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Preface

The dynamical behaviour of civil engineering structures has traditionally been tackled, for
design purposes, in an ‘equivalent static’ way, essentially by introducing magnification
factors for vertically applied loads and/or by specifying equivalent horizontal loads. Today the
availability of software able to deal explicitly with dynamic analysis of realistic structures
with many (dynamic) degrees of freedom, as well as the outcome of the valuable research
carried out in the various fields included under ‘Dynamics’, make this type of analysis a part
of everyday life in the design office.

There are also a number of good reasons why dynamical behaviour of buildings, bridges
and other structures is now more of a concern for the designer than it used to be 20 or 30
years ago. One reason is that the aforementioned structures currently consist of structural
members that are more slender than before, and lighter cladding made of metal and glass or
composites rather than of brick walls. This offers a number of architectural advantages, but
also makes these structures more sensitive to vibration, due to their reduced stiffness. From
another perspective, the risk to environmental dynamic loads, like those from earthquakes, has
increased due to the tremendous increase in urbanization witnessed in many countries subject
to such hazards. Furthermore, the increased need for building robust and efficient structures
inside the sea has also placed more emphasis on properly designing such structures against
dynamic loading resulting from waves and currents.

Dealing with all, or even some of the aforementioned dynamic loads in an explicit way is
clearly a challenge for the practising engineer, since academic curricula can hardly
accommodate a proper treatment of all these loads. Furthermore, the lack of a book dealing
with all types of dynamic loading falling within the scope of current codes of practice, makes
the problem even more acute.

The main purpose of this book is to present in a single volume material on dynamic loading
and design of structures that is currently spread among several publications (books, journals,
conference proceedings). The book provides the background for each type of loading (making
also reference to recent research results), and then focuses on the way each loading is taken
into account in the design process.
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An introductory chapter (Chapter 1) gives the probabilistic background, which is more or
less common for all types of loads, and particularly important in the case of dynamic loads.
This is followed by a chapter (Chapter 2) on analysis of structures for dynamic loading,
making clear the common concepts underlying the treatment of all dynamic loads, and the
corresponding analytical techniques.

The main part of the book includes Chapters 3–9, describing the most common types of
dynamic loads, i.e. those due to wind (Chapter 3), earthquake (Chapter 4), waves (Chapter 5),
explosion and impact (Chapter 6), human movement (Chapter 7), traffic (Chapter 8), and
machinery (Chapter 9). In each chapter the origin of the corresponding dynamic loading is
first explained, followed by a description of its effect on structures, and the way it is
introduced in their design. The latter is supplemented by reference to the most pertinent code
provisions and an explanation of the conceptual framework of these codes. All these chapters
include long lists of references, to which the reader can make recourse for obtaining more
specific information that cannot be accommodated in this book that encompasses all types of
dynamic loading.

A final chapter (Chapter 10) deals with the more advanced topic of random vibration
analysis, which nevertheless is indispensable in understanding the analytical formulations
presented in some other chapters, in particular Chapters 3 and 5.

The book is aimed primarily at practising engineers, working in consultancy firms and
construction companies, both in the UK and overseas, and involved in the design of civil
engineering structures for various types of dynamic loads. Depending on the type of loading
addressed, an attempt was made to present code provisions both from the European
perspective (Eurocodes, British Standards) and the North American one (UBC, NBC), so the
book should be of interest to most people involved in design for dynamic loading worldwide.

The book also aims at research students (MSc and PhD programmes) working on various
aspects of dynamic loading and analysis. With regard to MSc courses, it has to be clarified
that Loading is typically a part of several, quite different, courses, rather than a course on its
own (although courses like ‘Loading and Safety’ and ‘Earthquake Loading’, do currently exist
in the UK and abroad). This explains to a certain extent the fact that, to the best of the editor’s
knowledge, no comprehensive book dealing with all important types of dynamic loading has
appeared so far. The present book is meant as a recommended textbook for several existing
courses given by both Structural Sections and Hydraulics Sections of Civil Engineering
Departments.

The contributors to the book are all distinguished scientists, rated among the top few in the
corresponding fields at an international level. They come mostly from the European academic
community but also include people from leading design firms and/or with long experience in
the design of structures against dynamic loads.

Putting together and working with the international team of authors that was indispensable
for writing a book of such a wide scope, was a major challenge and experience for the editor,
who would like to thank all of them for their most valuable contributions. Some of the
contributors, as well as some former (at
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Imperial College, London) and present (at the University of Thessaloniki) colleagues of the
editor have assisted with suggestions for prospective authors and with critical review of
various chapters or sections of the book. A warm acknowledgement goes to all and each of
them.
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Chapter 1
Probabilistic basis and code format for loading

Morios K.Chryssanthopoulos

1.1 INTRODUCTION

In the last 30 years, practical probabilistic and reliability methods have been developed to
help engineers tackle the analysis, quantification, monitoring and assessment of structural
risks, undertake sensitivity analysis of inherent uncertainties and make rational decisions
about the performance of structures over their working life. These tasks may be related to a
specifie structure, a group of similar structures or a larger population of structures built to a
code of practice. Within a time framework, the structures may be at the design stage, under
construction or in actual use. Hence, the methods may be required to back calculate
performance and compare with earlier perceptions and observations, or to predict future
performance in order to plan a suitable course of action for continued safety and functionality.
Clearly, uncertainty is present through various sources and can propagate through the decision
making process, thus rendering probabilistic methods a particularly useful tool.

The purpose of this chapter is to summarize the principles and procedures used in
reliability-based design and assessment of structures, placing emphasis on the requirements
relevant to loading. Starting from limit state concepts and their application to codified design,
the link is made between unacceptable performance and probability of failure. This is then
developed further in terms of a general code format, in order to identify the key parameters
and how they can be specified through probabilistic methods and reliability analysis. The
important distinction between time invariant and time variant (or time dependent)
formulations is discussed, and key relationships allowing the treatment of time varying loads
and load combinations are presented. In subsequent sections, an introduction to the theories of
extreme statistics and stochastic load combinations is presented in order to elucidate the
specification of characteristic, representative and design values for different types of actions.

This chapter is neither as broad nor as detailed as a number of textbooks on probabilistic
and reliability methods relevant to structural engineering. A list of such books is given at the
end of the chapter. The reader should also be aware of recent documents produced by ISO
(International Organization for Standardization)
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and CEN (European Committee for Standardization)/TC250 code drafting committees, which
provide an excellent up-to-date overview of reliability methods and their potential application
in developing modern codes of practice (ISO, 1998; Eurocode 1.1 Project Team, 1996;
European Standard, 2001). Finally, it is worth mentioning that many of the topics presented in
this chapter have been discussed and clarified within the Working Party of the Joint
Committee on Structural Safety (JCSS), of which the author is privileged to be a member. The
present chapter draws from the JCSS document on Existing Structures (JCSS, 2001) and in
particular the Annex on Reliability Analysis Principles, which was drafted by the author and
improved by the comments of the working party members.

1.2 PRINCIPLES OF RELIABILITY-BASED DESIGN

1.2.1 Limit states
The structural performance of a whole structure or part of it may be described with reference
to a set of limit states which separate acceptable states of the structure from unacceptable
states. The limit states are generally divided into the following two categories (ISO, 1998):

●ultimate limit states, which relate to the maximum load carrying capacity;
●serviceability limit states, which relate to normal use.

The boundary between acceptable (safe) and unacceptable (failure) states may be distinct or
diffuse but, at present, deterministic codes of practice assume the former.

Thus, verification of a structure with respect to a particular limit state may be carried out
via a model describing the limit state in terms of a function (called the limit state function)
whose value depends on all design parameters. In general terms, attainment of the limit state
can be expressed as

(1.1)

where X represents the vector of design parameters (also called the basic variable vector) that
are relevant to the problem, and g(X) is the limit state function. Conventionally, g(X)≤0
represents failure (i.e. an adverse state).

Basic variables comprise actions and influences, material properties, geometrical data and
factors related to the models used for constructing the limit state function. In many cases,
important variations exist over time (and sometimes space), which have to be taken into
account in specifying basic variables. It will be seen in Section 1.4.1 that, in probabilistic
terms, this may lead to a random process rather than random variable models for some of the
basic variables. However, simplifications might be acceptable, thus allowing the use of
random variables whose parameters are derived for a specified reference period (or spatial
domain).

For many structural engineering problems, the limit state function, g(X), can be separated
into one resistance function, gR ( · ), and one loading (or action effect)
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function, gs( · ), in which case equation (1.1) can be expressed as

(1.2)

where s and r represent subsets of the basic variable vector, usually called loading and
resistance variables respectively.

1.2.2 Partial factors and code formats

Within present limit state codes, loading and resistance variables are treated as deterministic.
The particular values substituted into eqns (1.1) or (1.2)—the design values—are based on
past experience and, in some cases, on probabilistic modelling and reliability calibration.

In general terms, the design value xdi of any particular variable is given by

(1.3a)

(1.3b)

where xki is a characteristic (or representative) value and γi is a partial factor. Equation (1.3a)
is appropriate for loading variables whereas eqn (1.3b) applies to resistance variables, hence
in both cases γi has a value greater than unity. For variables representing geometric quantities,
the design value is normally defined through a sum (rather than a ratio) (i.e. xdi=xki ± x,
where x represents a small quantity).

A characteristic value is strictly defined as the value of a random variable which has a
prescribed probability of not being exceeded (on the unfavourable side) during a reference
period. The specification of a reference period must take into account the design working life
and the duration of the design situation.

The former (design working life) is the assumed period for which the structure is to be used
for its intended purpose with maintenance but without major repair. Although in many cases it
is difficult to predict with sufficient accuracy the life of a structure, the concept of a design
working life is useful for the specification of design actions (wind, earthquake, etc.), the
modelling of time-dependent material properties (fatigue, creep) and the rational comparison
of whole life costs associated with different design options. In Eurocode 1 (European
Standard, 2000), indicative design working lives range between 10 to 100 years, the two
limiting values associated with temporary and monumental structures respectively.

The latter (design situation) represents the time interval for which the design will
demonstrate that relevant limit states are not exceeded. The classification of design situations
mirrors, to a large extent, the classification of actions according to their time variation (see
Section 1.5). Thus, design situations may be classified as persistent, transient or accidental
(ISO, 1998). The first two are considered to act with certainty over the design working life.
On the other hand, accidental situations occur with relatively low probability over the design
working life. Clearly, whether certain categories of actions (snow, flood, earthquake) are
deemed to
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give rise to transient or accidental situations, will depend on local conditions. Typically, the
load combination rules are not the same for transient and accidental situations, and also a
degree of local damage at ultimate limit state is more widely accepted for accidental situations.
Hence, the appropriate load classification is a very important issue in structural design.

In treating time varying loads, values other than the characteristic may be introduced. These
so-called representative values are particularly useful when more than a single time varying
load acts on the structure. For material properties a specified or nominal value is often used as
a characteristic value, and since most material properties are assumed to be time independent,
the above comments are not relevant. For geometrical data, the characteristic values usually
correspond to the dimensions specified in design.

Partial factors account for the possibility of unfavourable deviations from the characteristic
value, inaccuracies and simplifications in the assessment of the resistance or the load effect,
uncertainties introduced due to the measurement of actual properties by limited testing, etc.
The partial factors are an important element in controlling the safety of a structure designed to
the code but there are other considerations to help achieve this objective. Note that a
particular design value xdi may be obtained by different combinations of xki and γi.

The process of selecting the set of partial factors to be used in a particular code could be
seen as a process of optimization such that the outcome of all designs undertaken to the code
is in some sense optimal. Such a formal optimization process is not usually carried out in
practice; even in cases where it has been undertaken, the values of the partial factors finally
adopted have been adjusted to account for simplicity and ease of use. More often, partial
factor values are based on a long experience of building tradition. However, it is nowadays
generally accepted that a code should not be developed in a way that contradicts the principles
of probabilistic design and its associated rules.

Equation (1.2), lends itself to the following deterministic safety checking code format

(1.4)

where Fd, fd and ad are design values of basic variables representing loading, resistance and
geometrical variables respectively, which can be obtained from characteristic/representative
values and associated partial factors, and γsd, γRd are partial factors related to modelling
uncertainties (loading and resistance functions, respectively).

As can be seen, the safety checking equation controls the way in which the various clauses
of the code lead to the desirable level of safety of structures designed to the code. It relates to
the number of design checks required, the rules for load combinations, the number of partial
factors and their position in design equations, as well as whether they are single or multiple
valued, and the definition of characteristic or representative values for all design variables.
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Figure 1.1 Partial factors and their significance in Eurocode 1 (European Standard, 2000).

In principle, there is a partial factor associated with each variable. Furthermore, the number of
load combinations can become large for structures subjected to a number of permanent and
variable loads. In practice, it is desirable to reduce the number of partial factors and load
combinations while, at the same time, ensuring an acceptable range of safety level and an
acceptable economy of construction. Hence, it is often useful to make the distinction between
primary basic variables and other basic variables. The former group includes those variables
whose values are of primary importance for design and assessment of structures. The above
concepts of characteristic and design values, and associated partial factors, are principally
relevant to this group. Even within this group, some partial factors might be combined in
order to reduce the number of factors. Clearly, these simplifications should be appropriate for
the particular type of structure and limit state considered. Figure 1.1 shows schematically the
system of partial factors adopted in the Structural Eurocodes.

1.2.3 Structural reliability

Load, material and geometric parameters are subject to uncertainties, which can be classified
according to their nature. They can, thus, be represented by random variables (this being the
simplest possible probabilistic representation; as noted above, more advanced models might
be appropriate in certain situations, such as random fields).

In this context, the probability of occurrence of the failure event Pf is given by

(1.5a)

where, M=g(X) and X now represents a vector of basic random variables. Note that M is also
a random variable, usually called the safety margin.

If the limit state function can be expressed in the form of (1 .2), eqn (1 .5a) may be written
as
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Figure 1.2 Limit state surface in basic variable and standard normal space.

(1.5b)

where R=r(R) and S=s(S) are random variables associated with resistance and loading
respectively.

Using the joint probability density function of X, fx(x), the failure probability defined in
equation (1.5a) can now be determined from

(1.6)

Schematically, the function g(X)=0 which represents the boundary between safety and failure
is shown in Figure 1.2(a), where the integration domain of eqn (1.6) is shown shaded.

The reliability Ps associated wit\hbox h the particular limit state considered is the
complementary event, i.e.

(1.7)

In recent years, a standard reliability measure, the reliability index β, has been adopted which
has the following relationship with the failure probability

(1.8)

where −1( · ) is the inverse of the standard normal distribution function, see Table 1.1.



The basis for this relationship is outlined in the following section dealing with reliability
computation.

In most engineering applications, complete statistical information about the basic random
variables X is not available and, furthermore, the function g( · ) is a
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Table 1.1 Relationship between βand P f .

Pf 10–1 10–2 10–3 10–4 10–5 10–6 10–7

ß 1.3 2.3 3.1 3.7 4.3 4.7 5.2

mathematical model which idealizes the limit state. In this respect, the probability of failure
evaluated from eqn (1.5a) or (1.6) is a point estimate given a particular set of assumptions
regarding probabilistic modelling and a particular mathematical model for g( · ).

The uncertainties associated with these models can be represented in terms of a vector of
random parameters , and hence the limit state function may be rewritten as g(X, ). It is
important to note that the nature of uncertainties represented by the basic random variables X
and the parameters is different. Whereas uncertainties in X cannot be influenced without
changing the physical characteristics of the problem, uncertainties in can be influenced by
the use of alternative methods and collection of additional data.

In this context, eqn (1.6) may be recast as follows

(1.9)

where Pf( ) is the conditional probability of failure for a given set of values of the parameters
and fX| (x| ) is the conditional probability density function of X for given .
In order to account for the influence of parameter uncertainty on failure probability, one

may evaluate the expected value of the conditional probability of failure, i.e.

(1.10a)

where f ( ) is the joint probability density function of . The corresponding reliability index
is given by

(1.10b)

The main objective of reliability analysis is to estimate the failure probability (or, the
reliability index). Hence, it replaces the deterministic safety checking format (e.g. eqn (1.4)),
with a probabilistic assessment of the safety of the structure, typically eqn (1.6) but also in a
few cases eqn (1.9). Depending on the nature of the limit state considered, the uncertainty
sources and their implications for probabilistic modelling, the characteristics of the
calculation model and the degree of accuracy required, an appropriate methodology has to be
developed. In many respects, this is similar to the considerations made in formulating a
methodology for deterministic structural analysis but the problem is now set in a probabilistic
framework.
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1.2.4 Computation of structural reliability

An important class of limit states are those for which all the variables are treated as time
independent, either by neglecting time variations in cases where this is considered acceptable
or by transforming time dependent processes into time invariant variables (e.g. by using
extreme value distributions). For these problems so-called asymptotic or simulation methods
may be used, described in a number of reliability textbooks (e.g. Ang and Tang, 1984;
Ditlevsen and Madsen, 1996; Madsen et al., 1986; Melchers, 1999; Thoft-Christensen and
Baker, 1982).

Asymptotic approximate methods
Although these methods first emerged with basic random variables described through
‘second-moment’ information (i.e. with their mean value and standard deviation, but without
assigning any probability distributions), it is nowadays possible in many cases to have a full
description of the random vector X (as a result of data collection and probabilistic modelling
studies). In such cases, the probability of failure could be calculated via first or second order
reliability methods (FORM and SORM respectively). Their implementation relies on:

(1) Transformation techniques

(1.11)

where U1, U2,…, Un are independent standard normal variables (i.e. with zero mean value and
unit standard deviation). Hence, the basic variable space (including the limit state function) is
transformed into a standard normal space, see Figures 1.2(a) and 1.2(b). The special
properties of the standard normal space lead to several important results, as discussed below.

(2) Search techniques
In standard normal space, see Figure 1.2(b), the objective is to determine a suitable checking
point: this is shown to be the point on the limit—state surface which is closest to the origin,
the so-called ‘design point’. In this rotationally symmetric space, it is the most likely failure
point, in other words its co-ordinates define the combination of variables that are most likely
to cause failure. This is because the joint standard normal density function, whose bell-shaped
peak lies directly above the origin, decreases exponentially as the distance from the origin
increases. To determine this point, a search procedure is generally required.

Denoting the co-ordinates of this point by
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its distance from the origin is clearly equal to

This scalar quantity is known as the Hasofer-Lind reliability index βHL, i.e.

(1.12)

Note that u* can also be written as

(1.13)

where α=(α1, α2,…,αn) is the unit normal vector to the limit state surface at u*, and, hence,
αi(i=1,…, n) represent the direction cosines at the design point. These are also known as the
sensitivity factors, as they provide an indication of the relative importance of the uncertainty
in basic random variables on the computed reliability. Their absolute value ranges between
zero and unity and the closer this is to the upper limit, the more significant the influence of the
respective random variable is to the reliability. In terms of sign, and following the convention
adopted by ISO (1998), resistance variables are associated with positive sensitivity factors,
whereas leading variables have negative factors.

(3) Approximation techniques
Once the checking point is determined, the failure probability can be approximated using
results applicable to the standard normal space. In a first order (linear) approximation, the
limit state surface is approximated by its tangent hyperplane at the design point. The
probability content of the failure set is then given by

(1.14)

In some cases, a higher order (quadratic) approximation of the limit state surface at the design
point is desired but experience has shown that the FORM result is sufficient for many
structural engineering problems. Equation (1.14) shows that, when using the so-called
asymptotic approximate methods, the computation of reliability (or equivalently of the
probability of failure) is transformed into a geometric problem, that of finding the shortest
distance from the origin to the limit state surface in standard normal space.

Simulation methods
In this approach, random sampling is employed to simulate a large number of (usually
numerical) experiments and to observe the result. In the context of structural reliability, this
means, in the simplest approach, sampling the random vector X to obtain a set of sample
values. The limit state function is then evaluated to
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ascertain whether, for this set, failure (i.e. g(x)≤0) has occurred. The experiment is repeated
many times and the probability of failure, P f, is estimated from the fraction of trials leading to
failure divided by the total number of trials. This socalled Direct or Crude Monte Carlo
method is not likely to be of use in practical problems because of the large number of trials
required in order to estimate with a certain degree of confidence the failure probability. Note
that the number of trials increases as the failure probability decreases. Simple rules may be
found, of the form N>C/Pf, where N is the required sample size and C is a constant related to
the confidence level and the type of function being evaluated.

Thus, the objective of more advanced simulation methods, currently used for reliability
evaluation, is to reduce the variance of the estimate of Pf. Such methods can be divided into
two categories, namely indicator function methods (such as Importance Sampling) and
conditional expectation methods (such as Directional Simulation). Simulation methods are
also described in a number of textbooks (e.g. Ang and Tang, 1984; Augusti et al., 1984;
Melchers, 1999).

1.3 FRAMEWORK FOR RELIABILITY ANALYSIS

The main steps in a reliability analysis of a structural component are the following:

(1) define limit state function for the particular design situation considered;
(2) specify appropriate time reference period;
(3) identify basic variables and develop appropriate probabilistic models;
(4) compute reliability index and failure probability;
(5) perform sensitivity studies.

Step (1) is essentially the same as for deterministic analysis. Step (2) should be considered
carefully, since it affects the probabilistic modelling of many variables, particularly live and
accidental loading. Step (3) is perhaps the most important because the considerations made in
developing the probabilistic models have a major effect on the results obtained. Step (4)
should be undertaken with one of the methods summarized above, depending on the
application. Step (5) is necessary insofar as the sensitivity of any results (deterministic or
probabilistic) should be assessed.

1.3.1 Probabilistic modelling

For the particular limit state under consideration, uncertainty modelling must be undertaken
with respect to those variables in the corresponding limit state function whose variability is
judged to be important (basic random variables). Most engineering structures are affected by
the following types of uncertainty:

●Intrinsic physical or mechanical uncertainty; when considered at a fundamental level, this
uncertainty source is often best described by stochastic processes in time and space,
although it is often modelled more simply in engineering applications through random
variables.
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●Measurement uncertainty; this may arise from random and systematic errors in the
measurement of these physical quantities.

●Statistical uncertainty; due to reliance on limited information and finite samples.
●Model uncertainty; related to the predictive accuracy of calculation models used.

The physical uncertainty in a basic random variable is represented by adopting a suitable
probability distribution, described in terms of its type and relevant distribution parameters.
The results of the reliability analysis can be very sensitive to the tail of the probability
distribution, which depends primarily on the type of distribution adopted. An appropriate
choice of distribution type is therefore important.

For most commonly encountered basic random variables, many studies (of varying detail)
have been undertaken that contain information and guidance on the choice of distribution and
its parameters. If direct measurements of a particular quantity are available, then existing, so-
called a priori, information (e.g. probabilistic models found in published studies) should be
used as prior statistics with a relatively large equivalent sample size.

The other three types of uncertainty mentioned above (measurement, statistical, model) also
play an important role in the evaluation of reliability. As mentioned above, these uncertainties
are influenced by the particular method used in, for example, strength analysis and by the
collection of additional (possibly, directly obtained) data. These uncertainties could be
rigorously analysed by adopting the approach outlined by eqns (1.8) and (1.9). However, in
many practical applications a simpler approach has been adopted insofar as model (and
measurement) uncertainty is concerned based on the differences between results predicted by
the mathematical model adopted for g(x) and a more elaborate model deemed to be a closer
representation of reality. In such cases, a model uncertainty basic random variable Xm is
introduced where

Uncertainty modelling lies at the heart of any reliability analysis and probability based design
and assessment. Any results obtained through the use of these techniques are sensitive to the
assumptions made in probabilistic modelling of random variables and processes and the
interpretation of any available data. All good textbooks in this field will make this clear to the
reader. Schneider (1997) may be consulted for a concise introductory exposition, whereas
Benjamin and Cornell (1970) and Ditlevsen (1981) give authoritative treatments of the subject.

1.3.2 Interpretation of results
As mentioned in Section 1.2.4, under certain conditions the design point in standard normal
space, and its corresponding point in the basic variable space, is
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the most likely failure point. Since the objective of a deterministic code of practice is to
ascertain attainment of a limit state, it is clear that any check should be performed at a critical
combination of loading and resistance variables and, in this respect, the design point values
from a reliability analysis are a good choice. Hence, in the deterministic safety checking
format, eqn (1.4), the design values can be directly linked to the results of a reliability analysis
(i.e. Pf orβand αis). Thus, the partial factor associated with a basic random variable Xi, is
determined as

(1.15)

where xdi is the design point value and xki is a characteristic value of Xi. As can be seen, the
design point value can be written in terms of the original distribution function Fx( · ), the
reliability analysis results (i.e. βandαi), and the standard normal distribution function ( · ).

If Xi is normally distributed, eqn (1.15) can be written as (after non-dimensional-izing both
xdi and Xki with respect to the mean value)

(1.16)

where vXi is the coefficient of variation and k is a constant related to the fractile of the
distribution selected to represent the characteristic value of the random variable Xi. As shown,
eqns (1.15) and (1.16) are used for determining partial factors of loading variables, whereas
their inverse is used for determining partial factors of resistance variables. Similar expressions
are available for variables described by other distributions (e.g. log-normal, Gumbel type I)
and are given in, for example, Eurocode 1 (European Standard, 2000). Thus, partial factors
could be derived or modified using FORM/SORM analysis results. The classic text by Borges
and Castanheta (1985) contains a large number of partial factor values assuming different
probability distributions for load and resistance variables (i.e. solutions pertinent to the
problem described by eqn (1.6b)). If the reliability assessment is carried out using simulation,
sensitivity factors are not directly obtained, though, in principle, they could be through some
additional calculations.

1.3.3 Reliability differentiation

It is evident from eqns (1.15) and (1.16) that the reliability index βcan be linked directly to
the values of partial factors adopted in a deterministic code. The appropriate degree of
reliability should be judged with due regard to the possible consequences of failure and the
expense, level of effort and procedures necessary to reduce the risk of failure (ISO, 1998). In
other words, it is now generally accepted that ‘the appropriate degree of reliability’ should
take into account the cause and mode of failure, the possible consequences of failure, the
social and environmental conditions, and the cost associated with various risk mitigation
procedures (ISO,
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Table 1.2 Recommended target reliability indices according to Eurocode 1.

Reliability class Minimum target value forβ

1 year reference period 50 years reference period
RC3 ≥5.2 ≥4.3

RC2 ≥4.7 ≥3.8

RC1 ≥4.7 ≥3.3

1998; JCSS, 2000). For example, Eurocode 1 (European Standard, 2000) contains an
informative annex in which target reliability indices are given for three different reliability
classes, each linked to a corresponding consequence class. Table 1.2 reproduces the
recommended target reliability values from this document. ISO 2394 (ISO, 1998) contains a
similar table, in which target relibility is linked explicitly to consequences of failure and the
relative cost of safety measures. Other recently developed codes of practice have made
explicit allowances for ‘system’ effects (i.e. failure of a redundant vs. non-redundant
structural element) and inspection levels (primarily as related to fatigue failure) but these
effects are, for the time being, primarily related to the target reliability of existing structures.

1.4 TIME-DEPENDENT RELIABILITY

1.4.1 General remarks

Even in considering a relatively simple safety margin for component reliability analysis such
as M =R–S, where R is the resistance at a critical section in a structural member and S is the
corresponding load effect at the same section, it is generally the case that both S and
resistance R are functions of time. Changes in both mean values and standard deviations could
occur for either R(t) or S(t). For example, the mean value of R(t) may change as a result of
deterioration (e.g. corrosion of reinforcement in concrete bridge implies loss of area, hence a
reduction in the mean resistance) and its standard deviation may also change (e.g. uncertainty
in predicting the effect of corrosion on loss of area may increase as the periods considered
become longer). On the other hand, the mean value of S(t) may increase over time (e.g. in
highway bridges due to increasing traffic flow and/ or higher vehicle/axle weights) and,
equally, the estimate of its standard deviation may increase due to lower confidence in
predicting the correct mix of traffic for longer periods. A time-dependent reliability problem
could thus be schematically represented as in Figure 1.3, the diagram implying that, on
average, the reliability decreases with time. Of course, changes in load and resistance do not
always occur in an unfavourable manner as shown in the diagram. Strengthening may result in
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Figure 1.3 General time-dependent reliability problem (Melchers, 1999).

an improvement of the resistance or change in use might be such that the loading decreases
after a certain point in time but, more often than not, the unfavourable situation depicted in
the diagram is likely to occur.

Thus, the elementary reliability problem described through eqns (1.5) and (1.6) may now
be formulated as

(1.17)

where g(X(t))=M (t) is a time-dependent safety margin, and

(1.18)

is the instantaneous failure probability at time t, assuming that the structure was safe at time
less than t.

In time-dependent reliability problems, interest often lies in estimating the probability of
failure over a time interval, say from 0 to tL. This could be obtained by integrating Pf(t) over
the interval [0, tL], bearing in mind the correlation characteristics in time of the process X(t)—
or, sometimes more conveniently, the process R(t), the process S(t), as well as any cross
correlation between R(t) and S(t). Note that the load effect process S(t) is often composed of
additive components, S1(t), S2(t),…, for each of which the time fluctuations may have
different features (e.g. continuous variation, pulse-type variation, spikes).

Interest may also lie in predicting when S(t) crosses R(t) for the first time, see Figure 1.4,
or the probability that such an event would occur within a specified time interval. These
considerations give rise to so-called ‘crossing’ problems, which are treated using stochastic
process theory. A key concept for such
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Figure 1.4 Schematic repesentation of corssing problem.

Figure 1.5 Fundamental barrier crossing problem.

problems is the rate at which a random process X(t) upcrosses (or crosses with a positive
slope) a barrier or level , as shown in Figure 1.5. This upcrossing rate is a function of the
joint probability density function of the process and its derivative, and is given by Rice’s
formula

(1.19)

where the rate in general represents an ensemble average at time t. For a number of common
stochastic processes, useful results have been obtained starting from eqn (1.19). An important
simplification can be introduced if individual crossings can be treated as independent events
and the occurrences may be approximated by a Poisson distribution, which might be a
reasonable assumption for certain rare load events. Note that random processes are covered in
much greater depth and detail in Chapter 10.

Another class of problems calling for a time dependent reliability analysis are those related
to damage accumulation, such as fatigue and fracture. This case is depicted in Figure 1.6
showing a threshold (e.g. critical crack size) and a monotonically increasing time dependent
load effect or damage function (e.g. actual crack size at any given time).
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Figure 1.6 Schematic representation of damage accumulation problem.

It is evident from the above remarks that the best approach for solving a time-dependent
reliability problem would depend on a number of considerations, including the time frame of
interest, the nature of the load and resistance processes involved, their correlation properties
in time, and the confidence required in the probability estimates. All these issues may be
important in determining the appropriate idealizations and approximations.

1.4.2 Transformation to time independent formulations

Although time variations are likely to be present in most structural reliability problems, the
methods outlined in Section 1.2 have gained wide acceptance, partly due to the fact that, in
many cases, it is possible to transform a time-dependent failure mode into a corresponding
time independent mode. This is especially so in the case of overload failure, where individual
time-varying actions, which are essentially random processes, p(t), can be modelled by the
distribution of the maximum value within a given reference period T (i.e. X=maxT {p(t)})
rather than the point in time distribution. For continuous processes, the probability
distribution of the maximum value (i.e. the largest extreme) is often approximated by one of
the asymptotic extreme value distributions. Hence, for structures subjected to a single time-
varying action, a random process model is replaced by a random variable model and the
principles and methods given previously may be applied.

The theory of stochastic load combination is used in situations where a structure is
subjected to two or more time-varying actions acting simultaneously. When these actions are
independent, perhaps the most important observation is that it is highly unlikely that each
action will reach its peak lifetime value at the same moment in time. Thus, considering two
time varying load processes P1(t),p2(t),0≤t≤T, acting simultaneously, for which their
combined effect may be expressed as a linear combination p1(t)+p2(t), the random variable of
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interest is

(1.20)

If the loads are independent, replacing X by maxT{p1(t)}+maxT{p2(t)} leads to very
conservative results. However, the distribution of X can be derived in few cases only. One
possible way of dealing with this problem, which also leads to a relatively simple
deterministic code format, is to replace X with the following

(1.21)

This rule (Turkstra’s rule) suggests that the maximum value of the sum of two independent
load processes occurs when one of the processes attains its maximum value. This result may
be generalized for several independent time varying loads. The conditions which render this
rule adequate for failure probability estimation are discussed in standard texts. From a
theoretical point, the rule leads to an underestimation of the probability of failure, since it is
assumed that failure must be associated with the maximum of at least one load process,
whereas in reality failure can also occur in other instances.

The failure probability associated with the sum of a special type of independent identically
distributed processes (so-called Ferry Borges-Castanheta (FBC) process) can be calculated in
a more accurate way, as will be outlined below. Other results have been obtained for
combinations of a number of other processes, starting from Rice’s barrier crossing formula.

The FBC process is generated by a sequence of independent identically distributed random
variables, each acting over a given (deterministic) time interval. This is shown in Figure 1 .7
where the total reference period T is made up of ni repetitions where ni=T/Ti. Hence, the FBC
process is a rectangular pulse process with changes in amplitude occurring at equal intervals.
Because of independence, the maximum value in the reference period T is given by

(1.22)

When a number of FBC processes act in combination and the ratios of their repetition
numbers within a given reference period are given by positive integers it is, in principle,
possible to obtain the extreme value distribution of the combination through a recursive
formula. More importantly, it is possible to deal with the sum of FBC processes by
implementing the Rackwitz-Fiessler algorithm in a FORM/ SORM analysis.

A deterministic code format, compatible with the above rules, leads to the introduction of
combination factors for each time varying load. In principle, these factors express ratios
between fractiles in the extreme value and point in time distributions so that the probability of
exceeding the design value arising from a combination of loads is of the same order as the
probability of exceeding the design value caused by one load. For time varying loads, they
depend on distribution parameters, target reliability, FORM/SORM sensitivity factors and on
the
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Figure 1.7 Realization of an FBC process.

frequency characteristics (i.e. the base period assumed for stationary events) of loads
considered within any particular combination. This is further discussed in Section 1.5.

1.4.3 Introduction to crossing theory

In considering a time dependent safety margin (i.e. M(t)=g(X(t)), the problem is to establish
the probability that M(t) becomes zero or less in a reference time period, tL. As mentioned
previously, this constitutes a so-called ‘crossing’ problem. The time at which M(t) becomes
less than zero for the first time is called the ‘time to failure’ and is a random variable, see
Figure 1.8. The probability that M(t)≤0 occurs during tL is called the ‘first-passage’
probability. Clearly, it is identical to the probability of failure during time tL.

The determination of the first passage probability requires an understanding of the theory of
random processes. Herein, only some basic concepts are briefly introduced in order to see
how the methods described above have to be modified in dealing with crossing problems.
Melchers (1999) provides a detailed treatment of time-dependent reliability aspects.

The first-passage probability Pf (t) during a period [0, tL] is

(1.23)

where signifies that the process X(t) starts in the safe domain and N(tL) is the
number of outcrossings in the interval [0, tL. The second probability term is equivalent to 1—
Pf (0), where Pf(0) is the probability of failure at t=0. Equation (1.23) can be rewritten as

(1.24)

from which different approximations may be derived depending on the relative magnitude of
the terms. A useful bound is

(1.25)
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Figure 1.8 Time-dependent safety margin and schematic representation of vector out-crossing
(Melchers, 1999): (a) in a safety margin domain, (b) in basic variable space.

where the first term may be calculated by FORM/SORM and the expected number of
outcrossings, E[N(tL)], is calculated by Rice’s formula or one of its generaliza-tions.
Alternatively, parallel system concepts can be employed.

1.5 ACTIONS AND ACTION EFFECTS ON STRUCTURES

1.5.1 Classification of actions

According to the definition given in ISO 2394 (ISO, 1998),
‘an action is

●an assembly of concentrated or distributed mechanical forces on the structure (direct
actions), or

●the cause of deformations imposed on the structure or constrained in it (indirect actions).’

Clearly, the above definition is derived bearing in mind the origin of actions. For example,
direct actions may be caused by gravity, or can be forces caused by accel-eration/deceleration
of masses, or by impact. Indirect actions, on the other hand, are the cause of imposed
deformations such as temperature, ground settlement, etc.

Actions can also be classified according to their variation in time or space, their limiting
characteristics and their nature, which also influences the induced structural response. Table
1.3 summarizes the classification systems which are important in devising an appropriate
treatment of actions for design purposes.

The effect of any particular action on structural members or on structural systems is called
action effect. Examples of action effects on members include stress resultants (force, moment
on any particular beam or column) or stresses, whereas
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Table 1.3 Classification of actions.

Origin Variation in time Variation in space Limiting value Nature/Structural response
Direct Permanent Fixed Bounded Static

Indirect Variable Free Unbounded Dynamic

Accidental Quasi-static

base shear and top storey lateral deflection may represent action effects on whole structures.
An action should be described by a model, comprising one or more basic variables. For

example, the magnitude and direction of an action can both be defined as basic variables.
Sometimes an action may be introduced as a function of basic variables, in which case the
function is called an action model.

From a probabilistic point of view, the classification of actions according to their variation
in time plays an important role, and is examined in detail in the following section dealing with
the specification of characteristic and other representative values. Table 1.4 presents, in
qualitative terms, the criteria for classifying actions according to time characteristics
(Eurocode 1.1 Project Team, 1996). The variability is usually represented by the coefficient of
variation (CoV), i.e. the ratio of the standard deviation to the mean value, of the point-in-time
distribution of the action. Figure 1.9 shows schematically the three different types of action.

The distinction between static and dynamic actions is made according to the way in which a
structure responds to the action, the former being actions not causing significant acceleration
of the structure or structural elements, whereas the opposite is valid for the latter. In many
cases of codified design, the dynamic actions can be treated as static actions by taking into
account the dynamic effects by an appropriate increase in the magnitude of the quasi-static
component or by the choice of an equivalent static force. When this is not the case,
corresponding dynamic models are used to assess the response of the structure; inertia forces
are then not included in the action model but are determined by analysis (ISO, 1998).

Table 1.4 Action classification according to time characteristics.

Action Permanent Variable Accidental
Probability of occurrence during 1 year Certain Substantial Small

Variability in time Small Large Usually large
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Figure 1.9 Schematic representation of time-varying actions (a) permanent, (b) variable, (c) accidental.

1.5.2 Specification of characteristic values

Permanent actions
The most common action in this category is the self-weight of the structure. With modern
construction methods, the coefficient of variation of self-weight is normally small (typically
does not exceed 0.05). Other permanent actions include the weight of non-structural elements,
which often consists of the sum of many individual elements; hence, it is well represented by
the normal distribution (on account of the central limit theorem). For this type of permanent
action, the coefficient of variation can be larger than 0.05. An important type of action in this
group with high variability is foundation settlement.
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According to ISO 2394 (ISO, 1998) and Eurocode 1 (European Standard, 2000), the
characteristic value(s) of a permanent action G may be obtained as:

●one single value Gk typically the mean value, if the variability of G is small (CoV≤0.05);
●two values Gk, inf and Gk,sup typically representing the 5 per cent and 95 per cent fractiles, if

the CoV cannot be considered small.

In both cases it may be assumed that the distribution of G is Gaussian.

Variable actions
For single variable loads, the form of the point in time distribution is seldom of immediate use
in design; often the important variable is the magnitude of the largest extreme load that occurs
during a specified reference period for which the probability of failure is calculated (e.g.
annual, lifetime). In some cases, the probability distribution of the lowest extreme might also
be of interest (water level in rivers/lakes).

Consider a random variable X with distribution function Fx(x). If samples of size n are
taken from the population of X : (x1, x2 ,…, xn), each observation may itself be considered as a
random variable (since it is unpredictable prior to observation). Hence, the extreme values of
a sample of size n are random variables, which may be written as

The probability distributions of Yn and Y1 may be derived from the probability of the initial
variate X. Assuming random sampling, the variables X1,X2,…,Xn are statistically independent
and identically distributed as X, hence

The distribution of FYn (y) is thus given by

(1.26)

which can be written as

(1.27)

Similar principles may be used to derive the distribution of the lowest extreme.
For a time varying load Q the distribution on the left-hand side of equation (1.27) can be

interpreted as the maximum load in a specified reference period tr whereas the distribution on
the right-hand side represents the maximum load occurring during a much shorter period,
sometimes called the unit observation time τ. In this case, the exponent is equal to the ratio
between the two (i.e. n=tr/τand n>1). Equation (1.27) may thus be written as
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Figure 1.10 Schematic representation of variable action: (a) realization in time, (b) probability
distributions.

(1.28)

where the symbol in square brackets indicates the time period to which the probability
distribution is related. As mentioned earlier in this section, the probability of intersection of
events can be expressed as a product only if the events are independent; for time varying
loads this means that the unit observation time must be chosen so that the maximum value of
the load recorded within any such period is independent of the others. Note the similarity of
eqn (1.28) with eqn (1.22), which is derived under similar assumptions.

Figure 1.10 illustrates the above concepts and shows schematically the probability
distributions associated with the maximum load in different time periods; customarily the
lower of the two is called the ‘instantaneous’ or ‘point in time’ distribution, whereas the upper
one is an ‘extreme’ distribution. It is clear from eqn (1.28) that the parameters and moments
(e.g. mean value) of the extreme distribution are a function of the specified reference period.
The longer this is, the greater becomes the gap between the two distributions shown in Figure
1.10.

In principle, for actions of natural origin (e.g. wind, snow, temperature) the ‘instantaneous’
distribution is determined through observations (i.e. the creation of a homogeneous sample of
sufficient size) and classical methods of distribution fitting. However, judgement also plays
an important role in refining and improving the statistical model. This is because the direct
number of observations may be fairly small. Considering, for example, the snow load the unit
observation period may be chosen equal to 1 year, which means that it is unlikely that the
number of data points for any particular site will be more than 40 or 50, The distribution of
annual maxima could nevertheless be compared with that obtained for different but similar
sites, and the final estimates of the distribution may in fact be made on the basis of a larger
sample in which the data points from similar sites are combined. Note that when, through eqn
(1.28), the distribution of the annual maximum load is transformed to the distribution of, say,
the maximum load in 50
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years, further uncertainties are introduced, and should be taken into account as far as possible
through appropriate judgement. In the case of time-varying loads, these uncertainties may
have both systematic and random components. The former can be particularly important for
some man-made loads, such as traffic loads on bridges, whereas the latter may include poorly
understood environmental influences as well as purely random effects.

The characteristic value of a time varying load Qk is normally chosen so that events during
which the observations exceed the characteristic value are fairly rare. Typically, characteristic
values in Eurocode 1 are prescribed for an exceedance probability p=0.02 and a reference
period tr=1 year (European Standard, 2000; Eurocode 1.1 Project Team, 1996). Thus, the
characteristic value Qk may be estimated from

In the above the distribution for the annual maximum is used and the reference period is also
1 year. If, for example, the distribution for the monthly maximum was available instead, then
for the same criteria (i.e. 2 per cent exceedance probability during one year) and providing
monthly maxima were mutually independent, the characteristic value could be estimated from

Note that using a distribution based on observations from a shorter time unit results in a much
higher fractile required for estimating a characteristic value based on the same criteria as
before. Clearly, many more observations would be needed for the monthly distribution to be
sufficiently well described at a 99.8 per cent fractile, than the annual distribution at a 98 per
cent fractile. On the other hand, much longer (unit and total) observation periods are
associated with the estimation of the distribution of annual maxima. The message is that
predictions cannot be improved simply by changing the basis of the distribution used. The
most appropriate observation period should be determined on the basis of the characteristics
of the action being modelled and the capabilities of the devices/methods used for
measurement.

A useful concept in the treatment of time varying loads is the return period T defined as the
average time between consecutive occurrences of an event. Again assuming independence
between events, and denoting with p the probability of occurrence of the particular event
considered, the return period may be determined from

(1.29)

that is, the return period is equal to the reciprocal of the probability of occurrence of the event
in any one time interval. In many cases, the chosen time interval is 1 year and p is determined
as the probability of occurrence during a year, so that the return period is the average number
of years between events.
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Thus, for the above example, the return period of the characteristic value of the load Qk
which represents the average time between events Q>Qk is given by

or

Return periods of 50 to 100 years are reasonable for characteristic values of variable actions
used in the design of ordinary permanent buildings. For accidental actions, a longer return
period might be appropriate, especially if ultimate or collapse limit states are considered.

Bearing in mind the notation introduced above for the reference (tr) and unit observation (τ)
periods, the return period may be written as

(1.30)

where p is defined for a reference period tr and n>1. The last expression is asymptotically
correct as (1−p) tends to unity, which is compatible with the notion of specifying
characteristic values on the basis of fairly rare events; note that the return period becomes
independent of the unit observation period τ.

The probability distribution of extreme values is often closely approximated by one of the
asymptotic extreme value distributions (Types I, II and III). The characteristics of extreme
distributions depend on the initial, or parent, distribution and on the number of repetitions, n.
In general, distributions shift to the right with increasing n. Which of the three types is
relevant depends on the shape of the upper tail of the parent distribution. Of particular
importance in the context of timevarying loads is the Gumbel or Type I extreme distribution
for maxima, which is obtained if the initial distribution has an exponentially decreasing upper
tail. It has the following probability distribution function

(1.31)

where un and an are the distribution parameters. The mean and variance of Qn are related to
the distribution parameters through the following expressions

An interesting property of this distribution is that the variance is independent of the number of
repetitions (i.e. it remains constant). On the other hand, the mean value increases with the
number of repetitions. Ang and Tang (1984) present an exposition of extreme value theory as
applied to a variety of civil engineering problems.

Accidental actions



In principle, the characteristic values of accidental actions could be determined by extending
the procedures presented above for variable actions. Accidental actions
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are characterized by a (usually) random magnitude and an occurrence rate. For many
accidental actions, statistical information is scarce. Hence, in practice, nominal values are
often used and sometimes values are agreed for individual projects.

Insofar as seismic actions are concerned, the design values are determined on the basis of a
return period of approximately 475 years for use in ultimate limit states and a return period of
about 50 years for serviceability limit states (see also Chapter 4).

1.5.3 Other representative values

For variable and accidental actions (i.e. for those actions whose time variation is significant),
there is a need to specify a few more representative values, in addition to the characteristic
value, for use in codified limit state design. These are briefly reviewed in the following and
are schematically shown in Figure 1.11.

Combination value ( 0 Qk )
This value is chosen so that the probability that the action effects caused by any particular
load combination will be exceeded is approximately the same as by the characteristic value of
an individual action. In other words, the combination value is introduced to take account of
the reduced probability of the simultaneous occurrence of the most unfavourable values of
two or more independent variable actions. The combination value may be expressed as a
fraction of the characteristic value through a combination factor 0(<1). The combination
value is used in load combinations pertaining to the ultimate limit state or to irreversible
serviceability limit states.

Using structural reliability theory, values for the combination factor 0 have been derived
for load combinations comprising two independent variable actions starting from either FBC
load processes or using Turkstra’s rule. Expressions for 0 for different probability
distributions can be found in code documents (ISO,

Figure 1.11 Definition of representative values of a variable action.
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1998; European Standard, 2000). In operational codes, the values adopted are usually based
on historical values linked to successful experience, and are often simplified in order to limit
the different values that a designer needs to consider for all the different load cases.

Frequent value ( 1 Qk)
The frequent value is used for the dominating variable action in combinations at the ultimate
limit state involving accidental actions. It is also used in reversible serviceability limit states.
As in the previous case, it can be expressed as a fraction of the principal characteristic value
through a factor, 1(< 1). Typically, the frequent value may be estimated from the point-in-
time (or instantaneous) distribution of the action, i.e.

where q=0.01 is suggested for buildings (European Standard, 2000). The criterion may also
be expressed as a return period; for example, for road bridges the frequent value of the traffic
load is determined as having a return period of 1 week.

Quasi-permanent value ( 2Qk)
The quasi-permanent value is used for the non-dominating variable action in combinations at
the ultimate limit state involving accidental actions. It is also used in reversible serviceability
limit states and in the calculation of long term effects in serviceability limit states.

The quasi-permanent value may be regarded as a special case of the frequent value with
q=0.5. Thus,

It can also be defined as the mean value of the instantaneous probability distribution. In
certain cases (e.g. wind or road traffic) the value of 2 is so low that it is set equal to zero
(European Standard, 2000).

Table 1.5 summarizes some of the factors as given in the Eurocode (European Standard,
2000). More cases are covered therein, and each code has its own system of factors, broadly
based on the principles outlined above. However, as already

Table 1 .5 Typical factors for buildings according to Eurocode 1 .

Action 0 1 2
Imposed load (domestic, residential, office) 0.7 0.5 0.3

Snow load (Scandinavia and Rest of Europe for altitude >1,000 m) 0.7 0.5 0.2

Snow load (rest of Europe for altitude <1 ,000 m) 0.5 0.2 0.0

Wind load 0.6 0.2 0.0
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mentioned, a number of pragmatic reasons will also influence the final selection of values and
all these are normally considered by the code drafting committees.

1.5.4 Duration of actions

The knowledge, and specification, of a maximum action effect individually or in combination
is essential for safety checking. In some cases, especially where the sustained live load is high,
the duration characteristics, and in particular any intermittencies, may also be of interest. In
such a case, the components of the stochastic model would increase and may, for example,
include an interarrival duration density in addition to a variable describing the number of
magnitude changes (e.g. a jump rate which quantifies the number of amplitude changes in a
specified period).

In Eurocode 1 (European Standard, 2000; Eurocode 1.1 Project Team, 1996), the frequent
and quasi-permanent values of a variable action may also be defined in terms of duration. For
example, the frequent value may be specified as that which is exceeded for 5 per cent of the
reference period considered; the corresponding percentage for the quasi-permanent value may
be 50 per cent.

1.6 CONCLUDING REMARKS

Structural reliability theory provides a rational basis for the description and quantification of
loads and resistances in structural engineering. It enables consistent comparisons to be made
between alternative hazards to which structures are exposed during their service life, and is an
indispensable tool for rational decision making in the presence of uncertainty. Whether this
uncertainty stems from objective (e.g. future realizations of natural events) or subjective (e.g.
limited knowledge of actual material properties in an existing structure) sources, the use of
structural reliability theory and the allied battery of probabilistic methods has led to very
significant contributions towards an improved design philosophy for structures, both large and
small, ordinary or extraordinary.

In the ensuing chapters of this book, the load effects arising from different natural or man-
made actions will be described in some detail, with regard to their nature and their treatment
in codes. Clearly, the best models for any particualr action and its effect will have to take into
account the principal characteristics of the generating phenomenon, as well as the detailed
features which come into play as the action interacts with different structural types and forms.

Nonetheless, there are generic features associated with actions and their effects, as well as
their consequences. This chapter has attempted to present, within a reasonable length, these
generic features, how they might be modelled using probabilistic concepts, what is their
significance in terms of the way in which the reliability of the structure may be estimated, and
finally how these issues are dealt with in modern codes of practice. The presentation herein
has been brief and, hopefully,
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concise. The bibliography provided is intended to help the reader explore the issues at a much
greater depth, should this be required.
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Chapter 2
Analysis for dynamic loading

George D.Monolis

2.1 INTRODUCTION

The purpose of this chapter is analysis of structures that are subjected to time varying loads.
Despite the fact that the majority of civil engineering structures are built on the assumption
that all applied loads are static, there are exceptions which require a distinction between static
and dynamic loads to be made, as in earthquake engineering. All loads in nature are time
dependent. In many cases, however, loads will be applied to a structure in slowly varying
ways, which implies that static conditions can be assumed. The term slow here is quantified
through comparison with an intrinsic time of the structure, which is none other than its natural
period. Thus, a load varies slowly or is fast only in relation to the time required for the
structure to complete a full cycle of oscillation.

There is growing interest nowadays in the process of designing civil engineering structures
to withstand dynamic loads (Biggs, 1965; Craig, 1981; Bathe, 1982). As examples, we
mention (i) structures which house moving or vibrating equipment, (ii) bridges under traffic,
(iii) multistory structures subject to wind and (iv) the case of earthquake induced loads
(Clough and Penzien, 1993; Newmark and Rosenblueth, 1971). Essentially, dynamic analyses
focus on evaluation of time dependent displacements, from which the stress state of the
structure in question can be computed (Paz, 1997; Argyris and Mlejnek, 1991; Chopra, 1995).
The most basic pieces of information needed for this are the natural period, which is a
function of the structure’s mass and stiffness, and the amount of available damping (or,
equivalently, the amount of energy that can be absorbed by the structure).

2.2 THE SINGLE DEGREE-OF-FREEDOM OSCILLATOR

The simplest dynamic model is the Single Degree-of-Freedom (SDOF) oscillator shown in
Figure 2.1 (a). It is an exact model for the simple orthogonal frame with slender columns and
a strong inflexible girder, where all the mass can be lumped. Three basic types of vibrations
can be considered, namely horizontal, vertical and
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Figure 2.1 (a) SDOF modelling of a single story frame for (b) horizontal, (c) vertical and (d) rotational
oscillations.

Figure 2.2 Various types of dynamic loads: harmonic, aperiodic, earthquake and long duration.

rotational, as shown in Figure 2.1(b)-(d). As expected, the SDOF oscillator is used extensively
for modelling structural systems, but it should be remembered that it is an approximate model
for anything else but the simple frame previously mentioned. Next, some typical dynamic
loads are shown in Figure 2.2, where we distinguish between periodic (both harmonic and
non-harmonic) and aperiodic (both short and long duration) loads.
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Figure 2.3 SDOF oscillator.

With reference to Figure 2.3, the equation of motion of the SDOF oscillator is

(2.1)

implying that the inertia, damping and restoring forces balance the applied force. Specifically,
M is the mass (kg), k is the stiffness (N/m), and c is the damping coefficient (N-sec/m).
Furthermore, y(t) is the displacement (m), ÿ(t) the velocity (m/ sec), ÿ(t) the acceleration
(m/sec2), F(t)=F1f(t) the externally applied force (N) withf(t) its dimensionless time variation.
Finally, dots denote time derivatives d/dt. Obviously, eqn (2.1) is a second order differential
equation that needs to be solved for the displacement y(t).

2.2.1 Motion without damping

2.2.1.1 Free vibrations

The equation of dynamic equilibrium of an SDOF system in the absence of both damping and
external force is given below as

(2.2)

Thus, the oscillator undergoes free vibrations under the influence of an initial displacement
y(0)=y0 and/or initial velocity ÿ(0)=ÿ0. The solution is simply

(2.3)

and implies a periodic, harmonic motion as shown in Figure 2.4. At this point, we respectively
define the circular frequency, the natural period and the frequency as
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Figure 2.4 Free vibration due to (a) initial displacement and (b) initial velocity.

follows:

(2.4)

(2.5)

(2.6)

2.2.1.2 Forced vibrations

We first look at the case where an external force F(t) is accompanied by zero initial conditions.
Specifically, we have a constant load F(t)=F1 applied at time t=0 and subsequently maintained.
Equation (2.1) can be written as

(2.7)

and its solution is



(2.8)

We define as Dynamic Load Factor (DLF) the ratio of the dynamic displacement at
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Figure 2.5 DLF for constant load F(t)=F1.

any time instant to the displacement produced by static application of the load F(t)=F1 as

(2.9)

A simple substitution of eqn (2.8) in eqn (2.9) gives

(2.10)

The DLF is dimensionless and measures the amount by which the dynamic displacement in
the SDOF system exceeds its equivalent static one. Figure 2.5 plots the DLF for the suddenly
applied and maintained load case, where doubling of the response is observed at certain time
instances.

2.2.1.3 Forced vibrations for various forcing functions

(a) General solution by superposition of impulses
The general closed form solution can be obtained by synthesis of the SDOF system response
to a series of impulses. Assume that the system is at rest and then acted upon by a constant
force F with instantaneous time duration td. The mass of the oscillator will experience an
instantaneous acceleration

(2.11)

which in turn produces an instantaneous velocity

(2.12)

where I is the impulse defined as force times duration.
All dynamic loads can be considered as a sequence of impulses of varying magnitude. Thus,

force F(τ) at time τand for the ensuing time instant td imparts an initial velocity to the SDOF
oscillator of the following type:



(2.13)
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Thus, from eqn (2.3) the system experiences an instantaneous displacement y(t) equal to

(2.14)

Finally, the complete displacement history is evaluated by integrating from time t=0 to the
present time t as

(2.15)

If the static displacement due to the load magnitude F1 is

(2.16)

then

(2.17)

If we finally add the effect of initial conditions at t=0, then we have a generel, closed form
expression for the dynamic displacement of the SDOF system in the form of Duhamel’s
integral as

(2.18)

(b) Suddenly applied load of duration td
Here we have a combination of constant load f(t)=1 until time t=td and free vibrations past
t>td with initial conditions y(t =td)\hbox and y(t=td). The resulting DLF factors are:

(2.19)

(2.20)

where yst=F1/k. Figure 2.6 plots the above results for two cases, where we observe an intense
response when the duration of the load on the oscillator is large (td=1.2T). If the load is on the
oscillator for a short time (td=0.1T), the dynamic response is less than the static one.

(c) Constant load with rise time tr



The time variation of this load is given by f(τ)=τ/tr,τ≤tr and f(τ)=1,τ≥tr. The DLF is evaluated
as
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Figure 2.6 DLF for load with duration time td.

Figure 2.7 DLF for load with rise time tr.

(2.21)

and Figure 2.7 plots two cases, one with a rapid (tr=0.2T) and the other with a slow (tr=3.33T)
application. We note that the latter case produces a quasi-static response in the SDOF
oscillator. Finally, in Figure 2.8 we have the maximum value of the DLFmax as function of the
time ratio tr/T.
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Figure 2.8 Maximum value of the DLF as a function of rise time tr.

2.2.1.4 Harmonic vibrations

Harmonic loads assume the form F(t)=F1 sin t, although the cosine function or the
exponential function with an imaginary argument can be used as well. With harmonic loads,
there is always danger of resonance (i.e. the structure may experience high or even unbounded
vibrations when its natural frequency coincides with that of the load). The equation of motion
is

(2.22)

and its solution in terms of the DLF (with yst=F1/k) and for y0=y0=0 has the following form:

(2.23)

We observe that the oscillations comprise two parts, the free part with frequency ωand the
forced part with frequency . Also, an approximate maximum value of the DLF is obtained
when and , i.e.

(2.24)

If we ignore the free vibration part, the maximum DLF is

(2.25)
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Figure 2.9 DLF for harmonic vibrations when

When , we have resonance effects and Using L’Hospital’s rule in the
limit, we obtain that when

(2.26)

Thus, the dynamic displacement diverges, but only after a finite number of oscillations. Also,
Figure 2.9 plots the DLF for the case where we see that the total factor, despite being
the superposition of two harmonic functions, is no longer harmonic but only a periodic
function of time.

2.2.2 Motion with damping

Damping produces forces which counteract the motions of the SDOF oscillator by absorbing
energy. All dynamic systems in practice exhibit a certain amount of damping.
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2.2.2.1 Free vibrations

The equation of motion for an SDOF system in the presence of damping is

(2.27)

and its solution without external loading (F(t)=0) is given below as

(2.28)

We also define the coefficient of damping and the damped natural frequency as follows:

(2.29)

(2.30)

There are three possibilities for β, namely

(2.31)

which correspond to underdamped, critically damped and overdamped conditions. If
and eqn (2.28) becomes

(2.32)

The displacement is no longer a periodic function of time and the oscillator simply returns to
its original position without executing any vibrations. From the condition

(2.33)

we may compute the coefficient of critical damping as

(2.34)

Following that, the damping ratio is defined



(2.35)

It should be noted here that the coefficient of damping βis seldom used nowadays, with
preference given to damping ratio . Obviously, the two coefficients are related as
The effect of damping on the natural frequency is minimal; for instance, a 10 per cent of
critical damping ratio yields . It is rare to find civil engineering structures
exhibiting anything close to critical damping, although many mechanical components (such as
shock absorbers) do.

Damping can be experimentally measured by tracing the logarithmic decrement (i.e. the log
of the difference between two consecutive peaks in a displacement versus time plot for free
vibrations). Referring to Figure 2.10, we have the logarithmic decrement as
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Figure 2.10 Free vibration with damping due to an initial displacement.

(2.36)

For instance, when per cent, d is equal to 0.2πand the ratio of two consecutive
peaks is exp(0.2π)=1.87. Thus, a damping ratio of 10 per cent reduces the dynamic
displacements by a factor of 0.534 during each vibration cycle.

2.2.2.2 Forced vibrations

By analogy to the case of forced vibrations in the absence of damping, we now have that a
damped impulse element is

(2.37)

The complete expression in terms of a Duhamel integral can be found through time
integration of the above impulse, to which the effect of initial conditions is subsequently
superimposed. Thus,

(2.38)

As a special case consider F(t)=F1; substitution of the time function f(t)=1 in eqn (2.38) gives
the solution for a suddenly applied and maintained load as

(2.39)



Comparing Figures 2.5 and 2.11 clearly shows the effect of damping in reducing the
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Figure 2.11 Forced vibration with damping due to suddenly applied and maintained load.

Figure 2.12 Dynamic equilibrium of SDOF system with Coulomb friction.

amplitude of the dynamic displacements and in bringing about, after some time, quasi-static
conditions.

2.2.2.3 Coulomb damping

This type of damping is due to friction; as the SDOF oscillator moves on a rough surface, a
horizontal force develops, where is the dynamic friction coefficient and g is the
acceleration of gravity, and acts in direction opposite to the velocity as shown in Figure 2.12.
The resulting equation of motion for free vibrations is given below as

(2.40)

and the solution for an initial displacement is depicted in Figure 2.13.
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Figure 2.13 Free vibration in the presence of Coulomb damping.

We observe that for every complete cycle of oscillation (t=T), the total dynamic displacement
y(t) reduces by an amount equal to 4Ff/k until all motion ceases.

2.2.2.4 Damped harmonic vibrations

The equation of motion for this case is

(2.41)

and the part of the solution which corresponds to forced vibration with frequency is

(2.42)

where γis a phase angle. We mention here that the free vibration part with frequency ω;
dampens out rather quickly, hence it can be ignored. Since the maximum value of the sine is
unity and the static displacement is the maximum value the DLF attains is

(2.43)

We observe that the amplitude of the vibrations is no longer infinite during resonance
when there was no damping. Specifically, we have that

(2.44)

Figure 2.14 plots the maximum value of the DLF as a function of the ratio . We observe
that when the DLF approaches the static value, while as
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Figure 2.14 Maximum values for the DLF in the case of harmonic oscillations.

the harmonic load oscillates too rapidly for the SDOF system to respond. As previously
mentioned, the dynamic response is most intense at resonance.

2.2.3 Elastoplastic systems

When dynamic loads are intense, the restoring force in the SDOF oscillator is no longer linear,
but must be instead written as a generalized function R(y) of the displacement so that non-
linear effects can be described.

We will examine the simple case where the restoring force is linear up until the elastic limit
yel is reached, past which it assumes a constant value Rm. As shown in Figure 2.15, we
consider a suddenly applied and maintained load F(t)=F1,
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Figure 2.15 (a) Elastoplastic SDOF system, (b) restoring force and (c) loading function.

along with zero initial conditions. The SDOF system response will be divided into three
stages. In the first stage, and thus R(y)=ky. The response is therefore

(2.45)

where and . In the second stage we redefine the time variable as
, where the elastic response time tel is given by the equation

(2.46)

The new form for the equation of motion is

(2.47)

under initial conditions

(2.48)

resulting from the first stage. Integrating eqn (2.47) yields



(2.49)

By taking the time derivative of the above equation and setting it equal to zero, time tm during
which displacement y(t) attains its maximum value ym can be evaluated, i.e.

(2.50)
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Figure 2.16 Time response of an elastoplastic SDOF system under maintained load F(t)=F1.

In the final stage, we observe that we have harmonic vibration about a neutral position which
is given by . Redefining a new time , we have the response
as

(2.51)

Figure 2.16 plots the dynamic displacement y(t) for the case described above, while Figure
2.17 is a nomograph for the ductility ratio µ of the SDOF elastoplastic oscillator which is
defined as the ratio ym/yel for a load of magnitude F1 and duration td. We finally observe that
in order for the elastoplastic SDOF system to behave elastically (i.e.µ≤1), the maximum
spring resistance Rm must have at least twice the value of the magnitude of the applied load F1.

2.3 MULTIPLE DEGREE-OF-FREEDOM SYSTEMS

The definition of a Multiple Degree-of-Freedom (MDOF) system is one which requires a
second order, ordinary differential equation to describe the motion of each independent DOF.
A DOF is an active translation or rotation component of motion at a given nodal point of the
structure in question. In three dimensions, we have a total of six DOF per node, namely three
displacements and three rotations, while on the x-y plane there is a total of three DOF, namely
two displacements and one rotation. As a simple example, we have the two DOF system of
Figure 2.18(a) with the following coupled equations of motion:
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Figure 2.17 Ductility factor µ, for an elastoplastic SDOF system as a function of ratio td/T

(2.52)

Next, Figure 2.18(b) depicts a simple rigid foundation on the ground, which is modelled by
two springs. The equations of motion, assuming small foundation rotation angle , are

(2.53)

where Mt is the torque on the foundation and I is its mass moment of inertia. We observe that
the above equations are not coupled, which implies that we do not have a true two DOF
system; rather, we have a system which can execute two independent motions, namely a
translation y and a rotation about its centre of mass.
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Figure 2.18 (a), (b) Multiple degree-of-freedom systems.

2.3.1 Eigenvalues and eigenvectors

The most general form of the equations of dynamic equilibrium of an MDOF system is as
follows:

(2.54)

In the free vibration case where , all DOF have the same
harmonic time variation f(t). Specifically, we can express all displacement components as

(2.55)
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where α1, α2,…is the amplitude of vibration of each DOF. Substituting this result in the
equations of motion yields

(2.56)

From all the above equations we recover the relation and thus

(2.57)

where γis a phase angle. This implies that each and every one of the n DOF undergoes
harmonic vibration. Substituting this result in the equations of motion yields the following:

(2.58)

In order for the above system of equations to have a solution, its determinant must be set
equal to zero, i.e.

(2.59)

Upon solution, we recover N values, ω1, ω2,…, ωN, for the eigenfrequencies of the system.
For each value ωi which is inserted in eqns (2.58), a vector of coefficients

results which is the eigenvector corresponding to that particular
eigenfrequency. We normalize each eigenvector by setting , since they cannot be
completely determined from eqn (2.59), and proceed to solve for the remaining components

relative to the first one. In this case, the notation used for the ith normalized
eigenvector is

2.3.2 Eigenvalue Analysis
A basic property of the eigenvectors is orthogonality with respect to the mass coefficients, i.e.
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(2.60)

where m and n correspond to two different eigenvectors. This fundamental property allows for
uncoupling the original N coupled equations of motion into N modal equations, each of which
is a dynamic equation of equilibrium for an SDOF oscillator whose natural frequency ωi

comes from the discrete spectrum ω1, ω2,…, ωN
Specifically, the nth such equation assumes the following form:

(2.61)

The subscript ∆in an eigenvector denotes the difference between two consecutive
components (i.e. . A comparison of the above equation with eqn (2.1) for
the SDOF system reveals that the equivalent mass, stiffness and loading coefficients for the
nth modal equation are

(2.62)

respectively. Thus, eqn (2.61) for the nth modal displacement An(t) can be rewritten as

(2.63)

Following the solution procedure outlined for the SDOF system in the previous section, the
modal static displacement Anst for the nth equation is given by

(2.64)

since we have that . For instance, Figure 2.19 plots the eigenvectors of
a two DOF oscillator.

