in compression. Application and slow increase of
the central load will cause the two legs in compression to yield first; the
final collapse load of 4P remains the same.

Simple plastic design, directed to the calculation of ultimate loads, is
independent of the loading path, of initial imperfections, of temperature
strains and of initial states of self-stress.

10.4 Design with unstable elements

Hambly’s paradox does not exist either for the straightforward elastic
designer or for the simple plastic designer — they are united in the view
that the legs of the four-legged stool should be designed for 150 N to
support a weight of 600 N. However, plastic design, and its comforting
‘safe’ theorem, is valid only if the structural elements (the legs) are stable.
Should a leg buckle, the load/deflexion characteristic for that leg will
peak and fall, rather than display the required ‘ductility’ at constant
failure load.

For example, the simple plastic designer, aware of the buckling danger
but relying mistakenly on the safe theorem, may design each leg to buckle
at 160 N. If the stool is placed carefully and exactly on a flat floor, then
a 600 N load will induce leg forces of 150 N, and all will be well. On
a rough floor, however, one leg will not be in initial contact, and the
(factored) load will cause (at least) one leg to buckle and to deform
permanently, leading to collapse of the stool. Put another way, the load
factor against collapse has been reduced substantially to 1.6 from the
design value of 3.

These arguments apply in exactly the same way to the elastic designer,
who is also designing against instability and who also believes the forces
in the legs all to be 150 N. The fact is that elastic analysis cannot be
used since the boundary conditions are unknowable, and the resulting
design may be unsafe; equally, plastic design is invalid, and unsafe, if
there are unstable elements in the structure. Hambly’s question appears
not to have been answered: for what force should each leg of the stool
have been designed?

The question has in fact been addressed, and a partial answer may
be found, for example in the ‘weak-beam strong-column’ philosophy of
design proposed by a Joint Committee (1964) for the design of multi-
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storey frames. The beams in such a structure are taken to be stable
elements (which may involve restraint against lateral buckling), so that
they can be designed to have some sort of minimum section — that is,
a plastic design would be appropriate. The columns of the multi-storey
frame, however, are given cross-sections that may be more than adequate
from the point of view of strength, but ensure that unstable buckling
cannot occur.

It is the word ‘ensure’ that causes difficulties. If the end conditions
on a column are known, then, despite the fact that buckling is sensitive
to imperfections, to residual stresses and so on, the rational/empirical
methods outlined in §4.6 will give assurance of stability. In any case of
doubt, a column can be replaced by one slightly larger, and certainly
stable, at almost no penalty of cost or weight. It is, however, the de-
termination of the end conditions that is not easy. Neither the elastic
designer, working with a conventional design procedure, nor the plastic
designer, using known values of bending moments applied to the columns
from collapsing beams, may be aware of the problem, but the problem
nevertheless exists.

An illustrative example is shown in fig. 10.1. A simple rectangular
portal frame of uniform section is designed plastically as in fig. 10.1(a);
the full plastic moment M, is of value 6 units. Figure 10.1(b) shows
the corresponding collapse analysis; the frame has one redundancy left
at collapse, and the bending moments shown satisfy the equilibrium
equations. The yield condition will also be satisfied if the unknown
bending moment M has any value between 6 and —1.2; under these
conditions the solution is ‘safe’, and the collapse analysis is confirmed
provided that neither column becomes unstable.

It is clear that M = —1.2 will give the worst bending-moment distri-
bution for design of the columns, fig. 10.1(c); both columns are bent in
single curvature. Similarly, M = 6 will give the most favourable distribu-
tion, fig. 10.1(d). A full elastic—plastic analysis, with the assumptions of
perfect fixity of the column feet, gives the bending moments of fig. 10.1(e),
which resembles the distribution corresponding to a fully elastic analysis,
fig. 10.1(f). The distribution of fig. 10.1(c) should of course be used to
ensure that the columns remain stable, but the whole matter is largely
unaddressed by any current design process. The straightforward elastic
designer will accept fig. 10.1(f); the plastic designer is forced to make
some decisions, since the simple analysis does not give the value of the
unknown bending moment M. The elastic—plastic analysis, fig. 1.10(e),
may well be used. It may be noted that a small settlement of the left-hand
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Fig. 10.1. (a) Plastic design of a uniform portal frame. Full plastic moment
M, is 6 units at unit load factor. (b) Analysis at collapse. One redundancy
remains: M can have any value between 6 and —1.2. (¢) Worst condition for
stability of columns, corresponding to slight settlement of left-hand column. (d)
Similarly, best conditions for columns. (¢) Column moments given by elastic—
plastic analysis, assuming perfect fixity at column feet. (f) Similarly, wholly elastic
analysis.

footing will modify the elastic—plastic distribution to that of the most
severe case, fig. 10.1(c).

Thus, to revert to the problem of the four-legged stool, it has been seen
that a simple plastic design leads to forces of 150 N in the legs under
a load of 300 N. If the legs are ductile and stable, then they may be
designed safely for a load of 150 N;; if this assurance of stability cannot
be given, they must be designed for 300 N.

10.5 Conclusion

The theory of structures is concerned with the mechanics of slightly
deformable bodies. If a structure is to be of practical use, its displacements
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must be very small; the structure as a whole, and its components, are
almost, but not quite, rigid, so that very small deformations engender
large internal forces. These internal forces must satisfy the equations of
equilibrium that connect their values with those of the external loads,
but, for a hyperstatic structure, there exist an infinite number of solutions
of the equilibrium equations. That solution is correct which satisfies also
the geometrical boundary conditions.

This is the ‘Navier’ statement of the structural problem, and it leads
to a solution which cannot be observed in practice, as was shown ex-
plicitly by the Steel Structures Research Committee in the 1930s, and
implicitly at about the same time by those developing plastic methods.
Of the three sets of master equations, those of equilibrium must cer-
tainly be satisfied. The material properties, such as Young’s modulus
and the yield stress, used in the second set of equations, are known
accurately for steel, and fairly well for reinforced concrete, timber and
other structural materials. These material properties are needed in or-
der to calculate deformations, so that the third set of equations may
be written, expressing geometrically the compatibility of deformation.
It is these compatibility equations which are either poorly known (the
flexibility of connexions between members) or essentially unknowable
(the random small settlement of a column footing). Under these condi-
tions it is meaningless to ask for a calculation of the ‘actual’ state of
a structure; that state is an accidental product of the reaction between
the structure and its environment, and can indeed change as a result of
unpredictable events (a gale, an alteration in water table, a small earth
tremor).

The prime structural problem remains the calculation of internal forces,
in order that strength may be assessed, so that equilibrium equations,
and a knowledge of the yield stress of the material, must certainly be
retained. But elastic properties are introduced in a conventional analysis
only for the purpose of solving the compatibility equations, and the
strength of a ductile structure is independent of such faults as lack of
fit of members, settlements of supports and so on. Boundary conditions
must be considered as unknown, and there is then no need for elastic
properties to enter the prime structural calculations. (Elastic properties
will be needed to estimate, if required, overall deflexions of a structure.)

There remain, then, the equilibrium equations and the yield condition.
These are the twin foundations of simple plastic theory; an equilibrium
solution that satisfies yield is ‘safe’. A conventional elastic design satisfies
both conditions; the method may be uneconomical, and the predicted
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structural behaviour may be unobservable, but the method is also safe.
A truly safe design, however, requires more than the application of
simple plastic theory; it must be ensured that there is adequate ‘ductility’.
The structure as a whole, and its individual elements, must remain

stable.
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