The displacement amplitude given by the nth modal equation can be computed as
or as where the dynamic load factors DLF

depend on the particular form of the load’s time function f(t) and on natural frequency ωn We
note that DLFs for various load cases were presented in the previous section on SDOF
systems. The final displacement response of the rth DOF of the MDOF system is found by
superimposing all the modal displacement
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Figure 2.19 Eigenvectors of a simple two DOF system.

amplitudes as

(2.65)

In sum, there are a number of methods for computing eigenvalues and their associated
eigenvectors, which can be grouped into three basic categories as follows: (i) direct methods,
which essentially follow the procedure previously described, (ii) iterative methods such as
Jacobi’s method and (iii) approximate methods (e.g. Rayleigh’s method).

Using matrix notation, the equations of motion for an MDOF system assume the form
shown below

(2.66)

where square and curly brackets respectively denote a matrix and a vector. The orthogonality
property of the eigenvectors previously mentioned assumes the following form:

(2.67)

where overbars denote a diagonal matrix and superscript T denotes matrix transposition. If
eqn (2.66) is premultiplied by [Φ]T and if modal co-ordinates are introduced as

, then we recover the following uncoupled form for the equations of motion:

(2.68)
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We note that the above uncoupling procedure (i.e. damping matrix [C] is also diagonal) will
work only in the presence of proportional damping (i.e. if , where a1, a2
are constants. In fact, [C] can be expanded in terms of powers of [M] and [K] and still
uncouple eqn (2.66) into N nodal equations (Bathe, 1982).

2.3.3 Damping in MDOF systems

In analogy with the SDOF oscillator, a damping coefficient βor a damping ratio are defined
(rather arbitrarily, given the coupling inherent in MDOF systems) for each modal equation as
βn or n, respectively. From a practical viewpoint, the first modal equation corresponding to
the lowest eigenfrequency (or highest modal period) and which approximates the response of
the system to quasi-static application of the load, is the dominant one. Thus, it is essential that
correct values of damping are prescribed to this mode and also to a few more of the lower
ones. Furthermore, it is customary to assign rather large values of damping to the higher
modes so as to dampen out unwanted high frequency oscillations in the system.

2.3.4 Time integration methods

As previously mentioned, the equations of motion of an MDOF system need to be solved for
the displacement vector {U} as a function of time t. An alternative to modal analysis described
in the previous section is the use of time marching algorithms, which essentially integrate
over time the matrix differential equation (i.e. eqn (2.66)). There are many time marching
algorithms in use today, but they all fall into two basic groups: (i) direct methods and (ii)
predictor—corrector methods. The accuracy achieved through time integration is a key issue
and primarily depends on the size of the time step ∆t used, which is obviously judged with
respect to the magnitude of the natural periods of the system. Time stepping algorithms can
also be subdivided into unconditionally and conditionally stable ones. We note in passing that
algorithm stability does not necessarily imply accuracy. Obviously, time marching can be
used in conjunction with SDOF systems as well. Also, among the best known algorithms used
in structural dynamics are those by Houbolt, Newmark and Wilson (Bathe, 1982). Finally,
Table 2.1 presents Newmark’s method, while Figure 2.20 compares the results obtained by
various algorithms for the second storey displacement of a two-storey frame under lateral
loads which vary as sine functions in time. The exact results were obtained through modal
analysis in conjunction with the closed form solution given by eqn (2.23) for each of the two
modes.

2.3.5 Numerical example
We examine here the three storey plane frame with rigid girders shown in Figure 2.21. In
addition to the vertical static loads, the frame is subjected to dynamically
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Table 2.1 Newmark’s method in algorithmic form.

A. Initialization

1. Formation of stiffness matrix K, mass matrix M and damping matrix C

2. Initial values °U °Ü and °Ü

3. Assign values to time step ∆t and to parameters α. and δ. Computation of
the following integration constants:

4. Formation of the effective stiffness matrix K, where

5. Triangularization of matrix K,

B. At each time step level

1. Computation of the effective load vector

2. Solution for displacements at time t+∆t

3. Computation of accelerations and velocities at time step t +∆t

induced horizontal loads applied at the storey levels. The frame is modelled as a three DOF
system and the interstorey stiffness is k=2(12EI/h3), where EI(=14.67 kN m2) is the flexural
rigidity of the columns and b is their clear height. The mass lumped at each storey is the total
static load pL, where L is the span, divided by the acceleration of gravity g (= 9.81 m/sec2).
We thus compute k1=30.7, k2=k3=44.0 and M1=141.0, M2=132.0, M3=66.0 for the stiff-nesses
and masses, respectively, in units of (kN/m) and (N sec2/m). Finally, we note that the structure
s own weight is included in the vertical load. The equations of dynamic equilibrium are

(2.69)
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Figure 2.20 Comparison between various commonly used time integration methods for a two DOF
system.

We first focus on the free vibration problem, with f (t)=sin ωt, so that eqns (2.69) assume the
form

(2.70)

The eigenfrequencies, natural periods as well as the corresponding eigenvectors which result
from solving the above homogeneous system of equations are given in Table 2.2. Also, a
sketch of the three eigenvectors appears in Figure 2.22. Next, we continue with modal
analysis along the lines developed in the previous section; Table 2.3 presents all intermediate
computations plus the final static values of the three modal displacements Anst, n=1, 2,3 from
eqn (2.64). The values for the DLF corresponding to each modal equation depend on the rise
time tr of the applied load (see Figure 2.8) and on the natural periods Tn; they in turn are given
in Table 2.4.

Maximum values for the three modal components of the horizontal dynamic dis-
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Figure2.21 Three-storey frame structure with rigid girders.

Table 2.2 Eigenvalues and eigenvectors of the three-storey frame.

Eigenvector ω2 (rad/sec)2 T(sec) Φln Φ2n Φ3n

1 69.3 0.755 + 1.00 + 1.471 + 1.639

2 579.0 0.261 + 1.00 −0.146 −1.041

3 1231.0 0.179 + 1.00 −2.220 +2.680

placement y3(t) at the third storey level are given below separately (see eqn (2.65)) as

(2.71)
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Figure 2.22 Schematic view of the eigenvectors of the three-storey frame building.

Table 2.3 Eigenvalue analysis of the three-storey frame structure.

Storey Frl Mr 1st eigenvector 2nd eigenvector 3rd eigenvector

1 5,000 141 1.000 5,000 141 1.000 5,000 141 1.000 5,000 141

2 4,000 132 1.471 5,884 286 −0.146 −548 3 −2.220 −8,880 650

3 2,500 66 1.639 4,097 177 −1.041 −2,602 72 2.680 6,700 474

14,981 604 1,814 216 2,820 1265

The total third storey maximum horizontal displacement is approximately the sum of the
absolute values of the three modal contributions (i.e.y3max=1.13 cm). The reason for this is that
the above maxima do not occur simultaneously in time. As a result, a number of techniques
have been devised (Chopra, 1995), for improvement and the value quoted here is obviously a
conservative upper bound.

2.4 CONTINUOUS DYNAMIC SYSTEMS

A continuous dynamic system has an infinite number of DOF and eigenvalues, while the
associated eigenvectors are continuous functions of the space variables. All structures in
reality are continuous dynamic systems and their modelling by SDOF or MDOF systems is
approximate and done for practical reasons.
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Table 2.4 Maximum values of the DLF for load F(t).

Eigenvector tr/T (DLF)max

1 0.26 1.89

2 0.77 1.28

3 1.12 1.11

Figure 2.23 The flexural beam as a continuous dynamic system.

2.4.1 Equations of motion for continuous beams
As example, we will examine the flexural beam, which is one of the basic unidimen-sional
structural elements. Referring to Figure 2.23, the equation of dynamic equilibrium of a
continuous beam element is

(2.72)

where EI is the flexural rigidity, m is the mass per unit length, p is the distributed load and y(t,
x) is the transverse displacement. For free vibrations, we have that p(t, x)=0 and

(2.73)

where Φn(x) is the nth eigenvector. The original equation of motion can be split into two,
which respectively govern the temporal and spatial variation of the displacement y(t, x) as

(2.74)

The solution for the time function fn(t) and the eigenvector Φn(x) are given below as

(2.75)



(2.76)

(2.77)
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Table 2.5 Eigenvectors of beam of length / under various support conditions

Mode (a/b)n

1 −0.9825 0.8308/

2 −1.0007 0

3 −1.0000 0.3640/

1 −1.0007 0.8604/

2 −1.0000 0.0829/

3 −1.0000 0.3343/

1 −0.7341 0.7830/

2 −1.0184 0.4340/

3 −0.9992 0.2544/

We obviously have an infinite number of harmonic vibrations with frequency ωn. Finally, the
integration constants appearing in eqn (2.76) depend on the boundary conditions of the beam
in question and a few cases are listed in Table 2.5.

As in the case of MDOF systems, a complete eigenvalue analysis is required when non-
zero loads are present. In that case, the solution for the transverse dynamic displacement is
given by

(2.78)

where An(t) is the amplitude of vibration of the (uncoupled) nth oscillation component, which
is a function of the applied load, while Φn(x) is the corresponding eigenvector.

2.4.2 Examples of various continuous systems
As examples, Figures 2.24–2.27 present the eigenvalues and eigenvectors for four typical
types, namely the simply supported beam, the cantilever beam, the fixed end beam and finally
the fixed end-simply supported beam.

2.5 BASE EXCITATION AND RESPONSE SPECTRA

The standard method of analysis in earthquake resistant design is through use of response
spectra, because in civil engineering practice we are no longer interested
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Figure 2.24 Dynamic properties of the simply supported beam.

Figure 1.25 Dynamic properties of the cantilever beam.

Figure 2.26 Dynamic properties of the fixed end beam.
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Figure 2.27 Dynamic properties of the fixed end simply supported beam.

in the time evolution of the structural response; instead, we are interested in the maximum
values attained by the structure’s relative displacements, relative velocities and absolute
accelerations since those values control the maximum stresses that ultimately develop.

A response spectrum is defined as the maximum response (be it displacement, velocity or
acceleration) of all possible SDOF oscillators, which can be described by their natural
frequency and damping coefficient, to a given ground motion. Note that a response spectrum
is not the same as the DLF for a SDOF oscillator; both, however, can be used in the analysis
of SDOF, MDOF or continuous systems. In Figures 2.28 and 2.29, we respectively present
spectra resulting from artificially generated ground accelerations and the true, triple-scale
response spectrum for the main shock produced by the Kalamata, Greece 1986 earthquake
(Anagnostopoulos et al., 1986).

Response spectra can be classified as either elastic spectra, inelastic spectra, site specific
spectra, code prescribed spectra or as design spectra. Here we focus on the first type, as being
the most relevant to a first exposure in structural dynamics, and because they form the basis
from which the remaining ones can be derived. Specifically, and in order to complete the
presentation, we list the equations of motion of the SDOF oscillator subjected to ground
displacements ys(t) and to ground accelerations ÿs(t), respectively, as

(2.79)

and

(2.80)

where

(2.81)

is the relative displacement between ground and structure.
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Figure 2.28 Response spectra derived from artificial accelerograms.

The first step in the construction an elastic, relative displacement spectrum Sd (from u) is the
solution of eqn (2.80) to a given ground acceleration. The closed form expression for u(t) is
Duhamel’s integral given by eqn (2.38) for zero initial conditions and for yst defined as equal
to −ÿs0/ω2, where and the difference betweenωand ωd ignored. Given the
complexity of ground motion, Duhamel’s integral is computed by numerical quadrature, and
the maximum value recorded for a given natural frequency and at a given damping level is
stored. This process is repeated for a range of frequencies which is considered adequate for
design purposes, and for damping ratios up to 20 per cent. The other two spectra (i.e. Sa for
the absolute accelerations (from ÿ) and Sv for the relative velocities (from ů) are derived from
Sd using the following relation given below:

(2.82)

In the above, ωis the natural frequency of the SDOF oscillator. Since eqn (2.82) is exact only
in the absence of damping, Sa and Sv are respectively known as spectral pseudo-acceleration
and spectral pseudo-velocity. Finally, response spectra are often plotted in terms of the natural
period and by using logarithmic scales.
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Figure 2.29 Triple spectrum for the Kalamata, Greece 1986 earthquake: velocity (cm/ sec) along
vertical axis; acceleration (g) along left to right axis; relative displacement (cm) along right
to left axis; all versus frequency (Hz). Note: the five curves are for 0%, 2%, 5%, 10% and
20% damping.

2.5.1 Numerical example
In this section, we examine a simple, one-storey warehouse structure which essentially
supports a roof loading and is acted upon by the Kalamata, Greece 1986 earthquake
(Anagnostopoulos et al., 1986). We employ the response spectrum method and present the
solution in algorithmic form. We note here that design of heavy roof slabs with or without
strong edge beams is not recommended as good earthquake resistant design. Instead, correct
practice is to design for strong columns, weak beams and, if possible, light roof slabs.
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(a) Problem description

(b) SDOF system model

(c) Response spectrum computations
From the triple Kalamata 1986 earthquake response spectrum given in Figure 2.29, we have:

●maximum relative displacement is u=y−ys=1.8 cm;
●maximum velocity is y=35 cm/sec;
●maximum acceleration is ÿ=0.7 g=6.87 m/sec2;
●maximum column shear is V=(ku)/4=16,600(0.018)/4=74.7 kN; and
●maximum column shear stress isτ=V/A=74.7/(0.42)=467 kN/m2
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2.6 SOFTWARE FOR DYNAMIC ANALYSIS

There is much software available today that will, among other things, perform dynamic
analyses of typical structural systems such as buildings, bridges, storage tanks, etc. These
computer programs are based on the Finite Element Method (FEM) for discretizing the
structure so as to produce a mathematical model which can then be used within the context of
numerical solution procedures. As one of the earlier programs that was once public domain
but in the last 15 years is commercially available, we mention the Structural Analysis
Program (SAP) (SAP 2000, 1997). This program is based on the doctoral work of E.L.
Wilson at the University of California, Berkeley in the late 1960s when large scale computer
implementation of the FEM started (Bathe, 1982). The list of computer programs is quite
extensive, and the interested reader is advised to consult current, general information journals
in civil engineering (Civil Engineering magazine of the ASCE; New Civil Engineer, magazine
of the Institution of Civil Engineers) where such software is advertised. In this respect, we
mention NASTRAN as one of the largest and most complete FEM packages available today,
while ST A AD/Pro, ANSYS, GT-STRUDL, LUSAS, LARSA, ETABS, IDARC-3D, etc., are
some of the better known structural analysis and design software packages in the market.
Finally, it is possible to download special purpose, structural dynamics software from the
Internet. As example, we mention the numerical integration program NONLIN (NONLIN,
1997) for the SDOF oscillator, which is capable of capturing material nonlinearity and
accessible through the MS Windows operating system.
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Chapter 3
Wind loading

T.A.Wyatt

3.1 WIND GUST LOADING

3.1.1 Basic concepts

The real wind is generally turbulent. Particularly is this so in the extreme storm winds that are
the usual focus for conventional wind loads, because the passage of the wind over the
irregularities of the ground surface (terrain roughness) will create sufficient disturbance to
break down any stable stratification in the wind that may result from a temperature lapse rate
that is less than the adiabatic value (an ‘inversion’). On the other hand, additional
contributions to the turbulence created by thermal instability (convective gusts) are broken
down. The presumption is thus a neutral Atmospheric Boundary Layer (ABL) in which the
gust structure is dominated by the effect of ground roughness. A standard description is
postulated for the profile of mean wind speed with height, with a statistical description of the
turbulence superimposed on it, with primary dependence on the ground roughness parameter
z0· In practical terms z0 is inferred by relating the observed mean speed profile near the ground
to a theoretical model. However, a temperature lapse rate lower than the adiabatic value can
lead to abnormally smooth flow, which may increase susceptibility to aerodynamic instability
in light or moderate winds, discussed later.

In practice, evaluation of gust action is commonly based on classification of z0 in three
steps: z0=0.3 for very smooth surfaces typified by tundra or water (correction for sea surface
roughness is possible as a function of storm strength), z0=0.03 for typical UK inland
countryside, z0=0.3m for suburban housing and forests. Although higher values of z0 are
possible (e.g. for city centres), the basic presumption of a generalized statistical pattern is
unreliable (see buffeting, Section 3.2.6); an estimate of structural response based on the model
for suburban roughness will give a conservative estimate of the mean load and probably of the
peak gust response, but may underestimate the specifically dynamic action. An ad hoc wind
tunnel test will give valuable additional information in such cases, but interpretation is beyond
the scope of this chapter.

The basic measure of gust strength is the root mean square (r.m.s.) value of the
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perturbation of the wind speed at a point about the mean; the hourly mean value V is the ideal
reference for the large storms typical of temperate climates. If a Cartesian co-ordinate system
is referred to the mean wind direction, (x alongwind,y horizontal crosswind, z vertical) a
corresponding component system (u, v, w, respectively) can be applied to the velocity
fluctuation. Notation σu, etc. is used to denote the r.m.s. fluctuation, and the intensity of
turbulence I=σu/V; σu as well as V is a function of height above ground z. The ‘equilibrium’
values resulting from a very long fetch of uniform roughness are well established together
with reasonable evaluation of the development over changes in roughness (Harris and Deaves,
1981; Cook, 1985).

The UK general code of practice for wind loads, BS6399 Part 2 includes a socalled
‘directional procedure’ with tabulated coefficients relating the local mean speed V(z) and
intensity of turbulence I(z) to the basic storm strength (Vb in the notation of BS6399) as a
function of the local terrain and topography. Factors Sc and St give V and I, respectively, for
locations in open country, as a function of distance from the coast in each selected wind
direction, with the possible addition of allowance for the influence of ground contour
(topography, Sb,). Further corrections (factors Tc and Tt) are given for sites in urban or forest
terrain. BS6399 continues with procedures to assess the correlation of gust action over the
extent of the structure as a static load process and a simple generalized factor for dynamic
augmentation of response.

To proceed further to address the dynamic effects of gusts, in the sense of effects
influenced by the inertia of the structure, the methodology is extended by representation in the
frequency domain using the Fourier integral transform as outlined in Section 3.1.2. The
Fourier integral (spectral) approach can also be used in assessing the spacial correlation of
quasi-static pressures, which is dominated by the action of frequency components well below
any resonant frequency of the structure, where inertial effects are negligible. Some of the
approximations made in the dynamic analysis given in this chapter become questionable at
low frequencies, and the writer advocates instead a direct approach to this part of the
windload problem, either by formal static correlation analysis (Wyatt, 1981) or by the
postulate of a critical gust duration proportional to the quotient of the size of the loaded
surface in question with the mean windspeed (Cook, 1985). This so-called ‘TVL’ approach
(gust averaging time, windspeed, loaded length) is developed in BS6399 Part 2.

The distinctive characteristics of gust response, by contrast especially with earthquake
effects (see Chapter 4), are:

●long duration, the storm persisting near peak intensity for duration of order 1 hour;
●a coexistent mean load, permitting no reversal of inelastic deformations;
●the forces are randomly spatially variable over the structure;
●effects are significant over a frequency range extending down to a few cycles per hour.
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Any individual increments of inelastic deformation must therefore be kept very small, and a
linear structural analysis is sufficient, but a sophisticated treatment of the correlation of gust
actions over the extent of the structure is essential. The duration and random nature of the
process makes the power spectrum (see Chapter 10) an attractive analytical tool.

The ensuing presentation concentrates on the basic application of spectral analysis to the
gust loading problem pioneered by Davenport (1961, 1962), using the neutral ABL model,
although there is increasing recognition of the potential importance of convective effects
(Wyatt, 1995). This analysis further presumes simple ‘quasi-steady’ aerodynamics; the
companion problems of dynamic effects caused by flow-pattern instabilities or by feedback of
structural motion to the aerodynamic forces are considered under the heading of Aerodynamic
Instability, Section 3.2.

3.1.2 Spectral description of wind loading

The turbulent velocities are described by Cartesian components (u, v and w) superimposed on
the mean windspeed V; u is in the mean wind direction, w is commonly used for the vertical
component. It is generally presumed that the turbulence components can be treated for
analytic approximations as small compared to V; the instantaneous windspeed V(t) is thus
V(t)=V+u(t), and v and w can be treated as causing small changes in the instantaneous wind
direction. The notation is used throughout this chapter for the variance of quantity u, and
correspondingly for other input and response quantities.

In a severe temperate-climate windstorm, the mean windspeed and the associated statistical
description of the gusts carried by it remain constant (‘stationary’ in the statistical sense) for a
sufficient duration that analysis in the frequency domain using power spectra is the preferred
approach. Provided the gusts are the result of surface roughness over a long fetch, rather than
being substantially influenced by specific discrete obstacles in the immediate vicinity, the
input spectra take universal normalized forms. In this way, the spectrum of each turbulence
component is fully defined by the r.m.s. value and a timescale parameter (for normalization of
frequency), the Harris—von Karman algebraic formulation being widely accepted (see below,
especially Figure 3.2a, Section 3.1.3) . Cross-spectra describing the spatial correlations are
also crucial in this application (Harris and Deaves, 1981; ESDU, 1986b).

Given standard algebraic descriptions of the input spectra, the subsequent analytic steps are
straightforward in application, and ad hoc numerical Fouriertransform operations are not
normally required except for interpretation of wind tunnel data or full size monitoring studies;
such specialist aspects are not considered further here. Full description of spectral procedures
can be found in sources such as Newland (1993), in which the mathematical basis is
developed, crucially equations 10.20–10.22, and 10.71. Attention is specially drawn to the
discussion given with these equations. Generally good guidance can be drawn from the
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simple concept that the spectrum defines the strength of an infinite number of infin-itesimally
spaced sinusoid components which are sustained so that the steady state response is attained
for each component. The essential randomness results from the infinite complexity of the beat
phenomena between such components. The magnitudes are defined in mean-square terms; the
spectrum describes the distribution of the variance (mean square deviation from the mean) of
the process on a frequency abscissa, and the ordinates are thus values of (process)2 per unit of
frequency. Throughout this chapter the notation σ2( · ) is used for the variance of the quantity
indicated in the parenthesis (in the case of windspeed, σu is used for σ(u) to facilitate concise
presentation).

Wind engineering is exceedingly fortunate that the choices of spectral definition and
notation in the seminal presentations (Davenport, 1961, 1962) have been universally followed.
The basic spectrum is used in the single-sided form with frequency (n) expressed in Hz,
which is denoted S(n) (although W(n) has become more common as the notation for this form
in other fields). The numerical values of ordinates in the wind engineering format are thus 4π
times the values for the double-sided circular-frequency form given as S(ω) in eqn 10.20. It is
further general in wind engineering to present spectra in the normalized non-dimensional
format of nS(n)/σ2 plotted on a logarithmic scale abscissa n. Noting that

(3.1)

this preserves the visual interpretation of the area of the spectral plot as the variance of the
process. It gives a clear graphical representation despite the considerable frequency range
present in the natural wind and has the great convenience that scaling parameters applicable to
the frequency abscissa have the effect only of a ‘rigid body’ shift of the normalized shape.

The Harris—von Karman normalized form (Figure 3.2a, Section 3.1.3) for the alongwind
gust component (u) is

(3.2)

The frequency normalization favoured by the present author is ñ=12nT, in which T is the
timescale, the (one-sided) integral of the autocorrelation function of the windspeed. Theory
derived for Homogeneous Isotropic Turbulence (HIT), which ignores the distortion of the
turbulence field resulting from proximity to the ground (where w must clearly be zero), gives

the numerical factor as . The length scale
may al-ternatively be used as the input parameter for frequency normalization.

Dynamic analysis is focused on the upper tail of the spectrum ñ>>1, as demonstrated later; in
this range

(3.3)
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Table 3.1 Modified timescale Ts (seconds).

Reference windspeed Vb, 25 m/s 32 m/s

Location (terrain) Coast Country Town Coast Country Town
Roughness length z0 (m) 0.003 0.03 0.3 0.003 0.03 0.3
Height above 10 4.4 3.5 2.8 3.6 2.9 2.1

ground, z(m) 20 6.3 6.0 5.4 5.6 5.0 4.2

50 7.3 9.2 10.6 7.0 8.4 8.7

100 7.9 11.0 15.1 7.3 9.8 12.7

200 8.5 12.7 19.4 7.9 11.4 16.6

Storm strength is generally best defined by the hourly mean windspeed; a 10-minute average
may be substituted where this is the basis of local records, or in climates where the storm peak
is not stationary for the longer period. Unfortunately, although definition of local values of V
and σu for a defined synoptic storm strength is well established for the case of extreme winds
in temperate climatic locations, this is less true for the scale parameter. The preference here
for T rather than xLu reflects the postulate that the depth of the surface boundary layer, and
thus xLu, increases with storm strength. Extensive further discussion will be found in ESDU
Data Items 85020, Revision E (ESDU, 1990) and 86010. Item 85020 develops a more
complex spectral form, but upper-tail ordinates may still be evaluated from the basic
expression given above, by substitution for T of an effective timescale Ts, which is given by

in the ESDU notation. Representative values are given in Table 3.1
(Maguire and Wyatt 1999).

Where there is a discrete obstacle in the upstream flow of size comparable to the structure
under consideration, the response to turbulence may be significantly enhanced, even at
separations exceeding 20 times the width of the obstacle, and the only solution may be
specific wind tunnel modelling. For this reason no values are given in Table 3.1 for city centre
conditions. An indication of response may be obtained by applying ‘town’ input parameters,
which are based on extensive suburban ground roughness, in the expectation that enhanced
turbulence would be compensated by reduced mean windspeed, but this is not necessarily
conservative.

Wind loading is based on the concept of a ‘kinematic pressure’ q, given by ,
in which ρis the density of air (about 1.2kg/m2 at normal altitudes). The actual pressure on a
structural surface is obtained by multiplying q by an appropriate coefficient; catalogues of
such coefficients are given in the various design guides and codes. The alongwind force
(‘drag’ P, say) on a simple structure such as a signboard face on to the wind can thus be
written P=qACD in which A. is the loaded area and CD is the drag coefficient. For practical
manipulation in the frequency domain, the basic drag force formulation is first linearized, i.e.

(3.4)
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It is then simplified by writing , so that

(3.5)

The corresponding spectral relationship describing the force fluctuation is then

(3.6)

or

(3.7)

3.1.3 Structural response: the line-like structure

It has thus far been assumed that the area A is sufficiently small that gust perturbation u can
be assumed uniform over the structure. In practice, however, to evaluate dynamic response, it
is always necessary to make allowance for imperfect spacial correlation. The basic analysis
addresses the case of a structure whose loading can reasonably be defined by reference to a
single coordinate, such as height above ground for a slender tower or a chimney, or location
along a cable or a bridge deck. It is further assumed that the force acting at any point is fully
defined by the windspeed at that location that would have arisen in free stream, so that the
spacial correlations of the load are the same as for the incident wind.

Consider a member of length H and cross-section such that the force exerted on an element
of length dz can be written dp=p dz=qbCD dz, in which the drag coefficient reference
dimension b may be a function of the location co-ordinate z. The modal generalized force is

, in which µ(z) is the shape function. After linearization as introduced at eqn
(3.4), the time varying component is

(3.8)

To simplify presentation, the variation of V with z will initially be ignored. The
autocovariance function at time-lagτ(Cp(τ) say) is then

(3.9)

in which γ(z) has been written to comprise the quantities variable with location but invariant
with time, in this case , and the brackets < > signify timeaverage.



In HIT, , and the cross-spectrum of u for these
points, written Suu(z, z';n), is a real quantity. The HIT presumption clearly also implies that it
is a function of the separation distance , not of z or z' individually, and can
conveniently be normalized by division by the single point spectrum. The resulting
‘normalized co-spectrum’ is commonly written , i.e.

(3.10)
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Figure 3.1 The normalized co-spectrum function (HIT).

A solution from turbulence theory is available for this function (Figure 3.1) (Harris and
Deaves 1981, Irwin 1979), based on a universal normalized independent variable

(3.11)

At the resonant frequencies for virtually all practical structures, nT > 0.5, so that the second
term in eqn (3.11) is negligible, making Ru(λ,n ) a universal function of nλ/V only. Significant
correlation is then restricted to separations that are commonly sufficiently small by
comparison with height above ground to make HIT a credible basis. Values are conveniently
presented in ESDU 86010 (ESDU, 1986b). An important derived parameter is the integral
scale for frequency component n, which is . The HIT
formulation gives Ln= V/8.9n, but this includes negative values of Ru at large separations,
which are probably of limited practical reality; limitation to positive ordinates suggests
Ln=V/8n for practical evaluation.

The exact HIT functional relationships are desirable for interpretation of full-scale or wind
tunnel measurements, and for applications involving cross-wind components of turbulence,
but for the base case of response of a conventional structure to the alongwind (u) component,
the much simpler formulation

(3.12)

is an acceptable approximation, with Ln=V/8n (Figure 3.1). An even smaller value is proposed
in Annex B (informative) of the Eurocode ENV 1991–2–4, which should be viewed with
caution.
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The Fourier transform of the autocovariance (eqn (3.9)) gives the spectrum of the modal
generalized force as

(3.13)

Noting that the mean value is , this is commonly expressed in the form

(3.14)

in which the correlation transfer function, or ‘aerodynamic admittance’, J2, is

(3.15)

(Davenport, 1962; Bearman, 1981; Dyrbye and Hansen, 1997, Section 6.4.3). The integrals
comprise the whole structure. For a uniform slender horizontal structure, γ(z) reduces to the
mode shape function.

The foregoing development has presumed homogeneous wind (V and gust parameters σu

and Ts invariant with location on the structure). Variation in the input wind parameters,
generally the case with vertical structures, greatly increases algebraic complexity if
approached rigorously (Wyatt, 1981), but in practice it is usually sufficient to use constant
values, evaluated for a reference height selected by judgement (e.g. three-quarters of the
height of a tower or chimney). In this event, Pj for insertion in eqn (3.14) should be evaluated
consistently.

The full sequence of the spectral analysis is shown by Figure 3.2:

(a) the wind spectrum in the universal form (eqn (3.2)), defined on abscissa ñ=12nTs, is
multiplied by

(b) the aerodynamic admittance expressing spatial correlation, reflecting H/Ln, defined here
on abscissa nH/ V, where H is the size of the structure (loaded length); the product
(a)×(b)×(2σu/V)2 gives the spectrum of the modal generalized force (normalized on the
mean value Pj);

(c) which is divided by the square of the modal generalized stifmess (Kj) and multiplied by
the square of the steady state dynamic magnifier (i.e.

in whichδis the damping (as log dec) and nj is the natural
frequency (abscissa n/nj);

(d) to obtain the spectrum of modal generalized displacement SY.

The lowest natural frequency of any given structure is broadly predictable from its size.
Buildings typically have n1=46/H, approximately. Towers and bridges are particularly well
defined, given definition of the structural form and basic geometric proportions (chapter 3 in
Maguire and Wyatt, 1999). Consider a tower of height H=100m, which is likely to have a
frequency of about 0.67 Hz. A
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Figure 3.2 Spectra and transfer functions for wind gust response analysis.

typical value of spectral timescale, Ts=10 sec, gives ñ=80, which is in the extreme tail of the
spectrum; an unusually low value has been adopted for clarity of illustration in Figure 3.2. In
wind V=25 m/s at 10 m above ground or 32 m/s at a ‘representative’ height 0.75H=75 m, the
scale length of the ‘resonant’ gust is Ln=V/8nj=6m. Thus H/Ln>>1, and significant
contribution to the volume
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Figure 3.3 The diagonal approximation to the admittance integral.

integral constituting the numerator of J2 becomes restricted to close to the diagonal z=z' of the
area of integration (0<z<H,0<z'<H), so that the numerator double integral is well
approximated by (Davenport, 1962). This approximation is illustrated by Figure
3.3, using for clarity the ‘straight line’ weighting function

An ‘effective size’ He can be defined by the quotient of integrals

(3.16)
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leading to a corresponding normalized value, HN=He/L,n (Wyatt, 1981). The solution of eqn
(3.15) for uniform weighting (i.e.) in conjunction with the simple exponential form
for Ru, which is

(3.17)

(plotted as Figure 3.2b), then constitutes an excellent approximation to J2 for any weighting in
which γ(z) is of uniform sign throughout the structure. This covers the fundamental mode of
most cantilever structures (towers, chimneys and translational modes of buildings) and other
single-span structures; it is not restricted to HN>>1 . The less sophisticated approximation
J2=2/HN remains applicable for any weighting at large HN, with error of order 1/HN- For the
example given, with the first cantilever mode approximated by y(z)=(z/H)1.5, He=0.64H=64
m, so that with Ln=6 m, the normalized effective size HN=10.7, and J2=20.17.

For white noise excitation (i.e. Sp invariant with frequency) there is a closed form solution
for the response variance, i.e. for displacement Yj in mode j,

(3.18)

in which nj is the natural frequency and δis the damping expressed as logarithmic decrement.
As the peak spectral response ordinate comprises dynamic magnifier , this implies an

effective bandwidth . For practical values of , the magnifier is so large, and the
response bandwidth so small compared to the bandwidth of the input spectrum, that this result
gives an excellent approximation to the area under the resonance peak, identified as on
Figure 3.2(d), i.e.

(3.19)

in which Yj=Pj/Kj is the mean value of modal displacement. Clearly the r.m.s. value
follows

(3.20)

The corresponding value of modal narrowband (quasi-resonant) contribution to any structural
load effect F (e.g. stresses or stress resultants such as bending moments) can be obtained by
multiplying the displacement by the respective modal influence coefficient βFj (say), i.e.

. Values for the modal influence coefficients can now generally be
obtained from the computer modal solution output, but if in doubt concerning accuracy of
modelling, or when using hand computation, they should be evaluated as the static effect of
the
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‘inertia loading’ given by the product for all masses of mass and acceleration per unit modal
displacement (i.e. Yj=1m), i.e.

(3.21)

in which iF(z) is the conventional static influence function for load effect F and µj is the mode
shape function.

The response to lower frequency input components is effectively quasi-static, and space
does not permit detailed consideration in this dynamics text. The r.m.s. value for load effect F
is commonly denoted , ‘B’ signifying spectral broadband of frequencies. It can be
evaluated by purely static correlation analysis (Wyatt, 1981), which is particularly well-suited
to cases where the load on some part of the structure has the effect of relieving the net load
effect. is equivalent to the ‘background factor’ in Davenport based design codes and
recommendations, and can also be inferred from conventional static results such as the
detailed method of BS 6399 Part 2. Denoting the codified peak quasi-static value as FQS
(prior to application of dynamic factor Cr) and the hourly mean value as F, and writing

, the crest factor for quasi-static response can be taken as gs=4.1–
0.25log10He (Wyatt, 1981), for He expressed in metres. σB(F) is then readily evaluated.

The static (broadband) and dynamic (narrowband) effects are statistically independent, and

can be combined by root sum square . Design is commonly based on the
expected maximum value ,in which g is the ‘crest factor’ (Davenport,
1964) given by g=(In 2vτ)1/2+0.577/(In 2vτ)1/2. In the latter, τis the storm-strength averaging

time (e.g. 3,600 sec) and v is the effective frequency, which can be
taken as . The upper tail nature of both spectrum and admittance function are
such that the first mode dominates dynamic gust response, but if necessary further mode
contributions can be added to σT(F) by root sum square.

3.1.4 Further cases of gust load spectra
In the case of a lattice tower of significant face width compared to the integral scale Ln, the
foregoing presumption that the load on any element is fully defined by a single-point
windspeed remains acceptable but it is necessary to allow for the correlation in two
dimensions (i.e. with reference to location co-ordinates z1 and z2). This case is referred to as
the ‘lattice plate’. The numerator of the admittance function thus becomes a quadruple
integral. For the case where Ln is small compared to the structure dimensions H1 and H2 in
two orthogonal directions, the analogue to the approximation for a single line

becomes , in which . For the exponential
approximation to . For the HIT form, (considering only positive
ordinates of Ru). The resulting approximation to the admittance (J) is given to a good
approximation by J=J1×J2

, where J1 and J2
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are values for the two dimensions evaluated separately. J1 is evaluated from the normalized
effective size HN1=He1/Ln (eqn (3.16)) for whichever dimension gives the larger value of H/Ln,
but the smaller normalized value is reduced for evaluation of J2, to HN2=(4/5.9)He2/Ln (Wyatt,
1981).

In the case of a clad structure such as a building, it is empirically established that the
correlation of pressure fluctuation over the upwind face is better than that of the free stream
velocity over the same distances (Cook, 1985). This effect is partly countered by relative
weakening of the effective load fluctuation on the downwind face; the net effect is not
addressed explicitly in Davenport based design formulations. The author’s personal practice is
to apply the lattice plate solution as above, but evaluated taking Ln=V/6n, an increase of one-
third over the free stream value. This procedure cannot be expected to offer precision
comparable to the line-like or true lattice plate cases, but may be sufficient for decision
whether specialist investigations are necessary, in particular for subjective comfort criteria.
Pressure fluctuations near the corners, especially in ‘glancing’ winds, are likely to be
important for lateral or torsional excitation.

The foregoing discussion has considered only the alongwind (u) component of turbulence.
Crosswind components may also be important, commonly treated in two independent
orthogonal components, v (horizontal) and w (vertical). A number of formulations are
available for spectra and net r.m.s. values. The HIT solution gives the upper-tail ordinates of
Sv and Sw as 4/3 times Su at the given frequency. This can be used as a practical approximation
to Sv at frequencies such that Ln is less than (say) one-fifth of the height above ground, but
becomes increasingly conservative at lower frequencies. Sw can be treated similarly, but with
greater conservatism.

For modal analysis of response the forces are generally required in body axis components.
In the basic case of a vertical structure for which the drag coefficient has constant value CD
for all directions and the crosswind force coefficient is uniformly zero, which is a reasonable
approximation for many lattice towers, the body axis force perpendicular to the mean wind
direction is . The analysis then follows the alongwind treatment
described above, with (v/V)P replacing (2u/V)P, and thus Sv (or Sw) replaces 4Su . The HIT
solution for Ln for the v component on vertical separation (and likewise the w component on
horizontal separation) is, however, twice as large as the value for u, being V/4.43n when
integration extends over the full range, including negative ordinates of Rv or Rw. The
practical validity of this increase remains controversial, and some authorities retain the same
values as for u, a nonconservative assumption. The vectorial analysis leading to generalized
expressions for excitation of an element at an arbitrary inclination is highly complex
(Strømmen and Hjorth-Hansen, 1995). Practical approximations for inclined tower structures
are, however, available (Wyatt, 1992).

For bridges, gust dynamic response is generally dominated by vertical motion with
excitation based on dCL/dα, in which CL is the lift force coefficient and αis the angle of
inclination of the wind to the deck. The analysis of correlation along
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the deck (‘spanwise’) follows the methodology introduced above, but it is usual to include a
further admittance factor which takes account of the width of the deck (‘chordwise’). The
theoretical solution for an aerofoil (Sears’ function) serves well in many cases (Walshe and
Wyatt, 1983). A comparative survey of published formulations is given by Hay (1992). Much
more sophisticated models are available for integration of gust action with the feedback of the
effect of structural motion on the forces, as discussed in section 3.2.5.

3.1.5 Aerodynamic damping

The alongwind response of skeletal structures such as lattice towers is commonly significantly
reduced by aerodynamic damping. The narrowband response is essentially harmonic
(sinusoidal), modulated relatively slowly, and the relative velocity (V+u−y) (wherey=dy/dt is
the velocity of the structure in the downwind direction) thus includes a sinusoidal perturbation.
For a tower of natural frequency n=1 Hz, comprising members of width d=0.3 m and in wind
of mean speed V=30m/s, the reduced velocity VR=V/nd is of order 100 (i.e. the fluid advance
in the duration of one cycle of oscillation is 100 times the significant reference dimension of
the structure). The induced perturbation of the drag force will therefore be closely quasi-static
with amplitude (2y/V)P, given the usual linearization. Examination of the equation of motion
shows this to be equivalent to a viscous damper with coefficient c=2P/V, thus making a
contribution to damping logarithmic decrement

(3.22)

in which use has been made of the standard result . In modal analysis this
becomes

(3.23)

where p and m are the mean load and mass per unit length and µj is the mode shape function.
Equation (3.22) can also be expressed in terms of a Scruton number (eqn (3.31), Section
3.2.2) and reduced velocity VR=V/nd (where d is the reference dimension for the drag
coefficient CD), i.e.

(3.24)

For a crosswind motion, the postulate ‘drag coefficient CD constant, crosswind CL zero’ gives
damping one-half of this value (cf. the comparison between v and u gust excitation, above).

To show the likely importance, consider a lattice tower of tubular steel members of wall
thickness t, having total mass (M) twice the mass of the members exposed in one face and
total drag coefficient CD=1.2 based on the shadow area (A) of
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that face. This gives

(3.25)

With material density ρs=8t/m3 and illustrative values CD=1.2, V=3.2m/s, t=10mm and nj=0.8
Hz, the aerodynamic damping . A comparable tower of angle section members would
give about twice this value. For buildings, the conditions for the quasi-steady assumption will
be less well satisfied, but aerodynamic damping is also likely to be much less effective due to
the lower ratio of drag to weight. For a typical building with drag coefficient 1.0 and mass 4
t/m2 of face area (mass density 400kg/m2 and alongwind plan dimension 20m, say), V=32 m/s
and nj=0.8 Hz, the above formulation gives

Aerodynamic damping is commonly very important for the vertical or torsional gust
dynamics of bridges. Taking the deck width B as the reference dimension for coefficients and
reduced velocity, for vertical motion

(3.26)

The quasi-steady assumption is, however, significantly non-conservative for dCL/dα. If
specific wind tunnel data are not available, the theoretical solution for an aerofoil with
harmonic perturbation generally gives a useful approximation (Walshe and Wyatt, 1983). The
effective value dCL/dαof at practical frequencies is between 3 and 4. In strong winds a can
be significantly larger than s; for example, for a deck of width B=25 m, mass m=15 t/m and
natural frequency 0.5 Hz (typical for span 250m), in a wind of 30 m/s, . The
aerodynamic damping of bridge decks can also be expressed using the ‘derivatives’ as
discussed in Section 3.3.4.

3.2 AERODYNAMIC INSTABILITY

3.2.1 Introduction

‘Aerodynamic instability’ is a very convenient generic term to cover a wide range of dynamic
responses to wind, but means little more than a statement that the response in question is not
sufficiently described in terms of the gust action considered above. There are intrinsically two
distinct mechanisms:

●flow instability excitation, or simple ‘Vortex shedding’;
●aeroelastic excitation.

In the former, the flow pattern is unstable, even when the structure is stationary. In the
common example of a slender prismatic structure such as a chimney, vortices associated with
flow separation from the flanks of the structure grow until they are carried away by the flow.
The latter results from the changes of the aerodynamic
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forces consequent upon motion or deformation of the structure. It is instructive first to
consider these two mechanisms separately, but unfortunately interaction between them is
commonly crucial to the severity of the effects on the structure.

Anyone encountering such problems is well advised to read the seminal survey by Scruton
and Flint (1964). Further introduction, particularly relevant to bridges, is available in Wyatt
and Scruton (1981). The basic introduction to the stochastic model of vortex shedding given
by Vickery and Basu (1984) is also desirable preliminary reading. Blevins’ ‘Flow induced
vibrations‘ (1994) is widely respected for reference. There is a very wide range of design
specifications, which will be introduced later.

3.2.2 Vortex shedding: deterministic representation

The starting point for the dynamic effects of vortex shedding is the von Karman vortex street,
illustrated by Figure 3.4. This represents a cross-section through the flow field round a long
prismatic structure; the circular section has been selected for illustration partly on the grounds
of familiarity, but also because of the freedom from galloping-type aeroelastic behaviour. The
quasi-steady behaviour of this section has already been addressed in the context of gust action,
and has been shown to give unconditionally positive damping of structural oscillation,
increasing in proportion to windspeed. The vortex street as shown indicates that vortex
growth occurs alternately on opposite sides of the structure. When there is a large attached
vortex on one side, the wake is displaced laterally and there is a lateral component of force on
the structure. When this vortex is shed and (in this case) replaced by growth on the other side,
and the process repeated, there is clearly a cyclic lateral excitation. Although the actual
variation is unlikely to be sinusoidal, it is usual to extract the first Fourier component to give a
coefficient of fluctuating lift ČL; that is, describing force p(t) per unit length of prism as

(3.27)

in which ns is the frequency of the shedding.

Figure 3.4 The vortex street.
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The vortex street proves to have a characteristic geometry, scaled to the diameter D,
irrespective of windspeed; for the circular section, the distance between successive vortices on
the same side is a little under 5D. As the vortices are carried downstream at a speed only
marginally less than the flow V, this implies that the cycle periodicity, equal to the time
between successive vortex shedding, is about 5D/ V. In general, this is usually expressed in
terms of the shedding frequency ns, i.e.

(3.28)

in which St is a constant known as the Strouhal number, 0.2 in this case.
As critical conditions are likely to be associated with synchronism between shedding and a

natural frequency of the structure, engineering interpretation is more commonly based on the
reciprocal of the Strouhal number (i.e. V/nsD). Experimental data, from wind-tunnel tests or
full size, are appropriately related to a normalised representation of the windspeed, VR=V /nD,
in which n is the relevant natural frequency. The velocity at which resonance (n=ns) occurs
may be denoted VC (‘critical’ velocity) so that

(3.29)

The term ‘critical’, here corresponding to resonance, must be treated with some caution.
Although most often indeed the critical condition, significant response will occur at somewhat
lower speeds, which may be important in terms of human subjective response, or even of
structural fatigue, when account is taken of the increased duration of occurrence of such lower
speeds. The maximum response may actually occur at a higher speed, as a result of persisting
resonance due to ‘lock on’, considered later.

The above relationships can be combined to give a prediction of the steady-state response.
For simplicity, a ‘rigid body’ motion is considered first, typified by a ‘section model’ wind-
tunnel test. A rigid model is mounted on springs; if the mass per unit length is m and the
prism length L, the spring stiffness must be . At resonance, the steady
state dynamic magnifier is π/δ, whereδis the damping expressed as logarithmic decrement

(or in terms of proportion of critical damping) so the response amplitude (ŷ, say) is given
by

(3.30)

This is re-expressed in terms of the normalized quantities by writing and the
normalized damping

(3.31)
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giving the normalized amplitude

(3.32)

Ks is known as the Scruton number, and expresses the energy dissipation by structural
damping by comparison with the potential aerodynamic input. The latter is represented by the
work term qDL×y, in which q is the kinematic pressure , with the appropriate
normalization of V and y.Ks is widely used as the basis for interpretation of scale model tests
and other empirical comparisons.

For a flexible structure, the above result is easily extended by a modal decomposition, in
which only the resonant mode is likely to have significant effect. Denoting the mode shape as
µ(x), where x is the location coordinate, with maximum value of µT, the Scruton number
should be evaluated using an equivalent value of mass per unit length,

. The above expression for η then gives ỹ/D for the point of
maximum displacement. The numerator integral is taken over the whole structure, but the
denominator is evaluated only over the length of prism subject to the resonant excitation.

If m, V and D are constant (m=m0, say), as is common for a bridge deck, or for individual
members in a truss, me < m0; for example, for a uniform simply supported beam me=(π/4)wo,
and the peak displacement is 4/πtimes the singledegree of freedom estimate for the given
values of CL and m0. For chimneys, it is common practice to use the mean value of m(x)
taken over the top third of the height. This rolls up in a rough and ready way the increase
given by the quotient of modal integrals with the observed decrease of CL near the free end of
the prism. The degree of reduction by the end effect is believed to be affected by chimney
efflux, but this is ill explored. The effects of taper and of the variation of mean windspeed
with height are addressed later.

The normalized reduction of the deterministic response equations is noteworthy; there is no
independent mention of frequency or mode order. The phenomenon of lock-on (see also
Section 3.2.4) causes the vortex street to reverse phase at the nodes, so that each internodal
length adds consistently to the excitation (i.e. the integral in the denominator of the equation
for me should be written Thus if resonance in more than one mode is possible
within the possible range of windspeed, the predicted displacement amplitudes will be similar,
subject only to marginal correction according to the mode shape integrals. The internal
stresses developed in the structure will, however, increase. For a long simply supported beam,
the shape of mode j is given by , so the curvature and thus bending stresses
increase as j2, and a broadly similar pattern applies to most flexural structures. For a cable, the
structural criterion is likely to be angular deflection at the attachments, which increases
linearly with j.

Fortunately, the values of CL and Ks are such that η is usually small; values exceeding 0.2 
are uncommon. Furthermore, the aerodynamic input is self-limiting at values of y/D less than
unity, although values at the worst point, such as the tip
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of a cantilever, especially in modes other than the fundamental, may somewhat exceed unity,
being driven by excitation at sections where the amplitude is lower.

3.2.3 Vortex shedding: slender elements, cables

In most cases the fundamental mode of vibration is the dominant concern, because this clearly
gives the lowest critical speed. Particularly in the case of chimneys, the large (typically
sixfold) frequency difference between first and second modes commonly has the effect that
the critical windspeed for the second mode is in excess of the maximum that may occur at the
location in question. At the other extreme, very slender members, including cables, may reach
the resonance condition up to quite a high mode number. The vertical motions of the deck of
the first Tacoma Narrows bridge that persisted for a large part of its life (as opposed to the
eventual destructive torsional motion), providing the spectacular film footage of vehicles in
deck waves in which they almost disappeared from view, were of this kind. The switching
between modes with change of windspeed, up to a seven-node case at speed 14m/s, clearly
identified vortex shedding and gave no concern for early structural failure.

The once familiar audible frequency vibration of overhead electric telegraph and telephone
lines comes in this category, and this mechanism has been referred to as ‘aeolian vibration’ on
the presumption that this was the Aeolian harp of classical mythology. Consider the
suspenders supporting the deck of a suspension bridge. The stretched string natural frequency
for a cable with material density ρs carrying tensile stress fT is

(3.33)

in which λ is the internodal length (half-wavelength). Thus for fT=300N/mm2 (say) and
, (Hz, m units). For a cable of diameter D=50 mm, the critical

windspeed is thus (m/sec, m units). The curvature associated with a defined
displacement amplitude increases with increasing mode order, inversely as the square of λ, so 
with a spiral laid cable, the mode sequence will be curtailed by increasing damping due to
interwire friction. Low modes in this case will give a trivial value of critical speed and
structural stressing. The suspender cables on the Severn Bridge, for example, showed
oscillation over a range of modes immediately after construction, prior to fitment of dampers.
The most serious observed response of a long suspender (L=80 m) was considered to be that
with fourteen intermediate nodes, λ=5.3m, n=19 Hz, occurring at Vc=4.8 m/s.

It is normal practice to protect such cables (also major electricity transmission lines) by
additional damping, commonly by Stockbridge-type dampers. These comprise a substantial
mass (18kg for protection of the above example, equal to about 2 per cent of the cable mass)
attached to the cable by a short length of spiral strand. The latter is clamped to the cable so
that it acts as a cantilever in bending
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with substantial damping derived from interwire friction; the device is thus a simple form of
inertial damper, albeit not optimized as a Tuned Mass Damper (TMD) for any one specific
mode. It is attached near the end of the cable, accepting a reduction of effectiveness overall in
order to avoid the circumstance of coincidence with a node in any of the modes for which
protection is required. Such augmentation of damping is only necessary for such a heavy
prism (equivalent density about 6t/m2 for steel spiral strand, 3.5t/m2 typical for composite
steel and aluminium conductors) because the structural damping at low amplitudes is
exceptionally low; values as low as logarithmic decrement δ=0.003 have been quoted. The
Reynolds number is also unfavourable.

3.2.4 Reynolds number, size number, lock-on

Reynolds number Re=VD/v, has a strong influence on vortex shedding from members where
flow separation takes place from a curved surface. The kinematic viscosity of air
v=1.5×10−5m2/sec under normal ambient conditions, so the above basic definition gives
Re=0.7×105VD. For a circular section a change in the mean position of separation tends to
occur at about Re=3.5×105. For a limited range above this value, the ‘supercritical range’,
vortex shedding tends to be less well organized, giving much weaker excitation than in the
subcritical range. Wootton (1969) pointed out that substituting the critical value of reduced
velocity to replace V in Reynolds number gave a ‘size number’ , such that the Reynolds
number at resonance is equal to the size number divided by VRC-With , the
condition is likely to ensure freedom from serious excitation. It will be noted that the
cable example gives a much lower value of size number; for 19 Hz,

Lighting columns and masts give low values of nD2 in the fundamental mode, and
generally also in the second mode. As an indication of the latter, a 15 m mast may have a
second mode frequency of 5 Hz. The crucial diameter for lock on is likely to be around the
mid-height, typically less than 0.2 m, giving nD2<0.2. Chimneys, however, tend to give much
higher values. A concrete chimney of 2:1 taper and height ten times the base diameter will
have a natural frequency about 70/h (Hz, given height h in metres). 1.0 Hz would then be
associated with height 70 m and the diameter at, for example, 0.8 h above ground would be
4.2 m, giving . In this ‘transcriticaP range relatively well organized vortex shedding
is again observed. have been recommended for the subcritical range, 0.25–0.40
for the transcritical range.

The favourable range is of greatest significance for individual tubular members making up
lattice structures. The natural frequency for a circular steel tube member of length L can be
expressed by

(3.34)

in which t is the wall thickness and cf is a fixity factor, equal to unity for simple
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supports. The dimensions must be expressed in metres. For chord members, cf is commonly
not much greater than unity, whereas for bracing members cf is typically about 1.9
(corresponding to EI/L values for the bracing around one-quarter of the value for the chord).
For full end fixity, cf=2.27. To achieve , the above equation gives the limiting
slenderness as

(3.35)

For a tubular bracing with m and cf=1.9, the favourable size number range
corresponds to . Significantly higher values of L/D than given by this condition will
lead to unfavourable subcritical resonance, which should be avoided unless a high value of Ks
is assured, exceeding 20 or 25.

It has long been appreciated that motion of the structure led to locking of the shedding
frequency to the structural frequency over a range of reduced velocity extending from
marginally below the value given by the reciprocal of the stationary body Strouhal number to
a value typically some 30 per cent larger. Very small movements are sufficient, possibly as
low as ŷ=0.015D. As the coefficient of alternating lift can be sustained over much of this
range, the maximum response may be increased, occurring at a higher speed than given by the
stationary body VRC.

It is apparent, however, that this effect has an equally important action in encouraging
coherent excitation in the face of contrary factors, which include the variation of mean speed
over the height of a vertical or inclined structure, taper of the structure (giving a pro-rata
variation of the nominal resonance speed), gusts (continually varying local speeds) and indeed
the inherent randomness of the above-critical separated flow. A parametric study of chimneys
at Reynolds numbers up to 2×106 was carried out in the National Physical Laboratory
compressed air-wind tunnel (Wootton, 1969). It was noted that whereas reduction of the
Scruton number from 16 to 8 typically caused an increase of r.m.s. response tip displacement
from 0.01D to 0.015D (in line with prediction by the stochastic model described below
presuming relatively poor synchronization of shedding over the length of the structure),
further reduction to Ks=4 caused the displacement to rise sixfold, to more than 0.1D.

The lock-on effect is of special importance in promoting a well organized net excitation in
turbulent or sheared flow, although a larger amplitude may be required to achieve an equal
result. Noting that for the fundamental mode of a chimney, the majority of the modal
excitation is derived from (say) the top third of the height, lock-on is commonly presumed to
be effective over this length if its taper does not exceed about 20 per cent (±10 per cent on
mean diameter). Shear, as represented by the change in the mean speed, is generally less than
this (e.g. a power law with index 0.15 gives a variation of only ±3 per cent over the top third
of the height.

3.2.5 Stochastic modelling of vortex shedding
Ignoring, for the moment, the feedback of structural motion, the degree of randomness
inherent in boundary layer and wake effects suggests application to this
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problem of the procedures developed for gust response analysis. This has proved particularly
fruitful for circular sections in the transcritical flow regime and in the presence of turbulence
in the incident flow (Vickery and Basu, 1984; ESDU, 1986a).

The crosswind force per unit length p(z) is expressed by the power spectrum

(3.36)

in which q is the kinematic pressure corresponding to the mean windspeed. Following the gust
analysis model, this is normalized to give

(3.37)

and a universal shape is postulated for the term in square brackets. Following Vickery, the
algebraic form of the Gaussian probability density function is commonly used, defining a
bandwidth parameter BS such that the peak ordinate (at the central frequency n=ns determined
from the Strouhal number) is

The methodology of the gust analysis is further followed to write the value of the spectrum
of the modal generalized force P at the resonant frequency nj

(3.38)

The aerodynamic admittance expresses the correlation of the excitation along the length of the
prism, and depends on the normalized co-spectrum and the mode shape functions as before.

In the absence of lock on, in the case of turbulent incident flow, transcritical Reynolds
number and low structural damping, the correlation decays rapidly with increasing separation
and is sufficiently expressed for all practical purposes by the integral scale LC of the
normalized cospectrum of ČL (denoted RCL); LC is usually referred to as the ‘correlation
length’. For locations z and z', RCL is a function only of the separation (i.e.

The Davenport ‘diagonal’ approximation
and its extension by applying eqn 3.17 through the concept of an effective height

is equally useful here as in gust analysis. Finally, for the likely low
value of structural damping, the bandwidth of the mechanical admittance (frequency response
function) is presumed small compared with the bandwidth of the excitation, and the white
noise closed form solution for the response variance is a good conservative approximation, i.e.

(3.39)

in which Yj and Kj are the modal generalized displacement and stiffness, respectively. An
approximate quasi-static loading for a design check is readily defined from the modal analysis.
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It will be noted that three parameters define the effective excitation: , Bs and LC. All
are presumably sensitive to motion of the structure, but in an overall physical visualization of
lock-on, the dominant effect may perhaps best be envisaged as a constraint on the phase of
shedding. This is incompatible with simple spectral visualization. The familiar action in
which phase, relative to the elastic forces, is crucial is damping, and Vickery therefore
visualized lock-on as a negative damping action superimposed on the basic excitation, as well
as the simpler effect of ensuring a uniform central frequency of shedding over a range of
height in the presence of moderate taper and mean speed profile. This negative damping is
normalized in the same way as positive structural damping, as a modified Scruton number,
which will be negative. For chimneys, presuming the critical event to lie in the transcritical
regime and turbulence levels typical of the neutral stability atmospheric boundary layer,
Vickery suggests , Bs=0.3 and LC=1.OD to 1.5D, together with aerodynamic
damping equivalent to . The aerodynamic damping is combined with
structural damping (δs) in the response variance equation (i.e. , with δa negative),
so for a structure with basic Scruton number Ks=15, lock on would halve the effective
damping and increase response by a factor of 2, but if the basic value were only Ks=7.6, the
response would increase without limit. A term modelling damping forces proportional to the
cube of the response amplitude can be added to the linear damping which leads to simple
Scruton number normalization, in order to express the self-limiting nature of vortex excitation
at amplitudes of the order of D (Vickery, 1981).

The ESDU approach commences with evaluation of a so-called broadband formulation, by
which is denoted an input spectrum broad by comparison with the frequency response
function, as in Vickery’s model. The structural response will, however, be narrowband
dominated by the structural natural frequency, albeit with a broadly modulated amplitude, and
the maximum value is taken as four times the r.m.s. Another spectrally based model has been
postulated for the locked on condition, in which the force bandwidth is treated as if narrow by
comparison with the frequency response function. Although originating from the same school
as Vickery, the continuing application has been in these data items (ESDU 85038, etc.)
(ESDU, 1986a). In both formulations and Lc are treated as increasing with amplitude,
but in the second model the bandwidth assumption gives reversion to the same functional
form as the basic deterministic model, with the addition of a correlation admittance. The
response in the second model is deemed to be constant amplitude sinusoidal, giving the peak
value as times the r.m.s. The outcome is presumed to be whichever model gives the greater
peak response.

3.2.6 Other vortex shedding problems: proximity, alongwind and ovalling
excitation

Any structure placed in a vortex street originating from another structure nearby is
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likely to suffer stronger periodic excitation than the originating body. This commonly arises
where a power station, for example, is served by two or more chimneys. Clearly this only
operates when the wind is within a small range of direction, but extends to separations as
large as 15 times the diameter. The most unfavourable effects occur when the chimneys are
identical, as resonant motion of the upwind element leading to enhanced regularity of the
vortex street will coincide with resonance of the affected downwind element. For this case it
has been suggested that response of the downwind element may be twice that predicted for an
isolated stack if the separation is 5D, or 1.5 times the isolated value if the separation is 10D
(Vickery, 1981; see also informative annex C.3.2.3 of the Eurocode ENV 1991–2–4).

Serious consideration must be given to this problem when slender modern structures are
located in proximity to existing structures causing greater disturbance to the flow. The effect
may be to present a significantly organized vortex street, changing with increasing separation
to greater resemblance of a normal turbulence field but with strongly enhanced strength in the
range of frequencies likely to embrace the structural resonant frequency. The term ‘buffeting’
has been expressly applied to this effect in UK usage, in distinction from its application to
turbulence effects in general in the aeronautical field and elsewhere. The seminal example
was the decision to build a stiff lattice arch bridge in place of the proposed suspension bridge
over the Mersey at Runcom, in proximity to the nineteenth century through truss railway
bridge (Scruton et al., 1955; Grillaud et al., 1992; Bietry et al., 1994).

Two other resonant potential responses to vortex shedding should be borne in mind,
although generally out of range or readily circumvented when the excitation derives from the
natural wind. There is a weak in-line excitation, with one cycle for each vortex shed, giving
resonance at one-half of the cross-flow resonance windspeed. The Scruton number limit to
effectively avoid a structural problem is perhaps Ks=7. This has been observed with wind
excitation only in exceptional circumstances such as aluminium tubular members in a frame
with very low damping, but can be a serious problem in water (e.g. for pile columns
supporting a jetty). The second phenomenon possible at this reduced velocity is excitation of
the ovalling mode of the structural section, which should be circumvented by ensuring a
sufficiently high frequency, by stiffening if necessary, so that resonance is out of the practical
windspeed range.

3.2.7 Vortex shedding: design rules for circular sections

The windspeed corresponding to resonance at the Strouhal frequency for a stationary structure
can be robustly estimated, and if this exceeds the practical windspeed for the site, no further
action is required. If not (as is commonly the case), the stresses caused by resonant response
must be checked. Lock on may lead to a slightly greater response at a windspeed perhaps 20
per cent greater than the basic Strouhal resonance; for transcritical Reynolds number (nD2

significantly
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exceeding unity) it is arguable whether such refinement is appropriate, given the inherent
uncertainty in this problem.

BS 8100 (Lattice towers and masts) uses a deterministic model with a rather complex
notation and presentation. In the notation of this chapter, ČL=0.3 (transcritical Reynolds
number is presumed) and primary resonance is assumed at Vcr=5njD. To allow for lock on at
higher speeds, a correction factor ke is presented graphically; the graphical presentation is
poor but it is apparently intended that windspeed 1.2Vcr gives an effectiveČLV2 about 8 per
cent greater than the basic value

Stochastic models can be expected to give a smaller response. The negative aerodynamic
damping concept was implemented in Commentary B to the Canadian National Building
Code (NBC) in 1980. The parameter values suggested by Vickery, as given on page 89, are
supplemented by a formulation for admittance which can be written as J=JasKAR, in which Jas

is the Davenport ‘diagonal’ value for the correlation factor, and KAR combines allowances for
the approximation therein and for the aerodynamic effect of the free end. The basic value
given is (but ), in which h is the height of the chimney (or, for
moderately tapered chimneys, three times the length deemed to have shedding locked on). A
closer approximation (but disregarding the end effect) would be given by (cf
the gust analysis, page 77); for a typical first mode shape this would agree at h/D=12 and be
somewhat smaller than the Code value for more slender chimneys.

The first mode resonance solution was expressed in the NBC Commentary by an equivalent
static load (PL, say, per unit length) acting over the top third of the height. This is set equal to
the theoretical inertial load intensity at the top of the chimney, which with the input values for
normal turbulence wind conditions, expressed in the notation of this chapter, is

(3.40)

in which the mass per unit length m is averaged over the top third. As noted earlier (Section
3.2.5), the denominator can be written in terms of the Scruton number, emphasizing the
importance of this normalized parameter. The corresponding normalized tip deflection can
then be written as

(3.41)

By comparison with the deterministic solution taking ČL=0.3, using the mode shape
approximation (which gives the modal integral quotient

, the stochastic result is smaller by a factor

(3.42)
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For a slender concrete chimney with h=12D andδ=0.04 (say), this factor is
. If furthermore D/t=40 (say) at the reference height for evaluation of Ks

(height z=5h/6 is suggested), then Ks=12 (taking structural mass only (i.e. unlined)) and the
given stochastic estimate is 40 per cent of the deterministic value.

For low turbulence conditions, the Canadian code gives doubled values for both the basic
exciting force coefficient and the negative damping factor. Ks must therefore robustly exceed
2×7.6=15; the above example would be unacceptable. The possibility of low turbulence must
clearly be approached with severe caution, with regard to the frequency of occurrence (or
upper limit of co-existent windspeed) of a stably stratified flow with temperature lapse rate
inversion. A deterministic check may particularly be advisable.

The CICIND (1999) recommendations for steel chimneys present a rather complicated
algebraic formulation for η. This is based on curve fitting the foregoing stochastic model for 
small amplitude response, combined with a sharp lock on effect as the tip amplitude exceeds
about 0.01 D (r.m.s.) but with a self-limiting reduction of excitation for amplitudes exceeding
about 0.2D (r.m.s.). Four different parameter sets are given to cover subcritical and
transcritical Reynolds number and normal and low levels of turbulence (threshold speeds for
the latter being specified). The larger amplitude response predictions are based largely on
experience in Denmark and in Poland where chimneys with very high slenderness h/D) have
allowed survival of such amplitudes (cf eqn (3.45)), but it is questionable how far this should
be exploited in design.

The guidance for concrete chimneys produced by the American Concrete Institute, the ACI
Manual of Concrete Practice part 307 (ACI 307–95) is another elaboration of this format. The
analysis remains essentially unchanged, but many of the parameters treated hitherto as simple
constants are now dependent on intensity of turbulence and/or aspect ratio. Guidance is given
on application to the second cantilever mode, and to combination with the effect of alongwind
forces when the critical speed is approaching the design windspeed. The net changes
operative in turbulent wind are typically modestly favourable, but the problems posed by low
turbulence appear to be viewed very lightly in this Code.

The Eurocode ENV 1991–2–4 informative Annex C presents a compromise procedure
developed by Ruscheweyh (1982, see also Ruscheweyh et al., 1988), supplemented in ENV
1993–3–2 for chimneys. The basic response equation (ENV 1991–2–4 equation C.4) has the
form of the deterministic model; the excitation is defined in terms of a coefficient for the r.m.s.
value of load per unit length (denoted clat) and a ‘correlation length’ (denoted Lj) over which
the modal force integral is evaluated following the deterministic format. Lj is a function of the
response amplitude, but unfortunately this parameter combines the consideration of
correlation and the factor to be applied to the r.m.s. to obtain a design value. The given values
are thus not readily comparable with other procedures; for response amplitudes less than 0.1D,
Lj=6D, but increases to 12D if the response amplitude is more than 0.2D. The high threshold
for the effect of motion on Lj
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implies the presumption of a substantial intensity of turbulence. clat is given as 0.7 for
Reynolds number less than 3×105 (nD2=0.2), falling rapidly to 0.2, which is applicable for
1.5<nD2<12. The eventual transcritical value is clat=0.3 only reached at nD2=30.

Further review of the Eurocode procedure is given by Dyrbye and Hansen (1997), with
extensive comment on recent practical experience and design comparisons with the Canadian
recommendations. It is interesting to note that procedures with broad differences in
formulation converge to give similar predictions for middle of the range structures.

3.2.8 Vortex shedding: design impact and countermeasures

It was suggested in Section 3.2.4 that individual structural members may benefit from the
intrinsic weakness of excitation in the range , which for bracing members in trusses
with full continuity connections implies limitation of L/D to about 33, corresponding to a
structural slenderness ratio of 0.7L/r=65. As a more slender member is commonly more
economic structurally, exploration of the limit of the favourable range is highly desirable. A
sophisticated extension of the simple Reynolds’ number has been presented by ESDU (1986a)
taking account of small scale components of turbulence and the surface roughness of the
structure to give an effective value Ree. This is difficult to interpret and to calibrate against
existing experience, especially with regard to surface roughness. The lower limit of the
favourable range should therefore not be presumed substantially below nD2=1 .

A greater L/D implies subcritical resonance, and to ensure freedom from the lock on
enhancement of excitation (and of the cumulative time over which sufficient response to
cause fatigue damage could be sustained) a high value of Ks is called for; Ks=25 has been
suggested in guidance for welded tubular towers for service offshore prepared on behalf of the
UK Department of Energy (BRV, 1990). For a steel tube, wall thickness t, Ks can be re-
expressed

(3.43)

Unfortunately the value of δis difficult to predict. For fully welded structures the paramount
source of damping is the attachment of non-structural ‘ancillaries’, commonly involving
bolting and/or frictional grips. If a member has no such attachments, damping may be very
low, perhaps as low as 0.15 per cent critical (Doucet and Nordhus, 1987) or logarithmic
decrement δ=0.009. In practice there is often significant dispersion of energy through the
structure, giving an enhanced effective value of K s.

Robust expectation of satisfactory performance with δ=0.009 would require limitation of
D/t to about 14, which is clearly contrary to current practice. For compression members,
slenderness ratio considerations commonly encourage much higher values towards the
constraint imposed by local buckling at
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D/t=0.076E/fy,, which is 44 for yield stress fy=350 N/mm2. The Department of Energy
guidance (BRV, 1990) includes response prediction based on the ESDU (1986a) analysis
which appears non-robust as a result of very high sensitivity to the damping estimate. It will
be seen that the nD2 and Ks criteria conflict; for a given member capacity, increasing D to
meet an nD2 criterion will diminish Ks. This question remains controversial.

For steel chimneys economic design commonly pushes D/t to 200 or even 250. At δ=0.03
(cf. ENV, 1991) an unlined chimney thus has , increased for a lined chimney pro rata
to the mass. However, is not a robust lower bound for an unlined chimney, and
countermeasures should generally be applied. The most common aerodynamic
countermeasure is the spiral strake (Walshe and Wootton, 1970). This typically comprises a
three-start spiral projecting about 0.1D. It has the disadvantage of broadly doubling the quasi-
static wind load in the transcritical regime, the effective force coefficient related to the basic
diameter (D) being about 1.4. Strakes are commonly applied to the top third of the stack to
protect the first mode. A smaller drag penalty but at greater structural complexity is offered
by the perforated shroud.

An alternative of increasing popularity is the addition of a damping device. A Tuned Mass
Damper (TMD) optimized for the control of harmonic excitation can give very high values of
Ks. In the ideal case the nominal logarithmic decrement is , in which mD

is the damper mass (e.g. . Practical departure from optimal values of
the damper parameters will substantially reduce this, and it is common to ‘overdamp’ the
auxiliary mass to reduce sensitivity to error and to reduce the magnitude of its relative motion.
‘Sloshing fluid’ dampers are also available in proprietary form. Dampers have also been
applied to similar problems with lighting masts (including use of elastomer inserts in the base
mounting) and with guyed masts (including hanging chain impact dampers).

It is instructive to consider the cantilever first mode stress influence function. The bending
stress at the base can be written

(3.44)

in which DT and DB are the diameters at top and bottom, respectively, and ctr is a
factor taking account of the taper profile. For a uniform cantilever ctr=1; it is only very
weakly affected by non-uniform mass, and only modestly by non-uniform second moment of
area I. Writing IB and IT for the values of I at the bottom and top of the chimney, respectively,
the expressions

(3.45a)

(3.45b)

give a close approximation for cases of linear diametral taper, and a satisfactory working
approximation for practical steel chimneys with two or more cylindrical
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sections and conical transitions. Thus, for fB=25 N/mm2 (say, giving stress range 50N/mm2 to
limit fatigue damage) the response limit for a uniform diameter chimney is

(e.g. for h/D=20). For an unlined stack at D/t=200, the
Canadian formulation then requires K s=16 (turbulent flow). For low turbulence conditions, the
deterministic estimate with ČL=0.3 (for high nD2) and the modified Canadian formulation
both require Ks=32.

For concrete chimneys, if unlined, . The American Concrete Institute
code ACI 307 allows presumption of 1 per cent of critical damping, δ=0.063.

Thus with D/t=40, Ks=20; a 50 per cent addition to the mass by a refractory liner would
increase this to 30. Thus, ηvalues are comparable with the above steel example. However,
H/D values are commonly lower, and for an untapered multi-flue windshield at (say) h/D=14,
the associated strains will be higher; η=0.03 then gives concrete stress (at E=35 kN/mm2)
fB=9N/mm2. A 1:0.6 diametral taper, retaining h/DB=14 and with IB/IT=8 (say, giving
Ctr=0.70), would reduce the stress to 4 N/mm2. Greater taper would lead to more than ±10
per cent change of diameter over the top third and thus to reduction of the predicted response
according to the above rules.

The final word of this section must be to highlight the importance in all assessments of

●the value of structural damping;
●the possibility of low turbulence wind at the critical speed.

The occurrence of low turbulence conditions varies very greatly according to location, and is
generally ill explored in engineering guidance.

3.2.9 Vortex shedding: bridges
The case of Tacoma Bridge has already been mentioned. However, the pursuit of improved
deck cross-section profiles to ensure freedom from strong torsional motion generally also has
the effect of reducing the strength of excitation by vortex shedding. Nevertheless, it is in
practice impossible to eliminate it entirely, and it is necessary to check both fatigue and the
subjective reaction of users of the structure. The subjective reaction criterion incorporated in
the UK Design Rules for Aerodynamic Effects on Bridges BD49/93 is an acceleration value,
centred on an amplitude of 0.8 m/s2, or 8 per cent of the acceleration due to gravity. The
corresponding structural stresses will be about 8 per cent of the stresses due to dead load;
although such stresses might pose a significant fatigue risk (depending on fatigue detail
classification and on the frequency of the wind condition for resonance) the subjective
reaction criterion is commonly more significant.

The amplitudes thus accepted are generally sufficient for lock on ensuring vortex shedding
correlated over a substantial part of the span, especially in the relatively low turbulence
environment typical of long spans (estuarial and/or high level valley crossings). The
deterministic model, giving a response inversely



Page 96

proportional to the Scruton number, is therefore used for prediction and scaling of wind tunnel
results. The section depth (d) is generally used both for reduced velocity and Scruton number
definition, revealing a somewhat clearer pattern than the option of normalization on the deck
width (B). Typically, the reduced velocity VRC=Vc/nd is given by VRC=64+0.5B/d for sections
with B/d<6, VRC=1.5B/d for more slender sections, but with considerable scatter (cf. figure 2
in Wyatt and Scruton, 1981).

Excitation strength is very sensitive to details of the cross-section, especially at the leading
edge, and (because of the feedback by lock-on) may be sensitive to damping. Very low scaled
wind tunnel speeds may also create problems if the full bridge is modelled. The section model
technique, using a large-scale model of a fraction of the span which is spring borne with
independently controllable frequencies and damping is most strongly desirable for this
purpose. Unfortunately, it is then not possible to model atmospheric turbulence at correct
scale. The effects of turbulence should be thought of as comprising two distinct actions: the
lower spectral frequencies which reflect large size gusts will be seen as a change in the
incident speed, while the high frequencies are associated with localized momentum transfer
affecting the boundary layer and tending to promote reattachment of separated flow. The
former may be overborne by lock-on in conditions of modest turbulence, while the latter is
generally beneficial.

There are much larger numbers of road bridges and viaducts in the span range up to about
70 m, but commonly in locations where much greater turbulence is the norm. In most cases
the critical speed is sufficient to be out of range, or at least sufficiently high to make
subjective response to motion of little practical concern and to give only a low potential rate
of accumulation of fatigue cycles. Care should be taken that the high frequency components
of turbulence are not over-represented in testing, suggesting a lower target value for the total
intensity, as illustrated by Figure 3.5. Footbridges may give greater concern, although the
need to avoid adverse response to pedestrian excitation commonly leads to structural forms
giving frequencies over 3 Hz or to special provision for damping. The deck may, however, be
thin; for example, a deck d=800 mm, B=3,200 mm at 3 Hz gives a critical speed of 19m/s. At
a height of (say) 6m above ground, this gives the assurance of a high level of turbulence,
typically intensity 0.25 or more. Nevertheless, robust design assessment may be difficult.

The UK rules BD49 were based on an extensive parametric study, which suggested that for
decks with a slender leading edge detail in conjunction with a substantial deck cantilever
beyond the main face of the supporting structure, the excitation factor could be taken as
5.8B/d (see the Rules for strict definition of B, d and limits to edge details). Recognizing the
greater potential effect of reattachment on wider decks, a reduction factor
was then applied to account for the beneficial effect of turbulence (Smith and Wyatt, 1981). A
default estimate of three times this excitation was postulated for decks not satisfying the edge
cantilever requirement, but the combination of a solid edge parapet with girder structure
below the deck was explicitly excluded as leading to more severe
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Figure 3.5 Turbulence spectra matching for wind tunnel testing.

excitation. Damping values are suggested of logarithmic decrement 0.03, 0.04, 0.05 for steel,
composite and concrete bridges, respectively. Experience with longer spans suggests those
values may then be optimistic, especially for cable stayed structures using parallel wire
strands (or assemblies of small strands); spiral laid strands may also have low damping below
a limiting friction threshold amplitude, perhaps a deck amplitude of span/5,000.

Applied to the footbridge introduced above, the Scruton number might be about 80, and the
deterministic prediction of amplitude (allowing 4/πas the quotient of the mode shape
integrals) gives values of

(3.46)

of 0.01 to 0.03 according to the edge arrangement. An amplitude of 0.03d with d=3 m and
n=3 Hz gives an acceleration of more than 8 m/s2, clearly intolerable. Even a concrete deck
with edge overhanging would raise serious concern. The absence of adverse reports from
structures of this type suggests that the much higher turbulence, and indeed more generally
disturbed flow, has a greater beneficial effect than can yet be robustly quantified.

The most significant experience with a modern cable stayed bridge is perhaps Kessock
Bridge (on the Moray Firth near Inverness) (Cullen-Wallace, 1985). Although the critical
speed is as high as 22 m/s (d=3.25 m, n=0.52 Hz, B=7d, VRC=13) the winter condition of cold
water in the Moray Firth and relatively warm winds led to low turbulence conditions at
resonance and amplitudes exceeding 200 m. Tuned mass dampers were then added. This
bridge has no edge cantilevers. A similar profile at Longs Creek in Canada had earlier shown
severe oscillation under winter conditions of frozen surface and build-up of ice against the
deck-side barriers (Wardlaw, 1981), countered by adding an inclined face cladding. However,
the constant depth trapezoidal beam valley crossing at Milford Haven (Cleddau Bridge) was
provided with a tuned mass damper ab initio on wind tunnel evidence of strong vortex
shedding excitation. This bridge
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crosses a curving, steep sided valley, and the inference from its behaviour in service is that the
resulting disturbance might have presented serious response, even in the absence of
supplementary damping (Wex and Brown, 1981).

Although solid parapets are strongly adverse, porous windshielding barriers have only
moderate adverse effect. The initial feasibility study for the Second Severn Crossing
suggested that with full length 3 m/50 per cent solidity windshielding, a full ‘streamlined’
enclosure of the girder structure would be necessary to reduce excitation. In the event,
satisfactory performance has been achieved by painstaking wind tunnel optimization of the
edge detail supplemented by two non-structural longitudinal dividers below the deck. The
criterion for this design was an acceleration amplitude limit of 0.2n−1/2 m/s2 (actual n=0.33
Hz).

3.3 AEROELASTIC EXCITATION

3.3.1 The quasi-steady model: galloping

The concept of change in aerodynamic forces in response to the vector resultant relative
velocity has already been introduced, with respect to aerodynamic damping, in Section 3.1.5.
There are, however, circumstances in which aerodynamic damping becomes negative. If the
net damping (algebraic sum of structural and aerodynamic components) becomes negative, a
harmonic response at the natural frequency will develop. Unless structural failure (or
enhanced damping due to inelastic behaviour at large amplitudes) intervenes, the amplitude
reached will be limited by non-linearity of the force coefficient relationship to amplitude, but
such amplitudes may be very large. The classic example is the overhead line with ice
accretion, in which amplitudes of several metres have occurred on cables of a few centimetres
diameter, commonly appearing as travelling waves and giving the phenomenon of the generic
name ‘galloping’.

The basic linear quasi-steady model is shown in Figure 3.6(a), which postulates the form of
variation of lift force coefficient with angle of incidence that is shown by rectangular prisms
(i.e. negative over a range of incidence close to in-line with the longer side, as shown).
A perpendicular motion downwards as drawn, causing the relative incidence vector to be
inclined upwards, will thus result in a change of lift tending to reinforce the motion. For the
case shown, the downward velocity is . The apparent angle of incidence is
thus . For small values of a, writing and , this becomes

and the body axis force per unit length of the prism is

(3.47)

in which CL and CD are the coefficients for lift and drag forces as shown, referred to reference
dimension D. It will be seen that the positive direction for Z opposes
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Figure 3.6 (a) Galloping: definition diagram; (b) galloping: construction of force/displacement loop.

the motion. The energy input to the system per cycle is thus Ua

(3.48)

The maximum value of the kinetic energy provides a simple estimate of the energy of
oscillation per unit length of prism U (say). The energy dissipated by damping by cycle is
thus

(3.49)

The condition for instability thus gives the critical velocity Vc, or the
corresponding reduced velocity VRC,

(3.50)

in which Ks is the Scruton number
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The foregoing linearized analysis is generally sufficient for civil engineering cases, but for
flexible systems tolerant of very large displacements, it may be necessary to estimate limiting
amplitudes taking account of the full pattern of CL (or Cz) as a function of incidence. Figure
3.6(b) shows a graphical construction of the force displacement loop. Starting from a
postulated amplitude ŷ, with corresponding a, consideration of successive pairs of values of ÿ
and y leads to a plot which may comprise both energy input (continuous shading) and
dissipation (broken-line shading). The limiting amplitude is found by trial and error such that
the net input balances the dissipation by damping. Closed form algebraic procedures have also
been presented, commencing with a polynomial curve fit for Cz (Parkinson, 1965, Novak,
1972). Although the dominant parameters are normalized in the same grouping as for the
vortex shedding phenomenon, the resulting behaviour patterns are distinct:

●vortex shedding—critical speed VRC fixed, response amplitudes sensitive to Ks;
●galloping—critical speed VRC proportional to Ks, amplitudes likely to rise to much larger

values than typical of vortex shedding when VR>VRC

Unfortunately interactions between these mechanisms of excitation commonly distort the
clarity of interpretation. Figure 3.7 shows three rectangular prisms tested as part of the
Department of Transport study (Wyatt and Scruton, 1981) undertaken to support the UK
Design Rules (BD49; Smith and Wyatt, 1981). The first case (deck width B equal to the depth
d) shows vortex shedding at VR

=7 and galloping fairly distinct at perhaps VR=0.5K s. The third
case (B=3d) shows very clear vortex shedding at VR=10, but no evidence of galloping within
the range of the tests (VR<1.5Ks). The intermediate case clearly has some characteristics of
both mechanisms, strongly modified. To show these values in perspective, a steel box (e.g. a
bridge girder during erection) B=2d, plate thickness d/150 (plus allowance 50 per cent to
mass to allow for stiffeners, transverse elements, etc.) and damping log dec 0.03, would have
Ks approximately 20.

3.3.2 Flutter of bridge decks
An aerofoil, whether a flat plate or a slender smooth outline prism, does not show the
‘negative lift slope’ which is the key to galloping. However, violent self-excited oscillation of
aircraft wings has long been recognized as a potential hazard, under the name ‘flutter’.
Analysis based on the aerofoil flutter model has proved remarkably useful for slender bridges.
This proves to be essentially a coupling phenomenon, combining modes of vibration which in
still air are quite distinct, and dependent on the departure of flow patterns and resulting forces
from the quasi-steady model. This departure is not only a question of magnitude, but also of
phase shift between motion and force. A common method of description is by defining
coefficients for the force components proportional to instantaneous values of the rate of
change of the displacements as well as to the displacements themselves; these ‘derivative
coefficients’ are discussed further in Section 3.3.4.
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Figure 3.7 Interaction of vortex shedding with galloping excitation.

For an ideal aerofoil there is an analytic solution, conveniently written in complex number
notation (Fung, 1955). The quasi-static solution is a force equivalent to a lift coefficient

(taking the deck width B as the reference dimension) which acts at the quarter-
chord point (B/4 from the upwind edge). For this purpose the apparent instantaneous angle of
incidence (αa) is based on the ratio of the net vertical velocity at the three-quarters-chord point
to the free stream velocity. All forces in harmonic motion (components in phase and in
quadrature of lift and torque associated with both vertical and torsional motions) are then
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Figure 3.8 Ideal aerofoil behaviour: Theodorsen’s function.

given by scaling the quasi-static solution by a single complex factor, generally given as
Theodorsen’s function, C=F+jG, in which . Tables of F and G are available as a
function of reduced velocity (e.g. VR=V/nB), or its reciprocal, a reduced frequency commonly
written following aeronautical practice as k=ωb/V, in which ωis the circular frequency and b

is the semichord ( ) (Fung, 1955). Thus . Figure 3.8 shows the variation of F
and G over the range of VR of practical interest for bridges. The severity of departure from the
quasi-steady solution (F=1, G=0) will be noted.

Because the lift acts at a distance B/4 in front of the centre line, it acts to increase twist,
analogous to a negative stiffness, and the torsional natural frequency thus falls with increasing
windspeed. The torsional natural frequency (nθ) of practical bridge structures is higher than
the vertical (ny), so the differential is reduced. Classical flutter is the culmination of this
process, when the forces resulting from motion combine to sustain an oscillation combining
vertical and torsional motions at the same frequency. The critical windspeed is revealed by
discovery of a combination of speed, relative vertical and torsional amplitudes, and phase
angle, satisfying the equations of motion but in which the actual response magnitude becomes
indeterminate.

The ideal aerofoil solution for the case of a deck with exactly matching vertical and
torsional mode shapes and r2=0.1B2 (in which r is the mass radius of gyration), undamped, is
given in Figure 3.9. The solution is not very sensitive to modal mismatch or the r/B ratio, and
is insensitive to structural damping. The response grows very rapidly if the critical speed is
exceeded. The importance of resistance to coupling by a high frequency ratio or high inertia is
clear, although high inertia alone is not sufficient if the frequency ratio is unfavourable.
Selberg (1961) showed that for a wide range of practical circumstances, an excellent
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Figure 3.9 Ideal aerofoil behaviour: critical speeds for flutter.

approximation to the ideal aerofoil flutter speed is Vfi given by

(3.51)

Many slender bridges, especially those with inclined web box stiffening structure, can achieve
a good approximation to the aerofoil behaviour, suggesting definition of an ‘aerofoil
efficiency’ of the cross-section profile, η(say), defined by

(3.52)

in which VRf, VRi are respectively the ‘actual’ critical value of reduced velocity, and the ‘ideal’
value from the chart or approximated by the Selberg formula. For sections such as the Severn
Bridge ηreaches more than 0.9. Generalized values for simple slender deck shapes have been
proposed by Klöppl and Thiele (1967).

3.3.3 Strong torsional excitation: ‘Tacoma Syndrome’
If the bridge deck assembly presents considerable vertical faces, especially as the ratio of deck
width to depth falls (say, below 15:1), it is likely that the flutter efficiency concept will fail to
offer a useful representation of the actual sensitivity to frequency ratio, with the eventual
development of strong excitation of single degree of freedom torsional motion, such as the
destroyed Tacoma Narrows in 1940. This remains poorly understood, and design validation
depends entirely on
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Figure 3.10 Stability envelope for bluff section bridge.

empirical evidence, mostly obtained from section model wind tunnel testing although
‘discrete vortex’ computational fluid dynamics is now adding to such studies (Larsen, 2000).
The critical speed is also likely to show increased sensitivity to structural damping, as shown
on Figure 3.10.

3.3.4 Comprehensive description of motion dependent forces: Scanlan’s notation
The calculation procedures developed to evaluate flutter speeds from the aerofoil solution for
forces can be extended to accept empirical values of the derivatives. A number of notations
have been proposed, with the system developed over many years by Scanlan (Simiu and
Scanlan, 1986) gaining widest acceptance. The lift (L) and torsional couple (M) resulting from
harmonic vertical motion y and rotation α(and their time differentials ÿ, α) are commonly
written as

(3.53a)

(3.53b)

defining the eight derivatives and . It will be noted that an adaptation of
aeronautical notation is used; great care is needed in interpretation of papers on this topic in
view of numerical factors arising from the usage of b or B and sign changes according to
whether the positive direction of displacement is the same or opposing that of the respective
force. If the normalized frequency is taken as K=Bω/V (2k in the aeronautical usage given
above) and forces are taken positive in the same direction as the respective displacements, the
values of the derivatives agree with those given in Dyrbye and Hansen (1997).

The forms taken by these derivatives in terms of Theodorsen’s function for the case of ideal
aerofoil behaviour are set out in full by Dyrbye and Hansen (1997:151), who also provide a
valuable critique of this increasingly prominent approach. In the wind tunnel, the derivatives
can be measured directly on a section model which is externally driven in harmonic motion,
but estimates can
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also be made by ‘system identification’ techniques applied to free vibration responses. The
approach can be extended, for example to include alongwind (horizontal) motion, making a
potential set of eighteen derivatives.

It will be noted that if the response is restricted to torsion only (or that the practical
magnitude of vertical response is too small to have a significant effect through the coupling
derivatives and ), corresponds to an aerodynamic damping

(3.54)

For an aerofoil is unconditionally negative, giving positive damping, albeit fairly small.
For sections subject to torsional instability replicates Figure 3.10. For simple vertical
motion the corresponding aerodynamic damping is

(3.55)

For an aerofoil noting (F being the real part of Theodorsen’s function, Figure
3.8), the aerodynamic damping commonly substantially reduces the vertical response to gusts.
It has also been found that this estimate of vertical motion damping is useful for a relatively
wide range of non-aerofoil sections.
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Chapter 4
Earthquake loading

Andreas J.Kappos

4.1 INTRODUCTION

Earthquakes give rise to dynamic loads that have a high potential for disastrous consequences
for structures, as well as humans. There are different ways in which structures are affected by
earthquakes, the vibration of the ground being the most common, but not the only one. Other
earthquake effects, not specifically addressed in this chapter, are ground failures such as
liquefaction (loss of strength in silt or sand layers due to build-up of pore water pressure),
landslides and mudflows (usually triggered by liquefaction); further effects include sea waves
(tsunamis) and lake waves (seiches). By far, most of the damage due to earthquakes is caused
by the ground motion, but other effects can also be quite devastating, as shown, for instance,
by the July 1998 tsunami that hit the coast of Papua—New Guinea, causing over 2,000 deaths
and complete destruction of the villages near the coast.

In the remainder of this chapter, following a brief description of the earthquake
phenomenon and the methods of assessing seismic hazard, the focus will be on the different
ways the seismic actions (loads) can be defined in a design project, which strongly depend on
the type of analysis chosen, and range from simple sets of horizontal forces to response
spectra (deterministic or probabilistic) or acceleration time histories. The chapter will
conclude with a brief discussion of the principles governing the design of structures to resist
earthquakes, touching on issues beyond the seismic loading itself (structural configuration,
hierarchy of member strength, systems for response control).

4.2 EARTHQUAKES AND SEISMIC HAZARD

4.2.1 Generation of earthquakes

Earthquakes are generated wherever the accumulation of strain at geological faults
(discontinuities of the rock) leads to their rupture and to slip along the fault, until a new stable
state is reached. Fault rupture gives rise to waves propagating in all
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directions and causing ground movement in the areas around the fault. Given the appropriate
geological conditions, earthquake motions can be felt (and even cause losses) in areas located
several hundreds of kilometres away from the initial rupture. The point on the fault where
rupture initiates is called focus or hypocentre, while its projection on the earth surface is
called epicentre; the distance between these two points is called focal depth.

In the 1960s the mechanism of strain accumulation at faults was understood and the theory
of plate tectonics was developed, whereby the lithosphere (i.e. the upper part (or shell) of the
earth) including the crust as well as part of the mantle, consists of several discrete segments,
called plates, which move with respect to each other at the rate of a few centimetres a year;
this relative movement is caused by convection currents in the mantle of the earth. The six
main tectonic plates, as well as other smaller ones, are shown in Figure 4.1; note that some
continents are on a single plate, whereas others straddle more than one plate. The plate
boundaries can be either divergent (sea floor spreading at mid-ocean ridges), or convergent;
particularly important in the latter case is the phenomenon of subduction (i.e. when a plate is
pushed below the neighbouring plate). As seen in Figure 4.1, that depicts the distribution of
epicentres of recent (1960–2000) earthquakes, the most serious tectonic activity takes place at
the boundaries of the plates (different size and colour of circles correspond to different
magnitude and focal depth). Earthquakes occurring close to the plate boundaries are called
interplate events, while earthquakes remote from the boundaries are referred to as intraplate
events; the latter are far less common and much more difficult to explain than the former
(Bolt, 1993; Reiter, 1991).

Although earthquakes can be triggered by other phenomena, such as volcanic eruptions,
sudden changes in the stress state of soil layers due to filling of reservoirs behind dams,
‘mine-burst’ (masses of rock collapsing explosively in mines), or even underground nuclear
explosions (Bolt, 1993), the vast majority of them are due to faulting. There are essentially
two types of faults, those associated with horizontal movement (strike-slip), and those
associated with vertical movement (dip-slip). Fault orientations have a strong effect on the
resulting earthquake motion; for instance, reverse dip-slip faults are usually the ones
associated with the most catastrophic ground motions.

As mentioned previously, fault rupture gives rise to seismic waves. These propagate either
by compression and dilation (like sound waves), with the ground particle motion in the same
direction as the propagation, and are called longitudinal or P-waves, or by shear (particle
motion perpendicular to the direction of the propagation), and are called transverse or S-
waves; these two types of waves are referred to as body waves. The velocity of shear waves is
given by

(4.1)

where G is the shear modulus of the ground andρits mass density; vs is a very useful
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Figure 4.1Geographiical distribution the epicentres of earthquakes with magnitude M>7.0 for the
period 1960–2000. The boundaries of the lithospheric plates are also shown.
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quantity for classifying the dynamic characteristics of the ground (see Section 4.3.3). Since vs

is lower than the velocity Vp of P-waves, the latter are always the first to arrive at a station
recording the seismic motion, followed by S-waves, which are associated with large
amplitudes of motion.

When body waves reach the earth surface they are reflected back into the crust, and a
vibration of the surface is initiated, which propagates through surface waves. Depending on
the way these waves propagate along the earth surface, they are classified as Rayleigh waves
or Love waves. Surface waves, along with S-waves, account for the strongest part of the
seismic motion (i.e. these are the ones that may cause losses). P-waves are generally small
amplitude and of interest to the seismologists only; they use the difference in arrival times
between P and S-waves for determining the epicentre of an earthquake.

4.2.2 Measures of earthquakes

Designing against earthquakes presupposes that the phenomenon can be adequately quantified.
There are two main ways for measuring the size (or strength) of earthquakes: One based on
instrumental data, and one based on observation of the effects of earthquake motions on
humans and structures; both are indispensable for hazard assessment and seismic design.

There are two types of instruments that can be used for recording earthquake motions:

●The seismographs, which record the displacement of the ground with time. These
instruments are designed to magnify weak motions, so they can record motions caused by
very distant earthquakes. Their recordings are of interest mainly for the seismologists, since
they are used for locating earthquakes and characterizing their sources.

●The accelerographs, which record the acceleration of the ground with time. Until recently
these instruments were recording (on film) whenever they were triggered by a minimum
level of acceleration (e.g. 0.01 g), but more advanced instruments are currently available,
which record in a digital form on reusable medium, hence they can operate continuously
and save only records of interest; this has the extra advantage that the initial part of the
motion is not lost. Accelerograms are the main type of earthquake record used for deriving
design seismic actions.

Magnitude
The magnitude of an earthquake is a measure of the earthquake size or the source strength;
usually, though not necessarily, the magnitude measures the amount of energy released by an
earthquake. The Richter magnitude or local magnitude ML is defined as the (base 10)
logarithm of the maximum amplitude A (in µm) of the earthquake, corrected to a distance of
100 km; the correction is done by subtracting
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from log A the quantity log A0, where A0 is (arbitrarily) defined as the earthquake that would
produce an amplitude of 0.001 mm on a standard seismograph at a distance of 100 km from
the source. ML is empirically related to the energy E released at the source (i.e. at the fault) by
the formula

(4.2)

where E is in ergs (1 erg=10−7 joules). It is worth pointing out that a unit increase in
magnitude corresponds to an increase in energy by 32; hence, a magnitude 7 event releases
1,000 times more energy than a magnitude 5 event. ML=5 is practically the magnitude
threshold for earthquakes that may cause damage to structures.

The instrument specific definition of ML and the fact that it is limited to earthquakes
recorded at distances of less than 1,000 km, have led to the definition of other magnitude
measures, the most common of which is the surface-wave magnitude Ms defined by

(4.3)

where A is the amplitude, T the period of the ground motion, and the epicentral distance
(i.e. the distance from the site, in this case the recording station, to the epicentre). It is seen
that this definition is independent of the instrument used (no need for A0). Ms is determined
with respect to the amplitude of Rayleigh waves with a period of about 20 sec. A similar
definition exists for the body-wave magnitude mb, determined by the maximum amplitude of
P-wave motion. Another scale is based on the seismic moment M0 which is a description of
the extent of deformation at the earthquake source; the moment magnitude Mw is defined as a
simple function of log M0 (see e.g. Reiter, 1991).

Whenever magnitude is used for estimating seismic hazard (see Section 4.2.5), one should
be particularly careful in identifying what type of magnitude is used in each earthquake
catalogue, as all the previous definitions do not yield the same value, especially in the range
of large magnitudes. A notable feature is the ‘saturation’ of all magnitude scales, with the
exception of Mw (i.e. beyond a certain limit the scales stop increasing with increasing
earthquake size). There is no upper or lower limit to magnitude, however, the largest size of
an earthquake is limited by the strength of the rocks of the Earth’s crust (Bolt, 1993). The
largest earthquakes recorded in the 20th century had magnitude ML≈8.9; the 1960 Chile
earthquake had an ML=8.3, but a moment magnitude Mw=9.5. The problem of saturation of
wave amplitude-based scales is behind the current trend to use predominantly Mw as a
measure of earthquakes; nevertheless Ms and even ML are still widely used worldwide.

Intensity
Whereas the use of measurable quantities for characterizing earthquakes is obviously
desirable, the fact remains that the instrumental record is less than 100
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years old. Since the recurrence period of strong earthquakes (including design earthquakes) is
significantly longer than 100 years, it is imperative to make some use of the historical record
of earthquakes in seismic hazard analysis. For some regions of the world (the best example
being China) historical records go back to more than a thousand years, but their completeness
and quality vary greatly. The critical information that can be found in such records regards the
effects of past earthquakes on humans and on structures.

The (macroseismic) intensity of an earthquake refers to the way an earthquake is felt at a
specific site (i.e. its effects on humans, structures and the ground). Therefore, the intensity is a
measure of the severity of ground shaking on the basis of observed effects in a certain area
(rather than a measure of the energy release or the seismic moment). The major advantage of
intensity is that it can be estimated from the historical records, therefore it is essentially the
only viable tool in historical seismicity, and it can be estimated in all affected areas, including
those where no instrumental records exist; hence it is also useful today as a complement to
instrumental measurements. The major disadvantages of intensity are that it varies
significantly within the area affected by an earthquake (note that an earthquake has one
magnitude but several intensities), and its estimation involves substantial subjective
judgement.

A major problem in estimating intensity is that similar structures respond differently to the
same earthquake, due to several reasons whose discussion falls beyond the scope of this book.
Hence the need for appropriately classifying the effects of damage (with at least some rough
allowance for its statistics) and also for appropriately defining the extent of the areas for
which a uniform intensity should be assumed. Typically these areas should correspond to a
village or a relatively small town, or parts of a large city, but strict rules are difficult to set
(European Seismological Commission, 1998).

Starting from the late 1800s, several intensity scales have been suggested. The ones most
commonly used today are the Modified Mercalli intensity (IMM), employed in the Americas,
and the Medvedev-Sponheur-Karnik (MSK) intensity (IMSK), widely used in Europe. Both
scales have 12 degrees, and are generally equivalent (there is a small discrepancy at the lower
end of the scales only). It used to be common to denote the degrees with Roman numerals (I–
XII), primarily to discourage arith-metical manipulation, but the need for computer processing
of intensity data has made it common nowadays to use normal (Arabic) numerals. Since 1992
the European Seismological Commission (ESC) has been developing an updated version of
the MSK scale, called the ‘European Macroseismic Scale’ (ESC Working Group on
Macroseismic Scales, 1998), which might be used extensively in the future.

All the aforementioned intensity scales share several common features, the most important
one being that they are descriptive, in the sense that each degree on the scale is characterized
by a set of ‘diagnostics’ referring to specific effects of an earthquake on humans, buildings,
objects and the nature in general. As an example, a diagnostic referring to humans is ‘many
people find it difficult to stand, even
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outdoors’ (intensity VIII), while a typical diagnostic referring to buildings is ‘considerable
damage in masonry structures built to withstand earthquakes’ (intensity IX).

Once intensities have been assigned to several areas (defined as explained earlier in this
section), then isoseismal maps showing the distribution of intensity in a larger area can be
drawn. Figure 4.2 shows such a map drawn for the Los Angeles area following the 1994
Northridge earthquake (EERI, 1995). An interesting feature, quite common in such maps, is
that the epicentre of the earthquake is not within the area where the maximum intensity was
recorded.

4.2.3 Strong motions and path effects
However useful intensity maps may be, the definition of seismic loading for the purposes of
structural analysis and design requires more refined information which can be provided by
appropriate processing of strong ground motions.

Figure 4.2 Distribution of IMM in the epicentral region of the Northridge 1994 earthquake (EERI,
1995).
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Strong motion records
Accelerograms of strong motions (i.e. time histories of acceleration) are recorded by
accelerographs; these instruments record simultaneously the three components of the motion,
two perpendicular horizontal (longitudinal, for instance N–S, and transverse, E–W), and one
vertical. Before being used for ‘engineering’ purposes (e.g. for deriving response spectra, see
Section 4.3.2), the records are corrected to remove frequency dependent instrument response
and ambient noise. An example of corrected accelerogram from the 1971 San Fernando (S.
California) earthquake is shown in Figure 4.3. Although this is not really a typical record, the
observed difference in frequency content between the vertical and the horizontal components
is indeed quite typical.

Accelerograms are arguably the most valuable information for deriving design seismic
loads and it is fortunate that nowadays a very large number (several tens of thousands) of
accelerograms are available; on the other hand, though, there are seismic areas for which the
number of records is very low or even zero. Databanks of accelerograms have been compiled
in many regions, particularly in the United States, Japan and Europe. One of the largest
collections containing over 15,000 digitized and processed accelerograph records from all
over the world (but mainly from the US), dating from 1933–1994, is available from the
National Geophysical Data Centre in Boulder, Colorado. A number of American records can
be downloaded directly from the web sites of the Strong Motion Data Centre of the US
Department of Conservation, and from NISEE (National Information Service on Earthquake
Engineering, University of California, Berkeley). In Europe, accelerograms are available from
organizations such as the Institute of Engineering Seismology and Earthquake Engineering
(ITSAK), Thessaloniki, Greece, and Servizio Sismico Nazionale (SSN), Rome, Italy.

The main purpose of using accelerograms is to characterize the strong ground motion, with
a view to defining appropriate design loads. In this respect, the Peak Ground Acceleration
(PGA, or simply A) (i.e. the highest value of the acceleration time history), is a parameter that
has been extensively used in seismic hazard assessment (see Section 4.2.5). It is worth
pointing out, though, that this is mainly due to its convenience, because otherwise the PGA is
often a rather poor indicator of the destructiveness of the ground motion. The Peak ground
Velocity (PGV, or simply V) and/or the Peak Ground Displacement (PGD or D) are better
indicators of damage potential and have been used in some studies. Velocity and displacement
time histories of the ground motion can be calculated by integration of the acceleration time
history, but they are quite sensitive to the filtering procedure used in correcting the
accelerograms. Hence, by far the most useful information that can be extracted from
accelerograms is the response spectra, discussed in Section 4.3.2. One factor, though, that is
not reflected in the spectra (which are plots of peak response) is the duration of the motion.
This can be quite critical in certain cases, such as structures susceptible to strength
degradation under reversed cyclic loading (i.e. change of the sign of the applied force or
moment).
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Figure 4.3 Three componts of the accelerogram recorded during the 1971 San Fernando earthquake at
the Pacima site.
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Attenuation relationships
As the seismic waves propagate away from the source, their amplitude decreases; this results
in the so-called attenuation of the ground motion. Attenuation is the reason why even the
strongest motions cease to be damaging after a certain distance from the source. The previous
statements should not be interpreted as meaning that the damage potential of a motion at, say,
100 or 200 km from the source is always lower than at a distance of say 10 or 20 km. Site
effects (Section 4.2.4) can lead to quite the opposite effect, a notable example being that of
the 1985 earthquake off the coast of Mexico whose most catastrophic effects (including about
10,000 fatalities) were recorded in Mexico City, 400 km away from the epicentre.

Attenuation relationships (i.e. models describing the values of strong motion parameters as
a function of distance from the source) have been developed for magnitude, intensity
(compare Figure 4.2), the strong motion peaks (PGA, PGV, PGD), and, more recently,
spectral ordinates. The most commonly used one, particularly for defining seismic loads, is
the relationship involving PGA. The typical form of such a relationship is

(4.4)

where , being the epicentral distance, and H0 can either coincide with the
focal depth H, or just be a parameter to be defined by regression, together with the
coefficients bi,. The parameter P is introduced to account for the significant uncertainty
associated with all attenuation relationships; P=0 if the mean (or 50-percentile) of PGA is
sought, while P=1 for calculating the mean plus one standard deviation (σ), which is the 84-
percentile if a normal distribution of the residuals of log(A) is assumed. For design purposes
either the 84-percentile or the 90-percentile of A is used.

As will be seen in the next section, attenuation relationships are essential in estimating
seismic hazard and design seismic loads. Today there are several such relationships for
several regions of the world, most of them referring to the US (especially the West Coast),
Japan and Southern Europe. A comprehensive review of the attenuation relationships used in
Europe can be found in Ambraseys and Bommer (1995) who suggested the following form of
eqn (4.4) for horizontal PGA in Europe

(4.5)

with H0=6 km (if the actual H is used for H0, the coefficients are markedly different). A
comparison of eqn (4.5) with a more recent one suggested by Ambraseys and the relationship
proposed by Joyner and Boore (1988) for western North America is shown in Figure 4.4. It is
worth pointing out that differences among the predictions of the three equations are less than
the scatter associated with them. It is also seen in Figure 4.4 that ground motion attenuation at
relatively large distances is more pronounced in North America than in Europe. Equations
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Figure 4.4 Comparison of attenuation relationships for PGA, for Europe and western North America
for shallow earthquakes of magnitude 5, 6 and 7 (Ambraseys and Bommer, 1995).

similar to (4.5) have been developed for the vertical PGA (Ambraseys and Simpson, 1996),
which is generally of the order of the corresponding horizontal acceleration (Newmark and
Hall, 1982). However, in the near field (i.e. at distances from the source less than about 15
km) the ratio of the vertical to horizontal PGA may exceed unity, but falls off with distance
(Ambraseys and Simpson, 1996).

Directivity effects
The source of the seismic waves (the fault rupture) is a moving source (i.e. the source travels
along the fault at a certain velocity). The direction of the fault rupture has a strong influence
on the resulting ground motion. If the fault rupture propagates towards a particular site the
motion at that site will be stronger than at an equidistant site located opposite to the
propagation of rupture. This phenomenon is called directivity and its effect is to produce the
highest amplitude of motion together with the shortest duration in the direction of the rupture,
and the smallest amplitudes but longest duration in the opposite direction.
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Directivity effects have been observed in several earthquakes, a recent example being that
of the Northridge earthquake, where the only extensive region with accelerations above 0.5 g
was to the north of the epicentre (see Figure 4.2), consistent with the rupture propagation
(EERI, 1995). Of particular concern with regard to the seismic behaviour of structures is the
case of large amplitude and long period pulses in the acceleration time history due to
directivity effects; these pulses are usually accompanied by large velocities and can be quite
catastrophic.

4.2.4 Site and topography effects

The ground motion can be significantly affected by the properties and configuration of the
layers underlying the earth’s surface. The properties that most affect the amplitude of ground
motion are the resistance to particle motion, called impedance., and the soil damping (or
absorption). For most practical purposes the impedance can be defined as the product ρvs

where ρis the density and vs the previously defined (see eqn 4.1) shear wave velocity. The
flow of energy (or energy flux) during the wave propagation is equal to ρvsu2; hence, when a
seismic wave propagates through a region of decreasing impedance, the resistance of soil
particles to motion decreases, and to preserve the total energy, the particle velocity and hence
the amplitude of motion increases. It follows that assuming all other conditions remain the
same, the seismic waves would have higher amplitude on soil (low ρ, low vs) than on rock
(high ρ, high vs). On the other hand, damping is typically much higher on soft soils than on
hard rock, therefore it tends to mitigate the adverse effect of low impedance in the former. As
a result of the aforementioned effects, peak accelerations are generally not very different on
sites classified as ‘rock’ and as ‘soil’ (or ‘alluvium’); usually peak accelerations at the surface
of soil deposits are slightly higher than on rock outcrops when these accelerations are small
(less than 0.15 g), and smaller at higher acceleration levels. Peak velocities, though, as well as
displacements, are always higher on softer soil sites.

The configuration of the layers underlying a site, for example, whether they are essentially
horizontal or not, and whether there are variations of their properties along the (horizontal)
length, may also significantly affect the amplitude of ground motion. A detailed discussion of
the complicated phenomena involved can be found elsewhere (Finn, 1991; Reiter, 1991;
Kramer, 1996). Here it will only be pointed out that the most adverse effect of layer
configuration is resonance, particularly two-dimensional one that can appear in alluvial
valleys. Resonance occurs whenever the predominant period of the ground motion practically
coincides with the characteristic site period, which for a soil deposit of depth (to the bedrock)
His given by

(4.6)

A lot of controversy prevailed until recently regarding the effect of non-linear soil response
on the ground motion, the geotechnical engineers arguing that it is
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significant and the seismologists maintaining that existing evidence does not support this view.
The main implication of nonlinearity is that when a soil layer becomes strongly inelastic the
shear stress cannot increase significantly, hence the amplitude of motion ceases to increase.
This is obviously a desirable effect regarding the response of structures, but it causes
problems regarding the reliability of data (on vs and similar quantities) measured from
microtremor or other small amplitude testing. Quantitative evidence from recent earthquakes
such as the 1985 Michoacan (Mexico) and the 1989 Loma Prieta (California), has clearly
shown that much higher accelerations can be recorded on sites underlain by soft soil layers
(such as the Mexico City clay and the San Francisco Bay mud), than on stiffer soil sites.
Figure 4.5 reported by Finn, 1991 shows the reduction of the shear modulus G of clays
characterized by different Plasticity Indices (PI) (note that the highest PI corresponds to the
Mexico City clay). It is clear that for stiffer clays, with PI not exceeding about 40 or 50, G
reduces significantly at relatively low shear strains, hence resulting in reduced amplification
of the motion; similar behaviour is shown by other soil types, like sands. However, this is not
the case with high PI clays which remain essentially elastic (G/Gmax close to 1) for strains up
to 0.1 per cent or even more. It is clear, therefore, that at least for this class of soils, the non-
linear characteristics have a significant influence on the ground motion and should be
accounted for in design.

Even more important than increasing peak accelerations, site effects are strongly
influencing the shape of the response spectrum (see Section 4.3.3).

Figure 4.5 Reduction of normalized shear modulus for clays with different plasticity indices.
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Topography effects
Topography of the site can also have a noticeable effect on amplification of ground motion.
The strong motion shown in Figure 4.3 was recorded on a rocky ridge connected to the
Pacoima Dam, and is characterized by a peak acceleration of 1.17g, one of the highest ever
recorded. Many people argued that this was mainly the result of a topographic amplification,
although other interpretations were also suggested (Reiter, 1991).

The major parameter of the problem appears to be the steepness of the ridges; it can be
shown that the displacement amplification at the crest of an essentially triangular hill is equal
to 2/v, where vπis the angle formed by the ridges; therefore the amplification increases as the
ridge becomes steeper. Observed amplifications at the crest (with respect to the base) range
from 2 to 20, whereas theoretical predictions are generally much less (3 to 4), possibly due to
the influence of three-dimensional effects and ridge to ridge interaction. Topography effects
are discussed, among others, by Finn (1991) and Kramer (1996). Due to the complexity of the
subject, it is generally considered as not mature enough to be included in code provisions. The
Recommendations of the French Association for Earthquake Engineering (AFPS, 1990)
appear to be the only document of regulatory character that has adopted rather detailed rules
for the calculation of the topographic amplification factor.

Spatial variability of ground motion
While the smallest dimension of common structures such as buildings is usually small enough
that the ground motion can be assumed to be the same along the entire plan of the structure, in
elongated structures, such as long bridges and pipelines, a rather significant variability of the
ground motion may occur, particularly whenever the large plan dimensions are combined with
irregularities in the soil profile. The local spatial variation or incoherence of ground motion is
mainly due to

●travelling wave effects, wherein non-vertical seismic waves reach different points of the
structure at different times (time delay effect);

●scattering (reflection, refraction) of seismic waves caused by inhomogeneities along the
travel path;

●local soil filtering and amplification of the motion.

The coherency of two ground motions is a measure of correlation of amplitudes and phase
angles at different frequencies. Ground motions recorded by dense arrays of accelerographs
have shown that coherency decreases with increasing distance and increasing frequency of
motion (Clough and Penzien, 1993; Kramer, 1996).

4.2.5 Assessment of seismic hazard

Analysis of seismic hazard (resulting from strong motions) is the basis for defining seismic
loading for design purposes, more particularly for deriving the design response spectrum,
discussed in more detail in Section 4.3.2.
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If seismic hazard is to be estimated in a deterministic way, an appropriate earthquake
scenario has to be defined. This involves identifying the source (fault) which will give the
most critical motion for the site under consideration, estimate the maximum magnitude that
can be produced by this source, and then estimate the maximum PGA at the site using an
appropriate attenuation relationship (similar to eqns 4.4, 4.5). This PGA can then be used for
scaling or ‘anchoring’ a fixed spectral shape, with due allowance for site effects, in order to
produce the design spectrum (see Sections 4.3.2, 4.3.4). Such a procedure (whereas not
uncommon) suffers from various drawbacks. One problem is the difficulty in identifying the
critical source (different sources can produce motions that may be critical for a particular type
of structure), another one is the difficulty in predicting the ‘maximum credible earthquake’
associated with a source. Even if this earthquake is reliably estimated, it is generally
uneconomical to design structures against it. These and other problems are the reason why
today all major seismic hazard studies are carried out using a probabilistic approach.

The various components of a probabilistic hazard analysis are shown in Figure 4.6 (EERI
Committee, 1989). The first step is the identification of all sources, which can be point
sources or line sources (faults), or area sources. Then, for each type of source the recurrence
of earthquakes has to be defined, mainly on the basis of historical data. Despite (or because
of) its simplicity, the most commonly used recurrence relationship is the one proposed by
Gutenberg and Richter back in 1944

(4.7)

where N is the (cumulative) number of earthquakes greater than or equal to a given magnitude
M, that are expected to occur during a specified period of time, typically taken equal to 1 year.
The coefficients a and b have to be determined from regression analysis of available data.
Usually an upper bound on magnitude is placed, based on the characteristics of the source
and/or the maximum historical earthquake.

Design seismic loads for a structure are based on the ground motions having a desired
probability of exceedance during the lifetime of the structure (about 50 years for usual
buildings, higher for other types of structures); this probability is commonly taken equal to 10
per cent for buildings of usual importance. The probability p of an earthquake exceeding a
certain magnitude M during the lifetime can be calculated if an appropriate statistical model is
assumed, as shown in Figure 4.6(top left). For simplicity a Poisson process is assumed,
wherein the various ‘events’ (i.e. that the magnitude M is exceeded within a certain time) are
independent. This is equivalent to assuming that earthquake activity has no memory, which is
not true, but the resulting error is not large. Using the definition of the Poisson distribution,
this probability is

(4.8)

where L is the lifetime of the structure. Hazard assessment can then proceed by selecting a
number of values of a strong motion parameter (e.g. Ai), calculate the
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Figure 4.6 Development of the design spectrum on the basis of seismic hazard analysis for PGA
(EERI, 1989).

corresponding magnitude Mi, from an attenuation relationship (see Figure 4.6, top right) and
then obtain the annual frequency Ni of earthquake with magnitude≥Mi by substituting Mi, in
the magnitude frequency eqn (4.7). The calculated value of Ni, is then substituted in equation
(4.8) to find the corresponding
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probability of exceedance. By repeating the procedure for an appropriate number of Ai a
complete hazard curve as shown in Figure 4.6(middle) can be derived. The actual procedure is
somewhat more complicated as the scatter in the attenuation relationship is also included in
the analysis.

Results from such procedures are used to construct the hazard maps used as a basis for
seismic codes. An example of such a map is shown in Figure 4.7; it provides the contours of
the effective peak acceleration coefficient Aa for the United States (FEMA, 1995). This map
was derived from similar maps showing the PGA’s with a 10 per cent probability of
exceedance in 50 years, after converting PGA to effective peak acceleration using procedures
based in part on scientific knowledge and in part on judgement and compromise. For the
purpose of defining design seismic actions, hazard maps such as that of Figure 4.7 are further
simplified to include a limited number of seismic zones within which the value of Aa is
considered as constant.

Response spectra for a target annual probability of exceedance PT (e.g. 0.2 per cent) can be
constructed by calculating the corresponding A=a' from the curve of Figure 4.6 (middle) and
then anchor a fixed spectral shape to a', as shown in Figure 4.6 (bottom), and further
discussed in Section 4.3.2. Alternatively, a more complex procedure may be followed,
whereby the attenuation relationships are developed for spectral ordinates (e.g. the spectral
acceleration Spa), rather than for PGA. These period dependent attenuation relationships are
then used to construct the design spectrum period by period; this is called a hazard consistent
or uniform hazard spectrum (EERI, 1989; Reiter, 1991).

4.3 DESIGN SEISMIC ACTIONS AND DETERMINATION OF ACTION
EFFECTS

4.3.1 Design situations

The design seismic action or the design earthquake is a ground motion or a set of ground
motions defined in a way appropriate for the design of engineering structures. Depending on
the type and importance of the structure to be designed, the seismic action can be defined in
different ways, i.e. as:

●a set of (equivalent) lateral forces;
●a response spectrum;
●a power spectrum;
●a set of acceleration time histories.

The foregoing can be defined either on the basis of a seismic code (most common case), or by
carrying out a site specific seismic hazard analysis with due consideration of ground effects
(see Sections 4.2.3–4.2.5). The scope of each procedure can be appreciated by considering the
following four situations that might be faced by an engineer in practical design:
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Figure 4.7 Contour for effecitive peak accelearation coefficient Aa for the continental United States,
from the 1994 NEHRP Prouvisions (FEMA 1995).
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●For many building structures, and also for some ‘small-scale’ civil engineering structures
(such as small bridges, viaducts, etc., and typical geotechnical structures such as retaining
walls), the equivalent lateral force procedure can be used. The procedure is well
documented in most current seismic codes, and will be described in Section 4.3.5 with
specific reference to two major codes, the 1995 Eurocode 8 (EC8) and the 1997 UBC
(American code).

●For buildings with configuration problems (irregular plan and/or elevation), for many types
of medium bridges, and for many of the structures falling beyond the scope of this chapter,
an elastic dynamic analysis has to be carried out, typically in the form of modal response
spectrum analysis. The definition of the elastic spectrum (Section 4.3.2), its modifications
due to site effects (Section 4.3.3), and its reduction to an inelastic design spectrum (Section
4.3.4), are some of the most important issues relating to seismic loading. Specific mention
will be made in the aforementioned sections to the EC8 and the UBC spectra. In
exceptional situations where a probabilistic approach is warranted, power spectra (Section
4.3.8) may be used instead of ‘normal’ response spectra.

●In cases such as the design of very important structures, or structures clearly falling outside
the limits of the existing codes (e.g. structures with very high fundamental natural periods),
a full time history analysis, typically in the inelastic range may be required. Note that there
is no advantage in using this procedure for an elastic analysis of the structure which can be
conveniently carried out (at essentially the same accuracy) using the modal superposition
approach, the exception being structures where due to highly irregular geometry it is
difficult to combine the modal contributions, or whenever the structural model includes
critical frequency dependent parameters (Clough and Penzien, 1993). An appropriate
selection and scaling of natural and/or artificial records has then to be made; a key point to
be addressed is the correspondence between these records and the (code) design spectrum.
The EC8 and the UBC recommendations will be referred to in Section 4.3.7 and it will be
made clear that this type of procedure is more common in the case of assessment of
existing structures which might not comply with current code requirements.

●Again for some exceptional cases, such as important structures whose construction cost is
particularly high and/or the consequences of their failure particularly severe (a typical
example being nuclear power plants), as well as in the case of construction in areas where a
design spectrum or a code is not available, a site specific seismic hazard assessment study
has to be made, typically using probabilistic techniques. Although normally the civil
engineer will not carry out such a study, it is important that s/he realizes the main
assumptions involved, and, more significantly, is capable of appropriately evaluating the
results of such a study and making use of them for design purposes. A brief coverage of
this procedure has already been given in the previous section (4.2.5).
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4.3.2 Elastic spectra

Response spectra
A response spectrum (i.e. a plot of the peak response (to an input motion) as a function of the
natural period) can be derived by analysing a series of Single Degree-Of-Freedom (SDOF)
systems, as explained in Chapter 2 (Section 2.5) and, in more detail, in the literature
(Newmark and Hall, 1982; Gupta, 1990; Clough and Penzien, 1993). The quantities typically
plotted are the spectral pseudo-acceleration Spa, pseudo-velocity Spv, and displacement Sd,
which are interrelated through the familiar expressions

(4.9)

Due to (4.9) the three spectral quantities can be plotted together on a log—log paper (see
Figure 4.10). It should be recalled that Spa and Spv are not the actual response acceleration and
velocity, respectively (see also Section 2.5). Nevertheless, Spa is practically the same as the
actual maximum acceleration for reasonable (i.e. not too high) values of damping, while Spv,
is nearly the same as the actual velocity except in the very short and the long period range
(Newmark and Hall, 1982). For design purposes, Spa is more useful than the actual response
acceleration, since the former can be used to calculate directly the maximum forces on the
structure, as discussed in Section 4.3.6.

An example of response spectra, referring to the longitudinal (horizontal) component of the
input motion of Figure 4.3, is given in Figure 4.8; for each spectrum five curves are plotted,
corresponding to damping ratios from 0 to 20 per cent. It is first noted that for lower values of
damping the variation of the spectral values with the natural period can be quite abrupt,
whereas for high damping values the spectra become much smoother. An important piece of
information provided by a spectrum is the range of periods for which the response of a
structure is peaking. The Spa curves in Figure 4.8(a) are typical in the sense that the peaks
occur in the short period range, mainly from 0.2 to 0.5 sec; this is a common feature of
motions recorded on rock sites. A second period range around 1 sec also shows some increase
in the amplification, but significantly lower than that in the short period range. However, if
the pseudo-velocity is used as the basis for identifying critical periods, it is seen in Figure
4.8(b) that the most critical range is that between 0.9 and 1.8 sec; the range of periods
between 0.3 and 0.5 sec is also characterized by local peaks, but is less critical than the
previous one. This illustrates an important problem in seismic design (i.e. the selection of the
parameter which best characterizes the damageability of a particular ground motion). Many
designers rely more on Spv which is a direct measure of the seismic energy input, since for

negligible damping the energy stored in an oscillator with mass m is equal to . On the
other hand, recently developed displacement based design and assessment procedures are
based on the displacement spectrum. Despite the aforementioned trends, all current codes
base their design forces on Spa spectra
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Figure 4.8 Response spectra for the longitudinal component of the record of Figure 4.3 (Pacoima Dam
S16E): (a) pseudo-acceleration; (b) pseudo-velocity; (c) displacement.

(directly, or indirectly). Of course, due to eqn (4.9), Spv and Sd curves can always be derived
when Spa is available.

The significant differences in the shape of response spectra derived from different ground
motions are illustrated in Figure 4.9, which shows the 5 per cent damped Spa spectra for three
accelerograms recorded in three different parts of the world
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(North America, Central America, and Southern Europe). The Pacoima Dam (California)
S16E and the Kalamata (Greece) N10W records are from earthquakes with similar magnitude
(6.6 and 6.2) and very close to the recording station (epicentral distances of 3 and 15 km). It is
seen that, although the magnitude of the accelerations is significantly larger for the Pacoima
record (see discussion of the topographic amplification effect in Section 4.2.4), the shape of
the two spectra is quite similar, with peaks occurring in the short period range. On the other
hand the Mexico City 1985 SCT transverse component, recorded during a magnitude 8.1
earthquake at a distance of 400 km, resulted in a significantly different spectral shape,
wherein the critical period range is between 1.7 and 2.8 sec; the effect of soil conditions (very
important in this case) is discussed in the next section. It is seen that the Mexico City record
with a PGA of only 0.17 g, will be more critical for high rise buildings with T>1.7 sec than
the Pacoima record with a PGA of 1.17 g.

Fourier spectra
Although most engineering applications involve the aforementioned response spectra, a better
understanding of the ground motion characteristics can be obtained from the Fourier
spectrum, defined as

(4.10)

where üg(i) is the ground acceleration time history and ωis the circular frequency of a
harmonic forcing function. It is then possible to express üg(t) through the superposition of a
full spectrum of harmonics (Clough and Penzien, 1993). Common applications involve the
Fourier amplitude spectrum, defined by

(4.11)

where t1 is the duration of the ground motion. Note that eqn (4.11) does not uniquely define a
ground motion (as eqn 4.10 does) since the phase angles between pairs of harmonics have
been lost in this definition.

Fourier spectra are commonly used to interpret phenomena associated with the transmission
of seismic energy from the source to distant locations. A useful application of these spectra in
the construction of simulated ground motions is briefly presented in Section 4.3.7.

Design spectra
For design purposes, it is clear that spectra smoother than those of Figures 4.9 and 4.10 are
required, since a future motion is very unlikely to be identical to a previously recorded one,
and also the exact periods of a structure are difficult to assess in practical situations (e.g. when
stiff cladding or partition elements are
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Figure 4.9 5% damped pseudo-acceleration spectra for three different ground motions.

present in steel or concrete frames). A smooth design spectrum encompasses a family of
ground motions with the same overall intensity but possibly differing in the frequency content
(particularly when two or more earthquake sources are considered) and in some details of the
time sequences of motion that could critically affect the structural response. Smooth spectra
for seismic design are generally derived from a statistical evaluation of actual spectra, and
several alternative procedures are possible, as outlined in the following.

If the starting point is a pair (or a set of pairs) of M and R values (see Section 4.2.2), a
number of records from earthquakes having characteristics falling within the desired range
can be selected (whenever feasible, earthquakes from similar source mechanisms and site
conditions should be used); the records are then scaled to a desired intensity (e.g. to the same
PGA or PGV) and their spectra are calculated. A smoothed representation of the curve
providing the desired percentile (e.g. 84 or 90) of the spectral values can be used for design.

By far the most common technique used today is the anchoring of a fixed spectral shape to
a ground motion parameter such as the PGA, calculated using a probabilistic hazard analysis
(see Figure 4.6). A well known spectral shape has been proposed by Newmark and Hall
(1982), who noticed that when spectra are plotted on a log—log scale (see Figure 4.10) they
are essentially scalar amplifications of A, V and D in their respective (‘short’—‘medium’—
‘long’) period ranges. The amplification factors suggested by Newmark and Hall (1982) are
summarized in Table 4.1 for some typical damping ratios; two values are given for each factor,
one corresponding to the median (a log-normal distribution was assumed), and one to the 84
percentile (mean plus one standard deviation).

Using Table 4.1, the tripartite elastic response spectrum can be derived. If values of PGV
and PGD are not available, they can be estimated from
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Figure 4.10 Elastic design spectrum corresponding to a PGA of 0.5 g, 5% damping, and one sigma
cumulative probability (Newmark and Hall, 1982).

Table 4.1 Relative values of spectrum amplification factors (Newmark and Hall, 1 982).

Percent of critical damping Amplification factor for

Acceleration (A) Velocity (V) Displacement (D)
2 2.74 (3.66)* 2.03 (2.92) 1.63(2.42)

5 2.12(2.71) 1.65 (2.30) 1.39(2.01)

10 1.64(1.99) 1.37(1.84) 1.20(1.69)

20 1.17(1.26) 1.08(1.37) 1.01 (1.38)

* Median value (1σvalue).

(4.12)

where the constants c1 and c2 should be calculated on the basis of statistical analysis of
appropriately selected accelerograms. The calculated values of A, V, and D should be
multiplied by the corresponding amplification factors from Table 4.1.
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It is common to use amplification factors at the 84 percentile level with mean or median
values of A, V, and D (Clough and Penzien, 1993).

The above method, which has influenced substantially the development of US and other
codes, has the weakness that it ignores the fact that the spectral displacement tends to the
PGD for very flexible structures (period tending to infinity). Until recently this had no
practical consequences; however, in the case of displacement based design procedures which
assume that structures respond well into the inelastic range (hence their effective periods can
be quite long), an additional transition curve between the amplified displacement line and the
constant PGD line might be necessary.

As an alternative to anchoring a fixed shape to a PGA and other ground motion parameters,
spectra corresponding to a uniform probability of exceedance of their ordinates (uniform
hazard spectra) can be constructed, as briefly discussed in Section 4.2.5. The effort required
for their development is significantly higher than that associated with the previously described
method.

Code spectra
Seismic codes typically specify pseudo-acceleration spectra only, consisting of a fixed shape
to be anchored to a (design) PGA. Starting from the design PGA, it has long been argued that
this should not correspond to the actually recorded peak acceleration, which might be
associated with very short duration and high frequency pulses of the record, but should rather
be representative of the effect of the acceleration on the structure. Hence, the concept of
Effective PGA (usually denoted as EPA or Aef) has been suggested. EPA can be calculated
from the 5 per cent damping Spa value in the region 0.1 to 0.5 sec, by dividing the average
ordinate by an amplification factor of 2.5 (see Commentary to FEMA, 1995). The EPA is not
the same as the PGA, and in fact when acceleration peaks are associated with very high
frequencies, the EPA can be significantly lower than the PGA. The 1994 NEHRP Provisions
(FEMA, 1995) also introduce the concepts of effective PGV (denoted as EPV) and the
corresponding velocity related acceleration, which might control the design of longer period
structures.

An indication of the uncertainty in the shape of the response spectrum is the difference
between the median and 84 percentile values of the amplification factors given in Table 4.1;
note that the coefficient of variation is higher for Spv than for Spa. It is worth pointing out that
these high coefficients of variation were calculated for ground motions from one particular
area (Western US) (i.e. for essentially the same geological and tectonic conditions).

A typical example of a code specified spectrum is shown in Figure 4.11, where the 5 per
cent-damped elastic pseudo-acceleration spectrum of Eurocode 8 (CEN, 1994a) is plotted.
The spectrum consists of four branches:

(i) An ascending linear branch (A1 B1 in Figure 4.11) described by the equation

(4.13)
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Figure 4.11 Elastic response spetrrum of Eurocode 8 (CEN, 1994a).
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where is the design PGA corresponding to a 10 per cent probability of being exceeded
in 50 years (or a return period of 475 years); S is a soil parameter (see Section 4.3.3); β0 is the
spectral amplification factor taken equal to 2.5 (compare this with the values 2.1–2.7 in Table
4.1); and ηis a damping correction factor given by

(4.14)

and intended to account for viscous damping coefficients different from 5 per cent. The
reference value of 5 per cent is generally appropriate for reinforced concrete (R/C) structures,
but a lower value (3–4 per cent) is more appropriate for steel structures, and a somewhat
higher value (about 6 per cent) is more appropriate for masonry structures. However, the
approach adopted by the Eurocode is not to specify different damping ratios for different
materials, but rather to include the effect of the difference in damping in the value of the force
reduction factor (behaviour factor q) used for deriving the design seismic actions (see Section
4.3.4).

(ii) A flat branch (B1 C1 in Figure 4.1 1) defined by the constant value

(4.15)

(iii) An exponentially descending branch (C1D1 in Figure 4.11) defined by

(4.16)

The suggested value of k1 is 1.0 (such values can be changed by the committees developing
the ‘national application documents’, which will adopt the Eurocode as a national standard).

(iv) A second exponentially descending branch (beyond point D1 in Figure 4. 1 1) given by

(4.17)

where k2=2.0. The values of the periods TB, TC, and TD (corresponding to points Bi, Ci, Di in
Figure 4.11) depend on the site conditions and are given in the next section.

The specification of two different descending branches is a feature unique to Eurocode 8
(EC8) and establishes a one to one correspondence with the Newmark—Hall spectrum (the
region T≥TD corresponds to the amplified displacement region, see left part of Figure 4.10).
Furthermore, this is also an attempt to define a uniform hazard spectrum corresponding to a
50 per cent probability of exceedance. Note that the foregoing is the alternative approach to
the one described in the previous section, where it was suggested to use the mean A in
connection with the 84 or 90 percentiles of spectral amplifications.
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As mentioned previously, the design PGA (αg ) corresponds to a 10 per cent probability of
being exceeded in 50 years (or a return period of 475 years). This is the suggested probability
for usual structures; for important structures, such as critical facilities, which should remain
operational following the earthquake, lower probabilities of exceedance are appropriate. This
is treated in a simple way in EC8 by specifying an importance factor γI which multiplies the
seismic action (see eqn 4.29 in Section 4.3.5). For buildingsγI ranges from 0.8 to 1.4, where
the highest value corresponds to buildings of vital importance for civil protection (hospitals,
power plants, fire stations), and the lowest value to buildings of minor importance (e.g.
agricultural).

For the vertical response spectrum, EC8 recommends the use of the previously described
spectrum for the horizontal motion, with the following modifications:

●for periods T≤0.15 sec the ordinates of the spectrum are multiplied by a factor of 0.7;
●for periods T≥0.50 sec the ordinates of the spectrum are multiplied by a factor of 0.5;
●for 0.15<T<0.50 sec linear interpolation is used.

As mentioned in Section 4.2.3, the factor is a reasonable value for the vertical to
horizontal PGA ratio, but at distances from the source less than about 15km it may exceed
unity. The corresponding spectral acceleration ratios may also exceed one in the near field,
but are typically less than one for intermediate and long periods (Ambraseys and Simpson,
1996).

The response spectrum specified in the American Uniform Building Code, UBC
(International Conference of Building Officials, 1997) is similar to the first three branches of
the Eurocode 8 spectrum. The ascending part starts from a value Ca, representing the design
EPA value, while the flat part corresponds to a value of 2.5Ca, exactly as in the Eurocode. The
exponential branch is defined by Cv/T, where Cv is an EPV dependent coefficient, identical to
Ca for rock sites but higher for soil sites (Ca and Cv are given in Table 4.4 of the next section).
The corner periods (see points B and C in Figure 4.11) in the UBC spectrum are Tc=Cv/2.5Ca

and TB=0.2TC.
A unique feature, first introduced in the 1997 edition of UBC, is the specification of near

source factors Na and Nv, given in Table 4.2, which account for the fact that

Table 4.2 Near source factors in 1997 UBC, Na/Nv.

Seismic source definition Closest distance to known seismic source

≤2km 5km 10km ≥15km
Mw≥7 and SR≥5 1.5/2.0 1.2/1.6 1.0/1.2 1.0/1.0

All other cases 1.3/1.6 1.0/1.2 1.0/1.0 1.0/1.0

Mw≤6.5 and SR≤2 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

Mw: moment magnitude; SR: slip rate (mm/year).
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Figure 4.12 UBC elastic spectra corresponding to different distances from the source.

ground motions are significantly stronger near the earthquake source; this has long been
recognized but not explicitly accounted for in previous codes. It is believed that these effects
are significant for large earthquakes only, hence the N-factors of Table 4.2 are only applicable
to the highest seismic zone in the US. Two typical UBC spectra for Zone 4 (highest) are
shown in Figure 4.12. Both correspond to faults capable of producing large magnitude events
(M≥7) and have high rate of seismic activity (slip rate≥5 mm/y). However, one spectrum
corresponds to a source which is very nearby (within 2 km), hence it is capable of producing
significant near source effects, whereas the other corresponds to a source at least 15 km away
from the site, for which no near source effects are expected.

The vertical component is defined in UBC by scaling the horizontal one by the factor, but
where the near source factor Na>1.0, site specific response spectra should be used.

4.3.3 Site specific spectra
As already discussed in Section 4.2.4, the properties and configuration of the layers
underlying the Earth’s surface can significantly affect the seismic motion. As local site
conditions influence the frequency content of surface motions, their effect is particularly
important with respect to the response spectrum characteristics, i.e. for the same motion at the
bedrock significantly different spectra can be calculated for the motions at the surface,
depending on the characteristics of the soil layers. The general trend is that as the
predominant period of the site increases (i.e. as the soil becomes softer) the peak, as well as
the transition from the (approximately) flat to the exponential branch of the spectrum
(compare Figure 4.11, 4.12) occur
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at longer periods; these periods are close to, but not necessarily the same as, the predominant
period of the site. Referring to Figure 4.9, it is seen that the response spectrum for the
accelerogram from Mexico City, recorded at a station (SCT building) underlain by about 40 m
of soft clay (having an average shear wave velocity of only 75 m/sec) has its peaks in the
range around 2 sec, whereas the other two motions recorded on much firmer soils are
characterized by peaks at much shorter periods (around 0.5 sec). Until relatively recently, it
was thought that for sites consisting of soft to medium clays the amplification of the
acceleration in the short period range tends to be somewhat lower than the corresponding
values for rock and stiff soils (Commentary to NEHRP Provisions, FEMA, 1995).

Recognizing the aforementioned trends, EC8 defines the site specific elastic response
spectrum by modifying the basic shape of Figure 4.11 in two ways:

●by increasing the corner periods TB and Tc in the case of softer soils;
●by decreasing the value of Spa in the short period range for softer soils (soil factor S).

Of particular practical importance is the way soils are classified (into three classes in EC8),
for design purposes; classification must be precise enough to avoid ambigu-ities, but also
simple enough to avoid the need for costly detailed geotechnical investigations in the case of
usual structures. The best indicator is probably the shear wave velocity of a soil layer, which
captures the effect of both stiffness (through the shear modulus G) and density, as shown by
eqn (4.1). In addition to this, the depth of each layer for which a constant vs can be assumed is
also of importance, while site amplification is further influenced by soil damping and the
geometry (configuration) of the subsurface.

In situ measurements of the vs profile by in-hole geophysical methods such as down-hole or
cross-hole tests (see description in Kramer, 1996) are strongly recommended for important
structures and/or high seismicity. In other cases, empirical correlations of vs with other
geotechnical properties, typically the cone penetration resistance, may be used. The
difference between the small strain values of vs (as measured by in situ tests) and the strain
values anticipated during the design earthquake must be taken into account.

The basic values of the site dependent parameters, along with the rest of data required for
the construction of the EC8 spectrum (Figure 4.11) are summarized in Table 4.3. In the final
version of EC8 it has been agreed to modify the values of

Table 4.3 Values of the parameters describing the EC8 elastic response spectrum.

Subsoil class S β0 k1 k2 TB(sec) Tc(sec) TD(sec)
A 1.0 2.5 1.0 2.0 0.10 0.20 3.0

B 1.0 2.5 1.0 2.0 0.15 0.60 3.0

C 0.9 2.5 1.0 2.0 0.20 0.80 3.0
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Table 4.3 in line (though not in full compliance) with the provisions of the new US codes,
briefly discussed in the following.

Data from recent earthquakes, in particular the 1985 Mexico earthquake and the 1989
Loma Prieta (North California) earthquake, have indicated that accelerations on soft soils are
larger (sometimes much larger) than on nearby rock sites; this is related to the high level of
strain at which soft clay nonlinearity occurs, as discussed in Section 4.2.4. Moreover, soil-to-
rock amplification factors for Spa at long periods can be significantly higher than those
adopted by EC8 and previous American codes (Borcherdt, 1994; FEMA, 1995). As expected
(due to soil nonlinearity effects), the spectral amplifications are higher for motions with low
PGA and lower for higher PGA.

The 1997 UBC adopts the recommendations initially included in the 1994 NEHRP
Provisions (FEMA, 1995), that are based on the foregoing considerations. The seismic
coefficients Ca and Cv used for the definition of the response spectrum depend both on soil
conditions and on the level of the design PGA. The site classification scheme adopted by
NEHRP and UBC is quite simple, as only the shear wave velocity in the uppermost 30 m (the
typical maximum depth of boring in geotechnical investigations) of the soil are used. As an
alternative to vs, geotechnical parameters such as the standard penetration resistance (for co-
hesionless soils) or the untrained shear strength (for cohesive soils) can be used, but this will
usually lead to more conservative results (FEMA 1995, 1997a). The site dependent seismic
coefficients of the 1997 UBC are given in Table 4.4, where the definition of each soil profile
type is also included; note that the Z-factor in the Table is the seismic zone coefficient, which
for practical purposes can be seen as a PGA value (expressed in terms of g). The paramount
effect of soil conditions on the C-values (particularly on Cv, which defines the response
spectrum at longer periods), is clear from Table 4.4. Note that the maximum soil to rock
amplification factors for Spa (calculated as the ratio of C-values corresponding to soils SE and
SA) range from 4.1 to 1.3 (corresponding to Z=0.075 and 0.40, respectively) for the short-
period coefficient Ca, and from 4.3 to 3.0 for the long period coefficient Cv. Note also the
upper bound of 0.36Na imposed on Ca in the highest seismic zone, for the case of soft soils;
this should be interpreted as the maximum acceleration that such soils are deemed to be able
to transmit (due to non-linear effects).

Comparisons between UBC and EC8 response spectra for various site conditions show that
for both ‘intermediate’ (SC and SD) and ‘soft’ (SE and SF) soils the UBC spectra result in
higher Spa-values than EC8 for PGA’s up to 0.2 g, whereas this is not generally the case for
0.3 g. On the other hand, EC8 appears to be more conservative for rock sites.

Finally, with respect to vertical motion response spectra, it appears that they are less
influenced by site conditions than horizontal spectra. Nevertheless, for short periods both
horizontal and vertical spectra for soft sites are characterized by smaller amplification than for
stiff sites; the opposite trend appears at intermediate and long periods (Ambraseys and
Simpson, 1996).
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Table 4.4a Seismic coefficients Ca of the 1997 UBC.

Soil type vs (m/sec) Z=0.075 Z=0.15 Z=0.2 Z=0.3 Z=0.4

SA (hard rock) > 1,500 0.06 0.12 0.16 0.24 0.32Na

SB (rock) 760–1,500 0.08 0.15 0.20 0.30 0.40Na

Sc (very dense soil) 360–760 0.09 0.18 0.24 0.33 0.40Na

SD (stiff soil) 180–360 0.12 0.22 0.28 0.36 0.40Na

SE (soft soil) <180 0.19 0.30 0.34 0.36 0.36Na

SF (special1) See footnote 1 below Table 4.4b

Table 4.4b Seismic coefficients Cv of the I997UBC

Soil type vs (m/sec) Z=0.075 Z=0.15 Z=0.2 Z=0.3 Z=0.4
SA (hard rock) >1,500 0.06 0.12 0.16 0.24 0.32Nv

SB (rock) 760–1,500 0.08 0.15 0.20 0.30 0.40Nv

Sc (very dense soil) 360–760 0.13 0.25 0.32 0.45 0.56Nv

SD (stiff soil) 180–360 0.18 0.32 0.40 0.54 0.64Nv

SE (soft soil) <180 0.26 0.50 0.64 0.84 0.96Nv

SF (special1) See footnote 1
1 Soil with vs < 180 and large thickness (SE has limited thickness); requires site specific geotechnical
investigation.

4.3.4 Inelastic spectra and design spectra

For the vast majority of engineering structures it is not economically feasible to design them
to withstand the seismic actions corresponding to a return period of about 500 years (the
design earthquake in many modern codes, see Section 4.3.2) without developing inelastic
deformations. This has long been recognized (Newmark and Hall, 1982), but the
complications arising from the need to account in a simple and practical way for the inelastic
response of a structure to the design earthquake without carrying out a proper non-linear
analysis, are still a matter of controversy, as well as the subject of current research. The
powerful modal analysis procedures, although strictly applicable to elastically responding
structures only, are nevertheless used for analysing structures expected to develop significant
amounts of inelastic deformation when subjected to the design earthquake. It is clear that such
a procedure is not really rigorous, and there are situations (particularly in bridge design) that a
full inelastic dynamic analysis is required by codes (see Section 4.3.7); however, due to its
relative simplicity, this ‘equivalent’ modal analysis still forms the basis of most current code
procedures. The basis of this type of analysis is the inelastic spectrum derived for nonlinear
SDOF systems,
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Figure 4.13 Elastoplastic response corresponding to a particular ductility factor (µ=2).

which is discussed in the following with a view to clarifying its role in seismic design.

Inelastic spectra
The general procedure for analysing SDOF systems with elastoplastic behaviour is presented
in Chapter 2 (Section 2.2.3). Application of this procedure results in the calculation of the
maximum (inelastic) displacement of the system umax to a particular earthquake motion. This
displacement can then be used to calculate the (displacement) ductility factor of the SDOF
structure

(4.18)

where uy is the yield displacement of the structure (i.e. the displacement corresponding to the
yield force Fy=kuy (k is the elastic stiffness of the SDOF system)). The ductility factor of eqn
(4.18) is a useful indicator of the amount of inelasticity expected to develop in a structure
subjected to a given motion. For instance, a ductility factor of 3 (see Figure 4.13) means that
the inelastic (plastic) displacement will be equal to twice the yield displacement. Moreover,
for an elastoplastic system, the energy dissipated during a full symmetric cycle (peak

amplitudes of umax and–umax) is equal to , as can be inferred from the geometry of
the elastoplastic loop in Figure 4.13. Given a set of yield resistances (Fy), inelastic response
spectra can be calculated indicating the ductility demand corresponding to each value of Fy;
these are called constant strength spectra.

On the basis of the foregoing considerations, the need arises to design a structure to
respond to a given earthquake excitation within a desired level of inelastic behaviour (i.e. not
exceeding a target ductility). It is therefore particularly useful
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Figure 4.14 Mean elastic and inelastic strength spectra for various ductility levels: (a) records on rock
sites; (b) records on alluvium sites. Records are from earthquakes in Greece, and are scaled
to the maximum spectrum intensity in each soil type.

to construct response spectra corresponding to specific values of the ductility factor µ. This
can be done either by interpolating between (closely spaced) constant strength spectral curves,
or by iteratively adjusting the level of Fy (for each period) in order to match as closely as
desired the target ductility value. Examples of such spectra calculated for appropriately
selected sets of ground motions typical of earthquakes in Southern Europe are shown in
Figure 4.14 (Kappos,
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1999), for two site conditions (‘rock’ and ‘alluvium’), and four ductility factors: 1 (elastic
behaviour), 2 (low ductility), 3.5 (medium ductility) and 5 (high ductility). Note that the shape
of inelastic spectra is generally different from that of the corresponding elastic spectra; they
are much smoother than the latter, and smoothness increases with the ductility level. For
µ≥3.5 the strength requirement decreases monotonically with the period, regardless of soil
conditions. Inelastic behaviour appears to be more effective in reducing the maximum elastic
acceleration in the case of motions recorded on rock, but in all cases elastic force reduction is
very significant in the medium and long period range. Also of practical significance is the
observation that for µ≥3.5 inelastic strength demands are just slightly influenced by the
ductility level, for both rock and alluvium; the implication of this is that for relatively small
changes in the strength of medium and high ductility structures, the increase in the required
ductility is significant.

Design spectra
Seismic codes still rely upon the concept of inelastic spectrum for specifying design actions
(forces) to be used for elastic modal analysis of structures which are expected to respond
inelastically to the design earthquake. This is a rather crude approximation and errors tend to
increase as the level of inelasticity (or target ductility µ) and the fundamental natural period
(or the number of storeys) increase (Anagnostopoulos et al., 1978; Krawinkler and Nassar,
1992).

Since for design purposes several ground motions with different characteristics have to be
taken into account, an average inelastic response spectrum has to be used, and this would
generally involve considerable work. Hence, several attempts have been made to construct
(inelastic) design spectra directly from the corresponding elastic spectra, by appropriate
modification of the latter. The typical way to do this is to divide the ordinates of the elastic
response spectrum by a factor which depends on the type of inelastic behaviour (e.g.
elastoplastic, stiffness degrading, etc.) and the damping (typically 5 per cent is used for the
design spectra, as mentioned in Section 4.3.2), in addition to the period; i.e. for a given
hysteretic behaviour and damping ratio

(4.19)

where the subscripts ‘el’ and ‘in’ refer to the ordinates of the elastic and inelastic response
spectrum, respectively. Note that in eqn (4.19) T is the fundamental period of the structure
before yielding, often referred to as the elastic period. This period is not the effective or the
predominant period of the inelastically responding structure (particularly when the plastic
deformations are significant), hence it should not be forgotten that plotting Sin as a function of
the initial T is merely a convention.
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Newmark and Hall (1982) have noted the following characteristics of inelastic response
spectra:

●For periods longer than about 0.5 sec, the displacements of the inelastic systems are very
close to those of the elastic systems; referring to Figure 4.13, it can be shown that in this
case the yield force in the inelastic system is Fy=Fel/µ, where Fel is the force in the elastic
system corresponding to the displacement umax. Given that the maximum force in an
elastoplastic system is its mass times the pseudo-acceleration (Fy=mSpa) the corresponding
R-factor defined from eqn (4.19) is in this case constant (i.e. R=µ).

●For periods between about 0.12 and 0.5 sec the energy stored in the inelastic system (the
area under the monotonie F–u curve from 0 to umax in Figure 4.13) is roughly the same as
the area stored by an elastic system with the same initial stiffness (but smaller maximum
displacement); by equating the areas under the two curves it can be shown that in this case

(4.20)

or

●For periods less than 0.03 sec the force (or acceleration) is the same for elastic and inelastic
systems (i.e. Fy=Fel). This leaves a transition range from 0.03 to 0.12 sec, wherein a linear
decrease from Fel to the value given by eqn (4.20) is assumed for Fy, this is equivalent to R
varying from 1 to

Following the Newmark—Hall proposal for inelastic spectra construction, a number of
studies, some of them based on more extensive databases of records, have appeared. A review
of most proposals regarding the R-factor can be found in Miranda and Bertero (1994),
wherefrom Figure 4.15 has been reproduced. It is seen that although all proposals for the R-
factor follow a similar trend, differences up to about 40 per cent can result between them.

Another critical issue regarding the use of design spectra is the feasibility of capturing the
inelastic response of a Multiple Degree-of-Freedom (MDOF) system using spectra that have
been derived from SDOF system analysis. More specifically, the question arises whether an
MDOF system designed for a base shear derived from an inelastic response spectrum
corresponding to a target ductility µ, will develop an (equivalent) ductility of this order when
subjected to earthquakes compatible with the aforementioned spectrum. Both earlier (e.g.
Anagnostopoulos et al. 1978) and more recent (e.g. Krawinkler and Nassar, 1992) studies
have indicated that the danger exists that the ductility factors for the MDOF system may
significantly exceed the target ductility (i.e. the one for which the inelastic spectrum for the
SDOF system has been constructed). The critical aspect of the problem is the type of inelastic
mechanism that forms in the MDOF system, which depends largely on the philosophy
adopted for design (see Section 4.4). If a soft storey mechanism develops, the ductility
demands for the MDOF system are much higher than those for the corresponding SDOF
system; on the
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Figure 4.15 Comparision of strength reduction factors (R) proposed in various studies for ductility
factors: µ=3; (b) µ=5
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other hand, the differences are much smaller when a mechanism involving primarily beam
hinging forms. Moreover, the increase in the ductility demands in the MDOF system is larger
for increased target ductility factors and for longer fundamental periods (i.e. for taller
buildings). The need therefore arises for modifying the (inelastic) design spectrum in the long
period range to remedy the previous situation. Newmark and Hall (1982) have suggested
lowering the exponent (k1 in eqns 4.16, 4.17) of the period dependent term giving spectral
accelerations in the long period range (T>1 sec) from 1 to ; this has been adopted by several
seismic codes but Krawinkler and Nassar (1992) have found that it is only valid for well-
designed structures (i.e. those forming beam mechanisms).

Code spectra
The design spectrum in Eurocode 8 is defined by eqns (4.13–4.17), with the following
modifications:

●the term is substituted by , where the so-called behaviour factor q is analogous to
the R-factor of eqn (4.19).

●the exponents k1=1.0 and k2=2.0 are replaced by and respectively;
●a cut-off value of for the design acceleration is introduced.

The introduction of the reduced kd exponents in combination with the cut-off of 0.2αg, results
in a substantial increase in the design forces for long period structures, such as tall buildings
or long span bridges. This is generally in line with the remarks made previously for such
structures, although no particular justification appears to exist for specifying a constant
minimum seismic force (the cut-off value).

Design spectra in the American codes are similarly derived from the corresponding elastic
spectra (i.e. factors similar to q are specified for reducing the elastic spectrum ordinates
and/or the elastic base shear). They are called response modification factors (R) in the
NEHRP [National Earthquake Hazard Reduction Program] Provisions (FEMA 1995, 1997a),
whereas they are referred to simply as the R coefficients in UBC. It is deemed that the term
response reduction factor (or force reduction factor) offers a clearer indication of the nature of
this factor, which plays a paramount role in seismic design, and is discussed in more detail in
the next section. Unlike EC8, the American UBC specifies a lower bound to the design base
shear equal to 90 per cent of the value used in the equivalent (static) lateral force procedure
(Section 4.3.5); this appears to be mainly due to historical reasons, as lateral force design has
long prevailed, whereas modal analysis was traditionally restricted to ‘special’ structures.
Similarly to EC8, the UBC specifies a minimum base shear (see Section 4.3.5), lower than the
EC8 one.

Force reduction factors
The force reduction factor can be defined as the ratio of the elastic strength demand (i.e. the
strength that would be required in the structure if it were to respond elasti-
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Table 4.5 Seismic force reduction factors for high ductility R/C structures.

Symbol Frame Structural wall Frame wall

EurocodeS(ULS) q 5 4–5 4.5–5

UBC1 (ULS) R 8.5 4.5–5.5 8.5

NZS 42032(ULS) µ <63 <54 <5–64

Japan4 (Level 2 earthquake) I/Ds 2.2–3.3 l.8–2.5 2.0–2.9
1 R factor must be reduced by a reliability/redundancy factor of between 1 and 1 .5.
2 The structural performance factor Sp also applies, in addition to µ, hence the values in the table are typically
increased by 50%.
3 Depending on the mechanism of inelastic deformation.
4 Depending on the aspect ratio and coupling.
5 The factor Ds is calculated for each storey separately, rather than the building as a whole.

cally to the design earthquake), to the inelastic strength demand (i.e. the strength required in
the structure for it to respond beyond the elastic range but within the selected ductility (and/or
displacement) limits). If the elastic strength demand is denoted as Fel and the inelastic
(design) strength demand as Fd, it follows that the reduction factor

(4.21)

Differences in the numerical values of the force reduction factors specified in various codes
for the same type of structure can be quite substantial. The values specified for high ductility
R/C frames in four leading codes are summarised in Table 4.5 (Booth et al., 1998); it is seen
that the reduction factor is equal to 8.5 in UBC, 5 in EC8, and ≤3.3 in the Japanese Code
(whose conceptual basis is generally different from that of the other three codes). It should be
noted, however, that if appropriate adjustments are made to these values to account for the
different partial safety factors used in each code (for loads, as well as for member resistances),
differences become smaller.

The value of the reduction factor depends on the ductility of the structure (which relates to
the detailing of the structural members), but also on the strength reserves that normally exist
in a structure (depending mainly on its redundancy and on the over strength of individual
members), as well as on the (effective) damping of the structure; all these factors directly
affect the energy dissipation capacity of a structure. Bertero (1989) suggested a definition of
the force reduction factor along the foregoing lines, i.e.

(4.22)

where Rµ is the ductility dependent component, Rs the overstrength dependent component,
and Rξthe damping dependent component of the reduction factor; the latter is of interest
mainly in the case of structures with supplemental damping devices (see Section 4.4.4). A
detailed discussion of possible procedures for
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quantifying Rµ and Rs can be found elsewhere (Fischinger and Fajfar, 1994; Kappos, 1999).
These and other studies have indicated significant values for the overstrength component Rs

(at least 1.5) for both R/C and steel structures. This is particularly important from the design
point of view, since ductile detailing requirements can be relaxed for structures possessing
substantial overstrength.

The concept expressed by eqn (4.22) is not explicitly recognized in Eurocode 8.
Nevertheless, if the ratio of the EC8 elastic spectra of eqns (4.13–4.17) to the inelastic
(design) spectra resulting from the aforementioned modifications is calculated, the resulting
R-factor (eqn 4.19) is period dependent (i.e. R<q for both short and long period structures, and
R=q only for the intermediate period (from TB to TC) structures).

Contrary to the EC8 approach, the American codes specify essentially period independent
values of the R factors, something that has been criticized in the past (Miranda and Bertero,
1994). Although a proposal has been made by SEAOC (1996) to include a two component
(RµRs) reduction factor in the UBC, this has not been done in the 1997 edition, which,
however, does include a redundancy factor (ρ≤1.5), intended as a lower bound, below which a
penalty (an increase of up to 50 per cent) is applied with regard to seismic force levels in
structures lacking redundancy. Some other national codes have adopted expressions for R that
explicitly differentiate between the ductility and the overstrength component of R (Fischinger
and Fajfar, 1994).

Design displacements
In addition to the determination of the ‘inelastic’ forces expected in a structure, it is also
necessary to have an estimate of the inelastic displacements under the design and/or the
serviceability earthquake; these are typically required for checking that the code-specified
drift limits are not exceeded. Based on the previous discussion, it is reasonable to assume that
elastic and inelastic displacements are about the same (except for short period structures), and
calculate the latter by simply amplify-ing the (elastic) displacements, calculated for the
factored seismic loading (corresponding to Fel/R), by the reduction factor (R) used for forces.
This is indeed the recommended procedure in Eurocode 8: Under the serviceability
earthquake (inelastic) drifts are calculated as , where is the drift calculated on the
basis of the design seismic forces and v is a factor intended to account for the lower intensity
of the serviceability earthquake (for buildings v=2.0 to 2.5).

The corresponding procedure in the UBC (ICBO, 1997) is to estimate drifts under the
design earthquake as (i.e. the amplification factor for inelastic displacements is 30 per
cent lower than the reduction factor (R) for forces). Although the UBC background document
(SEAOC, 1996) claims that this is a better ‘average’ value of the inelastic drift, this is a point
of rather considerable controversy.
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4.3.5 Equivalent lateral force procedures

Until very recently seismic design of most structures was based on a static analysis using a set
of lateral (horizontal) forces assumed to represent the actual (dynamic) earthquake loading. In
the absence of commercial software appropriate for dynamic analysis of three-dimensional
structures, as well as of the expertise for using whatever software of this type was available,
most codes of practice clearly promoted the simpler static procedure. However, the last 10 to
15 years were marked by a massive introduction of more advanced software packages,
running on increasingly more powerful hardware; this was probably the main reason for a
change of attitude, both from the practising engineer’s and the code drafter’s point of view.
As a consequence, in modern codes, such as the EC8, dynamic analysis (Section 4.3.6) is
adopted as the reference method, and its application is compulsory in many cases of practical
interest.

The typical procedure in the equivalent static analysis method is the determination of an
appropriate value of the base shear in terms of the structure mass and the design earthquake
intensity, properly reduced for inelastic effects, along the lines discussed in the previous
section. The base shear is then used for estimating a set of lateral forces distributed along the
structure following (more or less) the fundamental mode of vibration. Since the base shear
itself is also calculated on the basis of the fundamental period, it is clear that the application
of the equivalent lateral force method should be restricted to structures whose dynamic
response is governed by the fundamental mode.

The Eurocode 8 procedure
The method is referred to as ‘simplified modal response spectrum analysis’, rather than as
‘equivalent static analysis’, and is restricted to structures that are not significantly affected by
higher modes and/or stiffness irregularities.

The base shear (sum of horizontal loads) is calculated from

(4.23)

where Sd(T1) is the ordinate of the design spectrum (see Section 4.3.4) corresponding to the
fundamental period T1 of the structure, and W is the gravity load con-tributing to inertial
forces; this is taken as the permanent loading (G) and a portion of the variable (live)
loading Q. The fundamental period T1 can be estimated either from a proper eigenvalue
analysis (see Section 2.3.2), or from Rayleigh’s method, or from empirical formulae included
in the code.

The lateral forces corresponding to the base shear of eqn (4.23) are calculated assuming
(conservatively) that the effective mass of the fundamental mode is the entire mass of the
structure; hence

(4.24)
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where Fi is the horizontal force acting on storey i, si, sj are the displacements of the masses mi,
mj in the fundamental mode shape, and Wi, Wj are the weights corresponding to the previous
masses. It is permitted by the code to avoid the calculation of the fundamental mode shape
and assume instead that it is increasing linearly with the height of the building, hence sk in eqn
(4.24) are substituted by zk, the heights of the masses mk. (typically the heights of the storeys)
above the foundation level. The forces Fi are then used for a standard static analysis of the
building, which can be based on two planar models.

In order to cover uncertainties in the distribution of mass and stiffness (of ‘non-structural’
elements), as well as the spatial variability of ground motion, an accidental eccentricity of the
loads Fi with respect to the mass centre CM of the storey has to be introduced in the analysis;
this is equal to

(4.25)

where Li is the floor dimension perpendicular to the direction of force Fi. The eccentricity e1
is additional to any existing eccentricity e0 between the stiffness centre Cs and the mass centre
CM at any storey. Instead of applying the forces at an eccentricity from CM, it is usually more
convenient to consider a torsional moment Mt =Fi(e0+e1), or simply Fie1 if a three-dimensional
model is used, acting at the mass centre.

While the aforementioned eccentricities e0 and e1 are present in both static and dynamic
analysis, an additional complication arises when the former is used. It is known that static
analysis underestimates dynamic torsion effects (Chopra, 1995), hence EC8 requires
consideration of an additional eccentricity e2 to account for the dynamic effect of
simultaneous translational and torsional vibrations. Appropri-ate (rather complicated)
expressions for e2 as a function of the geometry and the stiffness of a storey are given in EC8
1–2 (CEN, 1994b).

The load combination involving the seismic loading is

(4.26)

where ‘+’means ‘to be combined with’, ∑implies the combined effect of several actions of
the same type (permanent or ‘dead’ G, variable or imposed Q), Gkj is the characteristic (upper
5 per cent fractile) value of the permanent action j, is the ‘quasi-permanent’ value of
the variable action, γI the importance factor (Section 4.3.2), and Ed the design value of the
seismic action.

The UBC 1997 procedure
The method is applicable to all buildings in the low seismicity zone (Zone 1) and usual
structures in seismic Zone 2, regular structures with a height up to 73 m, and irregular
structures having no more than five storeys.
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The design base shear is

(4.27)

where W is the ‘seismic’ dead load, including the total dead load and applicable portions of
other loads (partition load of at least 0.5 kN/m2, permanent equipment, etc.), and the factors
Ca, Cv, I and R, that define the design spectrum were discussed in the previous section. Two
lower bounds to Vb, are set in UBC

●For all seismic zones

(4.28a)

●For seismic Zone 4 (highest)

(4.28b)

Note that this is to account for near source effects, as discussed in Section 4.3.2. The
fundamental period T1 is calculated using the same procedures as in EC8. The distribution of
lateral forces along the height of the structure is given by

(4.29)

It is seen that this is the same as the simplified version of eqn (4.24), wherein the heights zi
replace the mode shape amplitudes jy, with the exception that part of the total base shear is
applied as a concentrated force at the top, Ft=0.07 Tl Vb, which need not exceed 25 per cent of
the total base shear and may be taken as zero for T1≤0.7 sec. The top force Ft is a simple way
of accounting for the effect of higher modes on the force pattern and is important for tall
buildings only.

The 0.05L accidental eccentricity discussed previously for EC8 is also specified in UBC,
but no provisions are included regarding the ‘dynamic’ eccentricity (e2 in EC8).

The following combinations involving the seismic loading E are specified in UBC (the
notation for loads has been changed here to facilitate comparison with EC8)

(4.30a)

(4.30b)



where Q1 is the live load (its factor f1 is typically equal to 0.5) and Q2 the snow load (f2 is 0.2
or 0.7 depending on the roof configuration). The load factors in eqns (4.30) should be
increased by 10 per cent for the design of R/C and masonry structures.

The UBC earthquake loading E is calculated as

(4.31)



Page 152

where Eh is the load due to the horizontal component (corresponding to the base shear of eqn
4.27), ρis the redundancy factor described previously, and Ev is the load effect resulting from
the vertical component of the ground motion, accounted for by adding an extra permanent
load (additional to G), equal to 0.5CaIG. This is an interesting difference between the two
codes, since EC8 requires consideration of the vertical component in special cases only (i.e.
horizontal cantilever members, long span (>20 m) members, prestressed concrete members,
and beams supporting columns); in all these cases the vertical component can be considered
locally (for the members under consideration and their associated supporting members).

4.3.6 Modal analysis procedures
For the purposes of seismic design the method is almost invariably applied in combination
with the design response spectrum, and is typically referred to as ‘modal response spectrum
analysis’. Its field of applicability covers essentially all cases for which the equivalent static
analysis is not appropriate (i.e. cases where modes other than the fundamental one affect
significantly the response of the structure). There are a few cases where modal analysis is not
deemed appropriate and a full dynamic (time history) analysis is required, a notable example
being the design of base isolated bridges to EC8 Part 2 (CEN, 1994c). Detailed presentations
of the modal response spectrum analysis can be found elsewhere (Gupta, 1990; Clough and
Penzien, 1993; Chopra, 1995).

Review of the procedure
In modal analysis involving lumped mass systems, the (elastic) force vector fn for the nth
mode, calculated on the basis of the response spectrum, is

(4.32)

where m is the mass matrix, is the nth mode shape vector, Ln is the earthquake excitation
factor (depending on the mass distribution and the corresponding mode shape), Mn is the
generalized mass (see also Section 2.3.2), and Span is the spectral pseudo-acceleration
corresponding to the period Tn of the nth mode. Note that the forces fin are acting on the
(lumped) masses mi; in the common case of buildings with floor diaphragms, mi is the mass of
the ith storey and fin the nth mode force acting on this mass.

The corresponding maximum base shear for the nth mode is given by

(4.33)
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The displacements for the nth mode can be calculated from

(4.34)

where is the circular frequency of the nth mode. Recall that Spa/ω2 equals Sd, the
spectral displacement (Section 4.3.2).

Since the response of a structure results from the contribution of all modes, and since
modal maxima generally do not occur simultaneously, it is customary to combine the action
effects Si from the individual modes in a statistical way. The most commonly adopted
procedure is the Square Root of the Sum of Squares (SRSS) combination that is:

(4.35)

where Si,max is the probable maximum value of the action effect (force or displacement), and
the subscripts 1, 2,3,... refer to the first, second, third ... mode; a sufficient number of modes
should be considered in estimating Si,max (see code criteria in the next subsections). Note also
that action effects due to earthquake should always be taken with alternate sign (i.e. both as
positive and negative). Equation (4.35) gives reasonable values in many practical cases, but is
generally unconservative when two or more modes are closely spaced (i.e. their periods are
close to each other); this is often the case in three-dimensional structures susceptible to
torsional effects. In these cases more refined combination rules, such as the Complete
Quadratic Combination (CQC) (Wilson et al., 1981) are appropriate.

A significant shortcoming of modal response spectrum analysis is that it is not possible to
define exactly the simultaneous values of forces, for instance the axial loading corresponding
to the maximum moment in a column section, and vice versa. Therefore, in addition to the
approximation of modal combination (eqn 4.35), it is customary to assume that the probable
maxima of the various action effects (M, N, V) for a given earthquake action (e.g. a response
spectrum in a particular direction) occur simultaneously; this is usually, but not necessarily,
conservative, with regard to design of members. The problem of combining moments
(generally pairs of moments) and axial loads in the design of columns for (biaxial) bending
and axial force (Mx,My,N) is discussed in more detail elsewhere (Gupta, 1990; Penelis and
Kappos, 1997).

The Eurocode 8 procedure
The basis of the method is the design response spectrum discussed in Section 4.3.4; this has to
be applied along two, properly identified, perpendicular axes of the structure.
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The criterion for the required number of modes to be included in the analysis is two-fold:

●the sum of the effective modal masses ( , see eqn 4.33) of the considered modes
should amount to at least 90 per cent of the total mass of the structure;

●all modes with effective mass greater than 5 per cent of the total mass should be considered.

The modal action effects should be combined using the SRSS approach (eqn 4.35), unless the
periods of two of the considered modes differ by less than 10 per cent, in which case the CQC
approach should be used.

The accidental eccentricity e1 (eqn 4.25) could be considered in buildings either by
displacing the location of the mass of each storey diaphragm by e1 or (more conveniently) by
introducing an equivalent torsional moment, exactly as in the case of equivalent static analysis.

The simultaneous action of the two horizontal components should be taken into account;
this is also required in equivalent static analysis. Since peak values do not occur at the same
time in both directions (x and y), the simultaneous action can be modelled either:

●by an SRSS combination (compare eqn 4.35) of the ‘x’ and ‘y’ action effects; or
●by considering the combinations

(4.36)

where SEx are the action effects due to the application of the seismic action along the
selected x-axis of the structure, and SEy the corresponding effects for the seismic action
applied along the y-axis.

Both procedures are statistical ones, and both introduce small errors on the safe, as well as the
unsafe side (Penelis and Kappos, 1997).

In the case of elongated structures, such as bridges exceeding about 600 m, the spatial
variability of the ground motion should be given due consideration (see also Section 4.2.4).
Methods for accounting for spatial variability are described in the (informative) Annex D to
EC8 Part 2 (CEN, 1994c).

The UBC 1997 procedure
There are two differences in the modal analysis procedure specified in UBC, compared to the
previously described EC8 procedure:

●The elastic, rather than the design, response spectrum is used for estimating action effects;
the resulting displacements are directly used for design. Recall that in EC8 displacements
are calculated by scaling the values resulting from the design spectrum (which includes 1/q)
by the q-factor.

●The elastic forces calculated as above are then scaled down to account for inelastic and
related effects. This is done by adjusting them to 90 per cent of
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the base shear used in equivalent static analysis (eqns 4.27, 4.28) in the case of regular
structures, or 100 per cent this base shear in the case of irregular structures.

Modal combinations, torsional effects, and orthogonal (x and y) effects are treated in the same
fashion as in EC8.

4.3.7 Time history representations
Time history analysis is used for design purposes only as an exception (see Section 4.3.1), and
almost exclusively whenever non-linear effects are to be considered explicitly, rather than
through the R-factor approach. When acceleration time histories are used for design, it is
imperative that they actually correspond to the design earthquake for the site under
consideration, which means that the envelope of the response spectra of the accelerograms
used should reasonably match the elastic design spectrum for the site (no reduction through R-
factors).

Several options are available for selecting an appropriate set of design accelerograms:

●use of records from actual earthquakes, which generally have to be scaled to the design
earthquake intensity;

●use of artificial accelerograms generated so as to match the (target) elastic response
spectrum; this is sometimes referred to as the ‘engineering method’;

●use of simulated accelerograms generated by modelling the source and travel path
mechanisms of the design earthquake (‘seismological method’).

Each option has its own merits and limitations, as discussed in the following.

Selection of recorded accelerograms
This can be the ideal solution whenever an extensive database of acceleration time histories is
available, containing records from earthquakes with a large range of characteristics. Then, a
selection can be made of records matching the source parameters (focal mechanism and depth,
distance from source), travel path, magnitude, peak ground motion parameters (A, V, D), and
duration, for the site under consideration. Note that, with the possible exception of major
projects (such as the design of critical facilities) in areas where abundant data exist, such as
the US and Japan, the foregoing is a rather over-ambitious procedure, since not only an
adequate database of records is required, but also a complete charactema-tion of the seismic
hazard at the site.

A more pragmatic approach would involve the following main parameters to be considered
when selecting natural records:

●site conditions;
●magnitude;
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●distance to source (or epicentral distance);
●closeness to the site under consideration.

It is beyond the scope of this book to discuss in detail these parameters and their relation to
the characteristics of the ground motion. In a practical context, the need becomes clear of
using a minimum number of criteria (ideally only one) for selecting ground motion records
for the purpose of time history analysis. An interesting proposal in this respect is the use of
the A/V ratio (Zhu et al., 1988), which is a simple parameter, easy to calculate from the
commonly available values of A(≡PGA) and V(≡PGV), and correlates well with the M–R
relationship, as well as with site conditions.

Another possible criterion is to select ground motion records whose spectra (Spa or
preferably Spv,) are peaking in the vicinity of the fundamental period of the structure under
consideration, irrespective of their other characteristics, which is generally a conservative
approach.

Scaling of recorded accelerograms
Whenever a careful selection of natural accelerograms has been made, for instance on the
basis of (M, R) pairs within a narrow range, one might argue that these could be directly used
for design purposes. In fact, if these records are used for analysis, significant variability in the
calculated response is found; Shome et al. (1998) reported dispersions of about 50 per cent to
60 per cent in the inelastic peak interstorey drifts of medium rise steel frames subjected to sets
of motions, each corresponding to a narrow magnitude range (e.g. 6.5–7.0) and distance range
(e.g. 50–70 km). This significant variability is attributed to the very different characteristics of
ground motions at a given location resulting from an earthquake of a given M, and is a clear
indication of the effect of neglecting the other important parameters characterizing the ground
motion. This points to the need for scaling (or normalizing) the selected earthquake
accelerograms before using them for time history analysis. In addition to the foregoing
considerations, scaling is also necessary whenever different limit states (serviceability,
ultimate, etc.) have to be considered, since it is generally impractical to select different sets of
records for each limit state.

The most commonly applied scaling procedure is based on the PGA (i.e. all records used
for design are scaled to the same PGA). Unfortunately this convenient procedure is one of the
most unsatisfactory ones, with the exception of structures with very low periods (not
exceeding about 0.2 sec). As discussed in Section 4.3.2, the spectral ordinates are proportional
to the PGA over the short period range only, whereas for longer periods (covering most of the
usual civil engineering structures) they are proportional to the PGV, and for very long periods
(more than about 3.0 sec) they are proportional to the PGD. The peak ground parameters have
indeed been used as scaling factors, and so have the integrals of their squared values and their
root-mean-square values (Nau and Hall, 1984). All these values
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are ground motion dependent only (i.e. they are not correlated in any way to the
characteristics of the structure to be designed).

A sensible choice of scaling parameters accounting for the characteristics of both the record
and the structure, are the spectral values, either those of the response spectrum or of the
Fourier spectrum. Since spectral ordinates vary with T, a critical question is which range of
the spectra should be considered for deriving a scaling parameter. An early (1952), but still
quite popular, proposal is Housner’s spectrum intensity, SIv (see Housner 1970), which is the
area under the Spv spectrum

(4.37)

with Ta=0.1 sec, Tb=2.5 sec, and ξ=20 per cent. The reason for selecting these period limits is
that they were deemed to represent the range of typical periods of buildings at the time; it is
understood that SIv is intended to be an overall measure of the ‘damageability’ of a ground
motion with respect to a population of structures. Whenever a particular structure is to be
designed or assessed, a condensation of the limits suggested by Housner is appropriate.
Kappos (1991) suggested a modified Housner intensity based on Ta =0.8T1 and Tb=1.2T1,
where T1 is the fundamental period of the structure, calculated using the average of the SI
values from the 5 per cent and 10 per cent velocity spectra. Martinez-Rueda (1998) suggested
values of Ta=Ty and Tb=Th, where Ty and Tb are the fundamental periods calculated at yield
and in the post yield (hardening) range; these periods are rather difficult to calculate for actual
structures. Using a different approach, Shome et al. (1998) have suggested scaling of
accelerograms selected for a given (M, R) pair to the median Sa value corresponding to the
fundamental period of the structure T1 . All these definitions make the set of records structure
dependent which is reasonable, but not particularly convenient if time history analysis is to be
performed in several design projects.

Use of simulated ground motions
In the ‘engineering method’, artificial accelerograms are generated so as to match the (target)
elastic response spectrum, hence they are typically called spectrum compatible motions.
Depending on the availability of appropriate recorded motions, the starting point of the
method could be either:

●A numerically derived time history generated by superimposing sinusoidal components
with pseudo-random phase angles, which are then multiplied by a deterministic intensity
function (envelope of the time history) selected on the basis of the characteristics of the
design earthquake (see Clough and Penzien, 1993; CEN, 1994c; Hu et al. 1996); or

●An actual acceleration record having the desired seismological features.
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The selected record is then processed iteratively by multiplying the Fourier amplitudes (see
eqn 4.11) by the corresponding average of the ratios of target Spv values to the Spv values
calculated for the initially selected record, with a view to better matching the target spectrum.

In the ‘seismological method’, simulated accelerograms are generated by modelling the
source and travel path mechanisms. The method generally involves two steps (Hu et al.,
1996):

●define the ground motion at the site due to an ‘element’ of earthquake source or fault
rupture; planar sources are divided into a number of elements

●sum up the contributions of motions due to all elements, in the time domain.

A detailed discussion of this method, which is less common than the previous one, falls
outside the scope of this book. References to the pertinent literature can be found, for instance,
in Clough and Penzien (1993) and Hu et al. (1996).

Code treatment
All the aforementioned types of accelerograms are generally allowed as input for time history
analysis in EC8, which, however, appears to promote spectrum compatible records, generated
using the elastic response spectrum as the target. The duration of the records must be
consistent with the characteristics (M, R, etc.) of the earthquake underlying the establishment
of the design αg. A minimum of five records is required for time history analysis, which
should be enough to provide a stable statistical measure of the response; additional rules are
given in EC8 regarding the allowable difference between the mean spectrum of these records
and the code spectrum.

Whereas spectrum compatible records are an attractive choice of dynamic input, in the
sense that scaling is not required and code requirements are imposed in a rather
straightforward way, care is required in their construction to avoid over conservatism as well
as inconsistencies. Referring to the previously described EC8 procedure, it is emphasized that
it is the mean of the response spectra of artificial motions that should match the design
spectrum, rather than each individual spectrum. In practice what is commonly done is that the
elastic design spectrum is used as the target for all records (i.e. each spectrum matches closely
the design one); this is inconsistent with the very nature of the design spectrum which does
not represent a particular ground motion but rather envelopes the spectra of several motions
generated from different sources and at different distances from the site. As shown by Naeim
and Lew (1995), design spectrum compatible motions may represent velocities, displacements,
and energy content which are very unrealistic; as a result their use in inelastic time history
analysis may lead to unreliable estimates of design displacement demands.

Eurocode 8 also allows the use of recorded (natural) accelerograms, as well as of
accelerograms generated by simulation of the source and travel path effects (seismological
method). A minimum of three records is required, to be scaled to the design
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PGA. As discussed in the previous section, this type of scaling, albeit convenient, is one of
the most unreliable ones. A more sophisticated procedure based on matching of spectra is
included in EC8 Part-2, Bridges (CEN, 1994c).

The 1997 UBC recommends the use of actual recorded accelerograms as input for time
history analysis; these should be selected from at least three different events, with due
consideration of magnitude, source distance and mechanisms, that should be consistent with
the design earthquake. In three-dimensional analysis, pairs of records are required (i.e. a
minimum of 3 pairs). Simulated time histories are allowed whenever three appropriate
recorded motions are not available (to make up the total number of records required for
design). For each pair of records the SRSS of the 5 per cent-damped site specific spectra is
first constructed. The accelerograms are then scaled in such a way that the average value of
the SRSS spectra does not fall below 1.4 times the 5 per cent-damped design spectrum, for the
period range 0.2T1 to 1.5T1. Note that in two-dimensional building models T3 (third mode
period) is close to 0.2T1, while1.5T1 is a reasonable estimate of the post-yield period of the
structure. If only three time history analyses are performed the maximum response parameters
are used for design, while if seven (or more) analyses are carried out, the average response
parameters can be used. If the analysis is elastic, the response parameters can be scaled to the
design base shear level, as in modal analysis (see Section 4.3.6). If a non-linear time history
analysis is performed, the resulting response parameters (forces and displacements) can be
directly used.

4.3.8 Power spectrum analysis

Although treatment of the ground motion as a random process is a very reasonable approach
given the uncertainties involved in seismic wave propagation, the difficulties in calculating
the response of MDOF structures to a non-deterministic input (particularly when some
account for inelasticity must be made) make the application of stochastic dynamics to
practical seismic design almost prohibitive. In fact, among the leading codes, EC8 is the only
one including some provision for this type of analysis.

The basis of the procedure is the power spectrum (i.e. the power spectral density of the
acceleration time history that is considered as a random process). As explained in Section
10.2, if a stationary process x(t) has zero mean value and is gaussian, its power spectral
density Sx(ω) completely characterizes the process, since other properties can be calculated
from it, for instance the autocorrelation function is related to Sx(ω) through the Fourier
integral. It is often assumed for convenience that the ground motion does possess the previous
characteristics, which significantly simplifies the analysis. Models for stationary processes
can be found in the literature (e.g. Hu et al., 1996); one of the most commonly adopted for the
ground acceleration is the modified Kanai—Tajimi model proposed by Clough and Penzien,
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whose power spectral density is given by

(4.38)

where S0 is the intensity of the ground motion, ωits frequency, ωg and ξg are the frequency
and damping ratio of the soil, and ω1 , ξ1 are parameters selected to produce the desired
filtering of very low frequencies (high frequencies are filtered out by the first multiplier of S0,
known as the Kanai—Tajimi filter). It is seen that eqn (4.38) describes a filtered white noise
type of random process.

General procedures, based on modal superposition, for calculating the response of MDOF
structures subjected to ground motion described by a power spectrum such as that of eqn
(4.38), can be found in Clough and Penzien (1993), while a presentation of the EC8 procedure
for stochastic analysis of structures, including some suggested simplifications, is given by Di
Paola and La Mendola (1992).

EC8 requires the use of power spectra compatible with the elastic response spectrum
described in Section 4.3.2, within ±10 per cent over the range of periods from 0.2 sec to 3.5
sec, but provides no such spectrum. Some procedures for relating a power spectrum to a
response spectrum are given, for instance, in Hu et al. (1996). A simple proposal for an EC8
spectrum compatible power spectral density can be found in Di Paola and La Mendola (1992).

4.4 CONCEPTUAL DESIGN FOR EARTHQUAKES

4.4.1 Basic principles

The objective of seismic design is to ensure that a structure behaves satisfactorily when
subjected to earthquake loading. As is the case with most loading types, the anticipated
behaviour or performance levels for the structure are different for different levels of the
loading. Ideally, and taking into account the large uncertainty associated with earthquake
loading, several levels of performance should be considered in design, each one
corresponding to a different probability of exceedance of the seismic loading. Similarly to
gravity load design, the structure should remain serviceable under ‘frequent’ earthquakes
(SLS) and ‘safe’ under the ULS earthquake. Recent events, such as the 1994 Northridge
earthquake and the 1995 Great Hanshin (Kobe) earthquake, have shown that whereas
structures built in industrialized countries aware of the seismic risk are in general adequately
safe, the cost of damage inflicted in these structures by earthquakes, as well as the indirect
cost resulting from business disruption, need for relocation, etc. can be difficult to tolerate.
This points to the need to address the problem of designing a structure for a set of
performance objectives (limit states), recently referred to as Performance Based Design
(PBD) (Fajfar and Krawinkler, 1997).

The intent of current seismic codes is usually to produce building designs capable
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of achieving two or three performance objectives: to resist minor earthquakes without
significant damage, moderate earthquakes with repairable damage, and major earthquakes
without collapse. However, as a rule, design checks are only explicitly performed for one
performance objective, typically for the ULS (corresponding to either life safety or no
collapse requirements). The Eurocodes recognize explicitly two limit states (ULS and SLS),
whereas, interestingly, the American code (ICBO, 1997) explicitly states that ‘the purpose of
the provisions is primarily to safeguard against major structural failures and loss of life, not to
limit damage or maintain function’.

One problem with all existing seismic codes is that their criteria for evaluating adequacy of
performance are not always directly tied to specific measures of performance. Moreover, the
actions used for checking these criteria are typically based on one design earthquake (the ULS
action); of course, as discussed in Section 4.3.4, in serviceability related checks the lower
intensity of the SLS earthquake is implicitly accounted for (v factor in EC8, resulting in the
SLS displacements being 1/2 to 1/2.5 the ULS displacements).

The intent of PBD is to ensure that structures perform at appropriate levels for all
earthquakes, and is deemed to provide engineers with the ability to design structures capable
of providing controlled and predictable performance for multiple performance objectives
(Fajfar and Krawinkler, 1997). The difficulty, of course, lies in the quantification of this
attractive concept.

One recent attempt to quantify performance levels and corresponding hazard levels has
been done in the new NEHRP Guidelines for Seismic Rehabilitation (strengthening) of
Buildings (FEMA 1997b). The hazard levels are expressed by probabilities of exceedance in
50 years, or the corresponding mean return periods Tr; that is:

●50 per cent/50 year (Tt=72 year);
●20 per cent/50 year (Tr=225 year);
●10 per cent/50 year (Tr=475 year) ;
●2 per cent/50 year (Tr=2,475 year).

Structural performance levels are quantified both in a qualitative sense (description of the type
of damage associated with each one) and in a quantitative sense. At building level a
convenient global measure of damage is the inter storey drift. Appropriate drift values are
suggested by FEMA (1997b) for various types of structural systems; significantly higher
values are applicable to flexible and ductile structures, such as frames, compared to stiffer and
more brittle structures, such as walls (particularly masonry walls). Requirements
(performance levels) are also included in FEMA (1997b) for non-structural elements
(partitions, cladding, mechanical and electrical installations, plumbing, contents and
finishings). It is pointed out that depending on the type of structure to be designed (or
assessed), different combinations of hazard and performance levels would be appropriate. For
a normal structure (e.g. an apartment building) the ‘immediate occupancy’ level would
normally be associated with an earthquake with a 50 per cent/50 year probability,
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‘life safety’ with a 10 per cent/50 year probability earthquake (the usual ‘design’ earthquake
in current codes), and ‘collapse prevention’ with an earthquake having a 2 per cent/50 year
probability of exceedance.

Explicit checks of performance can also be made at local level (i.e. for each member in the
structure), in which case appropriate limits for local deformation quantities, such as rotations
of plastic hinge zones are required; tabulated values of such quantities for various types of
members can be found in FEMA (1997b), but it has to be stressed that these issues are still the
subject of current research. Local ductility of members (e.g. plastic rotation capacity of R/C or
steel beams and columns) is dependent on appropriate design and detailing, but also on
quality control, particularly at the construction phase. Moreover, exceeding the available
ductility capacity at one or even a few critical regions does not necessarily mean (incipient)
collapse of the structure, particularly when the latter is characterized by high redundancy and
ability to redistribute loading.

Recent approaches, such as those briefly outlined previously, are essentially deterministic
procedures, since uncertainty is explicitly accounted for only in the case of the seismic input
(spectral accelerations are adjusted to the target probability of exceedance selected for the
performance level that is being checked). However, the real issue is the reliability (or the
probability of failure) of the structure when subjected to a particular earthquake. This is only
marginally addressed in EC8, where it is stated that target reliabilities for the ‘no collapse
requirement’ and the ‘damage limitation requirement’ should be established by national
authorities for different types of structures, on the basis of the consequences of failure.
Unfortunately, these target reliabilities are not given, even as ‘boxed’ (i.e. indicative) values
in EC8 or other codes. In a recent study (Wen et al. 1996) addressing this issue, suggested
target 50-year probabilities range from 30 per cent to 50 per cent for the SLS and from 4 per
cent to 6 per cent for the ULS; both values refer to a specific performance criterion, i.e.
exceeding a drift limit.

4.4.2 Configuration issues

The selection of the configuration of the structure (i.e. of the arrangement of the structural
system as well as of the non-structural elements and their connection to the former) is
arguably the most critical step in the seismic design procedure. It is clear from the distribution
of damage in earthquake struck regions that structures with a reasonably regular and
symmetric configuration perform consistently better than structures with irregular
configuration (Arnold and Reitherman, 1982). An irregular configuration is characterized by
one or more of the following problems:

●The plan of the building includes large re-entrant angles (L-shaped, C-shaped, H-shaped
plans; see Figure 4.16a).

●The distribution in plan of stiff members, such as walls, is not symmetric with respect to the
mass centre (M in Figure 4.16b).
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Figure 4.16 Irregular configurations in plan (a), (b) and in elevation (c), (d).

●The distribution in plan and/or in elevation of the mass of the structure is not reasonably
uniform.

●The aspect ratio (height to length) of a building is high (more than about 4).
●There are abrupt changes in lateral load resistance along the height of the building (see

Figure 4.16c).
●There are abrupt changes in lateral stiffness along the height of the building, due to

termination of stiff elements (such as walls or heavy partitions) and/or due to the presence
of setbacks; see Figure 4.16c, d.

There are several reasons for avoiding problematic configurations; they have to do with:

●our inability to accurately predict the (inelastic) response of irregular structures subjected to
strong earthquakes;

●the tendency of damage to concentrate in the weakest parts of a structure; this is true,
regardless of whether dynamic or other refined analysis has been used in the design;

●the increased cost required for providing to an irregular structure the same seismic
resistance as in a similar regular structure.

Some of the problems mentioned previously, particularly the ones related to irregularities in
plan, can often be tackled effectively by splitting a building into smaller parts separated by
seismic gaps, so that each individual part becomes a regular structure. Seismic gaps should
account for a substantial part of the anticipated
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relative movement of the adjacent parts during the earthquake, hence they are generally wider
than standard construction (expansion) joints.

Whereas the advantages of regular configurations have relatively long been recognized,
quantification of regularity requirements is a critical issue that can not be deemed as been
resolved so far. An important consideration is that most of the irregular buildings damaged by
previous earthquakes were designed on the basis of rough methods and the level of detailing
required by the then applicable codes was quite low, while poor construction practices often
made it even lower. Experimental studies involving irregular structures such as frames with
setbacks designed and detailed to modern codes (Wood, 1992), tested on the shaking table,
have clearly indicated that irregular R/C structures can indeed perform adequately, even when
subjected to earthquakes significantly stronger than the one they were designed for. It has to
be pointed out, though, that the foregoing tests involved application of unidirectional
earthquake input, hence they did not address the problem of torsion.

Code criteria for regularity tend to be conservative but the consequences of a building
being classified as irregular are typically not grave. In the UBC the presence of irregularities
affects the analysis procedure (compulsory use of multimo-dal analysis), but it does not affect
the value of the response modification factor R; in contrast, the EC8 q-factor is reduced by 20
per cent for irregular structures.

4.4.3 Failure mechanisms and capacity design
If the structure is allowed to behave inelastically during the design earthquake (Section 4.3.4),
it is obvious that it will respond even further into the inelastic range whenever a stronger
event (having a lower probability of exceedance) occurs. The requirement under such a rarer
event would normally be that the structure does not collapse and/or does not sustain damage
that would jeopardize human life. Given that it is very unlikely that the response of a structure
close to failure can be analysed (particularly in the framework of a practical design), it has
long been accepted that the main goal of seismic design should be to ensure that the collapse
(or failure) mechanism of the structure is a favourite one, so that the structure could displace
well into the inelastic range without falling down in part or entirely.

A typical illustration of the above concepts is made in Figure 4.17 that shows two generic
plastic mechanisms for a multistorey frame. In the first one (Figure 4.17a) the design strength
of all beams has been exceeded at a certain level of the lateral loading (roughly corresponding
to the design earthquake) and ‘plastic hinges’ have formed at the beam critical sections. This
is also the case at the base of the columns, but not in any other column section. In contrast, the
plastic mechanism shown in Figure 4.17b is characterized by column hinging both at the top
and bottom of the ground storey columns; this is commonly referred to as a ‘soft storey’ or
‘weak storey’ mechanism. It is clear from the kinematics of the two mechanisms that for the
same top displacement (δu) the ratio of the required plastic
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Figure 4.17 Favourable and unfavourable collapse mechanisms in buildings: (a) beam mechanism
(favourable); (b) column mechanism (unfavourable).

hinge rotations is equal to the ratio of the total height to the storey height (i.e. in the four
storey structure of Figure 4.17 the plastic rotation of the columns in the mechanism of Figure
4.17b is four times that of the members in the beam mechanism (Figure 4.17a)). It is clear that
the ductility requirements, expressed here by the plastic hinge rotations, are higher in the
column sidesway mechanism, and the difference increases with the height of the frame. As
discussed in detail in the literature (for instance by Penelis and Kappos, 1997, for R/C
structures, and by Bruneau et al., 1998, for steel structures), the available ductility of
members subjected to compressive axial loading (columns) is lower than that of beams, while
the second order (P-Δ) effects that may lead to physical collapse of the structure are also more
critical in the column sidesway mechanism. These are the main reasons why the plastic
mechanism involving mainly hinges in the beams is considered a favourable one, whereas the
mechanism involving hinges at both the top and bottom of columns is an unfavourable one. A
practical way to avoid the formation of the latter mechanism is to ensure that the beams at a
beam—column joint are stronger than the columns.

Provisions to materialize the previously described concept are included in most modern
codes and form part of the so-called capacity design of a structure subjected to seismic
loading. Capacity design is essentially a procedure for imposing on a structure the desired
member strength hierarchy and eventually achieving a failure mechanism involving inelastic
response in members that can conveniently (and reliably) be detailed to develop inelastic
deformations. Most seismic codes recognize this principle, albeit to a varying degree of clarity,
and the degree to which capacity design is incorporated in each code also varies significantly.
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Capacity design generally dominates the response of structures that heavily rely on the
development of inelastic deformations to ensure a satisfactory seismic performance, while
structures that are designed for relatively high seismic forces, hence are not required to
develop significant inelastic deformations, are much less controlled by capacity design
considerations. This interrelationship between the required ductility (and, inversely, the level
of design force) and the degree to which capacity design affects a structure are also
recognized by most codes.

4.4.4 Passive and active control

Although the concepts of inelastic spectra and behaviour factors, coupled with capacity design
principles, clearly dominate current seismic codes, it has to be emphasized that they do not
represent the only conceptual framework available for seismic design. Furthermore, an
engineer should fully realize that designing a structure on the basis of these concepts means
that under earthquakes of an intensity equal to or exceeding that of the design event, damage
to the structure could be both substantial and extending into a large part of the structure.
Perhaps more importantly, formation of a favourable mechanism does not guarantee that
interstorey drifts and/or floor accelerations will be low enough to prevent extensive damage to
the non-structural elements and the content of the building. These and other concerns have led
to the development of alternative conceptual frameworks for seismic design, currently
referred to as ‘passive’ and ‘active’ control of the seismic response of the structure. By far the
most practical approach is passive control that incorporates the fundamental ideas of seismic
isolation and provision of supplemental damping. These will be discussed in the remainder of
this section, followed by a brief reference to the idea of active control.

Seismic isolation and passive control
Isolating a structure from the shaking ground is a rather old concept, but it is only since the
1970s that practical isolation systems have been developed and used for earthquake protection
of buildings and bridges. The concept was initially referred to as base isolation but at present
the term seismic isolation prevails, in view of the fact that the isolating devices do not have to
be always located at the base of the structure.

There are two interrelated ideas behind developing a seismic isolation system: the first one
is to make the structure much more flexible than it is, by altering the way it rests on the
ground, hence shift it to the long period range of the response spectrum that is typically
characterized by reduced accelerations and consequently reduced inertial forces; the second is
to introduce some kind of ‘fuse’ between the structure and the ground, whereby the amount of
base shear to be transferred from the shaking ground to the structure is controlled by the
strength of the fuse. By making the structure more flexible, one might achieve lower seismic
forces, but displacements tend to increase. It is therefore essential to also control the
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amount of horizontal displacement of the isolated structure and an efficient way to do this is
by increasing its damping (refer to Figure 4.8 for the effect of damping on seismic response
spectra). This type of structural response control is referred to as passive control.

Currently used isolation systems are based on the concept of flexible supports which can
either remain essentially elastic (linear isolation) or enter the inelastic range (non-linear
isolation) upon exceeding a certain level of horizontal shear (Skinner et al., 1993). The basic
elements included in a seismic isolation system are:

●Horizontally flexible supporting devices (isolators) located either between the structure and
its foundation or at a higher level in the structure; in buildings the flexible supports are
commonly located at the superstructure-foundation interface, whereas in bridges they are
located at the top of the piers and abutments.

●A supplemental damping device (or energy dissipator) for reducing the relative horizontal
displacement between the superstructure and substructure (i.e. the portion of the structure
below the isolators).

●Some means for controlling displacements at service levels of lateral loading (i.e. wind
loading and SLS or smaller earthquake loading).

Today there are many types of isolators including, among others, rubber (elastomeric)
bearings, roller bearings, sliding plates, rocking structures, cable supports, sleeved piles,
helical springs, and air cushions. Detailed descriptions of the various isolating devices can be
found in the massive literature available, which includes two recently published books dealing
exclusively with this topic (Skinner et al., 1993; Naeim and Kelly, 1999) and chapters on
seismic isolation included in books of broader scope (Booth, 1994; Hu et al., 1996; Priestley
et al., 1996).

Supplemental damping devices can be of different types, including

●Hysteretic dampers, wherein energy dissipation is taking place by yielding of metals such as
lead and mild steel, which have hysteresis loops very close to elastoplastic. A popular
isolator that incorporates a damping device is the lead-rubber bearing, shown in Figure
4.18, which is an elastomeric bearing (layers of rubber reinforced with thin steel plates to
increase the vertical stiffness) with a lead core which provides both damping (after yield)
and resistance to service lateral loads.

●Viscous dampers, such as the oil dampers commonly used in the motor industry, but also
newer devices such as shear panels containing high viscocity fluids that have recently been
developed in Japan. These mechanical devices are separate from the isolators.

●Frictional dampers based on the concept of friction between different materials, for
instance stainless steel and PTFE (Teflon). Such systems have a number of advantages, but
(unlike the previous ones) they need to be supplemented by a restoring force mechanism
(i.e. a means for returning the isolated
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Figure 4.18 Two commonly used isolating devices: (a) the lead—rubber bearing; (b) the friction
pendulum system.

structure to its initial position after a strong earthquake). An efficient system in this
category is the friction pendulum (Figure 4.18b), wherein the sliding surface of the
bearing is concave, hence the restoring force is provided by the horizontal component
of the weight of the structure itself.

Control of displacements under service horizontal loading can be obtained in several ways.
Specially manufactured elastomers have a high rigidity at low strains, typically three to four
times that at higher strains, and so do the aforementioned lead-rubber bearings. Alternatively,
fuse-type sacrificial elements such as steel pins can be used, designed to fail at a desirable
level of lateral loading; these elements should be replaced after each earthquake motion
exceeding that level.

In a seismically isolated structure the largest part of the lateral displacement takes place at
the location of the isolators. So long as this displacement can take place, the drifts in the
superstructure can remain very low, hence damage to both structural and non-structural
elements is minimal. Failure of such a system can occur due to rollover (instability by falling
over) of the bearings at large displacements,
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exceedance of their shear strain capacity, or buckling of the bearings (at low strains). Special
restrainers (such as steel angles) can be provided close to the bearings to prevent them from
toppling over.

A critical point in passive control systems is that whereas isolator damping is always
reducing the displacements of the structure that are controlled by the fundamental mode, it
tends to increase floor accelerations caused by higher modes. This might be very important in
structures where protection of secondary systems (equipment and non-structural elements) is
the main reason for using seismic isolation. Seismic attack on secondary systems is frequency
selective and it is possible to design isolation systems that reduce the response of such
systems more than that of the primary structural system. A related issue is that in non-linear
isolation systems (which are used in the majority of applications), control of the amount of
base shear through the strength and the stiffness of the isolators does not guarantee control of
the storey shear distribution along the height of the building. Whenever higher mode response
is not adequately controlled, ‘bulged’ distributions of storey shear can result and in extreme
cases the shear in the upper half of the structure may exceed the base shear (Skinner et al.,
1993). The foregoing are clear indications of the need for a reliable dynamic analysis when
dealing with isolated structures.

The first design guidelines for seismic isolation were issued in California in 1986, and have
been subject to several revisions; they were incorporated first (1991) as an appendix and later
(since 1994) as a formal part of the UBC. A critical review of code provisions for seismic
isolation can be found in Naeim and Kelly (1999). The current versions of UBC (ICBO, 1997)
and NEHRP (FEMA, 1997a) contain provisions that are essentially identical, with the
exception of the definition of design earthquake (see Section 4.3.2). These provisions include
both the equivalent lateral force and the dynamic analysis procedures for seismically isolated
buildings, but the restrictions for the former are such that in most practical cases the dynamic
approach has to be applied. Two sets of verifications are required: The first one is for the
design earthquake (10 per cent/50 year probability), under which the structure is required to
remain essentially elastic. The second one is a stronger event (10 per cent/250 year
probability) for which the isolation system should be designed and tested, while all building
separations and utilities that cross the isolation interface should be designed to accommodate
the forces and displacements associated with this seismic input. Whereas simplified methods
based on the equivalent SDOF are available (see, among others, Skinner et al., 1993) and can
efficiently be used for preliminary design, most seismically isolated structures are currently
designed using time history analysis. In the current Eurocode package, provisions for seismic
isolation are only included in the bridge part EC82 (CEN, 1994c). However, currently (2000)
such provisions are being developed for buildings and will be incorporated in the final (EN)
version of EC8.

The main reason why isolation is not widely used today (particularly in buildings) is the
concern regarding initial cost of the project (i.e. that in most cases a seismically isolated
building costs 1 per cent to 5 per cent more than the
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corresponding conventional one). Such a comparison is strictly not valid as it completely
ignores cost/benefit issues relating to future savings due to much lower level of damage in the
isolated structure, which can be substantial (Mayes et al. 1990). On an initial cost basis,
isolation can offer more economical solutions if the design force level is high (e.g. important
structures in high seismicity areas) or if, as a result of using isolation to control damage, the
structure is detailed for less ductility than in the case of conventional buildings; the latter is an
option that is not explicitly recognized by current seismic codes. Finally, the isolation solution
can become attractive when it leads to lower cost of insurance (i.e. lower premiums or no
mandatory insurance against earthquakes in high seismicity areas).

Active control
Whereas in passive control specially provided devices absorb most of the energy input into
the structure, the devices used in active control introduce an energy (or force) source into the
structure. Active control systems have been developed during the last two decades for
reducing the response of buildings (particularly tall ones) to wind and earthquake loading.

In a structure subjected to seismic loading and incorporating an active control system, the
ground motion and/or the structure’s response have to be monitored with appropriate sensors
during the earthquake. Records from the sensors are then fed into a controller (computer) that
activates devices for modifying the structure’s response continuously during its excitation.
These devices are either hydraulic actuators acting against masses in a direction that opposes
that of the earthquake forces or they change the dynamic properties of the structure in order to
reduce its response.

This is an attractive concept, but when applied to massive civil engineering structures such
as tall buildings (instead of mechanical engineering structures) several practical problems
arise, for instance the provision of adequate reaction systems to resist the large control forces
produced by the actuators. Another serious problem is that since active control systems
depend on power supply, it has to be ensured that this supply will not be interrupted during a
strong earthquake (as it often happens), otherwise the whole system will remain idle exactly at
the time that it will be required to function.

Currently used active control systems include active mass drivers, active tendons (wherein
tension in the prestressed tendons is varied during the earthquake excitation in a way to
reduce the structure’s response), active adjustable stiffness systems (joints between the braces
and the structure are either engaged or disengaged by closing or opening a control valve), and
pulse generators (systems of pneumatic actuators and nozzles). Combinations of the above
systems have also been suggested (Soong et al. 1991), offering some advantages.

Despite the attractiveness of the concept and the high quality interdisciplinary research
carried out over the last two decades, the practical application of active
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control systems still remains very limited, mainly in full-scale demonstration projects.
In addition to purely passive and purely active control systems, hybrid systems have also

been suggested (Soong et al., 1991), that complement each other (for instance, a passive
damper can reduce the force that has to be reduced by the active controller), hence producing
an effective protecting system.
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Chapter 5
Wave loading

Torgeir Moan

5.1 INTRODUCTION

Wave loading is important for ships, fixed and compliant offshore structures, floating bridges
and airports. The focus here will be on marine civil engineering structures such as fixed and
compliant platforms and buoyant bridges, as shown in Figure 5.1.

Wave load effects are required for design checks of ultimate, accidental and fatigue limit
states (ISO, 1994). Ultimate and accidental limit states are often governing and are based on
extreme load effects. For structures in extratropical climates, fatigue may also be an important
design criterion and require an estimate of the number of stress ranges at different magnitudes
for the service life. It is noted that the main contribution to fatigue damage is caused by load
effects which are of the order of 15–25 per cent of the extreme load effects in the service life
and hence by waves with periods in the range 2 to 8 sec.

Wave load effects for design are commonly determined by quasi-static analysis methods
when the structures or structural modes have natural periods in the lower range of wave
periods, while an intrinsically dynamic analysis approach is required for structures with
natural period above the wave period.

Typical ranges of natural periods for some marine structures are displayed in Figure 5.2.
However, besides wave loads with period equal to the wave period, in the range of 2–3 to

20 sec, the presence of certain non-linear features of the loading may cause steady state loads
with a period which is a fraction , ,…or a multiple 2, 3, …of the wave period. Such steady
state loads, as well as wave impact loads and other transient loads, may cause inertia and
damping effects which need to be accounted for by using a proper dynamic analysis
methodology, also for platforms with natural periods below the wave period. For such
structures dynamic effects on fatigue loads will be most important.

For situations where dynamic effects need to be considered, the long-term stochastic
character of the wave loading and its effects is important to recognize. At the same time,
design analyses should be made as simple as possible, not least to avoid errors.
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Figure 5.1 Selected marine civil engineering structures (Moon et al., 1990).
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Figure 5.2 Natural periods of marine structures and wave excitation periods.

With this background in mind, the present chapter addresses characteristic features of wave
loading and associated dynamic load effects, primarily for marine civil engineering structures.

5.2 WAVE AND CURRENT CONDITIONS

5.2.1 General

Surface water waves may be generated by wind, tidal bore, earthquake or landslides. Internal
water waves may be generated at a boundary between water layers of different densities, and
are not likely to occur together with wind generated surface waves.

The focus here is on oscillatory wind generated surface waves. Waves developed in an area
may endure after the wind ceases and propagate to another area–as
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Figure 5.3 Surface elevation as a superposition of regular waves with different height, frequency and
direction.

swell with decaying intensity and slowly changing form. Long period swell travels a very
long distance as long-crested waves.

Wind-generated waves consist of a large number of wavelets of different heights, periods
and directions superimposed on one another (Figure 5.3). Although regular waves are not
found in real seas they can closely model some swell conditions. They also provide the basic
components in irregular waves and are commonly used to establish wave conditions for
design. Regular waves are therefore first characterized in terms of dynamic pressure, particle
velocity and accelerations in Section 5.2.2. Then, irregular waves are dealt with in Section
5.2.3, while their long-term variability is briefly treated in Section 5.2.4.

The current velocity, in general, is composed of two components, namely, wind driven
(vcwi) and tide driven (vct) components. In addition, coastal and ocean currents may occur.
Also, eddy currents, currents generated over steep slopes, currents caused by storm surge and
internal waves, should be considered. Very little information about their surface velocity and
velocity distribution is available. The wind current is commonly put equal to 1.0–2.0 per cent
of the ‘sustained’ wind velocity 10 m above the sea surface. The surface value of the tidal
current vcto in the North Sea may be in the range of 0.2 to 0.5 m/s. The variation of current
speed over time is slow in comparison with the natural periods of a structure. Hence, the
current velocity is taken to be constant.

In other areas (e.g. Brazilian waters and the Gulf of Mexico), higher current velocities may
be experienced. If the contribution from current velocity on the (drag) load is significant, local
measurements at the actual offshore site should be performed.

Relevant variation of the current velocity over water depth is shown in Figure 5.4 .
Wave and current interact. When the current is constant in time and space, the wave

appears to travel on the current. In a stationary axis system this results in a Doppler shift in
the wave period—wavelength relationship.
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Figure 5.4 Current velocity profile.

5.2.2 Regular waves

General
Based on the assumption of an inviscid, irrational and incompressible fluid, the wave problem
may be formulated in terms of a velocity potential Φsuch that the velocity vector is given as:

. The velocity potential should fulfil the Laplace equation (see
e.g. Clauss et al., 1991)

(5.1)

and the following boundary conditions:
1. Kinematic boundary conditions: No flow through the sea bottom:

(5.2a)

where ∂/∂n denotes the derivative normal to the sea bottom. In deep water, an alternative
formulation of this condition is:

(5.2b)

If a body is present, a ‘no flow through the body’ criterion must also be satisfied:

(5.2c)

Here v and n denote the velocity and normal vector of the body present, respectively. Further,
a fluid particle on the free surface is assumed to remain on the free surface. This is expressed
in the kinematic free surface condition:



(5.2d)

where ζ denotes the instantaneous free surface elevation. 
2. Dynamic boundary conditions: On the free surface, the pressure is to be equal to the
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atmospheric pressure. This is expressed by use of Bernoulli’s equation:

(5.2e)

It is noted that the free surface conditions are non-linear, and that they are to be fulfilled on a
free surface which is not known until the problem is solved.

Linear theory
The Airy theory is based on a linearization (i.e. Φis supposed to be proportional to the wave
amplitude), the wave elevation amplitude ζa is small (i.e. derivatives of ζ are zero) and the
velocity square terms in eqn (5.2e) are neglected. This also means that the free surface
boundary conditions can be satisfied on z=0 instead of z=ζ . 

The solution of the linearized problem, as obtained by separation of variables (e.g. Clauss
et al., 1991), may be written as

(5.3)

with the circular frequency:

(5.4)

and the wave number:

(5.5)

The wave elevation is given by:

(5.6)

Equation (5.6) represents a wave propagating along the positive x-axis. The linearized
dynamic pressure is

(5.7)

and the velocities and accelerations in the x and z directions are:



(5.8)

(5.9)

(5.10)

(5.11)
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Figure 5.5 Wave elevation and kinematics; (a) Linear theory; (b) wave crest kinematics.

The horizontal velocity and acceleration are seen to have their absolute maximum values at
crest/trough and wave nodes, respectively. The wave elevation, dynamic pressure and
horizontal velocity are in phase, while the horizontal acceleration is 90° out of phase.
Moreover, it is seen that the kinematics (e.g. horizontal velocity) at locations half a
wavelength apart is in opposite phase. These phase relationships are of considerable
significance for calculation of wave loads on structures (Figure 5.5). Further details about the
Airy theory may be found, for example, in Clauss et

Modifications of the kinematics of linear theory
The linear theory is valid only for small values of wave amplitudes. Particle velocities in the
crest region will especially be subject to significant uncertainties, which will affect drag
forces, which are proportional to velocity squared, and other loads which depend upon crest
kinematics. Rather than extrapolating, for example, the particle velocity according to the
exponential variation of eqn (5.8), various empirical modifications of the linear theory have
been proposed to improve the accuracy. One alternative is to use a linear extrapolation or
simply use a constant
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velocity equal to that at the Mean Water Level (MWL) in the crest. Linear extrapolation of the
kinematics above MWL is obtained by, for example, replacing eqn (5.8) by

(5.12)

A more sophisticated approach commonly used is the so-called Wheeler stretching (Wheeler,
1970). This modification introduces a new vertical co-ordinate which moves together with the
free surface. The velocity potential Φand the corresponding kinematics can then be obtained
by introducing a co-ordinate zc instead of z in eqn (5.8); with . This
means that the kinematic quantities have the same size and vertical distribution, only now
with the free surface as starting point instead of the MWL, as shown in Figure 5.5b.
Gudmestad (1993) recently reviewed various engineering approximations to wave kinematics
and compared them with experimental results.

A deficiency of the original and modified Airy theory is that it provides symmetric waves
while extreme waves are known to be asymmetric (i.e. with a larger crest than trough). Higher
order wave theories have been proposed to better represent the shape and kinematics of the
waves (see e.g. Clauss et al., 1991).

Higher order wave theory
The linear wave theory represents a first order approximation of the free surface conditions,
which means that errors will become large as the waves become higher (i.e. as increases),
because of the neglected higher order terms. This deficiency can be improved by introducing
higher order terms. Commonly this is done by means of perturbation theory. Wave elevation
and velocity potential are then expanded into power series, with a being a small perturbation
parameter, so that the significance of additional terms decreases with their order (see e.g.
Sarpkaya and Isaacson, 1981)

(5.13)

(5.14)

Each individual potential Φ(i) satisfies both the Laplace equation and the non-linear boundary
conditions with successive refinement. At the free surface, the velocity potential is expanded
as a Taylor series about the still water level to obtain successive approximations of higher
order wave theories:

(5.15)

The perturbation parameter (α) turns out to be . The second order expansion
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of the surface elevation is

(5.16)

wheref(2)(z) is a function of z (e.g. Sarpkaya and Isaacson, 1981). Equation (5.16) shows that
the crest becomes more peaked while the troughs become more shallow. The effect of higher
order wave theory on the kinematics depends upon wave height (H/(gT2)) and water depth
(d/gT2)) parameters. For high waves in deep water the Airy theory yields larger particle
velocities than Stokes higher order theory.

Alternative wave theories based, for example, on stream function instead of velocity
potential are discussed, for example, by Sarpkaya and Isaacson (1981).

It is noted that the Stokes theory still depends upon the limitation of the assumed small
non-linearities within the perturbation theory.

When a current is present, the kinematics corresponds to a superposition of horizontal
current and wave particle velocities.

5.2.3 Wave kinematics of irregular waves in short-term periods

Linear theory
During a suitably short-term period of time (from half an hour to some hours) the sea surface
elevation is commonly assumed to be a zero mean, stationary and ergodic Gaussian process
(e.g. Kinsman, 1965). An interpretation of this process is a linear combination of independent
and arbitrarily distributed random disturbances. In strong wind generated waves non-
linearities in the wave process tend to disturb the Gaussian character. The Gaussian process is
completely specified in terms of autocorrelation function of the surface elevation or the three-
dimensional wave spectral density. Due to the unique relationship between wave frequency
and wave number for water waves, a two-dimensional spectral density suffices (see e.g.
Kinsman, 1965; Sigbjørnsson, 1979).

In the time domain the wave elevation may be described by a sum of long crested waves
specified by linear theory, with different amplitude (aik), frequency (ωi), wave number (ki),
direction relative to the x-axis ( k) and phase angle (εik) as follows:

(5.17)

If (eqn (5.17)) expresses an irregular wave propagating along the x-axis. For another
period of the same sea state, the coefficients (εik) will be different while the distribution of aik
over ωi and k will be ‘the same’. The distribution of aik overωi and k is a ‘deterministic’
measure of that sea state, while the phase angleεik appears to be uniformly distributed over
(−π, π).
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The amplitude aik may be expressed by the two-dimensional energy spectrum:

(5.18)

The two-dimensional (directionality frequency) spectral density is conveniently
expressed by

(5.19)

where Sζ(ω) is the one-dimensional spectral density that can be estimated from observations
of ζ(t) at a given location, by a Fourier transform of the autocorrelation function of the ζ(t)
process (see Chapter 10). D( , ω) is the so-called spreading function.

Various analytical formulations for the wave spectrum are applied (as discussed e.g. by
Price and Bishop, 1974). In developing seas the JONSWAP spectrum (Hasselman et al.,
1973) is recommended and frequently used. For fully developed seas, the Pierson—
Moskowitz spectrum (see e.g. Gran, 1992) is relevant. Wind sea and swell have different peak
periods and a combined sea state may have a two-peaked spectrum (as proposed e.g. by
Torsethaugen, 1996). It should be noted that much of the wave energy is concentrated in a
narrow frequency band close to the peak(s) of the spectrum. Moreover there is a significant
difference in the spectral amplitudes for high frequencies, implied by different models.

The JONSWAP spectrum is parameterized in the following form:

(5.20)

where Hm0 and are the significant wave height and spectral peak period,
respectively,σ=0.07 for ω≤ωp andσ=0.09 for ω>ωp. The peakedness parameter γdepends
upon and varies in the range from 1 to 7.

While the spreading function D( ,ω) generally is frequency dependent, it is usually
approximated by

(5.21)

where 0 denotes the mean wave direction and C is a normalization factor to ensure that the
integral of D( · ) over is unity, and n normally varies between 2 and 8.

The kinematics (particle velocities, accelerations, pressures) for irregular waves are then
obtained by superposition of the kinematics based on linear (Airy) theory for each regular
wave. It is noted that there is no phase lag in the kinematics in the vertical direction.

In the frequency domain the kinematics are described by spectral densities. Hence, the
following cross-spectral density can be derived from the wave number
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spectral density (Sigbørnsson, 1979)

(5.22)

where ζm and ζn are the wave amplitudes at points m and n with co-ordinates (xm, ym) and (xn,
yn), respectively, and

The probabilistic description of the wave kinematics in terms of the particle velocities and
accelerations is commonly achieved by applying the principle of superposition of independent
and arbitrarily distributed disturbances and the Airy wave theory. Then the frequency cross-
spectral density of, for example, the water particle velocity vx may be expressed as follows,
applying eqns (5.8) and (5.22)

(5.23)

Analogous expressions hold for the frequency cross-spectral densities of acceleration, and
acceleration and velocity.

Higher order irregular wave theory
To reduce the deficiencies of the linear theory, especially in predicting extreme values, a
consistent second-order or higher order irregular wave theory, analogous to the higher order
regular wave theories mentioned, may be established. However, in current engineering
practice, improved kinematics is obtained by modification of the linear theory (e.g.
Gudmestad, 1993). It should be noted that this formulation does not represent the asymmetry
in wave elevation nor the non-linear interaction between individual waves in an irregular
wave process.

The sea surface elevation is not a perfect Gaussian process (see e.g. LonguetHiggins, 1963;
Haver and Moan, 1983; Vinje and Haver, 1994). In the same way as a finite regular wave is
not perfectly sinusoidal (i.e. the crest is larger than the trough), the random sea elevation is
skewed and has more kurtosis than a Gaussian process. Vinje and Haver (1994) found that the

skewness depends upon Hm0 and Tp according to and kurtosis
. Non-Gaussian surface elevation may be generated by a second order

(irregular) wave model for instance based on Stokes’ expansion (see e.g. Longuet-Higgins,
1963), or by transformation of a Gaussian process by a Hermite expansion (see e.g.
Winterstein, 1988).

5.2.4 Wave kinematics of irregular waves in long-term periods

The non-stationary sea state in a long term period (i.e. of some years duration), can be
assumed to consist of a sequence of short term sea states (i.e. stationary zero
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mean ergodic processes), each completely described by the spectral density (see definitions in
Chapter 10). For a given analytical model of the spectrum (e.g. JONSWAP or Pierson—
Moskowitz), the spectral parameters Hm0, Tp, γ, 0 , etc. completely specify the sea state. By
expressing the magnitude of these parameters and possibly the current and wind velocity and
direction in probabilistic measures, the long term process is described. For extratropical
regions, like the North Sea, the joint probability density of the parameters is applied towards
this aim (see e.g. Haver, 1980). A Weibull distribution is then commonly used to describe the
marginal distribution of Hm0, while the conditional distribution of Tp given Hm0 is often taken
to be a log-normal distribution. For tropical areas subject to hurricanes, the long term wave
climate can be described by storms arriving in a sequence (e.g. Jahns and Wheeler, 1972).

Data for the long-term model of the waves can be generated (i) by direct observation of
wave condition; (ii) hindcasting based on wind data.

The probabilistic description of the wave kinematics in terms of the particle velocities and
accelerations is commonly achieved by applying the principle of superposition of independent
and arbitrarily distributed disturbances and the Airy or modified Airy wave theory.

5.3 HYDRODYNAMIC LOADING

5.3.1 General

In general, the effects of waves and currents on marine structures are obtained as vector
superposition of all forces on the individual structural elements. If relevant, the subsequent
response (e.g. the motion of the structure) also needs to be considered. To calculate
hydrodynamic forces, it is necessary to integrate the pressure field over the wetted surface of
the structure. The main force components are (Clauss et al., 1991; Faltinsen, 1990):

●Froude-Krylov force—pressure effects due to undisturbed incident waves;
●hydrodynamic ‘added’ mass and potential damping force—pressure effects due to relative

acceleration and velocity between water particles and structural components in an ideal
fluid;

●viscous drag force—pressure effect due to relative velocity between water particles and
structural components.

The Froude—Krylov (FK) force acting on a submerged body in a wave field may be obtained
by integrating the pressure p on the surface S

(5.24)

when the basic surface integral expression, first, is transformed to a volume integral by
applying the Gauss theorem, then Euler’s equation for an incompressible,
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in viscid and irrotational fluid is introduced and finally the convective term of acceleration is
ignored, n denotes a normal to the surface, v is the particle velocity of the fluid and ρdenotes
the density.

For a slender body, the water particle acceleration changes only slightly within the structure
and may be substituted by the acceleration at the component axis, to yield

(5.25)

The hydrodynamic (added) mass force acting on a body is obtained by integration of the
pressure field arising from the relative acceleration between the structural component and
fluid over the wetted surface. This force can be determined by accelerating the body in a fluid
at rest, and can generally be written as

(5.26)

In general, CA depends upon the flow conditions and the location of the body. It is frequency
dependent for bodies at or close to the surface, whereas it is independent of frequency for
submerged, slender bodies. Data may be found, for example, in Clauss et al. (1991). For a
submerged, slender cylinder CA is equal to 1.0.

The viscous (drag) force per unit length normal to a member may be written as

(5.27)

where vn is the velocity normal to the axis of the member with projected crosssection of A.
Drag coefficients may be found, for example, in Clauss et al. (1991).

The load formulation applicable depends upon the flow condition, as measured, for
example, by the Keulegan—Carpenter number (KC) and the Reynolds number (Re). KC is
defined as KC=vT/D. (v is the maximum horizontal wave particle velocity, T is the wave
period and D is the diameter of the structure). For KC smaller than 2, potential theory applies,
while viscous effects should be included for KC larger than 2. Re is defined as Re=v·D/v,
where v and D are given above and v is the kinematic viscosity of water, v=1.11×10−6m2/s.

For slender structures, FFK and FA are approximated by a single inertia term, and the
viscous force makes up the drag term FD. In this case, it was assumed that the water particle
velocity and acceleration in the region of the structure do not differ significantly from the
values at the cylinder axis. This assumption is only acceptable when the diameter, D, of the
structure is small compared with the wave length, λ(i.e. for D/λ<0.2). The loading on slender
members is further discussed in Section 5.3.2.

With larger structural diameters, the incident wave is significantly disturbed by the
structure. Assuming linear wave theory, the steady state wave field then results from the
interference of the incident wave and the body, and may be derived from the superposition of
the potentials of the undisturbed incident wave and an induced wave field of the same
frequency, generated by and radiating from the body. Here viscous forces are of less
significance, since the ratio of wave
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height to structural diameter remains sufficiently small. According to potential theory, the
pressure distribution and the corresponding forces can be calculated from the velocity
potential, as discussed in Section 5.3.3.

When the wave acts upon a structure, the latter will be set in motion, which will set up
waves radiating away from it. Reaction forces are then set up in the fluid that are proportional
to acceleration and velocity of the structure, respectively. These are inertia (added mass) and
potential damping forces due to wave generation. In addition, viscous (drag) forces are set up.
This issue is treated in Section 5.3.4. Finally, Section 5.3.5 deals with particular transient
wave loading phenomena such as wave slamming and ringing.

5.3.2 Steady-state loading on slender structures

If the characteristic dimension (e.g. the diameter D of a circular structural component) is
small relative to the wavelength λ(i.e.D/λ< 0.2), there is little al-teration of the incident wave
when it passes the structure. The wave does not ‘see’ such a slender structure: as diffraction
and reflection phenomena are negligible, the structure is said to be ‘hydrodynamically
transparent’. With relatively small dimensions, local variations of particle velocity and
acceleration in the region of the structural element are small enough to be ignored, and values
are calculated at the position of the structural element as a whole.

For slender members which are fixed the force per unit length qn, normal to the member, is
most often calculated by the extended, empirical Morison formula (e.g. Clauss et al., 1991):

(5.28)

where ρis the density of the fluid, CM and CD are the inertia and drag force coefficients,
respectively, and vn and an are, respectively, the wave particle velocity and acceleration
perpendicular to the member. dA. and are the exposed area and displaced water of unit
length. For a circular member, with a diameter D,

The first term results from the FK and hydrodynamic mass force while the second
terms in eqn (5.28) is due to the viscous drag term and downstream wake.

The vn and an for a design wave are obtained directly from the kinematics for a regular
wave. In the case of random waves, vn and an are obtained by superimposing the kinematics
for all regular waves that constitute the random wave history.

For vartical cylander in deep water, the total integrated force qD and qI are equal for a wave
height to diameter ratio of about 10.

A crucial issue in applying Morison’s equation is the determination of CD and CM·
Extensive data from laboratory experiments indicate a general range of 0.6 to 1.2 for CD and
1.2 to 2.0 for CM, depending upon flow conditions (as measured
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by the KC, Re numbers) and surface roughness (Sarpkaya and Isaacson, 1981). When
applying hydrodynamic coefficients to calculate loading on platforms consisting of many
members, additional uncertainties are encountered and should actually be reflected in the
coefficients.

Under such circumstances the coefficients are chosen so as to adequately represent the
loading in view of the wave kinematics formulation used.

The API (1993/1997) recommendation for calculating loads on jacket platforms may serve
to illustrate this point. The key points in this procedure for calculating extreme load effects
are:

●regular wave with appropriate height (e.g. corresponding to 100 year return period) and
period;

●wave kinematics according to two-dimensional Stokes fifth order (or other Stokes type)
methods and appropriate correction factors for shortcrested seas and current shielding or
blockage (i.e. the effect of the structure on the kinematics);

●the input current velocity profile, which refers to MWL, is modified by stretching to
provide current velocities over the total wetted surface;

●the effective diameter of the member is calculated by D=Dc+2t, where Dc is the clean outer
diameter and t is the thickness of the marine growth;

●drag and inertia coefficients for calculation of global loads are selected as:
smooth cylinders: CD=0.65, CM=1.6
rough cylinders: CD=1·05, CM=1.2

Members located 2 m above MWL may be considered smooth and those below are considered
to be rough.

The hydrodynamic coefficients were calibrated to fit in-service measurements (Heideman
and Weaver, 1992).

The relevant hydrodynamic loads for fatigue analyses correspond to more moderate waves
(i.e. with smaller KC numbers than for extreme waves). The implication may be to apply the
same CD for smooth cylinders and reduce the CD for rough cylinders and increase CM to 2.0
(API, 1993/1997).

Morison’s equation accounts for in-line drag and inertia forces, but not for the ‘out of
plane’ (plane formed by the velocity vector and member axis) lift force due to periodic,
asymmetric vortex shedding from the downstream side of a member. Due to their high
frequency, random phasing and oscillatory (with zero mean) nature, lift forces are not
correlated across the entire structure. Their effect on global loads can therefore be ignored
while they may have to be considered for local loads. Morison’s equation also ignores axial
FK, added mass and drag forces, which will be of increasing importance with increasing
diameter to member length.

For (dynamic) spectral or time domain analysis of surface piercing framed structures in
random Gaussian waves and use of modified Airy (Wheeler) kinematics with no account of
kinematics factor, the hydrodynamic coefficients should, in absence of more detailed
documentation, be taken to be (NORSOK N-003, 1999) CD=1.0 and CM=2.0.
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Figure 5.6 Effect of phase angle on forces in regular waves.

These values apply both for stochastic analysis of extreme and fatigue action effects. It is
noted that the increased value of especially CM is to account for the non-symmetry of wave
surface elevation in severe wave conditions.

The presence of a current will change the wave height (and, hence, the spectral density for
the sea elevation), the type of flow orbits (and, hence, in principle the wave force coefficients)
as well add a contribution to the sea particle velocity (Sarpkaya and Isaacson, 1981). In many
cases, the effect of current is implicit in observed wave data. In such cases, the effect of
current on wave height should not be considered. The current velocity is added vectorially to
wave particle velocities. With a 100 year surface current velocity of the order 0.5 to 2.0 m/s,
and a maximum wave particle velocity (in a 30 m high wave) of the order 7 to 9 m/s, the
current contributes significantly to the hydrodynamic loading, due to the quadratic form of FD.

The cyclic character of waves implies that there is a phase angle between the wave forces
on different members, as illustrated in Figure 5.6.

5.3.3 Steady-state loading on large volume structures

As mentioned in Section 5.3.1, the accuracy of Morison’s equation will diminish whenD/λ
increases beyond 0.2.

Consider, for instance, a vertical cylinder with a diameter D=2R, resting on the seabed and
piercing the surface. The incident potential Φ0, given by eqn (5.3), is known.

The radiation potential Φ7 is solved from a boundary value problem in terms of the Laplace
differential equation in the fluid domain and appropriate boundary conditions. The boundary
conditions consist of the conditions at the ocean bottom, the free surface and the surface of the
structure as well as a radiation condition far from the structure. It is demonstrated, for
example, in Clauss et al. (1991) that Φ7
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can be expressed in a polar co-ordinate system by a product of a function in z and a function
in r (radial co-ordinate).

Once the velocity potential ( ) is known, the pressure on the surface of the
structure can be calculated from the linearized Bernoulli’s equation ( ) and the
horizontal and vertical forces may be determined by integrating the pressure.

For a vertical cylinder with diameter D=2R, a closed form solution often named the
MacCamy and Fuchs (1954) approach, can be obtained.

The horizontal force q in the x-direction per unit axial length of the cylinder is computed
as:

(5.29)

where , are the
derivatives of first order Bessel functions of the first and second kind, respectively. is the
volume ( )of the cylinder per unit length. The horizontal force may be expressed in terms
of an effective inertia coefficient CM and a horizontal water particle acceleration component
ax at the centre of the section of the cylinder and at an elevation z corresponding to the inertia
term of the Morison equation. Hence, ax is given by eqn (5.10). It is noted that the horizontal
wave force is phase-shifted with respect to the acceleration. It is seen that

(5.30)

As shown in Figure 5.7, CM is approximately equal to the slender body value of 2.0 for
kR≤0.1.

Figure 5.7 Effective inertia coefficient versus diffraction parameter for a large diameter vertical
cylinder, piercing the water surface.



Page 192

It is noted that the diffraction effects will significantly reduce CM when waves with a period
of, say, 5 sec act upon columns with a diameter that exceeds 8 m. This issue is important
when the structure has natural periods around 5 sec.

Analytical solutions to several other cases of simple geometry for offshore structures can be
developed (see e.g. Gran, 1992). These generally require that the member be far removed
from a boundary, particularly the free surface. Some of these members include spheres,
horizontal cylinders, bottom seated hemispheres and bottom seated half-cylinders. For more
complex cases numerical methods have been proposed to obtain wave diffraction solutions.
These methods include boundary element, finite fluid element, conformal mapping, and
hybrid techniques. The solutions have received many experimental verifications and practical
applications (see e.g. Clauss et al., 1991, and Faltinsen, 1990).

Wave diffraction solutions do not include viscous actions. When body members are
relatively slender and have sharp edges, viscous effects may be important and should be
added to the diffraction forces determined.

Wave loads on structures composed of large volume parts and slender members may be
computed by a combination of wave diffraction theory and Morison’s equation. Parts of the
structure may be modelled both by boundary elements to represent the potential
hydrodynamic loads and beams to represent the viscous drag loads. The modifications of
velocities and accelerations as well as surface elevation (wave enhancement) due to the large
volume parts should, however, be accounted for when using Morison’s equation. This
situation may arise in connection with caissons of gravity structures, strong interaction
between large columns, non-vertical sides near the water plane and other features. The results
from boundary element methods should be carefully checked for surface-piercing bodies to
ensure that irregular frequencies are avoided. Moreover, estimates of loads for novel
structural shapes need to be checked by model tests. Model tests have also been carried out
systematically to establish Morison-type formulation for inertia forces on gravity structures
(see e.g. Moan et al. 1976).

5.3.4 Effect of motions
As mentioned above, when the structure moves, as a result of excitation forces, inertia (added
mass) and potential damping forces are generated. If the structure moves, the total inertia
force acting on a slender member of the structure, may then be established as the same FK
force as that acting on a fixed structure, together with the added mass force associated with
the relative acceleration between fluid and structure. The drag force may be established by
replacing the particle velocity in eqn (5.28) with the relative velocity. Hence, the force normal
to the axis of the member may be written as

(5.31)

Equation (5.31) is particularly relevant in connection with analysis of motions of
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floating structures and structural dynamics of bottom supported structures. In the latter case
the relative velocity term in eqn (5.31) should be used with caution. The amplitude of the
structures motion needs to be equal to the member diameter to set up the fluid flow for which
eqn (5.31) is valid. Otherwise, using eqn (5.31) may overestimate the damping and hence lead
to non-conservative load effects.

Analogous considerations apply to large volume structures (large cross-section dimension
relative to the wavelength). However, in that case the FK and added mass loads both need to
be determined by analytical or numerical methods, as mentioned in Section 5.3.3. The added
mass and damping contributions are then determined by introducing a potential Φj for each of
the six rigid body modes as well as possible flexible modes.

For the structures considered herein wave kinematics is commonly determined with
reference to the initial position of the structure. When motion amplitudes become large (i.e. of
the order of the wave amplitude), the position of the structure may be updated, when
excitation forces are determined.

5.3.5 Non-linear wave loading

Slender bodies
The drag force in Morison’s equation, eqn (5.31), is non-linear in particle velocity. The
particle velocity is proportional to wave height according to linear theory. Moreover, the fact
that the drag force is non-linear will introduce higher order harmonics in the force associated
with a regular, periodic wave. The drag and inertia force on, for example, a horizontal
member caused by a regular wave with particle velocity vx=sin(ωt) and acceleration
ax=cos(ωt) (Mo, 1983; Mo and Moan, 1984) are:

(5.32)

(5.33)

When a harmonic wave of finite height passes a structure, forces on a horizontal or a segment
of a vertical member in the ‘splash zone’ may vary in time as indicated in Figure 5.8. Clearly,
by expanding these forces in Fourier series, it is observed that there will be higher order
harmonic components in the overall excitation of the structure. This effect will be more
pronounced when drag forces are predominant because they attain their maxima at maximum
and minimum wave elevation. Also, drag forces are more important in an extreme seaway
than in a moderate one.

To illustrate this point more explicitly, consider a cylinder piercing the wave surface. When
the velocity is assumed to be constant above the MWL and equal to the velocity at the MWL
(vertical extrapolation in Section 5.2.2), the drag and
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Figure 5.8 Schematic force-time history for a horizontal member or segments of a vertical member
above and below the mean water level.

inertia forces can be shown to be (Mo, 1983):

(5.34)

(5.35)

where H[ · ] is the Heaviside unit function defined by H[x] : (0 for ; 1 for
x>0). This fact will also be reflected in the probabilistic description of the complete Morison
equation.

Moreover, if a current velocity vc is added vectorially to the wave particle velocity in eqn
(5.28), the nature of the (drag) force will be affected. Consider, for simplicity, two wave
components with velocity amplitudes of vx1 and vx2, respectively, together with a current vc.
The dragforce during that part of the wave cycle for which the dragforce is positive may be
obtained as:

(5.36)

in which βi is ωit+εi; and εi is a (random) phase angle.
Clearly this (drift) expansion can be extended to comprise all frequencies ωi in the random

sea.
This expression shows that apparent wave force frequencies will have the original
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wave frequencies enhanced by the current, resulting in force components with frequencies
equal to a difference, sum and double frequencies of the wave components.

Components containing the difference frequencies lead to long period forces which may be
critical for rigid body modes of behaviour. The terms with ω1+ω2 lead to high frequency
forces, which may cause dynamic effects in bottom supported platforms.

The non-linearity in Morison’s equation may be linearized to facilitate efficient response
analysis. Linearization may, for instance, be achieved:

●deterministically by requiring that the same energy be dissipated per wave cycle for the
linear and non-linear model;

●stochastically by assuming that the particle velocity follows a Gaussian distribution and
finding the linearization that minimizes the expected mean square error.

Linearization by consideration of energy dissipation for a single wave-component
corresponds to taking the first term in the Fourier expansion, eqn (5.32), and ignoring high-
frequency terms (see e.g. chapter 2, Almar-Næss, 1985). Stochastic linearization of

yields where σv is the standard deviation of v(t) (see e.g. Leira,
1987). Stochastic linearization yields accurate estimates of loads when used to determine
response variance, which is relevant for fatigue analysis, but needs to be used with caution in
estimation of extreme values.

As mentioned in section 5.2.3, particle velocities and accelerations are Gaussian processes
in the time domain. In the frequency domain the kinematics is described by spectral densities
(e.g. eqn (5.23)). The forces (eqn (5.28)) on slender members may also be expressed in the
frequency domain by the cross-spectral density of the load intensity at two locations m and n.
This topic is thoroughly treated by Borgman (1972). It is seen that the spectral density has
peaks at the wave frequency as well as at multiples of the wave frequency as displayed by the
Fourier expansion, eqns (5.34), (5.35).

Clearly, a linearization of eqn (5.36), which yields:

(5.37)

where c is a constant, ignores the higher order components.

Large volume structures
Higher order terms in the potential theory to account for finite wave elevation also cause time-
variant sum and frequency forces on large volume structures in (irregular) waves. For instance,
the second order term of the surface elevation (in e.g. eqn (5.16) for the deterministic wave)
and the quadratic velocity terms in Bernoulli’s equation (eqn (5.2e)) based on the first order
potential will contribute second order force components. The term in Bernoulli’s equation is
somewhat analogous to the velocity squared term in the Morison equation.
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The purpose of the higher order theory is to approximate more accurately the boundary
conditions (i.e. the zero normal flow condition at the instantaneous position of the body and
the pressure condition at the free boundary). Such higher order excitation forces are
commonly derived by a perturbation method, with the following assumptions: variables, x
such as wave height, velocity potential, dynamic pressures and motions of the structure are
expanded in a series of a small perturbation parameters a.

(5.38)

where x(0) represents the stillwater condition and x(1) corresponds to the first order (linear)
approximation. It is noted in particular that the different terms of quadratic velocity potential

are quadratic functions of the first order potentials

. Each of the quadratic potentials must satisfy the Laplace differential
equation and the boundary conditions at the free surface sea bottom and far field mentioned in
Section 5.2.2.

First order wave forces are then expressed by first order velocity potentials and first order
motions, taken care of by the equation of motion. Second order wave forces can then be
explicitly determined on the basis of the second order velocity potentials and first order
potentials as well as hydrodynamic pressures and motions.

Eatock Taylor and Hung (1987) calculated numerically the complete second order forces
on a cylinder.

Non-linear (second and higher order) wave forces generally are an order of magnitude less
than the first order (linear) forces. However, if the period of the wave force coincides with a
natural period, the effect of such forces can be large.

High-frequency horizontal forces on towers made up of slender members and vertical
forces on tension leg platform hulls may be of importance. Low-frequency horizontal (and
vertical) forces may be of importance to the motions of floating structures and tension-leg
platforms.

Ringing loads
Steep, high waves encountering structural components extending above the still water level
may cause non-linear transient loads and load effects. Figure 5.9 shows a measured irregular
wave profile and the corresponding horizontal forces for a short time sample involving a steep
wave. It is observed that a transient high frequency load occurs. Its amplitude is
approximately 20 per cent of the steady state amplitude. Structural responses to these actions
may be dynamically amplified and cause increased extreme response (ringing). Such transient
nonlinear actions may be important for structures consisting of large diameter shafts and
having natural periods in the range of 2 to 8 sec and started to receive serious attention in
connection with monotower, gravity base and tension leg platforms at the beginning of the
1990s. Ringing loads depend on the wave shape and particle kinematics close to the wave
surface and are highly non-linear, and it is generally difficult to distinguish impact/slamming
phenomena from higher order
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Figure 5.9 Measured horizontal force on a vertical cylinder piercing the wave surface (Krokstad et al.,
1996).

ones. However, it is agreed that the ringing load is an inertia-type loading that can be
described by potential theory.

Various models for ringing loads have been proposed. They may be divided into: slender
body and diffraction theories. The simplest slender body theory is based on Morison’s
equation and incident wave kinematics. Wave diffraction due to a relatively large diameter
structure, may be accounted for by using the McCamy—Fuchs theory (see e.g. Farnes et al.,
1994). Rainey (1989) improved Morison’s equation for the submerged part of the cylinder as
well as a particular slamming term for the region where the free surface intersects the cylinder.
This slamming term appears like the drag force term (eqn (5.27)); however, the coefficient CD
is replaced by a coefficient which depends on wave steepness. Kinematics has primarily been
calculated by the Wheeler modification of Airy theory, but other theories, such as the second
order irregular wave kinematics model, may be applied. Figure 5.10 shows how higher order
wave components can affect the shape and especially the local steepness of the wave. While
the second order component can increase crest height by 10–15 per cent, the effect of third
order components seems to be less.

However, since contributions from the second order potential Φ(2) are ignored, the accuracy
of the slender body theory is limited.

For this reason efforts have been devoted to developing consistent ringing load models
based on diffraction theory. Faltinsen et al. (1996) (FNV method) included non-linear
contribution to the linear diffraction potential (MacCamy—Fuchs theory) and force
components up to and including fifth order effects. A further development is reported by
Krokstad et al. (1996) and Marthinsen et al. (1996). In this approach loads from a complete
second order diffraction theory are combined
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Figure 5.10 Contributions from linear, second and third order wave components to wave elevation of
a steep wave (Stokka, 1994).

with third order loads from the FNV theory. The method yields an improved representation of
second order forces. Although diffraction models yield estimates closer to model test results
than Morison-type formulations, currently available methods are generally amenable to
screening analysis of the ringing phenomenon. In this connection it is an advantage that
diffraction theories seem to yield conservative load estimates. For platforms with multiple
columns, the phenomenon is today best quantified by model tests.

5.4 CALCULATION OF WAVE LOAD EFFECTS

5.4.1 Dynamic models
Various dynamic models of marine structures, like those in Figure 5.1, are envisaged in this
section, ranging from simple ‘stick models’ as shown in Figure 5.11 to sophisticated finite
element models of the structure and foundation.

Excitation is due to wave loading and the structure, soil and water may contribute stiffness,
mass and damping, depending on the support conditions of the structure.

Global models of, for example, platforms and buoyant bridges are commonly based on
beam models. However, the caisson of gravity platforms is usually modelled as a rigid body.
The P-Δeffect for platforms with ‘large’ motion displacement could be taken into account by
linearized negative springs. Possible catenary
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Figure 5.11 Simplified dynamic stick modd of tower platforms.
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mooring lines may be modelled by a simple spring-damper, or by a finite element model of
the line. Particular attention to the modelling of the leg-deck connections (SNAME, 1994) in
jack-ups is required. Pile foundations may be modelled by beam models and taking the
interaction between pile and soil into account by a continuum model of the soil; or by
representing the pile-soil behaviour by a simple spring-damper. A simplified multi-degree of
freedom boundary element method of the pile and soil, referred to as disk-cone model, has
proven to be computationally efficient (Wolf, 1994 and Emami Azadi, 1998). Mat or gravity
foundations can normally be well represented by a spring-damper model.

While the structure is normally assumed to have linear elastic properties when load effects
for component ultimate and fatigue limit states are determined, it may be necessary to account
for non-linearity in soil behaviour. However, when dynamic behaviour up to system collapse
is to be determined, non-linear material and geometric effects both of the structure, foundation
and soil would normally be required.

Mass is contributed by structural and contained mass as well as the added hydrodynamical
mass. For a slender cylinder the latter mass is usually taken to be that of the displaced water.
The added mass for large volume structures (e.g. caissons of floating gravity structures,
floating bridges) has to be determined by potential theory for the relevant modes of behaviour.
Particular attention should be paid to structural components which are close to the surface,
relative to their size. Ogilvie (1963) and Vugts (1970) give data for an infinite cylinder
moving horizontally at a certain distance below the water surface. Yeung (1989) determined
added mass for a vertical cylinder, and an infinite cross-section shaped like a ship moving in
the water surface. The added mass is frequency dependent.

Damping may be contributed by the structure, water and soil (rock) and is subject to
significant uncertainties. Structural damping (Barltrop and Adams, 1991) in a welded steel
structure may be of the order of 0.2–0.5 per cent of critical, and for concrete structures which
are stressed so that microcracks occur, it may be of the order of 0.5–1.5 per cent (Langen et
al., 1997). Structural damping of platforms or submerged bridges may be about 1 per cent
with pure structural modes of vibration.

Hydrodynamic damping stems from generation of waves (radiation damping) as well as
from friction drag damping. The first source is determined from potential theory and is given
for the special cases mentioned above in Ogilvie (1963), Vugts (1970) and Yeung (1989); it
exhibits strong dependence on frequency and submergence. For significant drag damping to
occur, vortex shedding must take place. The drag damping will be small if the KC number is
below, say, 2. Hence, drag damping will be small for large diameter vertical columns in
platforms and submerged bridges. The corresponding damping ratio may be less than 0.1 per
cent. Similarly, potential (radiation) damping is found to be relatively small compared with
drag damping for platform structures consisting of slender members. For floating bridges
wave difference frequency (slow drift) excitation may be of importance. Both drag damping
and second order (slow drift) potential damping are quite small at the excitation frequencies.
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If the soil or rock is activated during the vibration, it will contribute radiation and hysteretic
(material) damping. Soil damping for (embedded) plate and pile foundations is discussed, for
example, by Moan et al. (1976), Barltrop and Adams (1991), Wolf (1994). Soil damping,
especially in rocking motion, is frequency dependent. If a non-linear soil model is used, the
hysteric damping will be implicitly included in the analysis.

If the damping of the structure or the soil is given with reference to a pure structural or
foundation mode of vibration, the damping should be appropriately modified when it is
included in an interaction mode. It is, for instance, shown by Moan et al. (1976) that the
contribution from the structural damping ratio (ξs) to the damping ratio ξfor the first mode of
a simple flexible tower rocking on soil

(5.39)

where ωandωs are the natural frequencies of a tower on flexible and rigid soil, respectively.
Similarly, the damping ratio (ξwet) referred to a wet system (including the effect of added

mass) can be expressed by the damping ratio of the structure (ξdry) as follows

(5.40)

where m* and ω* are the (generalized) mass and natural frequency of the relevant mode.
Stiffness is also contributed by the structure, water and the soil (rock). Linear elastic

structural models are usually applied, except for possible catenary mooring lines. Water
provides buoyancy that will influence the stiffness of a bridge supported by pontoons, but
would be negligible for bottom supported platforms. The soil is of importance for bottom
supported platforms and may be modelled by equivalent linear properties or by a more refined
non-linear material model. Even if soil stiffness properties are frequency dependent the low
frequency of water loading implies that the dynamic stiffness is close to the static values.

The mass, damping and stiffness properties presented above refer to ultimate and fatigue
limit state criteria, based primarily on linear elastic global models. However, if prediction of
the ultimate global capacity is required in connection to survival check in accidental limit
states, models that account more properly for non-linear effects need to be applied.

Under such circumstances framed structures and possible piles are modelled with beam
elements including strain hardening non-linear material and geometrical effects. Plasticity
may efficiently be incorporated with plastic hinges. Pile—soil interaction may be modelled by
non-linear spring elements along the piles with cyclic (hysteric) behaviour. Structural
damping for elastic behaviour and radiation damping in the soil should be explicitly
incorporated, while hysteric loss in the structure and soil are implicitly included by this model.
Further details about this non-linear modelling may be found in Stewart (1992), Søreide and
Amdahl (1994), Hellan (1995), Nadim and Dahlberg (1996) and Emami Azadi (1998).
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In particular the assessment of damping and soil stiffness is susceptible to significant
uncertainties. Hence, in-service measurements are useful to justify the assumptions made in
design analyses. Hoen et al. (1991, 1993), for instance, show that the (total) modal damping
ratios are about 2 per cent for the first three modes of gravity platforms. Karunakaran et al.
(1997) found total damping ratios between 0.6 and 1.5 per cent for a jacket with natural
periods around 1 sec. These references also provide information about assumed versus
observed soil stiffness.

5.4.2 Equations of motion

Equations of motion may be formulated in the time or frequency domain (see e.g. Clough and
Penzien (1993)). The choice of formulation depends especially on possible

●frequency dependence
●non-linearities

of the dynamic properties. A fairly general version of the dynamic equations of motion (in the
time domain) can be written in matrix form in terms of the displacements r and their time
derivatives ŕand ř, as both the mass and damping matrices M and C are functions of time:

(5.41)

Non-linearities in r, ŕand řare assumed to be small and are treated in the excitation load, Q(·).
The convolution integrals are due to the possible frequency dependence of mass and damping
properties. For the case when Q=Q(t), eqn (5.41) follows as an inverse Fourier transform of
the frequency domain equation (5.45) given later. The mass, damping and stiffness matrices
are made up by contributions from the structure (st), water (w) and soil(s). In the frequency
domain, M, C and K are:

(5.42a)

(5.42b)

(5.42c)

The contribution to the stiffness by water is due to hydrostatic effects.
Since M(t) and C(t) in eqn (5.41) forτ>t andτ<0 are zero, the integration limit ( ,) in

that equation could be changed to (0, t).
If the properties are frequency independent, eqn (5.41) takes on the well known form



(5.43)

which is much simpler to solve. Equation (5.43) will be a reasonable approximation if one of
two conditions are fulfilled:
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(1) the retardation time for mass and for damping are so short that the time dependent
properties are Dirac delta functions;

(2) the response is narrow-banded.

In practice the frequency dependent mass and damping properties are chosen to be the values
corresponding to the peak frequency ωp of the wave spectral density. Langen (1981) found
that the error in the response of floating bridges by approxi-mating mass and damping by their
values at the wave spectral peak was less than 5 to 6 per cent.

The resulting equilibrium equation, eqn (5.43), is commonly written in incremental form
for computational purposes:

(5.44)

where M, C and KI are the incremental mass, damping and stiffness matrices valid within
each time step, ∆ř(t), ∆ŕ(t), ∆r(t) and ∆Q(t) are the corresponding increments of response
acceleration, velocity, displacement and load vector.

It has been found convenient to cast the dynamic equilibrium equations in a form such that
the coefficients on the left hand side are kept constant and the non-linearities are transferred to
the right hand side.

Non-linearities in load processes (e.g. due to the relative motion term of Morison’s
equation and variations in added mass) are conveniently handled on the right hand side, and
calculated by using the structural velocity in the previous time step. This approach is
acceptable when ∆t is less than 0.25 sec, but may not be so if larger time steps are applied.
Also, the effect of non-linear springs due to a catenary mooring system may be handled on the
right hand side. However, the added mass term up to the MWL, should be treated on the left
hand side of the equation. Otherwise, many iterations may be required to have convergence,
or no convergence at all may be experienced.

The Newmark method and time steps ∆t=0.2–0.25 are commonly used to determine
load effects involving loads with periods with 3 sec or more (e.g. Langen, 1981; Mo, 1983;
Farnes, 1990; Karunakaran, 1993). Alternatively, an improved Newmark method, the so-
called α-HHT method (Hilber et al. 1978), is applied. Equilibrium iterations may be necessary
to prevent drift-off in the solution.

If non-linear structural or pile—soil interactions are included, the relevant parts of the
system matrices should be updated. A predictor—corrector approach, based on theα-HHT
method, can be adopted to prevent large drift-off from the yield surface in elastoplastic
problems.

An alternative approach for systems with linear and linearized system matrices is the
frequency domain approach, which is very efficient for representation of the frequency
dependent mass and damping terms. The transformed equilibrium equation then becomes

(5.45)

where Q(ω, ), C(ω) and M(ω) are the Fourier transforms of the linearized version
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of the time domain counterparts in eqn (5.41). The first term may be regarded as a complex
transfer function relating force amplitude to wave amplitude ζ(ω, ) for a harmonic wave with
frequency ωand a main wave direction .

5.4.3 Time domain analyses
Time Domain Analysis (TDA) is only of interest when, for example, non-linearities make a
linearized frequency domain approach inaccurate or when a Frequency Domain Approach
(FDA) which incorporates the non-linear features is very time consuming. The TDA is not
attractive compared with the FDA when the behaviour is linear. This is because it implies a
sampling uncertainty which will not be present in the FDA. Moreover, TDA is more time
consuming than the FDA especially when frequency dependent dynamic properties need to be
accounted for according to eqn (5.41). TDA may be performed with deterministic or
probabilistic models of wave loading, as further discussed in Section 5.4.5.

The present discussion refers to TDA of systems with non-linear behaviour subjected to
stochastic loading. In general, the load effects need to be calculated for all or representative
sea states over a long term period for each sea state described by a wave spectrum (eqns
(5.19) and (5.20)). Equation (5.43) is then solved by applying a number of load process
samples which are generated by Monte Carlo simulation.

For short-crested seas, the sea-elevation process at a location x=[x1, x2]T can be
approximated by a discrete sum as

(5.46)

where aik is the amplitude of frequency component i with direction k; ki, is the wave number
corresponding to frequencyωi. This amplitude is here taken as a deterministic value from the
autospectral density and spreading function of a given state. The frequencies and directions
are equidistant between specified upper and lower limits, while the phase angles εik are
independent and random with a uniform distribution between 0 and 2π. Expression (5.46) is
effectively evaluated by the FFT technique (see e.g. Newland, 1984). An improved simulation
procedure, especially for problems where subharmonics are of concern, may be obtained by
taking aik as a Rayleigh distributed variable in ω, with a standard deviation of

.
Expressions similar to eqn (5.46) also hold for water particle kinematics (i.e. velocity and

acceleration). The modifications required are introduction of a proper depth attenuation factor
pertaining to a specific wave theory. Furthermore, phase shifts of the cos(·) argument must be
introduced to account for differentiation with respect to time. The hydrodynamic force time
series are then obtained (e.g. by application of Morison’s equation). The response is computed
in the following manner:
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●generate time series for the wave kinematics at discrete points along the structure by FFT;
●calculate corresponding loads by the Morison equation, and equivalent nodal forces;
●perform step by step integration of dynamic equations of motion, using methods mentioned

in Section 5.4.2.

Finally, having obtained the response histories, and properly eliminated spurious start
transients, statistical inference and estimation of relevant response quantities (variances,
extremes) can be carried out. Filtering of the response may be considered especially in cases
where the wave loading causes a combination of steady-state and transient response, and the
transient part is deterministic when it has been initiated.

Limited sampling size introduces uncertainties, which may be quite significant for extreme
values. It is particularly necessary to extrapolate from a limited sample size (say, half an hour)
to extreme values in a short-term period of, say, 3–6 hours. Theoretical results are available
for the distribution of individual response maxima of single cylinders with static response to
non-linear loads associated with drag forces and surface elevation (e.g. Brouwers and
Verbeek, 1983). For multi-DOF systems with dynamic behaviour only empirical studies of
best fit can be made. A three-parameter Weibull distribution or a Weibull tail method (see e.g.
Farnes, 1990) or Hermite models (see e.g. Winterstein, 1988) are frequently applied for this
purpose.

5.4.4 Frequency domain analysis

FDAs outlined in the following are based on linearization of the system model. Like the
surface elevation variation, load effect processes are then implicitly assumed to be Gaussian.
The distribution of individual peaks or stress ranges, and expected maxima in a given short
term period may then be achieved for single response quantities according to well known
theory, see Chapter 10. Parameters, such as variance and spectral width, can be obtained from
the response spectrum Sr(ω) for the response r in eqn (5.45).

The response spectral density matrix Sr of the response vector r may be obtained as

(5.47)

where is the transpose of the complex conjugate of
H(ω) and SQ(ω) is the load spectral density matrix SQ

(5.48)

where the hydrodynamic ‘quasi’-transfer function F(ω) is:

(5.49)
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and Sζ(ω) is the autospectral density of the sea elevation. F(ω) is obtained by integrating the
hydrodynamic load intensity over pairs of finite elements to produce pairs of nodal forces and
adding them to the global spectrum matrix.

Having established response spectral densities, the corresponding variances () are
computed by integration over the frequency range. The variance of a load effect s which is a
linear combination of ri and rj in the r vector is

(5.50)

(5.51)

where

(5.52a,
b)

5.4.5 Environmental load models for design calculations
A complete description of the dynamic load effect x under wave loading may be obtained by
accounting both for short term variation of wave loading based on the Gaussian representation
of the wave process with a mean direction as well as for long term variability (e.g. in terms
of the joint density function of Hm0, Tp, ) and possibly other sea-state
parameters.

The long term distribution function Fx(x) of x may be obtained by the total probability
theorem as

(5.53)

where is the conditional distribution function for individual maxima for a
given sea state; w(h, t) is a weight function that accounts for the fact that the number of
maxima per time unit vary and may be approximated by the exact formula for narrowband
response:

(5.54)

where v+(h, t, ) is the zero upcrossing frequency in a given sea state. By introducing the
weight function, the probability distribution function Fx(x) is defined as the number of
maxima less than x divided by the total number of maxima.



In practice eqn (5.54) is calculated by using a discrete set of sea states and directions.
Extreme value theory can then be applied to determine the characteristics of the maximum in
a 100 year (with, say, N=5×108 maxima) or any other reference period.

In some cases we would need to know the joint probabilistic characteristics of several
random response variables x. For instance, the strength check of a steel member subjected to
an axial load N=x1 and a bending moment M=x2 is ac-complished with a non-linear
interaction formula, for instance, of the type:

(5.55)
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where Nu and Mu are the ultimate strength under pure axial force and bending moment,
respectively. NE is the Euler buckling load.

The extreme values required for a design check can then most conveniently be based on the
short-term statistics of individual maxima of the process I(x1 , x2) obtained by simulation (see
Videiro and Moan, 1999).

Obviously, the long-term approach described by eqn (5.53) involves substantial effort when
significant non-linearities need to be considered and alternative probabilistic load models
therefore need to be used. Extreme load effects with, say, an annual exceedance probability of
10−2 may be estimated based on a limited set of sea states.

The overall aim of the design sea state concept is to estimate load (effects) corresponding to
a prescribed annual exceedance probability (e.g. 10−2 or 10−4) without having to carry out a
full long-term response analysis.

An appropriate formulation of the design sea state concept is to use combination of
significant wave height and spectral peak period located along an iso-probability density
curve of fHm0Tp(h, t), denoted a contour line in the Hm0 and Tp plane. Such contour lines can be
established in different ways. The simplest way to establish the 10−2 contour line, is first, to
estimate the 10−2 value of Hm0 together with the conditional mean of Tp. The contour line is
then estimated from the joint model of Hm0 and Tp as the contour of constant probability
density going through the abovementioned parameter combination. Alternative approaches to
obtain the contour line are described by Haver et al. (1998). An estimate of the 10−2 action
effect is then obtained by determining a proper extreme value for all sea states along the
contour line and taking the maximum of these values.

If contour lines are used, the variability of the short-term extreme value needs to be
artificially accounted for to obtain a proper long-term extreme value. This may be achieved in
alternative ways, for example, by multiplying the expected maximum load effect calculated
for a given sea state with a predetermined factor, typically in the range of 1.1 to 1.3, or by
calculating the load effect as a predetermined, high fractile value, typically 90 per cent (see
NORSOK N-003, 1999). Contour line methods, therefore, would have to be calibrated.

Alternatively, linearized analyses may first be applied to identify the range of sea states that
contribute to the extreme value. Then, the complete non-linear short-term approach is used to
determine the expected maximum for relevant sea states to obtain the largest one, which is
taken to be the desired extreme value.

Instead of using a design sea state, a design wave specified by the wave height H, the wave
period T and direction may be used to determine the extreme load effect. Load effects with,
for example, annual exceedance probability of 10−2 can be determined in a simplified,
conservative manner by the design wave approach for preliminary design of fixed platforms
(NORSOK N-003, 1999). For fixed platforms with static behaviour, maximum action effects
occur for the highest waves. The relevant wave height H100 is then taken to be that with the
10−2 exceedance probability. H100 may be taken to be 1.9 times the significant wave height
Hm0, corresponding to an annual exceedance probability of 10−2, as obtained from long-term
statistics, when the duration of the sea state is 3 hours.
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The period T used in conjunction with H100 should be varied in the following range:

The design wave to be used in detailed design for platforms in a relevant area should be
established by special studies. If dynamic effects are moderate, they can be taken into account
by applying equivalent inertia loads calibrated by stochastic analyses, as discussed in Section
5.5.2.

5.4.6 Stress ranges for fatigue design check
The repetitive load effects for fatigue limit states of welded structures are described by the
distribution of stress ranges, S (see e.g. Almar-Næss, 1985). For basic (rolled, cast) material
the joint distribution of mean stress and stress range is also required. The stress may be
expressed by a nominal hot spot or hot spot notch value. The latter stress includes the notch
effect of weld geometry. The fatigue strength is described by the number, N, of stress ranges,
S, to failure (SN). It is crucial that the SN-curves applied are based on stresses that are defined
in a consistent manner.

Fatigue design requires a description of the long term variation of local stresses due to
wave—as well as possible sum-frequency wave actions, variable buoyancy, slamming—or
current-induced vortex shedding. The effect of local (pressure) and global actions must be
properly accounted for.

A simple expression for cumulative damage can be obtained by assuming that the SN-curve
is defined by NSm =K and the number n(s) of stress ranges is given by a Weibull distribution

(5.56)

where n0=number of cycles as defined in relation to the stress range s0, is the
scale parameter (P[S≥s0 ]=1/n0) andγis the shape parameter

The damage D in a periodτwith nτcycles is then

(5.57)

Equations (5.56), (5.57) can be used to express the cumulative damage in a long-term periodτ
in two ways, namely by applying eqn (5.57) in conjunction with the stress range distribution
for

●each sea state separately and summing up the contributions to the long-term D;
●the long-term period and determining D directly.

The narrow-band response in a single sea state (i) can be described by a Rayleigh distribution
when the stress is taken to be twice the amplitude. This corresponds to a
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Weibull distribution with γ=2 and is the variance of the response). In a long-term
period τ, the number of (narrow-band) cycles associated with sea state i, is ni=τpivi, where pi
is the long-term probability and the number of cycles per time unit, respectively, of this sea
state. Hence the cumulative damage in τis

(5.58)

where ρi is a correction factor to account for wide-band and/or non-Gaussian load effects.
Stress ranges due to wide-band Gaussian or non-Gaussian response processes should be

determined by an appropriate method of cycle counting (e.g. the rainflow method, see chapter
4 of Almar-Næss, 1985). Simple, conservative methods for combining high and low
frequency responses may be applied. Fatigue damage may be calculated by assuming that the
number of cycles is determined by the zero-upcrossing frequency and that the distribution of
stress ranges follow a Rayleigh distribution. Wirsching and Light (1980) established an
empirical correction to the fatigue damage determined by the narrow-band assumption.
Extensive evaluations of various empirical, closed form methods for correct-ing the fatigue
damage obtained by the narrow-band approach, show that Dirlik’s (1985) method yields the
best estimates. Jiao and Moan (1990) analytically derived a correction factor which yields
reasonable estimates.

Leira et al. (1990) demonstrate that accurate fatigue estimates can be obtained for cases
with non-linear effects by establishing a quasi-transfer function H(ω) that is used to calculate
the response for all sea states, and is defined by is obtained by
calculating Sx(ω) using time domain samples of response for a sea state with spectral density
Sζ(ω). The significant wave height of this sea state is given by

(5.59)

where m is the exponent in the SN-curve, pi is the relative frequency of a sea state number i

and wi is a weight function Dav being the average diameter of
loaded structural members. Even if the statistical uncertainty is less for the response relevant
to fatigue than for extreme response, a sufficient sample to limit this uncertainty should be
used. The load effects are described by a Weibull fit to the stress range distribution. The
location and scale parameters are expressed by the standard deviation (Farnes and Moan,
1994). Hence, the relevant location and scale parameters for other sea states can be obtained
when the variance is determined from the frequency domain results.

Equation (5.57) applied for a period τwith nτ=n0 cycles is convenient as a basis for
discussing the sensitivity of fatigue damage to various parameters. The shape factor γof the
Weibull distribution then depends on environmental conditions,
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relative magnitude of drag and inertia forces and possible dynamic amplification. For a quasi-
static response in an extratropical climate, like the North Sea with ‘continuous’ storms, γmay
be around 1.0 while γmay be as low as 0.4–0.6 for Gulf of Mexico platforms subject to
infrequent hurricanes (Marshall and Luyties, 1982). For structures with predominantly drag
forces, γwill be smaller than for predominantly inertia forces. Note, for instance, that if u is
Rayleigh distributed, F1=c1u2 will follow an exponential distribution (γ=1), while for F2=C2u,
u will be Rayleigh distributed (γ=2).

Dynamic effects may start to affect load effects relevant for fatigue when the natural period
exceeds 2.0 sec. As illustrated by Marshall and Luyties (1982), increasing the natural period
from 2 sec to 4 sec, may, for example, increase γfrom 0.7 to 1.1 and from 0.9 to 1.3 for Gulf
of Mexico and North Sea structures, respectively. The implication is a factor of the order of
10 on fatigue damage. Odland (1982) indicated similar results for jack-up platforms.

The stress range level that contributes most to D corresponds to the value that yields the
maximum fatigue damage dD that is proportional to fs(s)sm. This stress range is found to be

, implying that fatigue damage is primarily caused by stress
ranges which typically are of the order of 10 to 20 per cent of s0.

5.5 DYNAMIC ANALYSIS FOR DESIGN

5.5.1 Dynamic features of offshore platforms
The dynamic behaviour of platforms may be illustrated by considering two SDOF models
with reference to Figure 5.11. In both models the loading is assumed to be proportional to the
wave particle acceleration and hence written as:

(5.60)

where the co-ordinate z' refers to the seabed level and the mass consists of a deck mass M and
a uniformly distributed mass m.

Otherwise, the two models have the following properties:

Platform A (fixed platform) Platform B (compliant tower)

Stiffness Soil kψ Uniform buoyancy

Damping Soil cψand uniform damper c Uniform damper c

Model A will typically have a natural frequency above ω while the natural frequency for 
Model B is belowω. The dynamic equation of equilibrium for this stick model is established
by assuming that the motion is a rotation ψabout the support on the seabed. The horizontal
displacement is then The equation of dynamic equilibrium is obtained by moment
consideration and results in a SDOF version of eqn (5.43).
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Based on the solution of eqn (5.43), with the integrated excitation force , the
relative magnitude of generalized forces: inertia, damping and elastic/restoring force
compared with the excitation force can be calculated.

where εis the phase angle and

Frequency ratio: (whereωis the natural frequency)
The ratio of the maximum values of each force component is then:

where Q0, QI0 ,QD0 and Qs0 denote the amplitude of the forces Q (excitation force), QI, QD and
Qs, respectively.

By assuming a frequency ratio of, say, and 2.0–3.0 for platforms A and B,
respectively and a damping ratio of and 0.05, it is evident that elastic forces are
predominant and balance excitation and inertia forces in platform A, while the dynamic
equilibrium for platform B is achieved by inertia forces that balance excitation forces and
elastic forces as illustrated in Figure 5.12.

The excitation and reaction forces in platform B yield a significantly smaller shear force
and bending moment in the column than they do in platform A. It is noted in this connection
that if the excitation force for platform B is balanced by the inertia force in the deck only, the
bending action due to excitation forces will essentially be as for a column simply supported at
both ends; this behaviour is illustrated in Blazy et al. (1971). On the other hand, the motions
of platform B are much greater than those for platform A.

Various layouts of offshore platforms are envisaged. In Figure 5.13 the basic types of
offshore platform are displayed. Typical natural periods for the structures are indicated in
Figure 5.2. As a cantilever beam, the fixed tower will experience a significant overturning
moment and shear force due to waves. Also, the fundamental natural period of vibration
increases with increasing water depth and approaches the range of wave periods associated
with significant energy. This fact implies that the response will be dynamically amplified to
an increasing extent with increasing water depth. A better platform design for deep water is,
therefore, to stiffen the tower as shown in Figure 5.13 by ‘rigid’ inclined members (which
form a triangular truss). The bending moment in the central column will then be reduced, as
the tower essentially becomes a beam supported at both ends. However, the inclined members
also need to be sized adequately. Since these members are subject to significant lateral loads,
the design may not be very cost-effective after all. A modified
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Figure 5.12 Schematic illustration of dynamic equilibrium.

tower may then be a compromise (see Figure 5.13). The maximum moment in the central
tower is significantly reduced, and the ‘truss’ is less exposed to lateral loads, when it is
located at a larger water depth.

An alternative approach would be to support the tower by catenary mooring (e.g. as in the
guyed tower). The main tower is then let free to rotate on the seafloor and the low restoring
force provided by catenary mooring makes the tower compliant (i.e. it follows the wave
motion). This is a structure where excitation forces are balanced primarily by inertia forces as
βwould be larger than 1.0 (similar to platform B in Figure 5.12). The shear forces (and
moments) along the tower become small because the dominant forces qw and qI (see Figure
5.13) counteract each other.

Catenary mooring may be partially or fully replaced by buoyancy, which typically is
located in the upper part of the platform. Buoyancy contributes stiffness, mass and added
mass and excitation forces. The buoyancy tank will commonly result in an increased
fundamental natural period. The location of the buoyancy tank should be chosen so that the
natural period of the second (flexural) mode (Figure 5.14) is not increased and that excitation
forces for this mode are not increased.

The global flexibility of guyed and articulated towers are achieved by pivoting the base of
the structure. In large water depths it may be possible to design a tower structure to be piled to
the seabed and yet with sufficient bending flexibility to have the fundamental natural period,
say, above 30 sec. Such platforms are called flexible towers (see e.g. Maus et al. 1996).

Yet another alternative would be to use a TLP, which behaves like a pendulum where
gravity is replaced by buoyancy. Their vertical mooring elements (tethers) are kept
pretensioned by providing excessive buoyancy in the hull. The linearized stiffness for
horizontal and vertical motion of a TLP is T/l and EA/l+ρgAw, respectively. T and EA are the
total pretension and axial stiffness of the tethers, respectively and Aw is the water plane area.
The corresponding natural periods
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Figure 5.13 Plateform concepts.
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Figure 5.14 First two modes of vibration of compliant tower.

are above and below those of wave periods. Hence, the forces are inertia dominated in the
horizontal direction and stiffness dominated in the vertical direction.

From the above discussion, it follows that wave-induced forces are smaller in compliant
structures than structures ‘rigidly’ connected to the seafloor. On the other hand, the
displacements/motions are larger in compliant platforms. While maximum displacements in
extreme seas for ‘fixed’ platforms may be 0.5–1.0m, they are of the order of the wave
amplitude for compliant structures. This fact implies that the pipes (risers) from the deck of
compliant platforms to the seafloor and subsoil reservoir must be carefully designed to avoid
excessive stresses imposed by deformations.

It should be noted that wind forces may contribute significantly to the motions of
(compliant) platforms with fundamental natural periods of 30 sec or more. Since the wind
velocity spectrum contains energy in this range of periods, dynamic wind effects would also
normally be of importance for such platforms. For compliant towers wind loads may also
affect structural forces.

Among the dynamic features discussed earlier in this section, the natural period is
particularly important. It is clearly desirable that natural periods for fixed platforms are as
small as possible, while the natural period associated with ‘rigid body’ modes and flexural
modes of the compliant towers (guyed tower, articulated towers, buoyant tower, flexible
tower, etc.) should be as high and low as possible, respectively. During design the aim is
normally to keep natural periods outside the range of 5 to 30 sec. This may be difficult,
especially for flexural modes. If natural periods then exceed 5 sec, it is particularly important
to reduce global wave loads in this range of periods.

Since the intensity of wave loads (e.g. according to Morison’s equation) is largest in the
surface zone where particle accelerations and velocities are largest, the loads and load effect
may be minimized by making the structure in the ‘splash zone’ as wave transparent as
possible. Moreover, the phase lag, for example, between the wave loads on various vertical
members can be utilized to achieve cancellation of
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the total wave loads. For instance, for a regular wave of length λcancellation occurs for
members with a distance λ/2. For identical vertical members with a distance of 40 m,
complete wave force cancellation in deep water then would occur for a wavelength of 80 m,
or a wave period of 7.2 sec. This means that it is possible to obtain a very beneficial
cancellation of forces for waves with a period close to the natural period of flexural vibration.

5.5.2 Calculation of extreme load effects for ULS check

Modern design codes require environmental design load effects to be determined based on
characteristic loads which correspond to an annual exceedance probability of, say, 10−2 and
appropriate load factors (API, 1993/1997; NORSOK N-003, 1999), using appropriate models
of sea loading, structure and soil. Models of different refinement are used at different design
stages—conceptual, pre-engineering and detailed engineering—with a balance of probabilistic
and mechanics features.

The simple global behaviour (like ‘stick’ models of platforms) used in early design phases
are refined towards detailed design. At this stage a detailed finite element model (Figure 5.15)
of the structure is required to determine the relevant load effects for each structural
component.

Design analyses for fixed platforms, like jackets, gravity platforms and jack-ups are
commonly based on a regular (design) wave. When dynamic effects are of concern, an
improved model—recognizing the stochastic features of waves—is necessary. It is then
important to ensure that the refined model is properly based on current design practice. This
means, for instance, that a stochastic analysis approach should be consistent with the design
wave approach for structures with quasi-static behaviour. Moreover, dynamic effects should
preferably be considered by their additional forces as compared with their quasi-static ones.
To illustrate these two issues consider wave load effects obtained for a three-legged jack-up
platform (Karunakaran et al., 1994). With typical member diameters in the range of 0.15 to
0.8m, drag forces predominate in extreme sea states. (This fact is observed in Table 5.1 which
shows that load effects are proportional to CD.)

The structural damping was taken to be 2 per cent and hydrodynamic drag damping was
included by the relative velocity term. A non-linear soil-structure model for the spud can
foundation was used. The first natural period is 5.7 sec at extreme load levels. In stochastic
analyses CD and CM were taken to be 1.0 and 2.0, respectively. CD for the design wave is 0.7.
A Gaussian and non-Gaussian model for surface elevation are considered. The non-Gaussian
model is based on a second order Stokes expansion. The kinematics is based on the Wheeler
modification. The regular design wave is modelled by a Stokes fifth order theory.

The results in Table 5.1 show that the quasi-static and dynamic load effects increase by
introducing second order (non-Gaussian) waves.

The comparison between quasi-static load effects obtained by the stochastic time domain
and a design wave approach (in terms of the factor RQS) shows the importance of consistent
definition of the total procedure for calculating load effects. In
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Figure 5.15 Finite element moddel of offshore structures.
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Table 5.1 Extreme load effects in three-legged North Sea jack-up in a sea state with Hm0=14.8 m and
TP =16 sec, and design wave of H=27 m and T=14.5 sec (Karunakaren et al., 1994).

Load effect a

Base shear Overtuning moment Deck displacement

RQS DAF RQS DAF RQS DAF

CD=1.0 in time domain analysis:

Gaussian waves 1.07 1.14 1.04 1.29 1.04 1.25

Non-Gaussian waves 1.26 1.13 1.33 1.24 1.33 1.20

CD=0.7 in time domain analysis:

Gaussian waves 0.76 1.14 0.74 1.29 0.74 1.25

Non-Gaussian waves 0.92 1.13 0.96 1.24 0.95 1.20
a For each load effect two characteristics are given:
(1) the ratio RQS of the expected maximum load effect obtained by stochastic analysis and the load effect
obtained by design wave approach with no dynamics accounted for;
(2) DAF obtained as the ratio of the expected maximum load effect obtained in stochastic analysis based on a
dynamic and quasi-static model, respectively.

particular, a time domain stochastic approach based on Wheeler kinematics and CD=1.0 is
seen to yield slightly larger load effects than the design wave approach that has been
commonly used. A CD of 0.8 used in conjunction with the second order theory would yield
similar results.

Dynamic effects are measured by dynamic amplification factors. Dynamic effects can then
be accommodated in the load effects used for design by:

●a stochastic dynamic analysis based on a refined dynamic model;
●a stochastic analysis based on a simplified dynamic model to calibrate inertia loading to be

used with a refined structural model

The direct calculation of extreme dynamic load effects is based on the methods outlined in
Section 5.4. To determine design values of load effects, load factors λQ are generally applied
on loads while ‘expected value’ of mass, damping and stiffness properties are applied (e.g.
ISO 2394, 1998). This approach causes a problem when the Morison equation with the
relative velocity formulation (eqn 5.31) is used. This term implies both an excitation and a
damping term. Application of load factors greater than 1.0 on the relative velocity term will
then implicitly increase the damping beyond its ‘expected value’. This problem can obviously
be resolved by applying the load factor λQ on load effects rather than on loads.

As an alternative to this direct determination of stochastic dynamic load effects using the
relevant refined dynamic model, a simplified dynamic model may be used to express the
dynamic effects by equivalent inertia forces. A relevant model for a tower-type platform may
then be a simple stick model to represent the mass, stiffness and damping properties. However,
it is important to determine the loads by properly including the phase lag on different
components. For this reason it is
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convenient to include elements in the model which are only used to introduce loads properly.
This kind of model is indicated for the guyed tower in Figure 5.15. The first step is to
determine the DAF, as the ratio between the dynamic extreme response and the quasi-static
extreme response. It is important to determine these responses for representative sea states,
and to perform time domain simulations such that statistical uncertainties do not affect the
results too much (Karunakaran et al., 1993). Dynamic amplification will vary along the
structure. For a jacket with a fundamental natural period of about 4 sec, the DAF for the
overall bending moment may vary between 1.2 and 2.5 from the seabed up to the mean water
level. In particular, the quasi-static bending moment induced by wave loads in the structure
above the sea surface is zero. The dynamic amplification factor DAF=Mdyn/Mstat, for that part
of the platform will actually be infinitely large (see moment diagram indicated for the sample
tower in Figure 5.13).

The dynamic effects are therefore, in general, most conveniently simulated by applying
inertia loads (mass×accelerations) on the deck and tower structure masses. Since the masses
are given, the acceleration field is tuned such that the DAF for the base shear and overturning
moment are fairly accurately represented for the extreme wave condition.

Obviously, the method outlined in this section is expected to yield accurate estimates when
the dynamic response is dominated by a single mode, the response is narrow-banded and the
dynamic response is associated with wave periods well separated from those that cause quasi-
static response. This approach is, for instance, adopted in design approaches for jack-ups
(SNAME, 1994).

The behaviour of compliant towers is more complex since dynamic contributions stem
from two modes, with natural periods on either side of the dominant wave excitation period.
This means that the inertia forces in the first mode balance excitation forces while the inertia
forces in the second mode add to the excitation. However, Vugts et al. (1997) show that fairly
accurate results can be obtained by calibrating a quasi-static approach with inertia loads for
this kind of platforms as well.

The magnitude of the load factor should reflect uncertainties involved in the determination
of load effects (see e.g. Moan, 1995). It is noted that steady-state wave-induced drag loads
normally are subject to more uncertainty than inertia loads. This is because the drag force is
more empirical in nature and also because it is more critically dependent on the kinematics
model for the splash zone. No design code currently reflects this difference in uncertainty
level by load factors dependent on the relative magnitude of drag and inertia forces.

Ringing and other higher order wave loads are subject to even larger uncertainties.
Uncertainties associated with lack of knowledge are often compensated by using conservative
approaches. Actually load model uncertainties may be so large that experiments are required
to determine the characteristic load effects, as discussed in Section 5.5.5.

When the inertia and damping forces are induced by the loading, uncertainties associated
with these reaction forces add to those in the excitation forces. When dynamic effects are
represented by an equivalent inertial load pattern as mentioned
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above, uncertainties may add to those in the wave loads themselves. The main source of
uncertainty is associated with damping. API (RP2A-LRFD API, 1993) specifies an additional
load factor γD on inertia forces, before the load factor γ=1.35 for wave loads is applied on the
excitation forces and factored inertial forces. The total load factor on dynamic load
contributions is therefore about 1.7. This factor was determined (Moses, 1985) based on an
estimate of the additional uncertainty associated with dynamic loads. This approach is limited
to jackets. No other codes for jackets, jack-ups and other fixed platforms include this kind of
additional load factor γD. It is important to consider the load factor γD in view of the possible
conservatism built into the procedure used to estimate load effects, and especially the
damping model assumed. Extreme dynamic load effects in fixed platforms are sensitive to
equivalent damping values below 1.0 per cent of the critical value (Karunakaran, 1993). By
conservative estimate of the damping in that range, no additional load factor would be
required. If the equivalent damping is more than 1 per cent, the sensitivity to damping is so
small that no γD is required despite the large uncertainty in estimating the damping ratio. This
is often the case in practice.

5.5.3 Calculation of stress ranges for FLS check

Fatigue design is commonly based on resistance data specified by SN-curves. In special cases,
fracture mechanics approaches may be applied. Stress ranges are based on expected long-term
distributions of stress ranges, without any load factor. Moreover, the design criterion is based
on linear cumulative damage, such as the Miner—Palmgren law, typically allowing damage
in the range of 0.1 to 1.0. The significant uncertainties in fatigue loads and resistance imply a
high failure probability. Acceptable safety is hence ensured by a proper inspection,
maintenance and repair strategy. For this reason simplified design analyses may also be
justified.

Fatigue estimates may be based on alternative approaches—in a hierarchy of procedures
with increasing accuracy and complexity. Here, three main alternatives are considered:

●Assume that stress ranges follow a two-parameter Weibull distribution, obtained by
estimating s0 corresponding to an exceedance probability of 1/n0; and assumeγaccording to
guidance—including the effect of dynamics—mentioned in Section 5.4.6. Calculation of s0
and selection of λobviously need to be conservative.

●FDA for each sea state (i) to determine response variance and assume narrowband response,
implying Rayleigh distribution of stress ranges. Moderate non-linearities may be accounted
for by determining a quasi-transfer function based on time domain analysis, or another
linearization approach. Factors may be introduced to correct for wideband or non-Gaussian
response.

●TDA combined with rainflow counting of cycles for a representative set of sea states that
are found (e.g. by frequency domain analysis) to contribute most to the fatigue damage.
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Screening in order to identify joints with high dynamic stresses and stress concentration,
which require more detailed fatigue analyses, may be undertaken by using the first approach.
s0 may be based on the nominal member stress for the extreme event and an appropriate stress
concentration factor, and the shape parameter γcould be obtained by general guidance.

Detailed fatigue analyses should be performed using conservative deterministic methods or
frequency domain techniques and, in particular situations, by TDA. Stochastic approaches
should be applied for dynamic sensitive structures. For linear systems, frequency domain
techniques are efficient.

More complete time domain approaches may especially be necessary in case of strong non-
linearities (e.g. associated with local splash zone behaviour), at least to calibrate simpler
methods.

5.5.4 Non-linear system assessment for ultimate or accidental limit states

Current ultimate strength code checks of marine structures are commonly based on load
effects (member and joint forces) that are obtained by a linear global analysis while
resistances of the members and joints are obtained by experiments or theory which account
for plasticity and large deflection. This methodology then focuses on the first failure of a
structural component and not the overall collapse of the structure, which is of main concern in
view of the failure consequences. The advent of computer technology and the finite element
method have made it possible to develop analysis tools that include second order geometrical
and plasticity effects and to account for possible redistribution of the forces and subsequent
component failures until the system’s collapse.

Ultimate strength analysis aims at providing a more realistic measure of the overall strength
of a platform, by using methods to account for global and inelastic features (e.g. to represent
redistribution of loads to alternative paths).

Initially such methods were developed for seismic analysis and for calculating the residual
strength of systems with damage (e.g. according to the accidental limit state checks). More
recently, such methods have also been applied to reassessment of ageing structures to
determine the ultimate capacity of the intact system as well as the global strength after
fatigue-induced fracture of members in connection with inspection planning.

Models which have been used to idealize structural members include phenomenological
models and various finite element-type models (see e.g. Hellan et al., 1994; Hellan, 1995;
Nichols et al., 1997). Cost-effective solutions are obtained by using large deformation theory
for beam elements and special displacement functions (e.g. Livesley ‘stability’ functions) and
concentrating the material nonlinearities in yield hinges at predefined locations or at locations
where maximum stress occurs. Yield hinge models are developed with different refinements,
from yield hinges with zero extension along the element to models that account for the
extension of the yield hinge; with elastic—perfectly plastic or gradual plastification
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Figure 5.16 North Sea jack and sea load history, (a) Finite element model of eight-legged North Sea
jacket; (b) sample of wave and current load history for cyclic analysis.

of the cross-section, strain hardening and the Bauschinger effect. The joint behaviour may be
modelled by a plastic potential, with interaction between the axial force, in-plane bending and
out of plane bending. Formulations have also been published that account for brace to brace
interaction by adding ‘beam’ elements between the brace ends.

Fixed platform analyses are carried out by modelling the pile—soil behaviour by equivalent
linear or non-linear concentrated springs or distributed springs along the piles, or by the
continuum (finite element) model (Horsnell and Toolan, 1996; Lacasse and Nadim, 1996). As
demonstrated, for example, by Moan et al. (1997) the choice of pile—soil model can affect
the load distribution in the structure and, hence, the failure mode and corresponding ultimate
strength. The most important issue is, of course, that a pure linear pile—soil model would not
represent a possible soil failure and hence overestimate the system strength if the pile—soil is
the critical part of the system. For the jacket in Figure 5.16(a) with plugged piles the pile—
foundation is not critical. Yet the difference in jacket failure mode when using a linear instead
of a non-linear model results in an ultimate load which is about 15 per cent smaller for the
former case (Figure 5.17).

Determination of the global ultimate capacity by monotonically increasing wave loading
has become a well established approach (see e.g. API RP2A (API, 1993/ 1997)).
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Figure 5.17 Static load-deformation characteristic of jacket for different pile-soil models, (a) Broad
side loading; (b) end on loading (Moan et al., 1997).

Utilization of the true ultimate limit of the structural system may imply inelastic deformations.
Cyclic wave or earthquake loading may cause degradation of the strength and lead to failure
at load amplitudes which are less than for monotonically increasing loading (Hellan et al.,
1991; Stewart et al., 1993).

The dynamic behaviour of fixed platforms under load levels that ensure linear elastic
behaviour is stiffness dominated and inertia forces amplify the response as discussed in
Section 5.5.1. However, as the ultimate strength of the structure as a
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Table 5.2 Ultimate capacity of an eight-legged North Sea jacket with plugged piles (Figure 5.16a)
using a non-linear pile-soil model (Moan et al., 1997).

Limit state Static load capacity factor: (100-
year load)

Cyclic dynamic load capacity factor:
(static capacity)

End on loading Broad side
loading

End on loading Broad side loading

First member
failure

1.94 1.79 — —

Ultimate limit 2.89 2.73 1.12 0.96

whole is approached, the stiffness decreases and the system becomes inertia dominated. In
this situation the external forces are partly balanced by inertia forces and the ultimate strength
of the system increases (Stewart, 1992; Bea and Young, 1993; Schmucker, 1996; Emami,
1995). The ultimate strength of the platform in Figure 5.16(a) is calculated using the typical
load history shown in Figure 5.16(b). It is seen from Table 5.2 that the ultimate capacity under
dynamic cyclic loads is larger than the pushover capacity for end on loading, while the
opposite occurs for broad side loading. This is because the inertial resistance effect near
ultimate failure is larger for end on loading than for the broad side loading case due to a more
ductile load-deformation characteristic (Figure 5.17).

Various simplified methods, based on the monotonie (static) load-deformation
characteristics, to estimate the dynamic relative to the static global capacity are assessed and
compared with results obtained from analyses of complete jacket—pile-soil systems by
Emami Azadi (1998).

5.5.5 Ringing load effects for ULS design check

To illustrate the ringing phenomenon, consider the dynamic response of the monotower
platform shown in Figure 5.18 which was analysed by Farnes et al. (1994). The platform/soil
system has a fundamental natural period of 5 sec. Calculation of the higher order loading
associated with surface elevation is very complex. Farnes et al. (1994) used a very simple,
Morison-type approach, which included the MacCamy and Fuchs diffraction effects, using the
Wheeler modification of wave kinematics. The contribution from the drag term was found to
be negligible. The dynamic response was obtained by a time domain approach.

The wave profile, linear quasi-static overturning moment and the additional moment from
non-linear wave loads are shown for an extreme, steep wave in Figure 5.18. The additional
non-linear wave load has the shape of a double triangular impulse with the top close to the top
of the wave where the linear wave loads are zero. The minimum of the impulse appears before
the instant wave surface is equal to the MWL. The impulse has diminished when the linear
wave load achieves its extreme minimum. The impulse is too small to give an extreme
maximum load in the wave crest or increase the extreme minimum of the total
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Figure 5.18 Ringing behaviour of monotower. (a) Platform layout; (b) wave profile and overturning
moment (Farnes et al., 1994).

load when it is superimposed on the linear wave load. Hence, small non-linear wave loads
have no effect on the extreme value distribution of a quasi-static system and the response may
be considered Gaussian.

The inertia of a dynamically responding system delays and amplifies the response. The
delay and amplification are dependent on the ratio of the load period and the natural period.
With a βof about 0.3 for the steady-state wave load, the DAF is about 1.1. The duration of the
non-linear wave load impulse (which is about 5.5 sec in Figure 5.18(b)) is close to the natural
period and implies a DAF of about 1.4 according to elementary results for a SDOF system.
The response from the impulse is, hence, delayed and amplified more than the response from
the linear load. The relative delay of the response from the impulse compared with the linear
part shifts the minima responses from the two components closer together in time and the
non-linear response contributes considerably to the total extreme minima. This is shown in
Figure 5.18b. The response from the impulse will continue to oscillate with the natural period
and it is rather unlikely, except for some particular wave periods, that a maximum in
proceeding oscillation will increase the following maximum in the linear response. The
distribution will, hence, be skewed upwave.
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Significant impulses from the non-linear wave loading will, by their nature, only be
induced by large waves. The response from the impulse will usually be damped out well in
advance before arrival of the next wave that is large enough to induce a new impulse. The
damping and scattered appearance of large waves indicate that the non-linear amplification is
larger for the extremes than for the standard deviation of the response.

Farnes et al. (1994) also compared calculations with test results, based on a tuned dynamic
model and wave surface elevation according to test samples. The accuracy was quite good.
However, later work on other structures (gravity platforms, TLPs with more complex
geometry) were not as encouraging. As mentioned in Section 5.3.5 there is no satisfactory
theoretical method for calculating ringing loads. Design loads would therefore have to be
obtained primarily by model tests, however, supported as much as possible by analyses.

Loads or load effects for final design should be established by recognizing that combined
steady state and (transient) ringing effects with an annual exceedance probability of 10−2 and
10−4 for ultimate and accidental collapse limit states checks, respectively, are aimed at. Some
guidance on the determination of ringing loads by theoretical and experimental methods are
presented by DNV (1995). Ringing is known to be caused by random long crested waves in
sea states corresponding to a steepness of approximately 0.03–0.05 and Hm0
≥10m. It is important to have a sufficient number of ringing events within the time series of
observations in order to establish estimates of extreme values. This fact implies long time
series.

It is important to separate the steady state and ringing response by filtering and to compare
the observations with predictions. Close agreement between experimental and theoretical
values for steady state loads is expected. The analysis method for the ringing contribution
may be applied to tune the analysis model, which can be used for other predictions and, hence,
provide an additional reference for judging the uncertainties involved.

Load factors are applied to cover uncertainties in the environmental condition used, and
load estimation procedure, and would, hence, depend on whether loads are obtained by tests
or analyses or a combination. An uncertainty associated with selecting sea states from the
long term data basis is that critical conditions could be omitted. To limit this uncertainty,
analyses—despite their uncertainty—can be used without too much effort to screen important
conditions. Uncertainties in model tests may, for instance, be concerned with scaling effects,
model simplifications, non-uniformity of wave elevation across the basin, finite dimensions
causing wave reflections the and data acquisition system. The main uncertainty in the
theoretical model is concerned with the kinematics and hydrodynamic model, which in
general have been calibrated against experimental results to some extent. Statistical
uncertainties are present in both experimental and theoretical analyses.

Under these circumstances it is clearly not possible to set a general level of safety factors
for the ringing component. It must rather be set on the basis of the
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possible conservatism built into the procedure and the resulting random uncertainties for the
relevant case.
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Chapter 6
Loading from explosions and impact

Alan J.Watson

6.1 INTRODUCTION

Commonly, blast and impact loads are of subsecond duration and magnitude tens of times
larger than any other loads in the design life of the structure. The maximum positive or
rebound negative peaks of stress or displacement are critical for the structure’s survival and
subsequent vibrations will only be important if the loads are repetitive. For some industrial
structures blast and impact forces are repeated in-service loads and the response must be
checked as a serviceability limit state including cracking, vibration and fatigue.

The design and construction of structures against accidental or deliberate impact or
explosions is now often considered a part of normal design in the ever increasing importance
of safety against industrial and transportation accidents or terrorism. Ronan Point (1968),
Flixborough (1974), Chemobyl (1986), Piper Alpha (1988), Peterborough (1989), Oklahoma
City (1995), and Eschede (1998) all had a profound effect on design philosophy. These
accidents highlight the fact that safety is a multi-disciplinary activity and have shown that
structural design changes would be beneficial without enormously increasing the cost. If solid
abutments had been used instead of columns in the design of the Eschede bridge, or if the rail
lines had been given a greater clearance, the bridge would have been more robust. If
compartmentalized construction and moment frames had been used in the Oklahoma Federal
Building, increasing the total building cost by 2 per cent, the extent of the progressive
collapse which followed the explosion would have been reduced. The public inquiry into the
collapse of Ronan Point (Griffiths et al., 1968), revealed that the gas explosion produced a
peak lateral pressure on the walls of about 42 kN/m2 for a few milliseconds which, aided by
the upward explosive pressure on the slab above, displaced the top of the wall removing all
support from the floor slab of the flat above. Collapse progressed upwards and impact from
the collapsing floor slabs then caused collapse to progress downward. Ronan Point had little
restraint against rotational or translational displacements between floor and wall slabs and the
blast pressure had been enough to fail the joints designed only for modest wind pressures. A
subsequent risk assessment showed that Ronan Point, with 110 flats and a design
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life of 60 years, had a 2 per cent risk of one of the flats having a structurally damaging
explosion in 60 years.

The material and human consequences of such incidents are so severe that low risk is not
an adequate reason for ignoring the danger. Secondary consequences such as loss of public or
business confidence can be equally costly.

6.1.1 Philosophy of design

Since Ronan Point collapsed, the stability of all buildings over four storeys in the UK must be
checked with key elements designed for 35 kN/m2 static loading in the critical direction, or
with continuity to limit the area of collapse if a key element fails. The 35 kN/m2 static load
has no statistical significance as an impulsive load, either from blast or impact.

The limit state philosophy for structural design uses elastic response for service loads,
plastic response for ultimate loads and prevention of overall collapse disproportionate to a
local failure. Many buildings have brittle or non-structural elements such as windows and
suspended ceilings that are extremely vulnerable to blast pressure and produce hazardous
debris, both within and outside a building.

The resistance of the fixings and supports of external cladding on a building as well as of
the panel itself determines the blast or impact resistance and the interaction with the
characteristics of the blast loading function, but there is little blast design guidance available
for cladding fixings.

Cladding fixings are often hard to inspect but some indication of damage can be obtained
from the residual deformations in frames and cladding panels (EPSRC, 1997; Pan and Watson,
1996).

Structures must have safe and serviceable paths for all loads, including extreme loads.
British Standard Codes of Practice since 1972 have recommended that by using nominal
peripheral and horizontal ties buildings would be more robust to resist extreme loads.
Explosions and impact loads may differ in both magnitude and direction from static design
loads and produce local damage such as cratering of concrete elements or local buckling of
steel elements that would reduce the moment or shear capacity locally. Deflections are very
similar for structures under distributed static or dynamic loads but not when the load is
concentrated (Watson and Ang, 1984).

6.1.2 Diagnosis of extreme loads

The damage to structural elements from extreme loads can be back analysed to find the load
parameters, such as the 35 kN/m2 equivalent static loading from Ronan Point (1968). From an
analysis of damaged lamp posts at Flixborough (1974), Roberts and Pritchard (1982)
estimated the peak dynamic pressure produced by the explosion. Sadee et al. (1976) estimated
overpressure-distance curves from observations of damage to brickwork and concrete
structures. The case study in Section 6.4 uses the damage to buildings from an explosion to
evaluate the dynamic loads and so assess the cause of damage to other buildings on the site.
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A compression wave from an explosion in air expands as a three-dimensional blast wave
propagating at maximum velocities well above that of low amplitude sound waves. It reflects
and refracts from solid surfaces and from atmospheric discontinuities.

Explosions also produce high temperatures, which are more locally concentrated than the
pressure and decay rapidly, and also produce high velocity fragments from any confining
structure, which may impact with a surface before the blast wave arrives. The synergistic
effects of blast and fragment impact are not well understood.

If an explosion occurs in contact with a solid it produces stress of the same order of
magnitude as the elastic modulus of the solid. The air pressure produced at close range has an
initial peak, which is orders of magnitude larger than normal atmospheric pressure, but
decreasing with distance travelled. Behind the peak the pressure is still above atmospheric but
decreasing with time and falls below atmospheric. The potential of this underpressure to
produce structural damage is not certain and in part depends on synchronization with the
rebound of the structure.

An impact produces a localized application of pressure on the surface of the structure,
which can only spread into the structure from the point of application. This is in contrast to
explosions where the blast pressures rapidly engulf the entire surface of the structure. The
important parameters of an impact, for diagnostic or forensic purposes, are the shape, velocity
and mass of the impactor, and whether or not the impactor deformed.

When pressure is applied very rapidly to the surface of a structure then strain waves are
generated which transfer the local dynamic surface deformations into overall structural
deformations. An analysis of the transient stress state is necessary when the applied pressure
changes more rapidly than the time taken for the strain waves to travel between the
boundaries of the structure and establish a state of equilibrium between overall structural
resistance and applied pressure effects. During this transition period the transient strain and
stress conditions may produce local failures that are decoupled and of different shape from the
failures that can occur due to overall structural deformation.

The strain waves propagate at characteristic velocities for the material and transfer
momentum into the structure by dynamic displacements of the boundary surface. The rates of
strain and stress that are produced locally in the material are orders of magnitude greater than
those produced in the overall structural deformation, which are again orders of magnitude
greater than under slowly applied loading. Most construction materials have enhanced
properties at these high rates of strain.

6.2 BLAST PHENOMENA

6.2.1 Explosive sources
A detonation wave travels through high explosives at 5,000–10,000 m/s. At a free air
boundary the gaseous products expand at high velocity, pressure and temperature
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Figure 6.1 Typical overpressure (above atmospheric po) at a fixed distance from the explosion.

Figure 6.2 Typical overpressure at a fixed time along a radial line from the explosion.

to produce a shock wave with an infinitesimal rise time, producing rapid fluctuations in air
pressure and a dynamic wind as it travels from the explosion (Figures 6.1 and 6.2).

Air—gas mixtures, dust and vapour clouds release energy by a process of rapid burning
known as deflagration. Air shock from a deflagration propagates more slowly and has a
longer rise time.

For vapour clouds the degree of confinement is critical in determining whether or not there
is a detonation or a deflagration. Various forms of organic dust can also produce an explosive
reaction. Propane, butane and similar gases in stoichiometric concentrations will explode if
there is a source of initiation.
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Figure 6.3 Spherical shock wave.

6.2.2 Shock wave parameters

Most explosions, after propagating a short distance, produce a spherical shock wave of
surface area A=4πr2 (Figure 6.3).

The characteristics of the spherical air shock are as follows:

(a) The energy of the shock front/unit surface area decreases with r2 (inverse square law).
(b) The peak overpressure ps0 decreases with distance r from the explosion and eventually

reduces to a sound wave (Figure 6.4).
(c) The velocity of the shock front u is given by:

where us=340 m/s is the sound velocity in air for normal conditions at sea level and
atmospheric pressure p0=0.1 N/mm2. The different units used for pressure are 1
N/mm2=1 MPa=145 p.s.i.=10 bar.

(d) tdp is the positive duration of the shock wave which increases with distance from the
explosion because higher pressures travel faster (Figure 6.5).

(e) ps is the overpressure which decays with time at a fixed location depending on ps0 and tdp

(Figure 6.6).
(f) v is the velocity of the air particles behind the shock front as they move radially away from

the explosion during the positive phase (e.g. for ps0=3p0 then v=300 m/s) and towards the
explosion in the negative phase.

(g) pd is the dynamic pressure where ρ=air density.
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Figure 6.4 Overpressure and dynamic pressure versus range from a I-MT explosion (Biggs, 1964).

6.2.3 Comparing explosives

The TNT equivalence of an explosive is the weight of TNT which produces a pressure wave
in air with one of its characteristics equal to that of the shock wave produced by the explosive
at the same distance. The peak pressure or impulse define the shock wave but its shape is also
distinguished by the rise time, decay time, positive phase duration or negative phase duration.
All of these characteristics vary with the distance the shock wave has travelled in air.

The equivalent weight of TNT is based on peak pressure or impulse and is larger for peak
pressure than for impulse.

Explosives differ in the rate at which they detonate and the heat produced and these
influence the characteristics of the shock wave in air.

6.2.4 Shock wave sealing

The parameters of the shock wave from one explosive charge can be related to the parameters
of the shock wave from a similar shaped charge of the same explosive, but of a different size.

(1) Principle of similitude
If for two charges of the same shape and the same explosive all the dimensions of the
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Figure 6.5 Overpressure and dynamic pressure positive phase duration versus range (Biggs, 1964).

first are k times those of the second, then the peak pressure ps0 measured at any distance R
from the centre of the first charge will be equal to those measured at distance kR from the
centre of the second charge. The +ve impulse, energy and duration of the second will be k
times the corresponding quantities for the first at these related distances.

The characteristics vary with the size of the explosive charge and it is experimentally
observed that if two spherical charges are made from the same explosive, then the peak
pressures in the air blast waves produced by these charges will be equal at distances that are in
the same ratio as the cube root of the weight of each charge when the atmospheric pressures
are the same in the two cases. This cube root scaling allows empirical charts to be published
from the results of experiments using a wide variety of charge sizes.

(2) Cube root scaling
Since densities are presumed to be equal for the two charges of the same explosive, if one is k
times larger in its linear dimensions then its mass will be k3 times greater and the principle of
similitude can be stated using the cube root of the mass as the scaling factor.

If the masses of two geometrically similar charges of the same explosive are M1 and M2
then the peak pressures at distances proportional to (M1)1/3 and (M2)1/3, respectively will be
equal and are said to occur at homologous times (i.e. corresponding but not necessarily equal
times).
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Figure 6.6 Overpressure and dynamic decay curves (Biggs, 1964).

The positive impulses, durations and energy will be proportional to (M1)1/3, (M1)1/3,
respectively at those distances and times. That is:
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where p, I, td are peak pressure, +ve impulse and duration, respectively measured at R from W
kg of explosive and f, F, Ø are unspecified functions. Cube root scaling has been verified by
experiment but does not describe the decay of peak pressure with distance.

(3) Application of scaling laws
In practice scaling laws are used:

1. to obtain shock parameters for any size of explosive charge from those of a standard of the
explosive;

2 to produce a standard charge using experimental methods.

Example 1:

Cube root scaling indicates that if a similar charge of mass M2 has a diameter d2=kd1
then ps0 occurs at R2=kR1; that is:

then

and
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That is, the scaled parameters for cube root scaling are:

that is, pressure and velocity are the same for the prototype at homologous times.

Example 2
Use cube root scaling to compare the shock wave from a 300 kg explosive charge with
the shock wave from a 300 g charge of the same explosive type and shape.

that is, the same peak overpressure and shock wave velocity occurs at 100 m from the
300 kg charge as occurs at 10 m from the 300 g charge, but the +ve duration td and
impulse I are ten times greater.
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Figure 6.7 Weak blast wave reflection.

6.2.5 Interaction of shock waves with plane surfaces

(a) Reflection of weak shocks
Spherical shock waves of low overpressure reflect from a plane surface as if the reflected
shock waves (Figure 6.7) came from an imaginary source equidistant, and on the same
perpendicular, from the surface as the real source but on the opposite side of the surface. The
reflected waves propagate with the same velocity as the incident waves.

Influence of surface properties:

1. If the plane surface is a rigid protective wall, then at (0, t1), the particle velocity v=0 and
the peak pressure pr is larger than ps0. At t2 the real shock covers a circular area of the
surface, radius OA. Peak pressure ps0(t2) is increased around the circumference of the circle
of effect by reflection. Providing AXO≤35°, ps0 has the same magnification by reflection as
when AXO=0°.

2. If the plane surface is the external wall of a normal building, it is less than rigid and at (0,
t1) the surface is accelerated and has a velocity and a displacement. The surface continues
to accelerate as long as an overpressure ps exists on one side. The reflected pressure is of
lower amplitude than for the rigid surface.

The surface may not exceed the limiting elastic deflection if the reflected overpressure is low
or +ve duration is short. For greater overpressure or longer +ve duration, plastic deformation
and possibly collapse may occur.

If the +ve duration of the shock wave is much longer than the natural period of the surface
then surface response is similar to that of a spring instantaneously loaded with a constant load.
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Figure 6.8 Spring-mass model.

That is, the surface overshoots the equilibrium position, is restored by the spring force but
once more overshoots and vibrates about equilibrium position at the natural frequency of the
spring (Figure 6.8).

If the +ve duration of the shock wave is much shorter than Tn then overpressure reduces to
zero before any significant deflection occurs and hardly any spring resistance is developed
during the +ve phase.

Assuming constant force P and acceleration ÿ.

Hence peak overpressure ps0 determines the response of a non-rigid surface barrier to shock
waves with a relatively long +ve duration and +ve impulse I determines the response to shock
waves with a relatively short +ve duration.

(b) Reflection of strong shocks
Spherical shock waves of high overpressure (ps0>>pv) reflect from rigid or non-rigid plane
surfaces in a more complicated way than weak shocks, because the reflected shocks are
advancing into air with pressure, density and velocity very different from normal atmospheric
conditions (Figure 6.9).

At time t1, shock wave I1 reaches the surface at O and reflects. Boundary conditions are
v=0 and peak pressure >2ps0(t1).

The velocity of the reflected shock front R is not constant and so R cannot be drawn on
concentric spheres from an imaginary source.

At t>t1, the intersection of the incident wave I(t) and reflected wave R(t) is no longer on the
surface and a new shock surface M (Mach stem) connects the ring of intersection points of I,
R, M (triple point) to the surface s.

The shock wave system depends on the distance OX (e.g. if OX=0 no separate reflections
are formed, and there is only the Mach wave).
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Figure 6.9 Strong wave reflection.

6.2.6 Blast loading effects on buildings

Consider the building h×b×l with a plane shock wave normal to the wall F. The blast loading
from the positive overpressure is (Figure 6.10).

1. Initial diffraction: the incident wave reaches F at t0 and is reflected. Resultant pressure
>ps0(t) over a clearing period tc=(3Sc)/u where h≥Sc≤b/2 (i.e. after tc reflection effects no
longer act).

Figure 6.10 Blast on buildings.
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Figure 6.11 Pressure variations ps, pd on front wall F.

Figure 6.12Total reflected pressure pr on front wall F.

2. General overpressure: acts for as long as the front wall F and the back wall B are subjected
to different overpressures.

3. Drag loading: The particle velocity v of the air behind the shock front produces a dynamic

wind pressure and a drag pressure Cdpd where Cd=appropriate drag coefficient.

The negative phase of the shock wave is often neglected in assessing blast effects (Figures
6.11 and 6.12).

Although pd decays less rapidly than pr at a fixed distance from the explosion, it decays
more rapidly with distance and tdd>tdp (Figures 6.4 and 6.5).

Side walls s, back wall B, roof R all have negative drag coefficients.
Back face B reaches a steady state pressure at t=(4Sc)/u after the shock wave reaches the

back face.
The external walls and roof of a building receive the shock wave first from an external

explosion. There will be a leakage of pressure into the building through openings for as long
as there is a positive difference between external and internal
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pressure (P– Pj), depending on the area of the openings A0 and the volume of the structure V0.
The internal pressure, Pi, varies within the internal space and is highest close to the leak. For
structures where A0/V0 is small and P<10bar, the average internal pressure incrementΔPi, in
time Δt msec is:

where CL is the leakage pressure coefficient given in TM5–855–1 (1986).
When an explosion occurs inside a building then it is the interior surface of the walls and

ceiling of the building which are first loaded by the pressure of the shock wave that reflects
and increases the pressure. If there are openings in the walls or ceiling then there will be
venting of pressure out of the building for as long as there is a negative difference in the
external and internal pressure (P– Pi), and the internal pressure will decrease. Internal
reflections become so complicated that for preliminary analysis re-reflected shocks are
neglected. Arrival times of re-reflected shocks can be calculated if a more exact analysis of
loading is required. Reflections are also simplified into normal incidence but slant distances
are used in determining the reflected pressure. In addition to the reflected blast loading,
internal explosions produce a quasi-static pressure which depends on the charge weight to
room volume ratio for peak value and on the venting for the quasi-static decay characteristics.

With internal explosions the transmission of blast waves within the corridors and connected
rooms must be analysed. In experimental work using tunnels and ducts, the following
observations are given in TM5–855–1:

(a) An increase in overpressure occurs if the cross sectional area of the corridor decreases.
(b) A decrease in overpressure occurs if the corridor has sharp turns or bends. The peak

pressure Pn after n bends of 90° when friction and pressure attenuation between bends is
neglected, is given as Pn=Ps0(0.94)n where Ps0 is the peak overpressure before the first bend.

(c) Overpressure also depends on friction losses along the tunnel walls, the viscosity and the
rate of decay of the shock front.

(d) Overpressure attenuates with distance into a smooth corridor. It depends on the charge
weight and the distance from the explosion to the tunnel entrance, but does not depend on
the dimensions of the normal corridor.

(e) Overpressure attenuates as a long duration pulse goes from one corridor into another of
larger area A2, according to the relationships:
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6.3 IMPACT PHENOMENA

6.3.1 Introduction

The independent variables of impact loading include the mass, shape, velocity vector,
structure and material properties of the impacting structure. In civil engineering the impacted
structure is usually stationary and the magnitude of a very short duration impact load is less
critical than the impulse or kinetic energy of the impactor which must be absorbed by
deformation. Temperature effects of impact are often ignored but may alter the material
properties. Impactors can be of low mass and high velocity, such as bullets with velocities up
to 1,000m/sec and fragments of damaged structures, or of large mass and much lower velocity
such as vehicles with velocities nearer to 10m/sec. The larger the mass the more likely it is
that the impact will cover a large area of contact. The greater the impulse the more energy
there is to absorb and the area of contact determines the distribution of surface pressure,
overall structural displacements and local deformations.

Local damage includes penetration and perforation by the impactor, cratering or depression
on the impact face, scabbing or bulging on the distal face, radial or cir-cumferential cracking,
punching and shear failure, Amde et al., 1996. At high rates of loading, stress waves from the
impact and the high strain rate properties of the material determine the location and type of
damage (Watson and Chan, 1987). Figure 6.13 shows impact on a concrete beam with the
cracks formed at 1 msec after impact.

Overall deflection from an impact or a static load at the same location, may be similar but
initially the inertia of the structure produces higher modes of

Figure 6.13 Cracks forming under an impact load on a concrete beam.
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Figure 6.14 Transient deformation of a concrete beam after impact at midspan.

deformation causing impact damage such as top face cracking, which is not typical of static
loading, Figure 6.14 (Watson and Ang, 1982).

The impact velocity determines the strain rate, mode of response and the type of damage
(Zukas et al., 1982). Velocities producing strain rates of about 100 do not enhance the
properties of concrete and structural response is primarily elastic with some local plasticity.
Structural response times are measured in msec in the concrete beam, Figure 6.14 where the
rigid mass of 1.8kg impacted at 16m/sec, and the local and overall structural response did not
occur coincidentally. Velocities over about 500 m/sec produce loading and structural response
times measured in µsec. The local response depends on material properties around the impact
area. The phenomena requires a stress wave analysis and the strain rate and material
constitutive relations are significant influences on the plastic flow and failure criteria. In this
velocity regime overall global response becomes secondary and is decoupled from the local
response. Impact velocities above 2000 m/sec are characteristic of shape charge impact and
produce pressures which exceed the material strengths by several orders of magnitude so that
solids behave as fluids at the early stages of impact. Table 6.1 (CEB, 1988) shows the strain
rates from different types of impact.

Alternatively the kinetic energy density of an impactor, defined as the kinetic energy per
unit area of contact, can be used to determine the damaging capability
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Table 6.1 Typical strain rates for types of impact loading.

Type of loading Strain rate (s−l)
Traffic 10−6–10−4

Pile driving 10−2–100

Aeroplane impact 5(10−2)–2(100)

Hard impact 10°–5(101)

Hypervelocity impact 102–106

of a projectile by penetration of the target. This parameter is considered to be a measure of the
impact shear stress produced and Smith and Hetherington (1994) list the transition zones. This
is a difficult parameter to define when the projectile is irregularly shaped.

If the impactor has the higher dynamic yield, then much less plastic deformation will occur
in the impactor and this is a hard impact. If the impactor has the lower dynamic yield then
plastic deformation will be much greater in the impactor and this is a soft impact.

6.3.2 Modelling impact

Analysis of a mass dropped onto an undamped spring mass system of stiffness k shows that
the ratio between the dropped mass m1 with velocity v1 and the target mass m2 is significant in
determining the response. If the dropped mass is small relative to the target mass and both are
elastic, then the mass may rebound immediately after it impacts. If the dropped mass is
relatively large then the two masses may move together after impact. The two masses may
also move together, regardless of relative size, if the impact surfaces are inelastic. Using
conservation of momentum at the instant of impact and conservation of energy for motion
after impact, the maximum deflection of the spring when m1 and m2 move together is:

In practice m2 is the effective mass of an impacted structure, and k is determined by its
boundary conditions, structural and material properties. The positive sign gives the maximum
downward deflection of the structure, and negative gives the maximum upward or minimum
downward deflection of the structure.

The impulse on the structure is given by the area under the impact force—time relationship
and is equal to the rate of change of momentum of the impacting mass:
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At the instant of impact when the impactor rebounds:

After impact if the mass is in harmonic free vibration at its natural undamped frequency

x=X sin ωt and x=Xωcosωt
where X is the amplitude of vibration.
At the instant of impact t=0, and x=Xω=Impulse/m.
The equation of motion when the positive direction of displacement is the same as that of

the impulse giving the deflection x at any time t is:

6.3.3 Low velocity impact by low mass projectiles

Cladding of composite sandwich construction is commonly used on buildings and is exposed
to impact by small mass projectiles at low velocity:

(1) Determination of the magnitude and distribution of surface pressure when an isotropic
solid is impacted at normal incidence and low velocity by a spherical impactor.

Zukas et al., (1982) assume the impactor and the target are linear elastic and the duration of
the impact is long relative to stress wave transit times. On impact, the target and impactor
remain in contact and compress for a total distance a at a rate of compression
where v1, v2 are the approach velocities of the impactor and target respectively. Assuming that
the Hertz law of contact P=nα3/2 applies during impact, the maximum deformation is:

(6.1)

wher:

and v is Poisson’s ratio, R is radius of spherical impactor, E is Young’s modulus, m is mass
and subscripts 1 and 2 denote impactor and target parameters, respectively.

The maximum contact force is then:

(6.2)
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Assuming that when a sphere impacts a flat surface, with a force P, the radius of the area of
contact a, is given by the Hertz equation for the area of contact when the load P is static:

(6.3)

(6.4)

The Timoshenko pressure distribution over the area of contact is:

(6.5)

where q0=pressure at the centre of the contact area x =y=0, at the boundary of the contact area
x2/a2+y2/a2=1, qx,y= 0, and summing the pressure over the area of contact and equating this to
P:

(6.6)

From eqns (6.2), (6.4)—(6.6) and using polar co-ordinate r, the magnitude and distribution of
the surface pressure is obtained as:

(6.7)

This pressure produces internal stresses to compare with the limiting stresses producing
failure modes in the target:

(2) Determination of the dynamic force, area and duration of contact when a flexible cladding
panel is impacted by a spherical impactor at normal incidence and low velocity.

When the panel is flexible then local and overall deformation without punching failure is
likely at low velocity impact. Zukas et al., (1982) present an analytical method for
determining the response of isotropic and anisotropic laminated panels impacted by a
spherical impactor. The local deformation αis the Hertzian contact deformation determined
by the force—deformation relationship: . Plate bending deflection δp is determined
by the force—deflection relationship: , where kp is the stiffness of the plate and is a
function of the elastic constants and the boundary conditions. For a circular, isotropic plate of
radius R, thickness h, Young’s modulus Er and Poisson’s ratio=vr with simply supported
boundaries,
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Figure 6.15 Free boundaries.

Assuming impact by a rigid impactor on a stationary plate at an approach velocity v =v1, the
kinetic energy of impact equals the work done on the plate in local and overall deformation.

(6.8)

Solving the equation for P at a given embed v with known properties of the impactor and
composite plate, shows that P increases linearly with v but at a reducing rate with h, whether
the plate has simply supported or fixed boundaries. With fixed boundaries the effective
masses will be different and dynamic force is greater at a given impact velocity than with
simply supported boundaries, Figures 6.15 and 6.16.

For a given impact velocity the dynamic force P and area of contact decrease but the
contact duration increases as the target flexibility increases (i.e. plate thickness h decreases).
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Figure 6.16 Fixed boundaries, Zukas et al., (1982).

6.3.4 Empirical formulae for low velocity impact on concrete

The penetration, perforation and scabbing of reinforced concrete impacted by flat faced
cylindrical missiles was investigated by Barr et al. (1980) using experimental and analytical
techniques. Comparisons were made with the modified NDRC (US National Defense
Research Committee) empirical formula (Kennedy, 1976), and the CEA/EDF (French Atomic
Energy Commission) empirical formula (Berriaud et al. 1978).

The modified NDRC formulae for a semi-infinite target are:

(6.9a)

and

(6.9b)

where x in metres, d in metres, M in kg and v in msec−1, are missile penetration depth,
diameter, mass and velocity, respectively, and D=M/d3 is calibre
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density, and σc is concrete compressive strength, in Pa. The perforation thickness e can be
obtained from:

The CEA/EDF formula gives the perforation velocity as:

(6.10)

where p is the concrete density and the range of applicability is:

flat nosed cylindrical missile.
The NDRC formulae were within 30 per cent of the penetration velocity measured in the

experiments for different mass and diameter missiles and thickness and strength of concrete.
The CEA/EDF formulae were within 100 per cent of the penetration velocity but the
reinforcement and concrete strengths used in the experiments were outside the range of
validity.

6.4 DESIGN ACTIONS

Concept definition and resistance requirements specify the design parameters, and extreme
loads set the upper bound actions for the ultimate accidental limit state.

Accident load cases for the design of a double skin concrete containment structure
surrounding a nuclear reactor pressure vessel, took the upper bound as catastrophic failure
requiring the evacuation of people living outside the reactor site (Eibl, 1993). The structure
was designed to resist quasi-static internal pressures, fast dynamic internal pressures, fast
dynamic external forces and high temperature from the heat generated in a core melt accident.
The outer wall thickness of the containment was 1.8m to resist a 20 tonne military aircraft
crashing at 215m/sec. The inner concrete barrier, 0.7m thick, was designed as a fragment
shield against high velocity missiles from bursting plant and equipment and from an assumed
hydrogen detonation pressure wave. The inner concrete barrier has an outer metal plate, which
also serves as the necessary concrete
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reinforcement of this composite structural member. The design method utilized the strain rate
sensitivity of the concrete in a Hugoniot curve of hydrostatic pressure against volumetric
concrete strain.

To obtain a statistical base for characteristic blast pressures the damage to structural
elements from an explosion can be back analysed. Analysis of the Ronan Point gas explosion
produced the requirement to analyse key elements for 35kN/m2 equivalent static loading. The
1974 Flixborough vapour cloud explosion damaged many structures and from an analysis of
lamp posts Roberts and Pritchard (1982) estimated the dynamic pressure produced by the
explosion. Sadee et al. (1976) estimated the overpressure—distance curve from observations
of the damage to brickwork and concrete structures. In many cases, because of the unknowns,
sophisticated analytical techniques are not justified.

After a gas explosion that destroyed a building in Peterborough, 1987, a survey of the
surrounding damage to windows, traffic signs and lamp posts, and the distance travelled by
debris, was used to estimate the characteristics of the explosion (Watson 1994). A survey was
made of the frame dimensions and glass thickness for all the windows exposed to the direct
blast wave, and whether or not the glass had been broken. Eyewitness accounts indicated that
window panes might have broken either inward or outward.

The resistance of glass to blast pressure depends upon the edge conditions, dimensions,
thickness and ultimate tensile strength of the glass. Dragosavic (1973) analysed a rectangular
pane of glass, assuming simple supports on all four sides and uniform pressure on the pane,
giving the ultimate resistance q (kN/m2) as:

(6.11)

where fkb=ultimate tensile strength of glass, assumed to be 84kN/mm2; d, b= thickness (mm)
and short side length (mm), respectively; β=a function of the side lengths L, b.

Because of the variability in the strength of glass, and in the degree of fixity to the frame,
the calculated results probably do not predict the actual ultimate resistance by better than ±50
per cent (Mainstone, 1971).

The calculated resistance q (kN/m2) for each window, is plotted against r, the distance from
the explosion, Figure 6.17, showing whether or not the glass was broken. The resistance of
broken and unbroken panes gives an estimate for the blast overpressure at various distances
assuming normal incidence. Upper and lower limits for this blast overpressure are indicated as
(UL) and (LL). Windows possibly broken by effects other than overpressure are identified but
not used, for example, those that could have been broken by flying debris.

A lower bound estimate of peak overpressure is plotted in Figure 6.17. This smoothed
curve has no broken windows above it if a 50 per cent reduction is made on the theoretical
resistance of the broken windows and there are only 10 unbroken windows below it if the 50
per cent tolerance is used.
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Figure 6.17 Explosive peak over pressure estimated from a windo survey.
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Metal posts close to the explosion provided simple elements for analysis. None had any
damage that could be attributed to the explosion and the analysis would therefore be an upper
bound estimate of the pressure.

The response to blast pressure depends upon the duration of the blast td relative to the
fundamental natural period of vibration of the post, and by simple measurement, T=0.4 sec. If
td<<T it responds to impulse and to peak pressure if td>T. Between these limits it responds to
both. The duration td was estimated by assuming a triangular pressure time curve with peak
pressure pm. The post had no visible damage, indicating that it had not exceeded the elastic
limit. Using the analysis given by Biggs (1964), and assuming a linear resistance—deflection
curve:

(6.12)

where Rm is maximum elastic resistance (kN), T is natural period (sec), A is area subjected to
the blast pressure (m2), pm is peak blast pressure (kN/m2).

Analysing a post at 60 m from the explosion for first mode deformation, and using Pm=7.5
kN/m2 from Figure 6.17, gives td=0.18 sec. When Biggs’ analysis is applied to an undamaged
post at 16 m using a peak pressure of 30 kN/m2 extrapolated from Figure 6.17, the duration of
the blast pulse td is 0.093 sec. As expected it is less than at 60 m.

The peak pressure predicted is sensitive to the assumed shape of the pressure pulse. If the
pulse had a rise time of 16 per cent of the decay time then pm is calculated to be 150 kN/m2

which fits reasonably well with the extrapolated peak overpressure line from the window
survey. The building at the centre of the explosion was completely destroyed.

Eyewitness accounts and press photographs indicated that debris from the exploded
building was thrown up to 200 m from the centre of the explosion. The debris throw distance
was compared to that of TNT using an analysis by Kinney and Graham (1985). This showed
that 11 kg of TNT would have thrown debris 100 m and 88 kg TNT would have thrown it 200
m. The overpressures produced by these quantities of TNT at different ranges are plotted in
Figure 6.17, and are very sensitive to range at less than 25 m.

6.4.1 Idealization of high rate dynamic loads

Design loads or actions are usually computationally manageable idealizations such as the
pressure—time idealization for fragment impact, Figure 6.18, and for a hydrogen pressure
wave, Figure 6.19 (Eibl, 1993). Chen and Chen (1996) give a load idealization, for impact on
shallow buried plates. Yang and Yau (1997), have idealized impact loads from vehicles
moving over simple and continuous beams using impact formulas. They claim that current
codes specify impact factors that may significantly underestimate the beam response.

The main characteristics of an idealized impulsive load such as those produced by impact
or blast loading, are the peak pressure, rise and decay functions and the
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Figure 6.18 Fragment impact pressure.

Figure 6.19 Idealized hydrogen detonation pressure.

total duration. The response of the structure then depends on how these load parameters relate
to the parameters chosen to model the structure. For high rates of loading an undamped
springs-mass system is frequently chosen to model the structure and several authors, for
example Craig (1981) have used this as a useful model to show how load and structural
parameters interact.

A potentially damaging condition imposed on a structure by any form of loading, is
displacement, whether it is local strain or overall structural deflection. If that part of the
structure, which will displace the most, can be identified, then a Single Degree Of Freedom
(SDOF) model can be constructed as an equivalent
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structure where displacement at the critical point on the structure is given by the extension of
the spring. To ease computation the model may be undamped because damping does not
significantly alter the magnitude of the first peak of oscillation and it is this deflection which
determines whether or not the structure survives extreme loads from explosions or impact.

6.4.2 Influence of load characteristics on the response of an elastic spring-mass
SDOF system

The peak transient deflection of a structure under a specified loading condition is the same as
the equivalent SDOF model that can be more easily analysed (Craig, 1981). The result gives a
response function or dynamic load factor:

For instance the sudden release of the mass m in an SDOF system causes a force P0=mg to act
on the unstretched spring of stiffness k, producing an ideal step load with rise time tr→ 0 and
duration of load td →∞(Figure 6.20).

This sets the SDOF system into elastic vibration and the dynamic deflection u(t) varies with
R(t) as the mass overshoots the equilibrium position.

After several cycles of vibration where the maximum dynamic deflection has reached twice
the static deflection (Figure 6.21), the damped SDOF system comes to rest at R(t)=1. On the
first cycle, the maximum value of R(t) is similar for both the damped and undamped systems
and so with only a small error, an undamped system can be used to determine R(t)max which
occurs at t=Tn/2 where is the undamped natural period.

A rectangular pulse load with tr → 0 but sets the SDOF td<<∞system into forced vibration
over the time td, and it then continues in free vibration (Figure 6.22).

The deflection of the mass during the forced vibration 0≤t≤td is the same as that for an
ideal step load and 0≤R(t)≤2 (Figure 6.23).

If td ≥Tn/2 the maximum deflection occurs at t=Tn/2 when R(t)=2. If td≤Tn/2 then R(t)<2 in
the range 0≤t ≤td. When t > td then the mass is in

Figure 6.20 Ideal step load.
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Figure 6.21 Response ratio for ideal step load.

Figure 6.22 Rectangular pulse load.

Figure 6.23 Maximum response ratio for a rectangular pulse load.

free vibration and Craig’s analysis shows that the maximum deflection is given by R(t)max
when the SDOF system is undamped.
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Figure 6.24 Ramp load.

R(t)max≥1 during the free vibration when , and during the
forced vibration when td/Tn ≥0.25 (i.e. the maximum dynamic deflection exceeds the static
deflection).

R(t)max=2 in the free vibration era when sin(πtd/Tn)=1 (i.e. td/Tn=0.5), or in the forced
vibration era when td/Tn ≥0.5 maximum dynamic deflection reaches twice the static
deflection).

A ramp load of finite rise time tr and duration td →∞is shown in Figure 6.24.
When this acts on an undamped SDOF system Craig’s analysis shows that the deflection of

the mass depends upon the duration of the rise time and the ratio of rise time to the natural
period of the system Tn.

From Figure 6.25 R(t)max=2 when tr=0 (i.e. an ideal step input); as tr/Tn increases, the
overshoot reduces and small oscillations occur about R(t)=1 ; and if tr>3Tn then load can be
treated as static and dynamic effects ignored.

6.4.3 Elastoplastic response of an SDOF system
In all the cases considered above, the spring in the SDOF system is taken to be linearly elastic.
If, however, the load causes the structure to become plastic, then it can be modelled using an
undamped SDOF system with an elastoplastic spring with the stiffness function shown in
Figure 6.26.

This elastoplastic undamped SDOF system has been analysed by Biggs (1964) to obtain the
elastic, plastic and recovery deflection for an ideal step load tr → 0; td →∞. The maximum
deflection um will have to satisfy the limiting ductility factor um/u1. If the system survives the
plastic deflection then it will partially recover and vibrate about a residual deflected position.
Design charts have been produced from Biggs’ solution; one example is given in Figure 2.17
of this book, showing the maximum deflection of an elastoplastic undamped SDOF system
for a step load .
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Figure 6.25 Response ratio for a ramp load.

Figure 6.26 Elastoplastic spring stiffness function.
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6.5 DESIGNED RESPONSE

6.5.1 Principles of design for high rate dynamic loads

Extreme actions due to high rate loading such as come from impact or blast, produce a
response in the structure which depends on how the parameters of the load and the structure
relate to each other (see Section 6.4). A variety of analytical methods have been proposed to
predict this structural response and so allow comparisons to be made with the performance
limits chosen by the designer for deflection or rotation.

These analytical methods can be independent of the rate of loading but high rate loading
accelerates the mass of the structure producing inertia forces, alters the constitutive stress—
strain relationship for many construction materials and produces strain waves causing local
concentrations of stress. For analysis under dynamic load the real continuous structure is often
converted into an equivalent spring—mass system with lumped masses supported by elastic
or elastoplastic springs that model the resistance—displacement function of the real structure.
The number of springs equals the number of degrees of freedom the designer has to consider
to accurately define the modes of deformation. Vibrations of this system are damped by an
energy absorbing function that relates to the damping in the real structure.

For blast and impact design a SDOF is often assumed for the structural element which is
then modelled as an undamped system of a single lumped mass on a spring. This only gives
deflection at the centre of loading on the structure and so implies a deformed shape, and
assumes that only the first peak amplitude of vibration is significant and that damping does
not essentially alter this value. Since mass relates acceleration to inertia force, the single mass
of the model must be equivalent to the distribution of acceleration on the full mass of the real
structure and the resistance of the spring in the model depends upon the stiffness of the real
structure for the particular load arrangement.

The following section reviews some of the analytical methods available in the literature of
dynamic design, including some continuous mass models.

6.5.2 Methods of design for extreme dynamic loads

6.5.2.1 Elastic impact factor method

This method for concept design assumes structural resistance is that of a massless linear
elastic spring of stiffness k, there are no inertia forces, the force-deflection relationship is
linear for both static and dynamic loads and energy is conserved.

A static force W produces deflection us=W/k and impact force F produces a deflection
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(i) If force F is produced by mass M falling from height h and static force W=Mg then by
conservation of energy of the falling mass and assuming that all KE is transferred into strain
energy:

by substituting for F and solving the quadratic equation:

where is an impact factor on deflection and force.
(ii) If W moves horizontally and impacts at velocity v then strain energy

and by substituting for F:

where the impact factor
In concept design F is used as an equivalent static load and ud is checked against the

ductility ratio.

6.5.2.2 Equivalent systems

A more rigorous design converts the structure into an equivalent spring—mass system with
lumped masses supported by elastic or elastoplastic springs that model the resistance—
displacement function of the real structure. The number of springs equals the number of
degrees of freedom the designer has to consider and although most structural elements have a
large number of degrees of freedom their response to dynamic loading can be approximated
by a single degree of freedom equivalent system. When checking whether the structure can
survive the first cycle of response to extreme blast or impact loading, damping of the SDOF
system is often neglected.

Consider the response of a simply supported beam under a time varying load/unit length of
beam w(t) and assume that the deflected shape of the beam is the same as produced by the
static application of the load (Baker et al., 1983) (Figure 6.27).

for y0=maximum displacement at midspan and ymax=(5wL4)/(384EI):
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Figure 6.27 Elastic deformation.

If the beam is to be represented by an undamped SDOF model with a massless linear spring,
Figure 6.28, then for equivalence y0 is equal in the beam and the model.

Figure 6.28 Equivalent SDOF model.
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External WD=Wy0; Internal strain energy ; equating WD, U and KE
for the beam and model gives:

These factors transform an elastic structure into an equivalent SDOF model and are derived
and listed by Biggs (1964), for several beams and slabs with different support and loading
conditions. Baker et al. (1983) have shown that these transformation factors do not change
significantly if the beam deforms to the first mode shape thus the higher modes contained in
the static deformed shape can be neglected.

In resisting extreme actions from impact and blast it is uneconomic to design the structure
using only the elastic resistance. A considerable resistance is obtained from the plastic
behaviour. If the simply supported beam under a time varying uniformly distributed load w(t)
has a plastic hinge formed at midspan then the elastic deformation can be neglected by
assuming that the beam has a rigid plastic resistance deformation function (Baker et al., 1983)
(Figure 6.29):

Figure 6.29 Plastic deformation.
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For the equivalent system with plastic behaviour, only strain energy differs from the
equivalent elastic SDOF. Strain energy U=Ryo for the equivalent plastic SDOF system where
R=the plastic resistance of the spring (i.e. yield force).

Note that KL, Km change when yielding occurs.
Equivalence between the structure and the SDOF system is based on deflection, not force

or stress and dynamic reactions are not given by the spring force. An analysis by Baker et al.
(1983), for a simply supported beam under a time varying UDL=w(t), uses the model shown
in Figure 6.30.

Using a free body diagram, for the elastic deflection where a=distance from LH support to
the point of action of the resultant of the inertia force:

to find the value of a, the moment of elemental inertia forces about the left-hand
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Figure 6.30 Dynamic reaction model.

support is equated to the moment of the resultant inertia force

For the elastic deformed shape under static load

and the dynamic reaction when the beam remains elastic up to the maximum load is:

When yielding occurs at the maximum load then assuming the beam still has its elastic shape
curve and substituting Mp for Mx=L/2

that is, Vmax occurs when wL is max.

6.5.2.3 Structural response diagrams

The maximum deflection of an equivalent SDOF system loaded by blast or impact can be
obtained from the solution to the equation of motion. Such response
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Figure 6.31 Response ratio for a sinusoidal forcing function.

diagrams can be replotted as pressure-impulse diagrams and used when it is a limit state and
not the time history of the structure under transient loads, that is of interest.

For example, the response of an undamped, linear elastic SDOF system, stiffness k, mass m,
to a sinusoidal forcing function is plotted in Figure 6.31 on axes:

where R=Response ratio=dynamic load factor and circular frequency
Using Baker’s mathematical approximation Figure 6.32 for an air blast wave, P(t)=P0e–t/T,

where since e– t/T never reaches zero, T is used as an equivalent duration of loading to solve
the equation of motion mÿ+ky=P0 e−t/T for boundary conditions y=0, ÿ=0, t=0,

Figure 6.32 Approximate air blast wave.
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Figure 6.33 Response ratio for approximate air blast wave (Baker et al., 1983).

using dy/dt=0, the time ωtmax at which y(t)=ymax is found by trial and error for specific values
of ωT and the analytical solution is plotted giving ymax/(P0/k) as a function of ωT (Figure 6.33).

Since two straight line asymptotes can be used to approximate the analytical solution,
Baker identifies three different loading regions:

1. Quasi-static region when and the structural response ymax= (P0/k) depends on the peak load

P0 and stiffness k, but not on the mass or duration T. Since the duration , the
applied load P(t) dissipates very little before ymax is reached and the displacement is given
by the quasi-static asymptote

2. Impulsive region when and the displacement is given by the impulsive

asymptote: where P0 T=Impulse I therefore

is directly proportional to I=P0T and also depends on the stiffness k and
the mass m. The applied load drops to 0 before ymax is reached since the duration of load

3. Transition region when and the displacement
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Figure 6.34 Response to the pressure-impulse of an air blast wave.

ymax/(P0/k) depends on P0, k, I, m. The load and response time is of the same order of
magnitude and ymax depends on the entire loading history since the duration of load

Figure 6.33 is converted into the pressure—impulse (P—I) diagram of Figure 6.34 by
manipulation of the asymptotes. For an undamped linear elastic SDOF system the ordinale
and abscissa are respectively:

The rectangular hyperbolic curve of the P—I diagram is an isodamage curve defining critical
combinations of P0, I which produce the damaging deformation limit ymax in an undamped
linear elastic SDOF specified by k and m, equivalent to a specific structure:
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Figure 6.35 Response of a rigid—plastic system.

●deformation will be larger than the threshold damage if (P0, I) moves to the region above
and to the right of the curve;

●changes in I, but not changes in P0, will move (P0, I) combinations off the impulsive
asymptote;

●only changes in P0 will move (P0, I) combinations off the quasi-static asymptote.

The rigid—plastic SDOF system shown in Figure 6.35 uses a Coulomb friction element to
model the structural retarding force f where the deformation y=0 if P0≤f.

An energy balance gives the equation to the quasi-static and impulse asymptotes,
respectively, as:

6.5.2.4 Isodamage curves

Structural response to transient load can be impulsive or quasi-static, and P−I diagrams can be
used for different levels of damage. Damage that occurs at a
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specific displacement ymax can be caused by impulse or by peak pressure and the rectangular
hyperbolic curve is then an isodamage contour.

Using the following procedure a P−I diagram can be constructed for an equivalent elastic
SDOF system where k and m are known, for example:

(1) On log-log paper mark the ordinate as reflected pressure P0(kPa) and the abscissa as the
reflected impulse I (kPa-msec).

(2) Plot curves of distance v explosive charge weight using pressure and impulse values from
a table of air blast parameters such as the curves for TNT hemi-spherical surface blast from
Kingery and Bulmash (1984).

(3) Draw the impulsive asymptote of the isodamage curve for the mode of damage occurring
at ymax; for example, for ymax=200 mm the impulsive asymptote:

(4) Draw the quasi-static asymptote of the isodamage curve for the mode of damage occurring
at ymax=200 mm:

(5) If the transition curve is omitted, the asymptotes then give a conservative estimate of the (I,
P0) combination, which produces the specified mode of damage.

6.6 DAMAGE MITIGATION

6.6.1 Energy absorbing crush-up materials

Shock attenuating materials are used to reduce both the peak pressure and the impulse
transmitted to structures from air or ground borne shock waves. When the materials are
applied to the external surfaces it is known as ‘backpacking’ and stress waves are attenuated
before reaching the structure. The strength and thickness of the structure can then be reduced,
so reducing its cost.

External shock mitigating materials must have a low compressive strength with a high
compressibility and energy absorption. Materials with an elastoplastic stress-strain curve such
as rigid polystyrene, polyurethane foams and cellular concrete are used as shock mitigators.
So also are materials with a plasto-elastic stress-strain curve such as foamed rubber, expanded
clay, shale and slag.

An external Shock Mitigating (ESM) system described by Muszynski and Rochefort (1993)
uses empty plastic bottles to confine and entrap air in a low-
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density cementitious matrix. Another system uses epoxied hollow ceramic beads to form foam.
Static compression tests on these materials demonstrate the importance of confinement on the
stress—strain curve. A dynamic test was performed using ground shock effects of close-in
detonations against a concrete basement wall. Both ESM systems reduced the transmitted
stress on the wall by about 90 per cent of the peak free field stress. The impulse was reduced
by at least 12.5 per cent.

Hulton and MacKenzie (1998) use a qualitative energy analysis to explain why some ESM
systems apparently increase the vulnerability of a wall in some circumstances. It was
concluded from experiments using high explosive air blast against wall panels of lightly
reinforced concrete, that when response was in the impulsive range, damage to the wall was
increased when an ESM cellular steel panel was used that absorbed energy through plastic
crushing of the cells. Experi-mentally it was observed that the ESM reduced the reflected
pressure on the wall from the blast wave. If this corresponds with a reduction in the impulse
on the wall, there will be a reduction in the kinetic energy transferred to the wall and damage
should be reduced. Damage, however, was increased in the impulsive range (i.e. when the
positive duration of the blast was much less than the natural period of the wall). Considering
the overall energy it was argued that a reduction in the reflected impulse implies a reduction
in the energy reflected from the wall which implies an increase in the energy absorbed by the
wall and an increase in damage as observed.

Zhao and Gary (1998) tested two types of aluminium honeycombs in the three orthogonal
directions X1, X2 and X3, under static loading and at impact velocities of 2, 10, 28m/sec. The
minor cell diameters were 4.7mm and 6.2mm and densities were 130 kg/m3 and 100 kg/m3,
respectively, before testing.

There were no visible differences between the static and impact loaded honeycombs for X1
and X2 in-plane, lateral loading, but for each direction the failure mode was different. Under
X1 loading the mean pressure was 0.09 MPa at all rates of loading and the Presssure-Crush per
cent curves were ideal plasto-elastic curves. Under X2 loading the Pressure—Crush per cent
curve is ideal elastoplastic, and the mean pressure is close to the static value. In the X3 out of
plane, axial loading tests there was a 40 per cent difference in the mean crushing pressure
between static and impact loading. The mean impact crushing pressure was constant at 5.4
MPa and the Pressure-Crush per cent curve was ideal elastoplastic for all impact loads.
Wierzbicki (1983) gives the mean crushing pressure pm as a function of the flow stress of
honeycomb foils, h the cell wall thickness, and S the minor cell diameter:

(6.13)

The observed enhancement of the crushing strength is likely to depend more on structural
inertia and less on the strain rate sensitivity of aluminium foils.

The specific energy absorbed (J/cm3) vs. normalized deformation of high density metal
honeycombs at initial strain rates from quasi-static to 2,000/sec has been
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obtained experimentally by Baker et al. (1998). The honeycombs were aluminium with a
density 32 per cent that of solid aluminium and stainless steel with a density 37 per cent that
of solid steel. The stainless steel honeycomb absorbed almost double the energy absorbed by
the aluminium honeycomb at similar deformation. Strain rate effects were observed on stress
in both metals. Aluminium type 5052, is not expected to be strain rate dependent and the rate
effect observed in these tests was considered to be solely caused by a change in collapse mode
as the strain rate increased. Post-test inspection of the aluminium honeycomb, however, did
not show a distinct difference in the permanent deformation between the quasi-static and
impact tests. The stainless steel honeycomb is likely to have combined material and collapse
rate effects. It was observed that deformation was distributed more uniformly along the length
of the quasi-static specimen but propagated from the impact end in the dynamic test.

Sierakowski and Ross (1993) demonstrated that the properties of novel thermoplastic
honeycomb structures manufactured from high impact polystyrene, polycarbonate and surlyn,
were strain rate sensitive. The compressive dynamic/static strength ratio for the materials
tested in a split Hopkinson bar, at strain rates of approximately 230/sec, was between 1.40 and
1.47 for the polycarbonate and polystyrene and was 3.72 for the surlyn. Strain at peak stress
decreased with increasing strain rate and there was no increase in energy absorption for any of
these materials at high strain rate but the honeycomb structure has considerable potential for
energy absorption. The longitudinal wave speed in the polycarbonate was measured to be 500
m/sec.

Harrigan et al. (1998) demonstrated the inertia effects in the performance of energy
absorbing materials and structures, both experimentally and computationally. During the
dynamic internal inversion of metal tubes of uniform thickness, inertia produced an initial
peak force in excess of the steady state force and reduced the steady state force compared
with its quasi-static value. Peaks in the crushing force of ESM systems increase the shock on
the structure. For cellular aluminium honeycombs, inertia makes the crushing stress sensitive
to impact velocity and modifies the crushing mechanisms at the cell wall, increasing the initial
crushing stress and the plateau stress. The static load displacement characteristics of the
aluminium honeycomb specimens are given in Figure 6.36. Some specimens were pre-
crushed to initiate inelastic deformation and some were uncrushed.

To assess the dynamic properties of aluminium honeycombs, cylindrical specimens on the
end of an instrumented Hopkinson pressure bar were impacted at velocities of 20 m/sec up to
300 m/sec. The dynamic force pulse was measured, giving the initial peak stress and the
energy absorption characteristics.

The quasi-static uniaxial load-displacement curves are elastoplastic with an initial peak
stress for the pre-crushed specimens typically 60 per cent of that for the initially uncrushed
specimens. The plateau stress was the same for crushed and uncrushed specimens at
approximately the initial peak stress of the pre-crushed specimens. All specimens had a
locking displacement and the specific energy
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Figure 6.36 The static load-displacement characteristics of an aluminium honeycomb.

absorption capacity was determined from the area under the load-displacement curves. If
lockup occurs before sufficient energy has been absorbed, then the ESM system may act to
increase the shock loading on the structure. The ratio of dynamic to static initial peak crushing
stress and plateau stress, increase significantly with impact velocity and would need to be
evaluated when designing an ESM system. It is beneficial that the energy absorption increases
significantly with increasing impact velocity.

Density and strain rate dependence influence the yield or peak initial stress, the plateau
stress and the lock-up or compaction strain in polyurethane foams and can have important
consequences when they are used for ESM systems. Beneficial effects occur when the
changes increase the area under the stress strain curve so increasing the energy absorption
capacity. The effects are detrimental if lock-up occurs, so increasing the transmitted load. The
strain rate sensitivity of polyurethane foams of different density has been reported by
Kuennen and Ross (1991). These experiments have shown that there is a tendency for the
lock-up strain to decrease as strain rate increases. A reduction of 10 to 30 per cent was
discerned at strain rates above 103/sec. Polyurethane with density between 0.16 and 0.48 g/cc
tested at strain rates from 2×103 to 3×103/sec had, respectively, dynamic yield and plateau
stress from 1.5 to 2.0 times greater than the static stress at 15 per cent strain. The static and
dynamic compressive stress—strain curves had the characteristic elastoplastic compaction
shape.

Fujimoto et al. (1991) tested ESM systems for underground structures by impacting the
surface of sand or bentonite clay covering a beam. This was protected from the subsurface
shock by an ESM system of either a paper honeycomb of three different strengths, or
polyethylene foam. The ground shock was determined by measuring the flexural stress in the
beam at midspan. The
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static compressive strength—displacement curves for the paper honeycomb was elastoplastic
with no compaction curve, but was elastic with a compaction curve, for the polyethylene foam.
The paper honeycomb was the most successful ESM and reduced the stress at midspan to
about 30 per cent of the value with no ESM. The Polyethylene gave hardly any stress
reduction in the beam, probably because it compacted early in the deformation. Without an
effective ESM the beam would need much greater hardness or depth of earth cover to limit
the stress in the beam.

Shock mitigating systems do not have to be applied to the external surface of an
underground structure to reduce the damaging effects of ground shock. Krauthammer et al.
(1995) reported that a trench filled with soft material reduced the peak stress from 5.7 MPa to
2.75 MPa from an underground explosion.

If a subsurface explosion produces fragments, soft materials that mitigate the ground shock
will be ineffective in stopping the fragments. Anderson et al. (1995) tested concrete slabs by
impact from a 7.62mm armour piercing bullet. A surface layer with polystyrene beads
replacing some of the aggregate, was easily perforated although it did reduce the concrete
crater. Most successful was the use of slurry infiltrated concrete (SIFCON) cast as a surface
layer on a concrete slab with conventional aggregates, Anderson et al. (1992).

6.7 DESIGN CODES

6.7.1 General principles of design codes for dynamic loading

Codes of Practice have an important function of reassurance to the general public. They are
the interface between the designer, constructor, researcher and manufacturer and give
legislative control over the standards of the building and construction industry. It is through
the codes of practice and building regulations that Governments bring about changes. After
the Ronan Point collapse in 1968, changes to improve the robustness of buildings were
introduced by an amendment to the Building Regulations 1970 and then to Codes of Practice
from 1972.

Damage resulting from the failure of an element should not spread disproportionately, a
robustness that Ronan Point clearly did not possess. Vulnerable key elements and subframes,
must be designed to resist extreme loads and if this is impractical, then the structure must be
provided with ways to limit the collapse following the failure of the element.

This section deals only with the recommendations provided in standard codes of practice to
improve the robustness of constructed facilities. They can be regarded as a minimum
requirement and it is possible that no other action needs to be taken against extreme loads
when there is only a remote possibility of them occurring. Facilities which are at risk, or
would have to provide essential recovery services such as hospitals, bridges and public
utilities, should be designed for the extreme loading.
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6.7.2 Accidental and extreme loading

BS8110: Part 1:1997, Part2:1985
These Codes of Practice for the structural use of concrete recommend ways to improve
robustness and structural integrity. Dynamic effects include wind loads and vibration, special
hazards for flourmills and chemical plants which could include explosions, and shock loading
on prestressed concrete beams which could include impact. A structure is robust if it is not
disproportionately susceptible to the effects of accidental loading including unexpected and
extreme dynamic loading.

To make it more robust, reinforcing bars tie the structure together to resist a notional
horizontal load. This load is applied simultaneously at each floor or roof level and at each
level has the value of 1.5 per cent of the characteristic dead weight of the structure to mid-
height of the storey above and below. This notional load acts like wind loading or an
equivalent horizontal force as a result of frame sway, and so does not alter the deformed shape
of the structure from that under normal design loads. Dynamic loading from impact and
explosions produces a different response to that from the normal design loads of gravity and
wind. These dynamic effects can include:

●support reactions in the same direction as the shock load;
●shock loads opposite in direction to gravity or wind loads;
●a change in the material and structural properties with rate of loading;
●a change in the mode of flexural and longitudinal deformation;
●rapid changes in the distribution of the load across the structural element.

Structural integrity depends on having a load path for all loads including accidental, to
transfer them from the point of application to a foundation and the ground. Extreme accidental
loads might sever the load path and so redundancy is needed to provide alternative load paths.

The codes do not relate robustness or structural integrity to any particular loading and a
concrete structure of more than four storeys is assumed to have adequate robustness against a
general array of accidental actions.

A flow chart of the design procedure for ensuring robustness and the empirical design of
ties using partial load factors on loads and material properties is given in Part 2 of the code.
The load factor takes into account possible increases in load, and the effects of exceptional
loads caused by misuse or accident, combined with dead load and a proportion of the wind
and live loads. For these accidental load cases the partial safety factors for loads γf=1.05 and
materials γm=1.3 for concrete in flexure and 1.0 for steel reinforcement, are less than those
used in design for the standard static loads, although the uncertainty of the load and of the
material strength is unlikely to be less for accidental load cases. If the loads are applied at a
rate of straining above 10/sec, the steel and concrete yield strength will be enhanced and
possibly offset uncertainty in the design load. The designer could change theγfactors on load
to achieve the same effect.
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Internal ties are reinforcing bars spread evenly within the floor slabs or grouped in walls or
beams, and must be continuous and well anchored. The tie cross sectional area is determined
from a prescribed tensile force, calculated from the total characteristic loads applied to the
floor, the number of storeys in the structure and the effective span of the slab in the direction
of the tie. Flexural reinforcement may also be used to complement the tie steel. The flexural
steel is assumed to be acting at its design strength and the tie steel at its characteristic strength.
Curtailment of flexural longitudinal reinforcement to match the bending moment diagram
must not reduce the tie steel at any section.

Peripheral ties are designed to resist a nominal tensile force Ft, that depends only upon the
number of storeys for buildings up to ten storeys, and is constant at 60 kN for buildings above
ten storeys and continuous around the edge of the building. They resist the force in the
internal ties to provide them with adequate anchorage.

Columns and walls around the perimeter of a building are to be anchored to the structure at
each floor and roof level. The horizontal tie must have a tensile resistance based on the
number of storeys, the floor to ceiling height or the total design load in the column or wall.
The benefit of having this reinforcement is clear but it can be omitted if the peripheral tie is
within an external wall and horizontal tying anchors the internal ties to the peripheral ties.
Corner columns must be tied in two approximately orthogonal directions at each storey.
Vertical ties in each column or wall must be continuous from the lowest to the highest level.

Key elements in buildings over four storeys are designed for an ultimate load of 34 kN/m2

applied from any direction on the projected area of the member, and on any horizontal
member providing essential lateral support to the key member, and on any attached element
such as a cladding panel, supported by the key element. An allowance can be made for the
strength of the attached element and its connection.

In buildings over four storeys, beam or slab elements supporting the maximum design
ultimate dead and imposed load, must be designed to bridge the increased span when a
supporting vertical element on the storey below, is removed. Catenary action may be utilized
for this when the necessary horizontal reactions are provided at the adjacent supports.

A wall is able to provide lateral restraint if it is capable of resisting the peripheral tie force
Ft kN applied horizontally on each metre height of wall.

Under extreme loading from impact or explosions the serviceability limit states would be
exceeded and the feasibility of carrying out repairs would have to be assessed.

During construction the risk of imposing extreme loads is present when lifting elements by
crane and in collapse of the partially constructed frame.

To provide continuous ties in precast concrete construction, part of the length of each bar in
an element, is lapped or spliced with anchored bars from the supports. Such connections are
topped with in situ concrete and the static load in the tie gives the bond or the bearing stress.
The overall stability of the building
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during construction or after accidental damage is likely to depend on these connections.

ENV 1993–1–1:1992 Eurocode 3: Design of Steel Structures

Part 1.1: General rules and rules for buildings
This recent code is more explicit than many of the BS codes in requiring that a structure shall
resist explosions, impact, or the consequence of human errors, and avoid disproportionate
damage. To limit the potential damage, designers could:

●avoid, eliminate or reduce the hazards to which the structure is exposed;
●select a structural form which has low sensitivity to the hazards;
●select a structural form and design to survive the accidental removal of an individual

element;
●tie the structure together.

These requirements are met by choosing suitable materials, by appropriate design and
detailing and by specifying control procedures for their production, construction and use. The
National Application Document for use in the UK with ENV 1993–1–1:1992, states that
substantial permanent deformation of members and connections is acceptable in achieving
these requirements.

The general recommendations for structural integrity are very similar to those in
BS8110:1997 for reinforced concrete buildings. Internal ties, column ties, edge ties and
peripheral ties are all required at each principal floor and roof level to localize accidental
damage. These ties must have a design tensile resistance not less than 75 kN at floors and 40
kN at the roof. Ties in the floors of multi-storey buildings depend upon wf the total design
load on the slab, st the mean transverse spacing of the ties, and La the greatest distance in the
direction of the tie between centres of adjacent lines of support. The force must be:

●for internal ties, 0.5 wf st La;
●for edge ties, 0.25 wf sr La;
●for peripheral ties, the greater of these or 75 kN at floors and 40 kN at the roof, or 1 per cent

of the design vertical load in the column at that level;

●column lengths must have splices with a design tensile resistance not less than of the
design vertical load applied to the column from the floor below the splice.

EC3 differs from BS8110 in specifying that if a single column is removed, there must be not
more than 70m2 or 15 per cent of the area of the storey that collapses under persistent floor
loads factored by the ψfactors.
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Key elements are those supporting more than 70 m2 or 15 per cent of the area of the storey,
and their essential lateral restraining elements. These elements must not fail when loaded by
an accidental load AK not less than 34 kN/m2 factored by γA=1.05, applied in the appropriate
directions. The reactions from other building components attached to the key element and
subjected to AK must also be included but limited by the ultimate strength of the components
or connections. The value of AK is not limited to 34 kN/m2 but depends upon the importance
of the key element and the consequences of failure. This accidental load is assumed to act in
combination with the dead and imposed loads using a combination factor.

EC3 is a limit state code and structural elements must be designed for ultimate limit states
when subjected to impact or blast defined as accidental actions. Structures under smaller
impact loads applied cyclically, for instance by some industrial machinery, must be checked
from first principles for the serviceability limit state of vibration. Actions are classified by
their variation in time and impact and blast, although short relative to other forms of loading,
can often be treated as an equivalent static load if the duration is long relative to the natural
period of the structural element. Actions are also classified by their spatial variation and this
may change rapidly when confined blast pressures are applied, or from a close range.

Characteristic values for impact and blast are most likely to be specified by the client and
the designer but need to satisfy the minimum AK=34 kN/m2 specified by the code. The design
value of the accidental action is Ad=γAAk where γA is the partial safety factor for accidental
actions.

Material properties are characteristic values, which allow for variability in a sample from
variations in manufacture. The use of two characteristic values is useful when an accidental
action is dynamic with a variable rate of loading. Many materials used in construction have an
increase in strength and stiffness at high strain rates. To neglect this increase may be
conservative for checking the response of the element but not for checking the response of its
connections. The design material property is Xd=Xk/γM, where γM is the partial safety factor.

The design requirement for safety of a structure is that the ultimate limit state design
capacity is at least equal to the accidental actions:

where Gk, j, Qk,1 and Qk,I are the characteristic values of the permanent actions, the main
variable action and any accompanying variable actions respectively. The values γGj, γGA,j and
γQI, are the partial safety factors for the permanent actions, the permanent actions in accidental
design situations and the variable action respectively and are taken as equal to 1.0. The factors
ψ1,1 and ψ2,I give the quasi-permanent fraction of the variable actions Qk,I and Qk,I . This
design value can be used after an accidental event for checking the remaining design capacity,
in which case Ad=0. When considering an accidental situation, the direction and position of
the accidental actions may be different from the permanent and variable actions arising from
the normal use of the structure.
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ENV 1991–2–7:1998 Eurocode 1: Basis of design and actions on structures.

Part 2–7: Actions on structures—Accidental actions due to impact and explosions
The three-year period of experimental application for this code began in August 1998, during
which period it is only approved for provisional application and open for comment.

Accidental impact forces from road or rail traffic under bridges or other structures and from
vehicles on the bridge are given for the design of structural elements or their protection
systems. Forces for ship impact are given, and for heli-copter emergency landing impact when
the landing pad is on the roof of a building.

Accidental explosions are considered to be of the deflagration type from air—gas or air—
dust mixtures. The pressure rise is slow relative to detonations and there is a constant gas
pressure phase following the peak. The duration is usually longer than that of detonations.

Impact and explosive actions are categorized in terms of injury and death to people,
unacceptable change to the environment, and large economic loss to the community. When
the consequences are low to medium the static equivalent forces, or prescriptive design and
detailing, can be adopted for design of the structural elements and protective systems. A more
advanced analysis is indicated for the most serious consequences. The acceptable risk level
and seriousness of the consequences has to be determined case by case and by public reaction
to the cost and disturbance of installing safety measures and reaction after an accident. A
structure is considered to be at risk from an accidental action when the probability of the
action exceeds 10−4 per year. The necessary statistics are not often available and nominal
design values are given for use in practice.

Horizontal static equivalent design forces due to vehicle impact on the supporting
substructure of a bridge, such as walls and columns, are tabulated for the type of road and
vehicle. The maximum force is 1,000 kN in the direction of normal travel for a truck on a
motorway and the minimum is 40 kN for a car in a parking garage. The nominal forces
perpendicular to the direction of normal travel vary from 500 kN to 25 kN for these cases.
These loads are spread over prescribed impact zones. No horizontal forces need to be
considered on overhead elements unless the clearance is less than 6 m. If it is less, then a
prescribed horizontal force determined by the clearance is applied to vertical surfaces and a
force inclined at 10° to the horizontal acts on the underside of the bridge over the traffic lane.

Horizontal static equivalent design forces due to impact of rail traffic on overhead bridges
or nearby structures, are also specified parallel and perpendicular to the track direction. The
maxima are 10,000 kN and 3,500 kN, respectively, depending on the speed of the train and
act on a specified area. Impact forces on the superstructure of the bridge are not specified.

Static equivalent design forces from 22,000 kN to 4,000 kN are specified for accidental
actions caused by ship impact. The bow impact zone is dimensioned above and below the
water line but could be altered by the lifting of the bow on impact
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with a column foundation block. Modification factors are used on the static equivalent forces
for stern and side impacts and bow impact by a ship off course.

Equivalent static loads, or prescriptive design and detailing rules are also specified for the
design of structural elements and protective systems under accidental actions produced by an
explosion. A full dynamic analysis is only recommended for category three consequences.

Typical pressures for air—gas and air—dust deflagrations are given as 1,500 kN/m2 and
1,000 kN/m2 but will depend on the size, shape and venting of the enclosure. The notional
accidental static pressure for the design of a key element in category 2 is 20 kN/m2 from any
direction with an added reaction from an attached building component subjected to the same
pressure. This contrasts with the 34 kN/m2 used in British Standard codes.
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Chapter 7
Human-induced vibrations

J.W.Smith

7.1 INTRODUCTION

Human-induced forces can be critical in the design of certain types of structure. Significant
dynamic loading is generated by quite normal activities such as walking, running, marching
and dancing. Light or flexible structures, for example footbridges and lightweight floors, are
particularly susceptible and can be made to vibrate with unacceptable intensity under the
motion of a single person in some cases. The problem may be even more serious when large
numbers of people jump, dance or sway in unison as at pop concerts or sports events.
Designers should give particular attention to the possibilities of vibration when designing the
following: footbridges, long span lightweight office floors, lightweight staircases, dance halls
or gymnasiums, and grandstands or other auditoria.

There are three important elements in the design of structures for human loading. First, the
overall loading and its dynamic components must be assessed. This is not easy because the
behaviour of human beings is notoriously difficult to quantify. Design guidance is available
for footbridges, light floors and grandstands but numerical information is generally limited to
conventional structural forms. Great care should be taken with unusual structures particularly
if large numbers of people are likely to be involved.

Secondly, the analytical model of the structure and loading must be considered. Relatively
simple closed form solutions are generally possible for long span floors that are rectangular in
plan. Simple solutions are also available for footbridges with simple structural configurations.
However, in recent years there has been a trend towards footbridges with ambitious structural
forms. Some have been built in busy urban environments with increased risk of dynamic
crowd loading and existing design rules are inadequate in these circumstances. Simplified
modelling is not satisfactory and recourse to finite element procedures will be required. An
important factor is that human loading is highly mobile, and for important structures a wide
range of load cases and positions should be considered. Modal analysis by finite elements will
generally be required for grandstands because of their geometry. The consequences of
collapse of a grandstand are very serious and
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every effort should be made to ensure that an extensive range of loading scenarios have been
considered and accurately analysed.

Finally, the design criteria have to be considered. Detrimental consequences of human
induced vibration may include over stress of the structure or perceptible motion that is
unpleasant for human users. Rhythmic loading, such as marching or dancing, can result in
large dynamic amplification that may result in structural damage or collapse. A famous
example of this was the collapse of a cast iron bridge at Broughton in 1831 under the
resonance of 60 soldiers (Tilly et al., 1984). This led to the custom of troops breaking step
when marching over bridges. A more recent example was the collapse of part of a temporary
grandstand at Bastia, in Corsica in 1992, which was thought to have been triggered by
exuberant crowd motion and resulted in tragic loss of life. On the other hand, the vibration of
a structure may be unacceptable simply because of the sensitivity of humans to the perception
of motion. This is an unserviceability limit state that is nevertheless very important. There are
cases on record of footbridges that were found to be too lively when built and required
remedial treatment in the form of additional damping to reduce the alarming intensity of
motion (Brown, 1977). The London Millennium Footbridge is an even more recent example.
Vibration of light floors, caused by footfall in normal usage, can be disturbing to occupants of
buildings particularly if they are trying to do sensitive work.

7.2 THE NATURE OF HUMAN-INDUCED DYNAMIC LOADING

7.2.1 Vertical loads due to walking
Vertical load under a person walking was studied initially by Harper et al. (1961). Human
locomotion is a complex phenomenon but from the point of view of vertical loading a
relatively simple description suffices. It is characterized by ‘heel strike’ followed by a stiff
legged action as the upper body passes over the foot in contact with the ground, and finally
‘toe off at the end of the stride. There is a brief period when both feet are in contact with the
ground when the ‘heel strike’ and ‘toe off become additive resulting in a sharp impact. During
this motion the centre of gravity of the upper body rises and falls by about 50 mm resulting in
a vertical acceleration and corresponding periodic inertia force at the pacing frequency.
Assuming a normal walking frequency of 1.6 to 2.0 Hz a simple calculation shows that the
vertical force will have an amplitude of between about 150 N and 200 N.

Accurate measurements of the vertical forces during walking were determined with the aid
of an orthopaedic ‘gait’ machine by Skorecki (1966). Force-time curves giving the vertical
component of typical foot impacts are shown in Figure 7.1. Two peaks occur
characteristically under ‘heel strike’ and ‘toe off’. The sizes of the peaks increase with speed
of walking. When a person runs, ‘toe off’
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Figure 7.1 Force-time curve walking (vartical component): (a) normal walk; (b) fast walk; (c)
combined vartical force.
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dominates and there is also a moment when the person is actually in flight and neither foot is
in contact.

Furthermore, it should be noted that as a person walks across a structure, the point of
contact changes with time. If the span is long compared with the stride length, a moving
periodic force may represent the forcing function sufficiently accurately. This force may be
determined by adding the vertical contributions of both feet as shown in Figure 7.1c. The
result is a periodic forcing function, which may be decomposed into its Fourier series
components. The first harmonic is the largest and Blanchard et al. (1977) recommended a
magnitude of 180 N. This is particularly important in the case of footbridges and long span
floors, which may be excited significantly by a single person.

Lenzen and Murray (1969) proposed the ‘heel drop’ test, which consists of a person of
average weight rising up on his or her toes and then dropping suddenly on the heels. A typical
force—time curve is shown in Figure 7.2a. The ‘heel drop’ test was suggested for assessing
the vibration susceptibility of lightweight office floors under random walking loads. This
impulse, which lasts about 1/20 of a second, not only simulates heel strike but is also
considered to be representative of other miscellaneous impacts in an office environment (e.g.
dropped objects). Typical vibration under ‘heel drop’ is shown in Figure 7.2b. In principle the
locations of impacts are random but the greatest effect will occur when a person is in the
vicinity of mid span of a floor. Recent studies by Ellis (2000) have indicated that individual
heel strikes dominate the response of floors with high damping, but that resonance with the
Fourier components of the vertical walking force is the most important factor for lightly
damped floors.

Loading on staircases is similar but more intense than floor loading. This is because people
often run up and down stairs resulting in very high heel strike in the latter case. This is not
generally a problem for conventional reinforced concrete staircases. However, there have
been instances of staircases with light or unusual supporting structures, designed for
architectural effect, that have been found to vibrate excessively under dynamic loading.

7.2.2 Rhythmic excitation
Dancing, aerobics and certain gymnasium exercises are rhythmic in nature. They often
involve jumping and may be co-ordinated by music or other source of regular prompting. This
is usually referred to as ‘dance-type’ loading and because it is periodic it is particularly
important from the point of view of resonance with the natural frequency of the floor structure.
If the measured periodic forcing function under dance-type loading is decomposed into
component frequencies it is found that the most important frequencies are between 2 and 3 Hz
although significant frequencies as high as 5 Hz can be generated. Heins and Yoo (1975)
investigated a dance hall in which the floor had a natural frequency of approximately 3 Hz
and the vibrations during ‘rock’ dances were distinctly unpleasant.

The dynamic effect of crowd loading is important. Under normal circumstances,
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Figure 7.2 Heel drop test: (a) average force/time curve for heel impact; (b) vibration caused by impact
(from Lenzen and Murray, 1969).

the combined effect of the dynamic components of large numbers of people is not significant
because of randomness in their movements and a lack of co-ordination. Hence, a static load
representative of the weight of closely packed people will be satisfactory. However, as with
dance-type loading, the co-ordinating effect of music may give rise to large periodic
excitation and the risk of resonance. Irwin (1981) reported extreme conditions at a pop
concert when co-ordinated jumping of the densely packed crowd, in time with the beat of the
music, generated a dynamic response factor of 1.97 at a predominant frequency of 2.5 Hz. A
similar
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problem may occur in sports stadia or grandstands when sports fans sway to and fro
rhythmically, hence generating substantial horizontal forces, but generally at a lower
frequency than the vertical (Ellis et al. 1994). A further problem may occur due to human
psychological interaction with the feedback from the motion of a structure, as outlined below.

7.2.3 Interaction between the structure and human body

Human induced forces, such as vertical loads under pedestrians, cannot be treated in isolation.
This is because of interaction between the motion of the structure and the human body that is
itself a complex mechanical system. This is illustrated in Figure 7.3 in which a human body is
represented by a system consisting of masses, springs and damping elements, while the
structure in this case is a simple beam with appropriate mass and stiffness. Ji and Ellis (1997a)
showed that when a person is stationary s/he acts like a spring—mass—damper attached to
the structure and affects its vibration characteristics. However, when dancing or jumping a
person does not appear to affect the structure in the same way. It is as if the two systems
behave independently. It is also clear that a human body never acts simply as a dead weight.
For this reason the frequency analysis of floors or bridges should be based on the unloaded
mass of the structure. In the case of crowd loading of stadium structures this matter is not so
clear. Reid et al. (1997) recommend that the mass of spectators should be included when
calculating the horizontal frequencies but that some judgement may be used in the case of
vertical frequencies (Reid et al. discussion, 1998).

Figure 7.3 Mechanical model for human structure interaction.
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A further complication arises from the psychological response of a person experiencing
feedback from the motion of the structure. This has been noted in the case of excessively
lively footbridges. Fujino et al. (1993) noted that crowds of people using a footbridge of
flexible design tended to get into step with the horizontal motion of the structure. This, of
course, increased the horizontal vibration. The reason for this phenomenon is thought to be
the human body’s subconscious desire to minimize energy usage in walking. Brown (1977)
made similar observations but noted that if the motion became extreme it interfered with
pedestrians’ ability to walk normally, hence causing them to stop, slow down or get out of
resonance.

The human body is highly sensitive to motion and it is usually the case that people on a
structure will notice the vibration, and even find it unpleasant, well before there is any over
stress of the structural members themselves. For this reason much research has been carried
out to determine acceptable limits to vibration from the point of view of human users
(Guignard and Guignard, 1970; Irwin, 1978; Irwin, 1983). Acceleration of the floor during
dynamic motion, whether it be vertical or horizontal, is accepted as being the best parameter
by which to measure human sensitivity to vibration, although at high frequencies velocity is a
useful measure. Design criteria are provided in a British Standard document (BS 6472, 1984).
This takes into account the relative sensitivity of humans in different environments. For
example, people in residential properties are highly sensitive to vibration whereas
manufacturing workers in a factory can tolerate higher amplitudes of vibration before
becoming concerned.

A base curve representing the threshold of perception for vertical vibration, as given in BS
6472 (1984), is shown in Figure 7.4 together with curves with higher weighting factors for
different tolerance criteria. The curves indicate that people are most sensitive to the
perception of vibration in the frequency range from 4 to 8 Hz. Above 8 Hz sensitivity follows
a constant velocity curve and it can be seen that between 8 and 15 Hz human tolerance
doubles in terms of perceived acceleration.

Examples of the weighting factors are given in Table 7.1. These show that people are less
tolerant of vibration if they are engaged in an activity during which mere perception of
vibration is a nuisance, such as sleeping or work requiring concentration. However, people are
more tolerant of infrequent or intermittent vibration. On the other hand, at pop concerts or
some sporting events people are either not concerned at all by the feeling of motion of a
structure or they actually enjoy it and may attempt to get in resonance with it. In these cases
structures should be designed to resist collapse under resonant excitation.

7.3 METHODS FOR DETERMINING THE MAGNITUDE OF HUMAN-
INDUCED LOADING

7.3.1 Footbridges
Blanchard et al. (1977) proposed that the worst conditions occur when a pedestrian walks in
resonance with the natural frequency of a bridge with a stride length of
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Figure 7.4 Human sensitivity to vertical motion.

Table 7.1 Weighting factors above the threshold of perception for acceptable building vibration.

Place Time Continuous or intermittent
vibration and repeated shock

Impulsive shock with several
occurrences per day

Critical working areas Day 1 1

(e.g. hospital
operating theatre)

Night 1 1

Residential Day 2–4 60–90

Night 1.4 20

Offices Day 4 128

Night 4 128

Workshops Day 8 128

Night 8 128
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Figure 7.5 Simulated pedestrian loading of a footbridge.

0.9 m. The pacing frequency of normal walking lies between about 1.5 and 3.0 Hz, whereas
frequencies above 3.0 Hz are representative of running or jogging. It is difficult to excite a
footbridge with a frequency above 4 Hz.

The pedestrian forcing function may be represented by a series of point loads, each with a
force-time curve of the form shown in Figure 7.1, applied at successive time intervals equal to
the period of vibration T, as shown in Figure 7.5. Hence, the loading on the bridge, applied by
the nth pace, is given by

(7.1)

and the position of the nth pace xn is given by

(7.2)

Evidently there is no analytical solution to this forcing function, even for simply supported
beams. Blanchard et at. (1977) used a numerical method to analyse footbridges with simple
configurations under the action of the above dynamic loading. They found that the dynamic
deflection could be expressed conveniently
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Table 7.2 Configuration factor.

Configuration a/L K
— 1.0

1.0 0.7

0.8 0.9

<0.6 1.0

1.0 0.6

0.8 0.8

<0.6 0.9

in the form:

(7.3)

where ust is the static deflection under the weight of a pedestrian at the point of greatest
deflection, K is a configuration factor for the type of structure as given in Table 1.2, andψis a
dynamic response factor. Bridge damping was included in the analysis of the standard cases
and the dynamic response factor ψwas found to vary with main span length L, and
logarithmic decrement due to damping δ, as shown in Figure 7.6.

Blanchard et al. (1977) proposed a simplified loading function to permit analysis of bridges
of more general configuration. As mentioned in Section 7.2.1, it consisted of a pulsating force
moving across the span with a velocity of 0.9f m/sec and in resonance with the bridge, where f
is the natural frequency of the fundamental mode of the bridge. The magnitude of the
pulsating force was obtained by superimposing the individual left and right foot vertical
forces as shown in Figure 7.1. It was found that the amplitude of this moving pulsating force
was approximately 25 per cent of the static weight of a pedestrian to produce the same
response as the rigorous method. Hence, the moving force, in Newtons, is given by

(7.4)

The most important criterion for dynamic design of footbridges is that they should not vibrate
so much that users would be disturbed or alarmed. This is a human response criterion, as
discussed in Section 7.2.3. The UK bridge code (BS 5400, 1978) recommends a maximum

acceleration of footbridge decks of when one pedestrian walks over the main
span in step with the natural frequency, f. This ‘one pedestrian’ test was calibrated against
some real bridges that were known to be only just acceptable. It has been confirmed by
Matsumoto et al.
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Figure 7.6 Dynamic response factor.

(1978) and Wheeler (1982) that the ‘one pedestrian’ test is realistic as a serviceability
criterion. It is possible for two pedestrians to walk in step with the natural frequency of a
footbridge with the assistance of a metronome and amplitudes are approximately twice the
single pedestrian case (Tilly et al. 1984). However, such a condition is difficult to maintain.
On the other hand, Pimentel (1997) has warned that dynamic effects of crowd loading on
footbridges should be considered, especially for bridges in busy urban environments. Fujino
et al. (1993) measured significant lateral vibration of a congested pedestrian bridge adjacent
to a large sports stadium. Crowd loading will be considered in Section 7.3.5.

The horizontal component of pedestrian loading is not normally important because most
bridges are stiffened laterally by their deck structures. However, the lively response of the
London Millennium Footbridge, together with the observations of Fujino et al. (1993),
showed that this component should not be ignored for bridges with flexible lateral structures.

The mechanics of horizontal load due to walking is different from the vertical component
for a number of reasons. The lateral force is caused by the sway of the body from side to side
at each step. However, the left and right feet produce horizontal forces in opposite directions,
in contrast to the vertical forces. Hence, the frequency is approximately 1.0 Hz, being half that
of the vertical forcing function. Bachmann and Ammann (1987) estimated that the amplitude
of the first Fourier component of the horizontal force was 23 N. This is more than 10 per cent
of the vertical amplitude given by eqn (7.4), but at half the frequency.
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An important psychological factor also influences horizontal loading. Fujino et al. (1993)
reported large horizontal vibrations of a long span footbridge that often carried as many as
2,000 pedestrians returning from sporting events at a boat race stadium. They showed that an
amplitude of 23 N applied by 45 pedestrians in step (to allow for random phase) was not
sufficient to cause the observed vibration. They observed that when the motion had built up,
pedestrians tended to synchro-nize their step with the frequency of the bridge, as mentioned in
Section 7.2.3. This resulted in many more pedestrians being in phase than would be the case
for random walking. They estimated that 10% could be fully synchronized with the bridge.
Furthermore, during synchronized walking pedestrians tended to sway more and the
horizontal force amplitude increased by a factor of two.

7.3.2 Foot impact on light floors for offices and dwellings
Perceptible vibrations can be induced in lightweight floors by a variety of normal activities.
Polonsek (1970) considered the effects of normal walking, children playing, domestic
appliances, door slam and other sources of vibration. Of these, a single person walking was
the most frequently occurring and also the activity that gave rise to the greatest nuisance
overall. Especially susceptible are timber floors (Whale, 1983) and long span lightweight
concrete floors supported on steel joists (Pernica and Allen, 1982).

The vibration of floors under foot impact is highly dependent on their span, natural
frequency and damping. Wyatt (1989) proposed that low frequency floors, which are also
generally of long span, should be analysed for possible resonance with the Fourier
components of footfall loading. Ellis (2000) showed that floors with frequencies as high as 12
Hz may be excited in resonance by the fourth or even fifth Fourier component. In the case of
low frequency floors of long span it would be possible to apply a method similar to that used
for footbridges as in the previous section. However, Wyatt (1989) suggested a simpler
calculation based on the assumption that if ten or more paces were applied in the vicinity of
midspan, the maximum response would be nearly as great as the steady-state response to a
resonant sinusoidal force (see Chapter 2, eqn 2.44). Hence, he proposed that the displacement
amplitude, ui, under the ith Fourier component might be evaluated from:

(7.5)

where
Fi=magnitude of ith Fourier component of footfall function
k=effective stiffness of floor loaded near midspan
ξ=critical damping factor.
In the case of floors with high damping, vibration under heel strike decays rapidly and

resonance does not occur. This is particularly noticeable for high frequency floors. Structural
damping in the floors of buildings is higher than in footbridges
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because of the forms of construction together with the added flooring and ceiling materials.
Hence, in many cases it is sufficient to analyse the response of a floor to an independent
impact and then check that the ensuing acceleration response is not disturbing to the building
occupants (Section 7.2.3).

The ‘heel drop’ test of Lenzen and Murray (1969) was described in Section 7.2.1. They
recommended a triangular impulse varying from 2.7 kN to zero in 1/20 second to represent
foot impact loading for design purposes. This load should be applied to midspan of a simply
supported floor or to the place of maximum deflection of an irregular floor. Using the theory
of a Single Degree of Freedom (SDOF) system subjected to a general forcing function, it is
then possible to calculate the maximum response (see Chapter 2, Section 2.2.1.3).

Allen and Rainer (1976) derived an even simpler analytical method. According to
Newton’s second law the rate of change of momentum of a mass is equal to the applied force.
Thus

(7.6)

where m is the equivalent mass of the floor, treating it as a SDOF system, and F(t) is the
triangular forcing function. Thus the change in momentum over a brief interval dτ, brought
about by an instantaneous force F(t), is given by:

(7.7)

In this case the triangular forcing function can be treated as an impulse I, which would be the
integral under the curve shown in Figure 7.2 (i.e. 70 N-sec). Hence:

(7.8)

This is equivalent to the velocity of the floor u0 caused by the impulse. Assuming simple
harmonic motion of the ensuing vibration, the corresponding maximum acceleration is given
by:

(7.9)

This method has been adopted by the Canadian code for steel structures (CSA, 1984) in which
a factor of 0.9 has been applied to eqn (7.9) to allow for the loss of amplitude due to damping
in the first half cycle. It should also be noted that m has been referred to as the ‘equivalent
mass’ of the floor. The reason for this is because a structure with distributed mass and
stiffness, such as a beam or floor, does not oscillate with its full amplitude over its entire
length or area. For example, the displacement at the supports is zero. This is illustrated in
Chapter 2 with a number of examples in Figures 2.24–2.27. Hence much of the structure is
participating only partially in the vibration. On the basis of tests on 42 floors the Canadian



code recommends the equivalent mass to be taken as 0.4× the total distributed mass of the
floor.
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Figure 7.7 Dynamic loading on a staircase.

7.3.3 Staircases

Staircases are normally designed to carry the same static live loads as the floors to which they
give access. This is nearly always satisfactory for staircases of heavy reinforced concrete
construction. However, the intense loading that occurs when people run up or down stairs
should be considered for light staircase structures which may be susceptible to vibration.

It was pointed out in Section 7.2.1 that the human body can generate very substantial
dynamic overloads chiefly due to heel strike. Energetic walking can give rise to a peak load of
up to twice the static weight of a person, G. In the heel drop test of Figure 7.2 the peak load is
roughly 4×G. Similarly large impacts may occur when a person runs up or down stairs. Some
experiments were carried out by Smith (1988) using an orthopaedic force plate fitted into a
short flight of stairs. Examples of the vertical component of foot impact are shown in Figure
7.7. When running up the peak load is generated by toe off and is about 2.5×G. When running
down the peak load occurs under heel strike and is generally about 3–4×G. Staircase
structures that may be susceptible should be analysed under these forcing functions. In the
absence of any other simpler method of analysis the ‘heel drop’ test is recommended.

7.3.4 Floors subjected to dance-type loads

The importance of considering the effects of dance-type loads has increased in recent years
with the widespread use of light forms of construction for large span floors.
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The co-ordinating effect of music results in a periodic loading that is in time with the beat.
Rhythmic activities such as dancing, aerobics and military drilling are the best examples.
Large dynamic magnification or resonance can occur if the forcing frequencies are close to
the floor natural frequencies. The consequences may affect both serviceability and safety.
Forcing functions and methods of analysis for structures subjected to dance-type loads have
been proposed by Bachmann and Ammann (1987) and Pernica (1990). The analytical
procedure was developed further by Ji and Ellis (1994) and is set out below.

In its most severe form, ‘dance-type’ loading consists of jumping in time to music. It is
characterized by a high dynamic force, similar to ‘toe off when running up stairs, followed by
a brief moment when the feet leave the floor and the load is zero. Finally, the person comes
down and the cycle is repeated. The form of loading is similar to that produced by running
and consists of a series of half-sine pulses with gaps in between when the person is airborne.
This is given by

(7.10)

where G=static weight of the person
Kp=Fmax/G=impact factor
Fmax=peak dynamic load
tp=contact duration
Tp=period of dancing load or time between successive ‘toe off.
The contact ratio, α, depends on the nature of the dance and is defined by

(7.11)

It has been observed that the mean value of any form of dynamic human loading is equal to
the weight of the person or people engaged in the activity. Hence, integrating the force over
the period of contact

(7.12)

from which the impact factor can be evaluated as follows

(7.13)

It is first necessary to determine what values of contact ratio a, are appropriate for various
activities. Ellis and Ji (1994) reviewed a number of experimental studies carried out in Canada,
including those by Allen (1990) and Pernica (1990), and on the basis of these, proposed the
values for contact ratio shown in Table 7.3.

Ellis and Ji (1994) demonstrated that these factors gave good agreement with the
experimental observations and they have now been adopted in the UK loading code, BS 6399



(1996). It should be noted that the value of , recommended for pedestrian movements, is
actually applicable to one foot only since individual



Page 300

Table 7.3 Values of a for various activities.

Activity Contact Ratio α Impact Factor Kp

Pedestrian movements, low impact aerobics 2/3 2.4

Rhythmic exercises, high impact aerobics 1/2 3.1

Normal jumping 1/3 4.7

High jumping 1/4 6.3

footfalls overlap for pacing frequencies below about 3 Hz. For assessing the performance of
floors to pedestrian movements it is probably better to use the method outlined in Section
7.3.2.

The loading model expressed by eqn (7.10) is not in the most convenient form for general
design calculations. In order to obtain an analytical solution it is more useful to express the
load function in terms of a Fourier series. Hence:

(7.14)

The coefficients, rn, and the phase lags, Øn, may be evaluated and are as follows:

(7.15)

When ; n=1, 2, 3…then an=0 and ; else

(7.16)

and

(7.17)

This analytical model of dance-type loads is shown in Figure 7.8 together with the separate
half-sine impacts of eqn (7.10). The Fourier series model of eqn (7.14) is shown taking the
first three and the first six terms. It is clear that a good approximation is achieved using only
the first three terms.

Ji and Ellis (1994) used the Fourier series form of the loading model to determine the
response of a simply supported rectangular floor. The loading was intended to simulate a
group dancing activity and therefore was assumed to be uniformly distributed over the entire
area of the floor. They derived equations for the steady state response of a floor under this
loading and showed that only the fundamental mode of vibration of the floor needed to be
included to achieve an accurate solution. The response of the floor consists of the static
deflection, under mean load, plus a dynamic component. The dynamic magnification of the
fundamental mode can be obtained by summing the dynamic magnification factors of each



Page 301

Figure 7.8 Forcing function for dance-type loading.

Fourier component used in the loading model. These are given by

(7.18)

where and fp
Good agreement was obtained between the analytical solution and the results of laboratory

tests. The load model was applied to floors with simple boundary conditions. For more
general shapes it would be necessary to carry out a modal analysis of the floor.

When assessing the performance of a large span floor in a building, a number of practical
points should be considered. First, the natural frequency of the floor should be calculated
excluding the weight of people involved in the dancing activity (Ji and Ellis, 1997a). The
value of damping should be chosen conservatively (e.g. 2 per cent of critical) since modern
forms of construction are notoriously lightly damped. If the floor to be assessed was for a
sports hall in a building which includes offices, it would be advisable to do a serviceability
check assuming that a small number of people frequently use the floor for high impact events.
If the natural frequency of the floor is in or near the range of loading frequencies then
resonance may occur and it will be necessary to consider the ultimate limit state.

It should be noted that at resonance fp=f and eqn (7.18) implies very large magnification
(Dn=25rn for ξ=0.02). This condition would probably occur only when dancers are spaced
well apart and that therefore the static load would be small. However, it demonstrates the
importance of keeping the floor frequency away from resonance.
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7.3.5 Dynamic crowd loading: concert halls, grandstands and bridges

In section 7.3.4 the importance of rhythmic human loads co-ordinated by music was
considered and it was shown that the periodic nature of these loads may give rise to very large
dynamic response factors and possibly resonance. Specifically under consideration were loads
due to dancing or aerobics that involve jumping at a set frequency. In these situations people
are usually well spaced and therefore it is likely that the distributed load will be very much
less than the normal floor design load. However, there are crowd events, such as pop concerts
and football matches, at which the spectators may be densely packed. Ellis et al. (1994)
suggested that six people per square metre (4.8 kN/m2) is reasonable. Reid et al. (1997)
suggested 2 kN/m2 for crowds with fixed seating. The corresponding design live loads of 5
kN/m2 and 4 kN/m2 respectively are thought to be sufficient to include limited dynamic
effects such as people rising to their feet when a goal is scored. However, co-ordinated
rhythmic movement sometimes occurs and may be very intense, especially at a pop concert.

The question arises whether full co-ordination is possible for a very large crowd, say
numbering in hundreds or thousands. This problem was studied by Ji and Ellis (1993).
Starting with the formula for dance-type loads, eqn (7.14), they introduced a random phase
lag to take account of the difference in co-ordination between one individual and another.
This phase lag may lie between −πand +πAssuming that it was normally distributed with a
mean of zero (fully coordinated) and a standard deviation of π/30 or 1.0, they evaluated a
dynamic crowd factor of 0.68 for 100 people and 0.63 for 2,500 people. Using experimental
observations Ebrahimpour and Sack (1992) obtained a value of 0.64 for 40 people. The UK
code (BS 6399, 1996) recommends a factor of 0.67 to take account of the lack of co-
ordination of a large crowd. The crowd factor should be applied to the dynamic component of
eqn (7.14).

In section 7.3.4 the importance of avoiding resonance was pointed out since the dynamic
magnification could be as much as 25 or possibly more. This would be equivalent to
exceptionally high static live load even allowing for the crowd factor and the reduced partial
factor of 1.0 permitted by BS6399 in this case. At the present time there is a paucity of
experimental data regarding dynamic crowd loading. It is questionable whether a large crowd
would be able to maintain coordinated jumping for as many as 30 or 40 jumps that would be
required to reach the steady state amplitude at resonance. Furthermore, it requires input of
energy to maintain the steady state amplitude to balance the energy lost in damping. As yet
there is no firm evidence that this maximum theoretical load factor can be achieved in practice.
The largest dynamic magnification actually observed is 1.97 measured by Irwin, 1981.

The design of sports stadium structures must take account of dynamic crowd loading
(Scottish Office, 1997). This has arisen because of well publicized cases of crowd excitation
and even failures. It is recognized that the most severe dynamic
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loading arises during pop concerts and since football stadiums are often used for such events
it is advisable to design them accordingly. The most severe value of contact ratio in Table 7.3
( ) is therefore suggested. Reid et al. (1997) discussed the range of frequencies over
which a structure may be susceptible. BS 6399 recommends that the vertical frequency should
be greater than 8.4 Hz to avoid resonance, based on three times the maximum observed
coordinated jumping frequency of 2.8 Hz. This should be based on the mass of the empty
structure because of the independence of the mass of the crowd and the mass of the structure
during intense jumping activity.

Horizontal dynamic load due to swaying is an important component of football crowd
loading. BS 6399 (1996) recommends that the horizontal frequency of susceptible structures
should be greater than 4.0 Hz to avoid resonance. This may be difficult to achieve and
therefore some guidance is required on the magnitude of horizontal dynamic load to consider.
The CEB (Euro-international Concrete Committee) guide (1991) notes that sway loads may
occur at frequencies between 0.4 to 0.7 Hz and suggests a horizontal load factor of 0.3 for
sway at 0.6 Hz. Reid et al., (1997) suggest a lower value and BS 6399 (1996) recommends
that horizontal loads should be 10 per cent of the vertical. There is some uncertainty over
whether the mass of the crowd should be included when calculating the natural frequency of
horizontal vibration. This is because people will still be in contact with the structure when in
swaying mode. There is a need for more data from full scale tests. The horizontal component
of pedestrian crowd loading on bridges was mentioned in Section 7.3.1.

7.4 DESIGN OF STRUCTURES TO MINIMIZE HUMAN INDUCED
VIBRATION

It has been found that it is often difficult to avoid the critical frequency range of human
induced dynamic loading. This is particularly the case for large sports stadiums. Reid et al.
(1997) analysed a number of stadiums including Murrayfield and Middlesbrough. They found
that frequencies in the range of 1 to 3 Hz were not unusual. Sometimes the first mode may be
dominated by the cantilever roof and is therefore not important. However, special
consideration should be given to cantilevered decks of seating that could be excited by
vertical jumping. Side to side and back to back modes should be considered for horizontal
loading.

The main options available to the designer are to increase stiffness and damping. Ji and
Ellis (1997b) have suggested an efficient way of arranging the bracing for steel frameworks in
order to increase the stiffness. They showed that stiffness could be doubled compared with the
most inefficient system, without additional steel. This is illustrated in Figure 7.9. Damping is
notoriously difficult to introduce into a structure. Steelwork with composite concrete decks is
generally lightly damped. The addition of cladding will help but there is little specific data
available (Osborne and Ellis, 1990). Heavy reinforced concrete permanent struc-
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Figure 7.9 Bracing systems and normalized stiffness.

tures are likely to perform the best. On the other hand, temporary grandstands are very light
and unclad and the only approach open to the designer is through increasing the stiffness with
bracing. The performance of floors can be improved by ensuring that there is good transverse
distribution (Whale, 1983). This will have the effect of increasing the number of longitudinal
joists or stringers that contribute to the static stiffness and will also increase the proportion of
the floor mass participating in the modal response (see eqn 7.9).

Footbridges with spans of over 25 m usually have natural frequencies well within the
pedestrian excitation range (Pimentel, 1997). It is generally impractical to increase their
natural frequencies to avoid resonance. Fortunately, footbridge loading under a single
pedestrian is not true resonance because of the varying position of the load. With the addition
of damping it is often possible to keep the amplitude within acceptable bounds. Brown (1977)
installed a simple friction damper at one abutment of a lively bridge where the angular
movement could be utilized to absorb energy. Jones et al. (1981) installed tuned mass—
spring—damper vibration absorbers into two lively footbridges with most satisfactory results.
However, crowd loading marching in step, as observed by Fujino et al. (1993), is capable of
introducing substantial dynamic energy that may be very difficult to absorb with simple
damping devices.
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Chapter 8
Traffic and moving loads on bridges

David Cooper

8.1 INTRODUCTION

In this chapter we shall consider the effects of highway traffic loading on road bridges.
Because we are primarily interested in dynamic response, this limits our primary concern to
the shorter bridge spans. As bridge spans increase, the static effects of vehicle convoys begin
to dominate designs. However, it will be appropriate to include a description of some aspects
of the assessment of long span bridge load effects.

The first UK national standard for highway bridge loading was introduced by the Ministry
of Transport in 1922. This comprised a standard loading train of vehicles, with a 50 per cent
allowance for impact (Henderson, 1954).

In 1932 the Ministry of Transport Loading Curve was introduced. The impact allowance
was reduced in view of the improvements being made in vehicle suspension systems, and it
was also reduced for longer bridge spans. The theoretical justification for these allowances for
dynamic effects is unknown.

In 1954, the impact allowance was reduced to 25 per cent, which was only to be added to
the effects of a single axle. This value had been obtained from some experimental
observations. In the USA at the same time, an overall allowance of 30 per cent was made.

During the late 1970s (Department of Transport, 1980), the short span bridge loading
provisions of the standard traffic ‘HA’ (highway bridge loading type A) loading model in the
UK bridge design standard, BS 153 (BSI, 1972), were revised. An allowance for impact
effects was derived from studies by the Transport and Road Research Laboratory (Page,
1976). This was based on vehicle suspension forces: measured by means of a system of
electrical resistance strain gauges and accelerometers attached to the rear wheels of a two
axled rigid heavy goods vehicle while traversing some 30 motorway over-and under-bridges.
The measured impact factors varied between 1.09 to 1.47 for underbridges, and 1.16 to 1.75
for overbridges. One result, of 2.77, was described as a ‘freak’, and occurred over a severe
step in the road surface. A value of 1.80 was selected, to be applied to the axle causing the
worst load effect. This allowance was included within the static design load model. Since it
only applied when a single vehicle effect governed the codified design load model, it only
applied to spans below about 15m.
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Common to all of these models are:

●The difference between the effects of moving and stationary vehicles are referred to as
‘impact’ effects, and there is little if any reference to bridge dynamic response.

●The impact allowances were selected deterministically to represent a typically large effect
that would apply to all bridges.

Design codes have become more prescriptive in recent decades, and designers have had
decreasing freedom (and less need) to consider the loads on their structures from first
principles. However, changes in procurement practices may begin to reverse this trend, as
centralized governmental procurement is replaced by the private sector. Private service
providers may need to balance safety, cost and potential liability in a different manner. It may
become more common for procurement authorities to specify performance criteria rather than
to specify the means of meeting those criteria and many more designers will need to consider
the loads on their structures from first principles, rather as they did during the nineteenth
century.

8.2 DESIGN ACTIONS

8.2.1 Probabilistic principles

Whatever means are used to produce load models for design, when a structure is faced with a
complex random loading process it will not be possible to cater for all conceivable
eventualities. Designers must make some rational judgement about the relationship between
safety and cost of their structures. Indeed, this is recognized under the UK’s Health and Safety
at Work Act which requires risk to be kept ‘As Low As Reasonably Practicable’ (the so-called
ALARP principle).

Since we cannot predict future events with precision, we cannot calculate actual costs of the
risk to safety, but must content ourselves with calculating probable costs. That implies that
engineers should consider probabilistic models for structural capacities and for static and
dynamic load effects.

Suspicion has grown in recent years that typical allowances for dynamic (or ‘impact’)
effects are unnecessarily onerous, and that real structures might well not respond fully to the
fluctuating applied loads that have been measured. The development of new bridge design
codes, including UK bridge assessment documents (Highways Agency, 1997) and Eurocodes
(CEN, 1994), have led to renewed interest in bridge dynamic response, and the means of
allowing for it in design.

In the UK at present, the Highways Agency memorandum BD37/88 (Highways Agency,
1988) defines design loads for bridges. A review of its derivation is provided by Flint (1990).
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8.2.2 Long span bridges

Long span bridges are governed by the weight of closely spaced convoys of vehicles which,
observations (Ricketts and Page, 1997) confirm, implies the presence of stationary traffic. It is
conceptually not unreasonable to treat such effects as though they can be modelled as
stationary random variables. Thus, it is assumed that the peak traffic load effect is potentially
the same day after day, since it is caused by the random association of a large number of
events (provided that nonrandom factors such as deliberate sabotage are neglected).

Therefore, a long span bridge load model may be based on statistical analysis of the effects
of convoys of traffic. Usually, these effects will be simulated, using convoy models based
either on automatically measured records from large numbers of vehicles, or on models
regenerated from statistical models of vehicles and traffic composition.

The current UK bridge design code (Flint and Neill Partnership, 1986), as well as Eurocode
1 (CEN, 1994) defines most actions (loads) and resistances (capacities) in relation to
‘characteristic’ values, where the characteristic value is considered to be the upper 5
percentile for loads, and the lower 5 percentile for capacities. The design rules for long span
bridges are intended to provide load effects that have approximately a 5 per cent probability
of exceedence in a nominal structural life of 120 years. This is calculated more rationally by
taking a one in 2,400 probability of exceedence per year. For bridge assessment, this might be
derived from information about current traffic, whereas for design purposes it might be
necessary to consider foreseeable future changes in traffic legislation or growth in volume.

The BS5400 traffic load model approximates to 1/1.2 times the characteristic. Thus, the
partial factor of 1.5 on traffic loading effectively provides a factor of 1.25 on the characteristic
load effect.

TRL (Transport Research Laboratory) Contractor Report CR16 (Flint and Neill Partnership,
1986) describes the derivation of the present long span bridge loading rules. Much of the
document refers to the manner in which a model of future traffic was developed, since at the
time of collection of the background data there was a 32 tonne weight restriction, and 38
tonne vehicles were about to be legalized.

Since the publication of that report, advances in computer speed have allowed much more
extensive traffic load effect simulations to be undertaken. Wherever possible, this author
believes that it is preferable to use real traffic records (obtained by weigh-in motion sensors)
in such simulations, rather than to attempt to mathematically model traffic and then to
regenerate data (as was performed for the 38 tonne vehicles in the CR16 models).

There are still relatively poor data to describe the spaces between vehicles in long traffic
convoys. TRL describe the results of analysis of relatively recent video tape records of traffic
behaviour, including lane selection and the behaviour of traffic convoys, in Ricketts and
Page’s (1997) report, and it is recommended that these observations (or actual site
observations) should be used rather than the models which are described in CR16.
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8.2.3 Short span bridges

Short span bridge load effects present more difficulties. Peak load effects are caused by the
joint extreme of the combined static and dynamic effects from all individual vehicles, moving
much more quickly than jammed traffic. On the shorter span bridges on any particular route,
there will be a very much larger number of load events of potential concern than on the longer
bridges. Furthermore, the highest load effects on the shortest bridges are likely to be caused
by unusual and possibly illegally configured vehicles, whose existence might not be
predictable by statistical analysis of measured traffic data. The bridge owner must decide
whether such vehicles need be considered.

The present UK design rules for the effects of normal traffic loading on short span bridges
are derived from a deterministic assessment of the envelope of load effects that would be
produced by all vehicles that conform to the current UK Construction and Use Regulations.
Deterministic allowances are included for impact and for overload (Department of Transport,
1980).

The rules used for assessment of short span bridges (Highways Agency, 1997; Cooper and
Flint, 1997), unlike the design rules, are based on probabilistic principles. However, they were
‘calibrated’ against the current design rules. They are intended to provide adjustments to cater
for different types of traffic and road surface roughness, whilst retaining reliabilities that are
consistent with those of current designs of similar dimensions and construction, used in
onerous situations.

8.2.4 Determination of design action

Whether or not a probabilistic method is used to determine the relationship between potential
loads and design capacities, it will be necessary to derive a model of the effects of traffic
loads that will cater for static and dynamic effects.

The static design model may be based on deterministic or probabilistic assessment of
extreme load effects, determined from the traffic weight and classification data: as described
for ‘long span bridges’ in Section 8.2.2. Then, any dynamic amplification to such static
effects is usually considered separately, to be combined later.

8.2.5 Dynamic amplification factor

The dynamic amplification factor is usually defined to be the ratio between the effects of
moving traffic on bridges to the effect of stationary traffic. Thus: if the maximum response to
stationary traffic (or slowly moving traffic traversing the entire length of the bridge)=Rs and
the maximum response to moving traffic crossing the bridge=Rd Then:

(8.1)

where DAF=Dynamic Amplification Factor.
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Values of Rs may be derived from analysis of the types and weights of vehicle which use
the bridge, as indicated above. However, derivation of the appropriate DAF is then necessary.

8.3 DETERMINATION OF STRUCTURAL RESPONSE

In theory, bridge response cannot be separated from the vehicle loading (the action), since the
movement of a real bridge affects the wheel loads that initiate the original response. Therefore
an iterative analysis is required at each time step to ensure compatibility between the
suspension and bridge deflections and interacting forces. A number of theoretical studies have
been performed for road vehicles and rail vehicles (AEA Technology (Bailey, 1996; Green et
al., 1995)) in which multi degree of freedom vehicle models have been used in conjunction
with theoretical road surface profiles and elastic bridge models in order to model the
interactions between bridges and vehicles, and thus to obtain the bridge responses. These
methods appear to be most useful in very specific applications, for example:

●when refining the design of vehicle suspensions (where the vehicle models are under the
direct control of the analyst);

●in military bridging design (where vertical deflections can easily be three or four times
larger than the suspension travel of a typical vehicle).

However, they possess drawbacks when used in more conventional bridge assessment. In
particular:

●they require the user to have access to realistic models of many details of vehicle
suspension design: knowledge which is likely to be commercially confidential to vehicle
manufacturers;

●road surface profiles at bridge sites are not stationary random variables, and they cannot
reliably be recreated from frequency domain (spectral analysis) models;

●analysis is slow, and requires relatively complex input. It is difficult to analyse sufficient
cases to build up a large enough set of results from which generalized conclusions can
confidently be drawn.

In civil applications the feedback effect from bridge response to suspension response is
normally small, since highway bridges are usually so much stiffer than vehicle suspension
systems. In recent studies sponsored by the UK Highways Agency and undertaken by TRL
(Ricketts and Page, 1997), axle weights were recorded during heavy goods vehicle transits
over a small number of bridges which were equipped with strain and deflection measuring
equipment. It was found that the biggest vertical deflection during the transit of a 38 tonne
articulated truck over a relatively flexible 10 metre span bridge was just over 1 mm, which
would have negligible effect on suspension forces.
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Figure 8.1 Typical relationship between frequency and the amplitude of variation of effective total
weight.

8.3.1 Vehicle dynamic forces

Various workers have investigated the interaction between vehicles and road surfaces. In
particular, the UK Transport Research Laboratory (Ricketts and Page, 1997) has instrumented
individual vehicles and bridges in order to measure the variations in loading imposed by
vehicle wheels onto road surfaces.

A frequency domain approach might appear to provide a useful means of characterizing the
load model, and TRL used the Fast Fourier Transform procedure to obtain the relationships
between wheel load magnitudes and frequencies. They observed that vehicle dynamic
behaviour can be separated for practical purposes into two distinct parts. There is the
oscillation of the mass of the whole vehicle on its suspension: the so-called ‘heave’ or
‘bounce’ response; and there are the oscillations of individual axles, responding to road
roughness and discontinuities: the ‘wheel hop’ response. Typically, the heave mode has a
frequency between about 2 and 3 Hz, whereas wheel hop frequency is between about 12 and
16 Hz.

Figure 8.1 shows the relationship between the frequency and amplitude of oscillation of the
total weight of a modern five-axled articulated air suspension heavy goods vehicle. The
‘bounce’ mode has a frequency of 1.6 Hz.

Figure 8.2 shows a typical plot of the variation of the sum of all wheel forces of a 38 tonne
articulated vehicle against time, for transit speeds of 40 mph (17.9ms−1) and 10 mph (4.5ms−1).
The peak dynamic increment in the vehicle weight is very nearly 8 tonnes force for the 40
mph transit, but less than 2 tonnes force for the 10 mph transit.

Correlation coefficients may be calculated between the various wheel loads. Table 8.1
shows a set obtained by analysis of the wheel load record obtained at 40 mph from the same
five-axled vehicle as referred to above.
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Figure 8.2 Typical variation of effective vehicle weight with distance for different vehicle speeds.

Table 8.1 Wheel load correlation coefficients.

a b c d e f g h i J
a 1 0.82 0.34 0.34 0.10 0.18 0.22 0.18 −0.21 −0.18

b 1 0.32 0.41 0.14 0.21 0.23 0.20 −0.22 −0.16

c 1 0.81 0.39 0.31 0.24 0.11 −0.03 −0.04

d 1 0.35 0.46 0.22 0.16 −0.07 −0.03

e 1 0.77 0.29 0.15 0.14 0.11

f 1 0.21 0.18 0.02 0.07

g 1 0.72 0.06 0.07

h 1 0.00 0.02

i 1 0.79

j 1

Wheel pairs at each axle are a-b, c-d, e-f, g-h and i-j. The steering wheels are i-j, driving
wheels are g-h, and the remainder are the trailer wheels. The relatively high correlations
between the pairs of wheel loads on each axle (enclosed in boxes in the table) contrast with
the low correlations elsewhere.

A mathematical model based on such frequency analysis would appear to be attractive as
the basis from which statistical load models might be generated. However, bridge specific
road profiles such as those which occur at movement joints, or due to approach road
settlement, would still need to be included when assessing response.

This complicates the process of creating load models, and it would appear to be preferable
to use real measurements obtained at real sites as much as possible. Then there will be no
need to transform measured data into a mathematical model simply in order to use that model
to reproduce the original values.
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8.3.2 Vehicle and structure interaction

Dynamic effects due to moving loads on bridges are of most concern at shorter spans. They
are essentially transient effects. The magnitude of the forcing function will be changing with
time and will have a definite beginning and end. Therefore, it is more convenient to analyse
bridge dynamic response in the time domain by performing a ‘time history’ analysis rather
than by using a spectral analysis approach in the frequency domain. Furthermore, it is
preferable to use recorded wheel data rather to mathematically characterize it and regenerate it
using a Monte Carlo simulation approach. Regeneration of continuous records from frequency
domain spectral analysis data has been criticized because it ‘tends to produce too many peaks’
(Elnashai, 1995).

Various commercial Finite Element Method (FEM) programs are available with the ability
to perform time history calculations. It is not always easy to model multiple loads which are
changing in space and time, and it is useful to consider more economical and simpler
alternatives. These may also provide means of obtaining results for a variety of structures
relatively quickly and economically.

It is possible to analyse the structural response to a particular loading history independently
in each of a number of independent modes of vibration, and use the principle of mode
superposition to combine them. This would require prior analysis (using FEM or classical
theory) to obtain the elastic properties which define each mode of vibration (mode shapes,
frequencies, masses). Chapter 2 (Section 2.3) describes modal analysis methods.

8.3.3 Flexural response

The dynamic response characteristic of a simple beam bridge that is likely to be of most
concern is that in bending. The frequencies of the modes of vibration of a simple beam are
given by (see also Section 2.4.1):

(8.2)

where: n=Mode of vibration (1, 2, 3…)
L=Span length
m=Mass per unit length
EI=Flexural rigidity
(ω=Circular frequency (rad/sec).
For most bridge construction types, it has been established that a crude mathematical model

of the frequency of the first mode of vibration is given by the form: f=82L−0.9 Hz (Paultre et al.
1992). Thus a 15 m bridge beam will typically have a natural frequency in its first mode of
vibration equal to approximately 7 Hz, whereas its second mode frequency will be 28 Hz.

However, it should be remembered that real bridges decks are primarily two-dimensional
surfaces that may be excited in many different modes in their third
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(out of plane) dimension by highway traffic. The first torsional mode may have a very similar
frequency to the first bending mode, since the strained shape of the principal elements will be
similar. However, there will be many other vibration modes, most of which will have much
higher natural frequencies.

The contribution to response from the lowest modes will be much greater than for higher
modes, since road vehicle excitation frequencies are not much in excess of 16 Hz.

Each mode’s contribution to stress effects is proportional to the square of the response
frequency, so the contribution of each higher mode to moments will be more significant than
its contribution to deflections.

8.3.4 Time intervals

A step by step time history analysis based on linear relationships between displacement,
velocity and acceleration within each time step is only stable when the time step is sufficiently
small. Typically, the vibration periods must be in the order of 5 to 10 times the integration
period (see Chapter 2). There are methods of stabilizing the analysis, but the highest mode
responses may have little physical meaning. When the ratio of excitation to response
frequency falls towards zero, the dynamic magnification approaches unity and static analysis
will suffice.

Since a 15 m span bridge will have a first mode period in the order of 7 Hz, the time step
must be approximately 1/100 sec or less.

8.3.5 Shear response
Stresses that are dominated by shear loading seldom if ever appear to be discussed. They are
not referred to in any of the summaries of findings that appear in the 1992 paper by Paultre,
Chaallal and Proulx. Shear deflections are normally so small that the high stiffness leads to
very high natural frequencies of vibration. The result is that shear sensitive elements will tend
to respond in direct proportion to rapid changes in applied force. Therefore, dynamic analysis
of structural response is not needed, and analysis of the possible variation in the applied force
due to the response of the vehicle suspension system to road irregularities will suffice.

This discussion concentrates on the effects of road vehicles. These have pneumatic tyres,
which prevent very high transient loads from occurring. The effects of railway rolling stock
are very different, and there is anecdotal evidence that damaged wheels may cause load spikes
that are as much as six times greater than the average rolling load. Such very high frequency
spikes are quickly attenuated in most structures, although they do cause serious local
problems such as premature fatigue damage and fractures in railway lines.

Dynamic magnification of shear effects due to wheel loads running on or off bridges will
be small. However, there might well be significant dynamic amplification of end reactions
due to bending responses. If the shear vibration mode
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shapes are to be considered in a multi-modal vibration analysis, a very large number of modes
of vibration will need to be considered before they can sum (even moderately accurately) to
the correct shape, and the dynamic amplification in these higher modes will be negligible.

8.3.6 Effect of influence line shapes
When conducting a time history analysis of response in any one mode, the forcing function
will be obtained by taking the sum of the products, at each interval of time, of the
instantaneous value of wheel load and a modal influence coefficient. This influence
coefficient is equal to the local magnitude of the normalized mode response shape, which is
obtained from the structure’s eigenvectors in the usual manner (see Chapter 2).

If it a static analysis solution is to be compared with a dynamic analysis, it is important to
notice that the static influence line for midspan bending of a simply supported beam is
triangular, whereas the first flexural mode shape is approximately sinusoidal. Therefore, even
if there is no dynamic amplification of the mode 1 response, the time history analysis will
appear to give a larger response. The precision of the results can theoretically be improved by
increasing the number of modes considered in the analysis, but this leads to practical
analytical problems.

A pragmatic approach is to arbitrarily assume the static and dynamic influence line shapes
to be identical. The absolute value of response will not be obtained exactly, but it will allow
the difference between dynamic and static response to be found.

8.3.7 Use of bridge strain measurements
A number of workers have reported analyses of recorded values of bridge strains, in which the
higher frequency oscillations are attributed to dynamic response, and lower frequency
oscillations to static responses.

If a bridge span is, say, 30 m, a typical transit time will be in the order of 2 sec. The mode 1
frequency will be in the order of 3.8 Hz (eqn 8.2), so there will be in the order of eight full
oscillations in mode 1. Since the static effect of the vehicle will only cause approximately one
half oscillation, it is conceptually reasonable to consider separating the two effects.

However, even when there appears to be no significant vibration, the load effects may well
be strongly affected by overall road profile effects caused by the bridge’s being in a dip or on
a hump. Such effects are likely to be at least as important as any dynamic vibration response.

Figure 8.3 illustrates strain gauge readings obtained at 1/100 sec intervals from the lower
flange centre of a steel beam from a composite beam plus reinforced concrete slab bridge with
a 10 m span. The peak 40 mph strains are actually less than the 10 mph strains, but there is
little sign of periodic oscillation on either trace (the unevenness seems largely to be due to
signal noise). The differences
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Figure 8.3 Comparison between midspan bending strains in 10 m span bridge due to 10 mph and 40
mph transits.

Figure 8.4 Envelope of moments calculated from a series of theoretical transits of a 10 m span bridge
at 10 mph. Maximum=47; minimum=38; mean=42; standard deviation=0.84; peak
potential dynamic amplification factor=1.12.

appear to be caused by the uneven road profile, and not by vibration response of the bridge.
The DAF is here actually less than unity, although bridge vibrations were very small.

Figure 8.4 illustrates an envelope of the ‘pseudo-static’ effects caused by variations in
loading caused by vertical acceleration of vehicle mass due to uneven road surfaces,
excluding dynamic response of the supporting surface. The plotted values are potential load
effects derived for all possible locations of a 10m midspan beam bending influence line
relative to the entire set of all wheel load measurements for a 15 sec period during a 10 mph
passage of the same 5-axled air
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Figure 8.5 Envelope of moments calculated from a series of theoretical transits of a 10 m span bridge
at 40 mph. Maximum=55; minimum=31 ; mean=42; standard deviation=3.2; peak potential
dynamic amplification= = 1.31.

suspension articulated 38 tonne heavy goods vehicle. The maximum possible amplification of
the static moment due to the measured variations in wheel loads for this period was equivalent
to a DAF of 1.12, but the ‘characteristic’ (upper 5 percentile) value was approximately a DAF
of 1.03.

Figure 8.5 shows the same plot for approximately 8 seconds at 40 mph. The peak DAF was
potentially 1.31, and the characteristic was approximately 1.12.

8.3.8 Trial time history analysis
Some trials were performed in order to establish the validity or otherwise of possible analysis
methods, and values of damping parameters. The approach which was chosen was to use the
Duhamel integral method (Clough and Penzien, 1993). This may be conveniently
implemented in a computer spreadsheet and is described in the form of a hand analysis
spreadsheet in the early (1975) edition of Clough and Penzien.

The response equation that is used is given by the following convolution integral. The
response is obtained by integrating a series of harmonic vibration responses due to a series of
short duration impulses. Thus (see eqn 2.38):

(8.3)

where:
v(t)=Displacement at time t
τ=Time at each impulse
ξ=Damping ratio
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p(τ)=Impulsive force at timeτ
ωD=Modal natural frequency
The applied load function p(τ) is obtained by summing the products of each of the

instantaneous values of the vehicle axle loads and a modal influence coefficient at each time
step. Thus:

(8.4)

where:
p(τ)=Impulsive force at time T
L=Span of bridge
x=Position along span
f(x, τ)=Forces applied at locations x at time τ
Ø(x)=Value of mode 1 vibration shape at locations x
As explained above, since dynamic response is only calculated in Mode 1, and the mode

shape is not identical to the static influence line shape, it is convenient to assume that the
modal influence coefficient and static influence lines are both sinusoidal, and have equal
maxima at midspan. (The maximum value=0.25L, since that is the influence line magnitude
for midspan bending due to a central load on a beam.)

At a particular time T, therefore, the static load effect is merely given by p(T). The DAF is
then given by:

(8.5)

where:

where:
p(x)=Impulsive force when vehicle is at location x
L=Span of bridge
x=Position along span
f(x)=Average (static) axle loads at positions x
Ø(x)=Value of mode 1 vibration shape at locations x
Figure 8.6 compares the static ‘Input’ and dynamic response ‘Response’ from a time-

history analysis considering mode 1 response on a 10 m bridge span during a 10 mph transit,
superimposed on a plot of the lower flange strains ‘Measured Strain’ during the period of the
vehicle transit.

The first flexural mode natural frequency for a 10 m span for a simple beam from eqn (8.2)
is (approximately) 10 Hz. Mode 2 was omitted since it has no curvature
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Figure 8.6 Mode I response due to 10 mph transit: Damping ratio=0.10.

or deflection at mid span. The third mode s natural frequency would be 90 Hz, which is so far
in excess of the vehicle’s excitation frequency that it, too, was to be ignored.

8.3.9 Effect of damping
Structural damping must be obtained by observation. In dynamic analysis, it is usually
expressed as the ratio, ξ to the critical damping value. Structural engineers often find it
convenient to observe the ratio between two successive peak values of an oscillation as it
decays following some test excitation. The logarithm of the ratio between successive peaks is
known as the logarithmic decrement (‘log dec’ see also Section 2.2.2) δ, where:

(8.6)

which, for small damping becomes:

(8.7)

In the trial analyses, the best match between predicted and measured response was found
when using a damping ratio, ξ, of 0.10. Green et al. (1995) report ξvalues in tests of 0.045.
The peak moment calculated for the 40 mph transit was somewhat less than that for the 10
mph transit, owing to the form of local road profile. (This effect also appears in the strain
gauge readings plotted in Figure 8.3.) The ‘Input’ line represents the changing static midspan
moment taking account of the variation in effective vehicle weight that appears in Figure 8.2.
The ‘Response’ line includes bridge dynamic response in the first flexural mode. Both lines fit
the measured strain gauge changes almost equally well, which implies that
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Figure 8.7 Mode I response due to 40 mph transit: Damping ratio=0.10.

(provided that measured wheel loads were available) dynamic response analysis was not
necessary for this structure under this load.

Figure 8.7 suggests that (at least for this type of composite steel beam plus concrete slab
structure) a pseudo-static analysis which takes account of the change in effective vehicle
weight but which does not concern itself with dynamic response of the bridge will be
adequate for all practical purposes.

8.3.10 Interpretation and implementation of dynamic analysis
Practical bridge design codes usually provide load models which will provide ‘nominal’ load
effects which have some pre-determined probability of exceedence.

If the load model has been derived separately for static and dynamic effects, there remains
the problem of combining the two analysis results into a single design model, which is related
in some pre-determined manner to the statistically determined extreme of the joint effects of
static and dynamic loading.

It does appear that, for most practical structures, dynamic magnification or reduction of
static load effects is caused mainly by the effects of uneven road profile. To a first
approximation, therefore, the DAF is a unique (although uncertain) property of each bridge
(or, at least, of the transit of each individual type of vehicle).

Thus, the extreme static load effect will be a function of the lifetime exposure of the bridge
to traffic, but the extreme dynamic load effect will be a property of the bridge. When the
Highways Agency’s (1997) assessment rules were developed, it had to be assumed that there
were generally no site specific strain records, and the uncertainty in DAF was treated as a
structural property. After much consideration, the rules were finally based on reviewing
variations in static load effects derived
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from a large number of continuous wheel load measurements from a set of vehicles which
was broadly representative of the types of vehicle in common use in the UK.
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Chapter 9
Machine-induced vibrations

J.W.Smith

9.1 INTRODUCTION

Many industrial processes give rise to large dynamic forces. The unbalanced masses of large
rotating machines generate oscillating forces, while forge hammers and rock crushers apply
transient shocks and impacts. Rotating or reciprocating machines generally operate at fixed
frequencies. It is essential to design the foundations or supports to avoid resonance. Periodic
forcing functions will always induce dynamic responses and these should be evaluated to
ensure that they do not damage the fabric of the enclosing buildings, the machines themselves
or other sensitive processes nearby. The vibration due to transient shocks and impacts should
also be evaluated for the same reason. Furthermore, human beings are very sensitive to
vibrations and the amplitudes should not cause discomfort to personnel working nearby or to
other occupants of buildings that contain machines.

There are four important steps in the successful design of machine foundations. First, the
dynamic forces have to be assessed accurately. This is the task of the mechanical designer of
the machinery itself, and largely consists of forces exerted by the inertia of the moving parts.
These generally occur at harmonics of machine speed. Other forces arise from cylinder
ignition, rock crushing, impact from hammers, and certain fault conditions such as short
circuits in electrical machinery. Secondly, the ground conditions have to be assessed. This
requires a geotechnical investigation with the aim of determining reliable values of the
effective elastic resistance provided by the foundation material. A balance has to be achieved
between the cost of a detailed survey and the value and importance of the project. There will
inevitably be considerable uncertainty about the numerical values eventually adopted for the
design calculations and the designer needs to be confident about the upper and lower bounds.
Thirdly, the numerical model of the system should be suitable for the purpose. Many machine
foundations consist of large mass concrete blocks. These are effectively rigid, and reliable
design calculations can be done using quite simple methods of analysis by treating the soil
foundation as an elastic supporting medium. However, in principle the ground is a non-linear
solid with infinite boundaries. Vibration of a machine block results in wave
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propagation within the soil radiating away from the centre of disturbance. This should be
reflected in the analytical modelling for major projects. Advanced analysis using finite
element and layered half space methods may be required. Finally, the predicted vibration
should be compared with criteria chosen to ensure that personnel are not discomfited and that
equipment performance is not impaired. Some design rules exist but only for limited types of
industrial machinery. Information often has to be obtained from experience within the
relevant industry or from research.

9.2 DYNAMIC LOADING BY MACHINERY

The dynamic loading from industrial machinery derives principally from the inertia effects of
moving parts. Every machine behaves differently and it is usually the responsibility of the
manufacturer to calculate the forces that will be imposed on the supporting structure. The
rotation speeds or frequencies at which machines operate are also important and should be
specified.

9.2.1 Reciprocating engines

Large multi-cylinder diesel engines are often used to provide the primary motive power for
electrical generating plant in remote regions lacking indigenous fossil fuels or where there is
no access to other forms of energy production. The reciprocation together with the cylinder
ignition sequence give rise to periodic forces.

A typical arrangement of diesel engine and alternator mounted on a foundation block is
shown in Figure 9.1. A crank—piston linkage is shown in Figure 9.2 where the masses of the
crank, connecting rod and piston are m1, m2, and m3 respectively. Engine speeds are normally
quoted in revolutions per minute (r.p.m.) in which case the crankshaft rotation frequency Ωis
given by:

(9.1)

where N is the engine speed. It is evident that there will be oscillatory inertia forces due to the
moving masses m1, m2 and m3. The first two will have vertical and horizontal components
while m3 will have a vertical component only. The magnitude of these forces may be
evaluated if the various masses and lengths are known. For example, it can be shown that the
inertia force due to the piston will be:

(9.2)

This is not a simple harmonic excitation because of the second term. Therefore, in addition to
the primary engine forces applied at engine speed, there will be higher harmonics applied at
integral multiples of the engine speed. The mechanical designer of the engine should evaluate
these forces.

In multi-cylinder engines it is possible to balance most of the inertia forces, depending on
the number and arrangement of the cylinders. However, there will
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Figure 9.1 Diesel engine and alternator.

Figure 9.2 Crank-piston linkage.

always be some residual unbalanced forces due to tolerances on weights and geometry.
Furthermore, ignition of a cylinder will create a dynamic moment about the centre of gravity
of the engine, as may be seen in Figure 9.1. In a four-stroke engine this will result in a
pitching moment whose frequency will be:

(9.3)
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Figure 9.3 Rotating unbalanced mass.

where n is the number of cylinders. The firing order is selected to minimize the effect of this
moment.

9.2.2 High speed rotating machines

Turbines, centrifugal pumps, fans and electrical generators are examples of high speed
rotating machinery. Even though considerable care is taken to balance the rotating parts,
residual imbalances will always exist. An inertia force is generated by the eccentricity e of an
unbalanced mass m about the centre of rotation as indicated in Figure 9.3. Strictly speaking,
this force acts radially and rotates with the shaft. But it will have oscillatory vertical and
horizontal components that may excite the corresponding modes of vibration. This happens in
everyday experience with a domestic spin dryer. It should also be noted that the speeds of
turbines are many times greater than those of reciprocating engines of similar power and
therefore the out of balance force will be significantly amplified because of the frequency
being squared (mΩ2e).

9.2.3 Transient torques in electrical machines

There are two important cases of transient dynamic loading that occur with driven electrical
generators. The first is known as short circuit torque. Consider an electrical alternator being
driven by an engine as in Figure 9.1. If a fault occurred, which had the effect of creating a
short circuit in the output of the alternator, a very large current would be demanded (for a
fraction of a second, perhaps). This would be experienced as a suddenly applied load or brake
on the system. As a result the engine would apply a torque about the axis of the drive shaft.
The second case is known as faulty synchronizing torque. This occurs when an engine
generator system starts up and feeds power into the national grid. If the output of the
generator is not synchronized with the a. c. waveform of the national grid a braking effect, or
torque, is ex-
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perienced by the generator until such time as it is in phase. This will have a similar effect to
short circuit torque, in that a sudden torque is applied to the alternator which has to be reacted
by the machine supports. The dynamic effect of a suddenly applied load is twice the static
effect. The same applies to a suddenly applied torque. The machine manufacturer should
provide the magnitude and direction of transient torques that may occur during operation of a
machine.

9.2.4 Gyratory rock crushers

In the quarrying industry there is a need to crush excavated rock into stones of varying size
for different end uses. The raw excavated rock is often in very large pieces (perhaps in excess
of one metre across and weighing a couple of tons), whereas the end product may be required
for highway chippings of 20 mm size or less. Gyratory crushers are usually used in modern
quarries to process the rock.

There are several designs in existence but one of the most common is the base supported
cone crusher. The principle of operation is illustrated in Figure 9.4. The fixed parts of the
machine consist of a drum, hopper and bowl (inverted). Uncrushed rock is loaded into the
hopper and onto the feed plate of the crushing head, which ensures that the rock falls into the
space between the bowl and the mantle of the crushing head. The crushing head is driven in a
gyratory motion by

Figure 9.4 Cross section of a gyratory cone crusher.
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Figure 9.5 Schematic diagram of transient force due to stone crushing: (a) forcing function; (b)
direction of dynamic force.

the main shaft which is seated in the eccentric shaft at an angle designed to achieve the
desired size of stone after crushing. Note that the gap between the crushing mantle and the
bowl varies around the perimeter of the bowl. The eccentric shaft is driven through a gear
mechanism by an electrically powered counter shaft. Crushing is achieved when lumps of
rock are trapped between the bowl and mantle and then crushed when the gap diminishes
during a revolution of the eccentric shaft.

It will be appreciated that a number of dynamic forces will occur due to rotation of the
moving parts (Szczepanik et al. 1990). The largest will be caused by the gyratory motion of
the mantle and main shaft due to their eccentricity. There will also be the unbalanced counter
shaft force, which is usually at twice the frequency of the main shaft, and vibration of the
springs holding down the hopper and bowl.

However, the most important dynamic forces are transient shocks arising from the crushing
action itself. Smith (1993) showed that the dynamic load when a stone is crushed consists of
an impulse as the power of the drive motor compresses the rock between the bowl and mantle,
followed by a sudden release as the stone fractures. The peak value of the force could be as
much as two or three tons, according to the size of the crusher, and is shown schematically in
Figure 9.5a. There is a need for experimental data on the magnitude of the typical crushing
force, but in its absence an estimate can be made from knowledge of the motor torque and the
mechanical advantage available between motor and mantle. The duration of the impulse is
based on the assumption that typically four stones are crushed per revolution. The force is
applied in a direction normal to the face of the mantle, which is usually about 45°, but could
occur in any direction in the horizontal plane because of the rotation of the pinch point of the
crusher (see Figure 9.5b). These forces are transient and random, as rocks are fed into the
machine, but may occur several times per revolution of the eccentric shaft.
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It has been found (Szczepanik et al. 1990) that vibration of the crushing machine on its
foundation leads to dynamic stresses in the arms of the supporting frame that holds the
eccentric shaft and head in position. Ultimately, fatigue cracks may occur in the arms, causing
breakdown of the machine. It is important that the supporting foundation is sufficiently stiff to
minimize this vibration.

9.2.5 Hammers

There are many industrial processes, typically impact forging, which require single or
repeated blows with a hammer. Kinetic energy is given to the hammer head either by some
external source of power such as steam, compressed air, or more usually by gravity. Velocity
is imparted to the anvil and work piece by transfer of momentum. A schematic arrangement
for a drop hammer is shown in Figure 9.6. The mass of the hammer head, or tup as it is called,
is denoted by m0 the anvil by m2 and the foundation by m1. Some kind of elastic layer, often
hardwood, is inter-posed between the anvil and the foundation block. The block is either
supported elastically by the foundation material or by specially designed springs to minimize
the transmission of vibration to nearby buildings. Thus the system has two degrees of freedom.

Figure 9.6 Schematic arrangement for a drop hammer.
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The velocity of the tup before impact is given by:

(9.4)

In the case of pneumatic or steam powered drop hammers Barkan (1962) found that, in
practice, this should be reduced by an empirical factor of 0.65 to allow for friction and the
resistance of exhaust air or steam.

Following the method of Barkan (1962), conservation of momentum can be expressed by:

(9.5)

where (– v') is the rebound velocity of the hammer head and v0 is the velocity imparted to the
anvil. The relative velocity after impact depends on the elastic characteristics of the colliding
bodies and is obtained from the expression:

(9.6)

where C r is the coefficient of restitution. This constant varies between 0 (fully plastic) to 1
(perfectly elastic). Thus the velocity of the anvil after impact may be obtained from eqns (9.5)
and (9.6) and is given by:

(9.7)

where µ0=m2/m0. This velocity may be used as an input to the equations of motion of a two
degree of freedom system (see Section 2.3). It is possible that the hammer might strike the
anvil eccentrically, thus imparting a rotational component. This condition should also be
considered.

Novak and El Hifnawy (1983) have verified that the above procedure is satisfactory
provided that the duration of the impact is much shorter than the natural period of the
foundation. This may not be so if the foundation support is very stiff (e.g. piles). It would then
be necessary to take account of the force-time function of the impulse.

9.2.6 Vibrating screens
These are used extensively in the mining and quarrying industries for washing, separating and
grading processes. Rock is passed over a horizontal screen that is supported at its ends, as
shown in Figure 9.7. The screen is vibrated vertically and horizontally by motor driven
eccentric cranks or cams. Stones that are small enough pass through the screen and are
collected, while larger stones pass over the sloping upper surface and continue to the next size
of screen. Sinusoidal inertia forces are thus applied to the supporting frame structure and to
the foundations. In the quarrying industry rock is graded into different sizes by passing over a



sequence of vibrating screens. These are usually housed in a single large building, which is
therefore subjected to continuous dynamic loading while in
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Figure 9.7 Schematic diagram of a vibrating screen.

operation. The frame of the building should be stiff enough to prevent unacceptable vibration
amplitude.

9.2.7 Rolling mills

In processes such as rolling of steel sections, the shaping is achieved by passing a hot bloom
or billet through the shaping rollers which are driven by a d.c. motor. As a billet enters the
rollers, the initial resistance acts like a suddenly applied torque to the shaft of the driving
motor. The resulting dynamic couple applied to the foundation block is analogous to the
‘short circuit’ torque in electrical generators. The torque can be estimated by knowing the
speed and power of the driving motor.

9.3 DESIGN OF STRUCTURES TO MINIMIZE MACHINE-INDUCED
VIBRATION

9.3.1 Dynamic response of supporting structure and foundation

Most types of heavy industrial machines are provided with one of the five types of supporting
foundation shown in Figure 9.8. These are mass concrete blocks, box-type foundations, wall
foundations, reinforced concrete frames and table top foundations. The choice of foundation
is influenced by the type of machine, the magnitude of the dynamic forces and the access
required around the machine.

Power generating sets, comprising large diesel engines and alternators, are often mounted
on mass concrete foundation blocks which distribute the load over the base area to the
supporting soil or rock. Piled foundations would be preferred where the ground conditions are
poor. The block may be anything from twice to



Page 332

Figure 9.8 Foundation systems for industrial machinary.
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Figure 9.9 Simplified model of rigid foundation block resting on elastic supports.

five times the mass of the machinery. The performance of block foundations was discussed
fully by Smith (1989). The idealized structural system consists of a large rigid mass resting on
a semi-infinite elastic medium with dynamic forces and moments applied to the mass. This is
an example of ground structure interaction for which the mathematical analysis is relatively
advanced and inconvenient for general design practice (Arnold et al. 1955). Various attempts
have been made to derive simplified formulae including Hsieh (1962) who proposed an
equivalent mass restrained by elastic elements, the system having an appropriate amount of
damping derived from semi-infinite elastic theory. The theory of ground structure interaction
is discussed briefly in Section 9.3.2.

The method of analysis in most widespread use at the present time originates from the work
of Barkan (1962). His simplified system is shown in Figure 9.9 where the soil stiffness is
represented by vertical and horizontal springs. Provided that the centre of gravity of the mass
coincides with the centre of stiffness of the soil, vertical vibration can be treated as a single
degree of freedom mass—spring system. In the case of horizontal vibration, sliding motion
will be accompanied by rocking, resulting in a two-degree of freedom system. Other motions
that should be considered include pitching and horizontal motion in a plane perpendicular to
the one shown, and also yawing motion about a vertical axis. Barkan (1962) believed that the
participating soil mass does not make a sufficient difference to the calculation of the natural
frequency and could be safely neglected. Furthermore, provided that the machine frequency is
sufficiently different from the natural frequency of the system, amplitudes of forced vibration
may be calculated with reasonable accuracy by ignoring damping. Full details of the
analytical procedure are provided in the Code of Practice for Foundations for Machinery (BSI,
1974). Information and methods for calculating the stiffness of the foundation material
whether it be soil, rock or piles is provided by Skipp (1966). On the basis of
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experience of the performance of a very large machine, Smith (1989) has commented that the
BSI (1974) method of calculation (which is based on Barkan, 1962) is generally satisfactory
for machines with very stiff bases. However, industrial practice is moving towards lighter and
more flexible bases for which the flexing of the base should be considered.

In an effort to reduce the cost, and also to provide access to equipment, box-type
foundations may be employed. The BSI (1974) method may be adopted for analysis but
consideration should be given to the possible flexing of the structure, especially when
designing for large machines. Wall foundations are particularly useful for machines which
require equipment such as conveyors beneath them. The machine may be fixed directly to the
tops of the walls or supported on steel bearers that span between the walls. This kind of
foundation is potentially very flexible and particular care should be taken in the design. For
example, it may not be wise to assume that the foundation slab is rigid since transverse
vibration of the walls may be accompanied by flexing of the slab.

Turbines and other high speed rotating machines are often mounted on reinforced concrete
frames and slabs (Srinavasulu and Vaidyanathan, 1976). In this case the supporting structure
cannot be treated as a rigid block and analysis of its dynamic characteristics may require
numerical computation. The ‘table top’ arrangement is similar to the frame type of supporting
structure, as shown in Figure 9.10 in which a turbine and alternator are mounted on a slab,
which in turn is supported by columns. In order to confine the vibration caused by the
machinery to the slab, the slab itself is mounted on isolating springs and dampers at the tops
of the columns. The stiffness and damping of these spring—damper units must be chosen to
minimize transmission of the vibration to the columns. The slab/ machine system has to be
checked for all possible modes of vibration including flexural motion of the slab.

9.3.2 Ground-structure interaction

The above methods are highly simplified theoretically, and take no account of the infinite or
semi-infinite extent of the ground that is supporting a machine foundation. These simple
methods have been used extensively for most types of foundations for general industrial
machinery, including quite large generator sets. However, in the case of very large, important,
expensive or safety critical projects it may be necessary to carry out more rigorous analysis
using advanced theory. For example, nuclear installations in seismic zones should be analysed
taking full account of ground—structure interaction. The principles are discussed briefly
below.

An idealized model of a foundation block supported on soil or rock is shown in Figure 9.11.
The mass consists of the concrete block together with the machinery. The ground is a semi-
infinite region of layered elastic media. The layers represent different soil or rock strata and
would have different density and elastic characteristics. Dynamic forces are applied to the
block as a result of the operation of the
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Figure 9.10 Table top supporting structure for turbine and alternator system.

machine. Generally these would be periodic forces arising from the out of balance masses.
Although the ground provides elastic resistance, which may be evaluated by the theory of

elasticity, the lack of boundaries means that vibration in a steady state mode shape does not
occur. Instead, vibration of the block results in displacement of the ground in the form of
waves that propagate away from the source of disturbance. The most important waves occur
at the free surface and are analogous to ripples on a pond radiating in the form of concentric
rings increasing in diameter with time. The energy of motion at the block is confined to a
small volume of soil whereas it is spread over a much larger volume after some time when the
ripple has widened. Thus, energy of vibration is radiated away from the source of
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Figure 9.11 Idealized model of a foundation block supported on soil or rock.

Figure 9.12 Dynamic point load on surface of an elastic half space.

disturbance. Even if frictional damping in the soil is ignored, this loss of energy due to the
propagating waves is always present and is called radiation damping. This surface wave
effect is of great importance when evaluating the vibration of structures supported by
unbounded media.

A preliminary step in the analysis is to consider a dynamic point load on the surface of an
elastic half space as shown in Figure 9.12. The most basic loading function is a steady state
periodic force given by:

(9.8)

noting that eiwt=cos ωt+i sin ωt.
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The displacement response of the surface y(t) is of a similar form

(9.9)

Even if there was no material damping in the soil, the displacement amplitude could never go
to infinity at resonance, as in the case of structures with boundaries (see eqn 2.42 and Figure
2.14). This is because the surface waves travelling away from the source of disturbance
absorb energy and give rise to apparent damping or radiation damping. A further feature of
the behaviour of wave motion in elastic half-spaces is that there is a characteristic frequency
below which wave motion will not occur.

If eqns (9.8) and (9.9) are substituted into an equation of motion such as eqn (2.27) given in
Chapter 2, it can be shown that:

(9.10)

where y is the displacement andζis the effective critical damping ratio (see eqns 2.33, 2.34
and 2.35). The term [k(1+2ζi)–ω2M] is referred to as the dynamic stiffness and is a function
of frequency. This relationship also holds for multi-degree of freedom systems for which the
equation of motion is given by:

(9.11)

where {u} is the vector of displacements of all the degrees of freedom and {P} is the load
vector. [S] is the dynamic stiffness matrix and is given by:

(9.12)

It is generally easier to obtain solutions for periodic loading using analysis in the frequency
domain as above. Note that the dynamic stiffness matrix is frequency dependent. Analysis of
general forcing functions can also by synthesized from frequency domain solutions using
Fourier transforms.

Wolf (1985) has provided a detailed treatment of ground-structure interaction in the
frequency domain for earthquake analysis of large structures. He proposed a system using
substructures, suitable for finite element analysis. This is illustrated in Figure 9.13 where the
structure—soil system is reduced to two substructures, one being the main structure and the
other being the surrounding soil of infinite extent. The dynamic stiffness matrix of the main
structure, [S], has an order equal to the number of degrees of freedom in the finite element
model. It may be evaluated by conventional finite element methods. The displacement vector
may be decomposed into sub vectors {us} and {ub}. The subscript b denotes all the nodes at
the interface while s denotes the remaining nodes of the structure, as shown in Figure 9.13.
Similarly, the stiffness matrix may be decomposed into the submatrices [Sss], [Ssb] and [Sbb].
Hence, the equation of motion of the structure may be expressed as:



(9.13)
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Figure 9.13 Finite element model of structure embedded in an unbounded region of soil.

Figure 9.14 Reference subsystems for the structure and excavated ground.

where Ps are the loads applied to nodes of the structure other than at the interface where it is
assumed there are no external loads.

In order to obtain the dynamic stiffness matrix of the soil structure system, it is necessary to
add the dynamic stiffness matrix of the excavated ground. This is shown in Figure 9.14 and
the equation of motion of the system will become:

(9.14)

where the superscripts s and g denote the stiffness sub matrices belonging to the
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structure and the ground, respectively. It should be noted that the stiffness matrix of the
excavated ground in principle represents the dynamic stiffness of generalized springs and
dash pots joining the nodes b to adjacent fixed virtual nodes. They take account of the density
and stiffness of the ground material together with radiation damping due to the wave motion.

This stiffness matrix is not easy to obtain because it is a semi-infinite region of irregular
shape. However, it can be obtained by subtracting the stiffness matrix of the excavated soil

from that of the interface nodes in the free field as follows:

(9.15)

Hence, the equation of motion becomes:

(9.16)

may be interpreted as the dynamic stiffness matrix of the structure, with the
stiffness matrix of the excavated soil subtracted. The latter may be evaluated by conventional
finite element methods.

The free field dynamic stiffness matrix must be evaluated using the theory of semi-
infinite layered media. This requires advanced mathematical treatment that is beyond the
scope of this book. Wolf (1985) has derived a number of useful special cases for two-
dimensional and axi-symmetric foundations using Green’s functions. Moreover, the method
has been developed further for analysis in the time domain (Wolf, 1988). Wolf and Paramesso
(1992) solved a practical example of a hammer foundation with uplift of the anvil. This was a
non-linear problem in which they used a lumped parameter model for a rigid cylindrical
foundation embedded in a soil layer.

9.3.3 Design criteria

The primary requirement of the machine/foundation system is that resonance is avoided at the
operating machine frequencies. It is sometimes recommended that for important installations
any natural frequency of the system should differ from significant operating frequencies by a
factor of 2.0 (BSI, 1974). The factor is reduced to 1.5 for installations of lesser importance. If
this degree of separation of natural frequencies and driving frequencies can be achieved, no
further analysis is generally required. In practice this usually requires a compromise because
the dynamic system will have numerous natural frequencies of vibration while the machinery
may generate harmonics in addition to the principal operating frequency. More recent
specifications allow the frequencies to be even closer (DIN 4024, 1988).

In the case of an installation where the forcing and natural frequencies are close, the
maximum amplitudes of the foundation/structure system should be evaluated
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under the principal forcing functions. These would include: periodic loading from unbalanced
rotating masses; transient loads such as short circuit torque; and shock or impulse loads from
industrial processes.

There are three principal concerns when considering whether the predicted vibrations are
acceptable or not. First, the vibrations in the vicinity of the machinery should not be large
enough to disturb personnel working nearby (e.g. maintenance or control room staff). Human
beings are surprisingly sensitive to vibration. A vibration of small amplitude can be disturbing
or annoying especially if it is continuous. It can impair concentration, cause fatigue and other
physical symptoms, including headaches and sickness in extreme cases. Human response to
vibration was discussed in Chapter 7. Secondly, excessive vibration of the supports of a
machine may result in over stress of components of the machine itself. An example of this is
the supporting framework for the eccentric shaft of a gyratory cone crusher (see Figure 9.4). If
this steel framework is subjected to continuous vibration induced stresses it may be
susceptible to fatigue damage (Szczepanik et al. 1990). The foundation should be stiff enough
to prevent the machine vibrating excessively on its mountings. Bearings of turbines and
engines may be adversely affected by excessive vibration. Thirdly, transmission of machine-
induced vibration to the structure of the building in which the machinery is housed may be
undesirable. The vibration may be disturbing to personnel working in the same or adjacent
buildings. Electronic control equipment is often housed in boxes or panels and fixed to the
floors, columns or walls of enclosing buildings. Possible damage to such equipment by
continuous vibration should be checked. A good general principle is to keep the foundations
of the machines and the building separate.

There is a scarcity of code provisions dealing with machine-induced vibrations. Plant
manufacturers often work to their own standards and by default set the standards for the
relevant industry. Suppliers of sensitive equipment may specify limits to the acceptable
environment in which their equipment operates satisfactorily.

Information on limits to the vibration environment of rotating machines may be found in
Moore (1985). The acceptable operating amplitude decreases with frequency and a limit is
often specified in terms of velocity of vibration at the bearings of the machine. A vibration
velocity of less than 2.0 mm/sec would be expected to provide smooth running conditions
whereas over 16 mm/sec the operation of the machine would probably be very rough. The
British Standard for rotating electrical machines (BSI, 1987) recommends a limit of about 2.5
mm/sec r.m.s., although this is intended for relatively small machines. In the quarrying
industry in the UK a limit of 0.36 mm/sec is generally recommended for the foundations of
crushers.

The vibration limits recommended in the British code of practice for foundations for
machinery (BSI, 1974) are actually human tolerance criteria. They are widely used for
applications other than foundations for reciprocating engines. Further information on human
tolerance criteria is provided in Chapter 7. In the absence
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of other information, the application of human tolerance criteria will often help to minimize
other adverse effects of vibrations.
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Chapter 10
Random vibration analysis

George D.Manolis

10.1 INTRODUCTION

This chapter serves as an introduction to the field of random vibrations, which in recent years
has found extensive applications in structural dynamics, machine vibrations, earthquake
engineering, as well as in non-destructive testing and identification. Essentially, it is an
extension of Chapter 2, which focused on deterministic structural dynamics. We note that the
concepts of random variables and random (or stochastic) processes, the latter being functions
of both space and time in their most general form, appear in most of the intervening chapters.
For instance, wind, water wave and earthquake-induced ground motions are loadings of
random nature. Specifically, the former two types of loads can be viewed as comprising a
rapidly fluctuating part superimposed on a slowly varying mean value. They can be classified
as stationary random loads in the sense that there is a certain periodicity (and hence some
predictability) in the fluctuating part. Earthquake loads are fully random and classified as non-
stationary, a term that will be explained later on. Finally, there is some mild stochasticity
inherent in traffic induced loads, simply because the movement of vehicles cannot be fully
controlled.

The presentation of such a vast subject within the confines of a single chapter is by
necessity brief. Thus, it is assumed that the reader is familiar with the basic ideas and
concepts underlying probability theory and elementary statistics. This way, the present
chapter serves a dual purpose, namely to refresh the reader’s memory on the subject of
stochastic processes and then to move on to an elementary, yet basic review of random
vibrations. The chapter is structured as follows: First, we look at random functions of time
and of frequency. In the interest of brevity, a list of references at the end includes several
excellent textbooks on probabilistic methods, random vibrations and numerical methods for
stochastic problems (Augusti et al., 1984; Crandall and Mark, 1963; Ghanem and Spanos,
1991; Klieber and Hien, 1992; Nigam, 1983), which the reader may want to consult. The
second part of this work examines the response of both single and multiple Degree Of
Freedom (DOF) structural systems to stochastic input. Both time domain and frequency
domain techniques are covered, as is the case of non-linear systems. In analysing multiple
DOF systems, the Finite Element Method (FEM)
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is often used in the numerical modelling of a complicated structural system, although
alternative methods such as the Boundary Element Method (BEM) are becoming increasingly
popular. Next, a simple example serves to illustrate the concepts and methodologies presented
herein. Finally, some material is presented on structures with uncertain properties, so as to
introduce this very important source of stochasticity that stems from randomness in the
material properties and in the geometry, as opposed to randomness in the applied loads only.

10.2 RANDOM PROCESSES

10.2.1 General remarks

If the outcome of a (conceptual) experiment is to assign a real value to variable x, then x is
known as a random variable. Furthermore, if x assumes only a finite number of values, it is
called a discrete random variable. Finally, if x assumes a continuous range of values, it is
called a continuous random variable.

Probabilities associated with a random variable are conveniently described by a distribution
function such that the probability of x assuming a value less than X is P(x≤X). Note that

and where zero denotes impossibility and unity denotes
certainty. The probability that x lies in the interval (a, b) is simply:

(10.1)

From the above equation it is seen that if b≥a,P(x≤b)>P(x≤a) and hence the distribution
function is a monotonically non-decreasing function of X. Figure 10.1 shows the distribution
function for both discrete and continuous random variables.

By differentiating the distribution function P(x≤X) in the regions where the derivative
exists, we obtain the Probability Density Function (PDF) as:

(10.2)

In the case of a discrete random variable, the PDF can be represented by a series of impulses
or Dirac delta functions at the location of each jump, as shown in Figure 10.2(a). Each
impulse is of area equal to the magnitude of the corresponding jump in P. The probability that

is then approximated as Figure 10.2(b) finally shows the PDF
corresponding to a continuous random variable.

10.2.2 Random time functions

Consider a random process that generates an infinite ensemble (or collection) of sample
functions (or records) x(t). An example of this would be all possible
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Figure 10.1 Distribution function for (a) discrete and (b) continuous random variables.

Figure 10.2 Probability density function for (a) discrete and (b) continuous random variables.
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Figure 10.3 Ensemble of records x(t).

acceleration records at a given locality, or wind pressure readings in tall buildings in a city.
We then proceed to define probabilities for such an ensemble. For example, at any time t, a
first order distribution function and a first order PDF may be defined across the ensemble (i.e.
in the horizontal direction of Figure 10.3) as a limiting process in the form:

(10.3)

Similarly, a joint PDF can be defined as:

(10.4)

with the following properties:

(10.5)

where X1 can be replaced by x1 and so forth, if there is no danger of confusion. Lower order
joint PDF (index m) can be found from higher order ones (index n), where m<n, by
integrating across xm+1,…,xn as in eqn (10.5). Also, a joint PDF which is invariant to shifts in
the time axis is said to be stationary, that is:

p(x1, t1, …, xn, tn)=p(x1, t1,+T, …, xn, tn,+T)
(10.6)

Since it is not possible in practice to determine the joint probabilities necessary for completely
defining a random process, one has to settle for a few easily obtain-
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able averages which partially specify the random process. At first, the mean (or statistical
average or ensemble average) of x(t) is:

(10.7)

where E (or < >) is known as the expected value (or expectation) of x(t). Of particular interest
is a set of averages called central moments:

(10.8)

where n is an integer. In the above, subscript t serves to emphasize that the averages refer to a
particular instant of time. In the case of a zero mean random process, the central moments are
simply referred to as moments. The second central moment is very important in many
applications and is known as the variance , that is:

(10.9)

In the stationary case, the above averages do not vary with time.
The operation of finding an expected value was shown to involve an averaging across the

ensemble of sample functions x(t) of a random process. We may also form time averages
along a particular member of the ensemble. We therefore have that:

(10.10)

where the overbar indicates a time averaged value. If the time averages and the ensemble
averages are identical, the random process is ergodic. Obviously, this property holds for
stationary processes only, because in a non-stationary process the ensemble average will vary
in time. Ergodicity is a very desirable property and a stationary process in random vibrations
is assumed to be ergodic unless there are strong reasons to the contrary.

The correlation coefficient ρxy between two random variables x and y with joint PDFp(x, y)
is defined as:

(10.11)

It is common practice to normalize both x and y such that their means are zero and their
variances are equal to unity. In such cases, ρxy=ρyx=ρ=E[xy], where ρis the slope of a
straight line that best fits (by minimizing the mean square error) the data of a normalized (x,y)
scatter plot, as shown in Figure 10.4. Also, ρ≤1 and intermediate values measure the degree of
linear statistical dependence between x and y.



For a random process x, we may express the correlation between x(t1) and x(t2) through the
autocorrelation function:

(10.12)
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Figure 10.4 Correlation coefficientρfor a scatter of sample values.

In the stationary case, only the time difference τbetween t1 and t2 is important, that is:

(10.13)

where t is arbitrary. Also note that:

(10.14)

In the ergodic case, Rx can be found by averaging any sample function of the ensemble across
time as:

(10.15)

The correlation between two samples from random processes x(t) and y(t) is described by the
cross-correlation functions

(10.16)

(10.17)

As before, in the stationary case, , and
. It is observed that although the autocorrelation is an even function of τ, the

cross-correlation functions are not.
Using the fact that differentiation and expectation are linear operators and as such commute,

the time derivatives of the autocorrelation function in the stationary case are:



(10.18)
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and

(10.19)

where dots indicate derivatives with respect to t. The above two equations indicate that the
second derivative of the autocorrelation function of x is the negative of the autocorrelation
function of x. Finally, both Rx(τ) and Rxy(τ) tend to zero as τ→∞, provided x does not have
any periodic components.

10.2.3 Spectral analysis
The Fourier Transform (FT) (Zayed, 1996) of the autocorrelation function for a stationary
process is the Power Spectral Density Function (PSDF) Sx(ω), that is:

(10.20)

Also, the inverse Fourier transformation gives:

(10.21)

In the above, ωis the frequency, i2=−1 and the factor 1/2πmay be associated with either
member of the above pair or may be evenly split between them. Since Rx(τ) is a real and even
function, Fourier cosine transforms may be used in lieu of the exponential transform shown
above. The PSDF is also known as the mean square spectral density because:

(10.22)

This implies that Sx(ω) dωcan be interpreted as the power or mean square density contained
in an infinitesimal band of complex exponentials (sinusoids and co-sinusoids) into which the
random function is resolved. The PSDF is a positive, real valued function and is even in ω.
Since physical meaning can only be assigned to positive frequencies, an experimentally
obtained spectrum is plotted by halving the measured Sx(ω) at each frequency and plotting the
result for both positive and negative ω. A spectrum Sxy(ω) for the cross-correlation function
Rxy(τ) can also be defined for the stationary case as in eqns (10.20) and (10.21).

As expected, the PSDF of an ergodic process and the FT of a sample function x(t) of the
random process are related. When x(t) is a non-periodic function, its FT XT(ω) is given as:

(10.23)

where x(t) is assumed to be zero before t=0 and after t=T. An energy density
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spectrum for x(t) is:

(10.24)

and the power density spectrum is:

(10.25)

The power density spectrum is now a random variable dependent on both x(t) and T. Although
it can be shown that:

(10.26)

the manner in which the power density spectrum approaches the PSDF needs to be
investigated in each case. For a normal (or Gaussian) process, it is known that the variance of
Sx(ω, T) does not approach zero as T→∞, and hence measurements of Sx(ω, T) provide
questionable estimates for the PSDF.

10.3 SYSTEM RESPONSE TO RANDOM INPUT

10.3.1 Single Degree-Of-Freedom systems (SDOF)

Consider an SDOF linear system (Hurty and Rubinstein, 1964) described by:

(10.27)

where the natural frequency is , the damping ratio is ζ=c/2mω0 , and f(t) (or f(t))
is the forcing function. Note that t0 is taken as equal to or greater than zero to avoid having an
SDOF system operating at negative times. Also, m, c and k are the usual mass, damping and
stiffness constants, while x(t) is the displacement response of the system to a Gaussian
stochastic input f(t), which is a member function (or sample) of a stochastic process {f(t)}.
Eqn (10.27) is accompanied by initial conditions of the form:

(10.28)

In general, the probability law for a random process cannot be fully determined solely from
knowledge of the mean and covariance of that process (Augusti et al., 1984). The exception to
this comes when the functional form of the probability law is known and utilizes parameters
which are simply related to the mean and covariance, as in the case of a normal (or Gaussian)



distribution. In what follows, it is assumed that the input process in eqn (10.27) is Gaussian,
and so is the output process. Typical representations of SDOF systems are shown in Figure
10.5.
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Figure 10.5 SDOF representations.

The mean square (as well as the deterministic) response of the SDOF system is Given by

(10.29)

where

(10.30)

Function h(t) is referred to as the unit impulse response of a linear SDOF system. The mean
mx(t) of the output process is obtained by averaging across the

(10.31)

For a system with infinite operating time, t=∞and:

(10.32)

The covariance Kxx(t1 , t2) of the output process, which is the autocorrelation function of eqn
(10.12) taken about the mean, is given as:

(10.33)
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where a change of variables takes place in the form and . As before,
the upper limits are replaced by +∞for a system with infinite operating time. Furthermore, the
variance of the output process is obtained by setting t1=t2=t in the expression for the
covariance (i.e. ). Finally, given a normal or Gaussian input, the PDF of x(t) is
given as:

(10.34)

so that the probability of x lying in the interval (x, x+dx) at time t is given by p(x) dx. Note
that the above development was for non-stationary processes. For stationary processes eqns
(10.32) and (10.33) still hold true, but the averages employed no longer vary with time.

10.3.2 Multiple Degree-Of-Freedom systems (MDOF)

Consider now the response of an MDOF system to non-stationary random input. The
development follows along the lines of the SDOF system, expect for the introduction of
matrix notation. At first, the governing equation of motion of an MDOF system is:

(10.35)

In the above equation, [M], [C] and [K] are symmetric, N×N matrices, while {x} and { f } are
N ×1 column vectors denoting the input and output processes, respectively. In particular, the
mass matrix [M] is positive definite, while the damping [C] and stiffness [K] matrices are
non-negative definite. Also, {f(t)} is a vector of Gaussian random variables whose mean and
covariance matrix are given by:

(10.36)

respectively, with superscript T denoting transposition.
We first focus on the case where the system of eqn (10.35) possesses real eigenvectors, else

known as classical (or normal) modes, which was the case presented in Chapter 2. Thus, the
matrix of normalized eigenvectors [A] defines a set of modal co-ordinates:

(10.37)

the employment of which results in an uncoupled system of governing equations of motion
given by:

(10.38)



In the above, [I] is the identity matrix and [C] and [M] are diagonal matrices. Taking the ith
row (i=1, 2,…, N) of the above equation gives the SDOF-like equation:
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(10.39)

for the ith mode. As before, Gaussian input results in Gaussian output that is a linear
combination of Gaussian variables. Finally, the transformation of co-ordinates defined by eqn
(10.37) is known as a congruent transformation.

The mean square (and deterministic) response of the MDOF system is given in modal co-
ordinates as:

(10.40)

where [U] and [H] are diagonal matrices with elements:

(10.41)

Reverting to the physical co-ordinates via the transformation defined by eqn (10.37) gives:

(10.42)

Given the above solution for the mean square (deterministic) response, the stochastic means
are given by:

(10.43)

while the covariance matrix is given by the stochastic average of the outer product of the zero
mean response vector evaluated at two different times, that is:

(10.44)



Page 354

Finally, the PDF for the ith component of the response {x(t)} is given by:

(10.45)

where variance is the ith diagonal component of the covariance matrix evaluated at t1=t2=t
(i.e.=Kii(t, t)).

If the components of the input {f} are jointly normally distributed, so are the components of
the output {x} with a joint PDF given by:

(10.46)

As before, for stationary processes all statistical averages are time independent.
If the damping and stiffness matrices are non-symmetric, then the classical normal mode

approach fails and a more general approach must be sought. This occurs when damping is no
longer of the proportional kind. The key idea here is to convert the second order matrix
differential equation of eqn (10.35) into a first order matrix differential equation by defining

(10.47)

By combining the above equation with the matrix equation of motion which has been
premultiplied by [M]−1, the following 2N×2N matrix differential equation is obtained:

(10.48)

where and

(10.49)

with {z(t−t0)}={z0} as initial condition. It is assumed that the input vector {b(t)} is Gaussian
with mean {mb(t)} and covariance [Kbb(t1, t2)].

It is well known (Coddington and Levinson, 1955) that for any real valued matrix [B] there
exists a similarity transformation [T] that will reduce it to an upper diagonal (Jordan
canonical) form [J]. By letting:

(10.50)

and substituting in eqn (10.48), we obtain:



(10.51)

along with {y0}=[T]−1 {z0} as initial condition. The mean square (deterministic) solution of the
above equation is given by:

(10.52)
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In the case where [J] is strictly diagonal:

(10.53)

where λi, i=1, 2,…, 2N, are the eigenvalues of [B]. By making the substitutionξ=t–τand
reverting to the physical co-ordinates {z}, we obtain:

(10.54)

Given the above solution to eqn (10.48), the vector of stochastic means of {z(t)} is:

(10.55)

and the matrix of covariances is (ignoring the initial conditions):

(10.56)

For Gaussian input, the output process is completely specified in terms of the above means
and covariances. The individual and joint PDF may be obtained by using eqns (10.45) and
(10.46), provided {z(t)} is decomposed according to eqn (10.47).

10.3.3 Application of Fourier transforms

As was shown in Section 10.2.3, FTs play a central role in the analysis of stationary random
variables by relating the autocorrelation (or autocovariance) to the PSDF and vice versa.
These relations can be extended to non-stationary processes following (Lampard, 1954).

Consider fT(t) to be a member of a real valued, non-stationary process. First, define:

(10.57)
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Next, assume for simplicity that f(t) is a zero mean process and subsequently define the FT of
fT(t) (see eqn (10.20)) as:

(10.58)

Using the definition of eqn (10.57) for fT(t), the above equation can be recast as:

(10.59)

Finally, use of the inverse FT (see eqn (10.21)) gives:

(10.60)

Since fT is a real function, it is equal to its complex conjugate so that:

(10.61)

Equations (10.60) and (10.61) can now be used in conjunction with definition of the
covariance of fT, that is:

(10.62)

The covariance of f(t) is given by:

(10.63)

where

(10.64)

is the generalized PSDF for the random process f(t). Applying the inverse FT to eqn (10.62)
yields



(10.65)

For a linear system with infinite operating time, the response xT(t) can be determined as:

(10.66)
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where h(ξ) is the unit impulse response of eqn (1030). Taking the FT of the above equation
yields:

(10.67)

where

(10.68)

is known as the complex frequency response of an SDOF system. If eqn (10.67) is multiplied
by its complex conjugate, that is:

(10.69)

then the generalized power spectrum of x(t) is:

(10.70)

The above equation may be regarded as the generalization of the equation given below,
namely:

(10.71)

that holds true for stationary processes. As before, the inverse FT gives the covariance of the
output process as:

(10.72)

Finally, the variance of the response is:

(10.73)

10.3.4 Non-linear systems



Non-linearities in dynamic systems are usually exhibited by the stiffness terms and, to a lesser
extent, by the damping terms. In this section we focus on a SDOF system that is governed by
eqn (10.27) and has the initial conditions of eqn (10.28), except that the stiffness term
is replaced by the general restoring force g(x), that is:

(10.74)
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Figure 10.6 Restoring forces: (a) linear plus cubic (Duffing oscillator) and (b) sinusoidal (pendulum
type).

Figure 10.7 Non-linear resonance plot for (a) hardening spring and (b) softening spring.

In variably, g(x) is a single valued, odd function of the response and represents either a
hardening spring or a softening spring, as shown in Figure 10.6. The presence of a non-linear
spring in a SDOF system results in a period T that is amplitude-dependent. Also, under steady
state vibrations, the peak response amplitude versus frequency of the excitation plot exhibits a
backbone at the resonant peak, which is manifested at the natural frequency ω0 of the linear
case. This backbone points backwards in the case of a hardening spring and forwards in the
case of a softening spring, as shown in Figure 10.7.

A particular case for which there is considerable information regarding the response x(t) of
a non-linear SDOF system is when the excitation is ideal white noise (i.e. when the PSDF of
the input f(t) is Sff(ω1 , ω2)=S0, a constant). In that case, the joint distribution of x and x at time
t is described by the joint conditional PDF p=P(x0, x0, x, x, t) that diffuses in time from a
Dirac delta function at t=t0 towards a steady state condition at large times. This diffusion
process is
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governed by the well known Fokker—Planck equation (Caughey, 1963):

(10.75)

which is linear in p and has variable coefficients. Although closed form solutions to the above
equation do not exist at present, the stationary case which is obtained as t→∞(and )
has a unique solution in the form:

(10.76)

where constant C is determined from the normalization requirement:

(10.77)

and G(x) depends on the type of non-linearity exhibited by the SDOF system. This result
implies that x and x are statistically independent and that x has a Gaussian distribution with
variance . Also, x does not have a Gaussian distribution unless g(x) is linear.

The two most prevalent techniques for an approximate solution of a non-linear SDOF
system are the perturbation method and the equivalent linearization method. The key idea
behind the former approach is expansion in terms of a small parameter ε. In particular, the
stiffness is decomposed into a predominant linear part and a small non-linear part g0(x) as:

(10.78)

and the response is expanded in powers of εas:

(10.79)

Such a solution is assumed to satisfy the equation of motion (10.74) identically in εso that the
coefficients corresponding to each power of εvanish separately. Therefore, a re-arrangement
in terms of powers of εgives the following sequence of linear equations:

(10.80)

where a Taylor series expansion g0(x) about x0 has been used. Note that in the above system
of equations, the nonlinearity has been shifted to the right-hand side in a sequence of



equations involving the same linear operator. Therefore, the excitation for the ith solution
involves a non-linear combination of all previous i–1, i–2,…, 0 solutions.
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Equations (10.80) are solved through use of the unit impulse response h(t) given by eqn
(10.30). In particular, for the case of infinite operating time:

(10.81)

The above solution applies irrespective of f(t) being a deterministic excitation or a random
process. In the latter case, eqn (10.81) gives the components of the mean square solution
which is synthesized according to eqn (10.79). For a zero mean process, the next statistical
average of interest is the variance of the response given by:

(10.82)

For a first order perturbation only, the first two terms of eqn (10.82) need to be retained, that
is:

(10.83)

In principle, the above expressions apply to both stationary and non-stationary processes. In
practice, it may not be possible to evaluate the expectations on the right-hand side of eqn
(10.83) unless the excitation process has special properties and the non-linear function g0(x) is
of a simple form. When the excitation is a stationary Gaussian process and g0(x) is an odd
polynomial in x, then x0(t) is also a Gaussian process with autocorrelation

(10.84)

Also, the expectation between x0 and g0 consists of even order moments of x0 W (Crandall,
1963). For example, if g0(x)=x3 (Duffing oscillator), then:

(10.85)
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For this special case, the first order perturbation approximation of eqn (10.83) can be
completely evaluated.

A second technique that has been extensively used for non-linear systems is equivalent
linearizaton (Caughey, 1971). We begin by introducing a linear termλx to both sides of eqn
(10.74), that is:

(10.86)

where parameter A is unknown but will be chosen so as to optimize the linearization process.
Note that the above equation now describes a linear system that is subjected to a non-linear
forcing function . Therefore, the variance of the response of this system to
stationary random excitation with spectral density Sff(ω) is given (see eqns (10.67) and
(10.71)) as:

(10.87)

In general, it is impossible to choose a parameter λso that Φwill be identically zero. Since
the simplest statistical measure of the magnitude of Φis its variance, a natural optimization is
achieved by choosing a λthat minimizes E[Φ2]. This requires that:

(10.88)

where the term 2E[g2] goes to zero since g(x) is an odd valued function. The above equation
gives:

(10.89)

and all that remains is to eliminate λbetween eqns (10.87) and (10.89). The result is
invariably too complicated to permit an exact algebraic solution, but it provides a starting
point for a perturbation expansion. For the simple case of ideal white noise, where Sff(ω)=S0,
the integral in eqn (10.87) yields:

(10.90)

so that elimination of A between eqn (10.89) and eqn (10.90) gives:



(10.91)

This result was encountered in the earlier part of this section in conjunction with the Fokker—
Planck equation. If the restoring force g(x) is split into a linear and a nonlinear part according
to eqn (10.78), then:

(10.92)

and a perturbation technique needs to be employed.



Page 362

10.3.5 Example: non-stationary case

As an example, consider the simple case of a SDOF system with a finite operating time t0=0
subjected to a stationary random process. Although the input is stationary, the output is not,
by virtue of the fact that the system has a finite operating time. Consider therefore eqn (10.27)
under zero initial conditions and where input f(t) is a member function of a zero mean
stochastic process which is stationary, ergodic and described by a PSDF equal to Sff(ω). First
we have that the output process x(t) also has a zero mean, as can be seen by recourse to eqn
(10.32). Next, the variance of x(t) is (see eqn (10.33)):

(10.93)

Sincef(t) is stationary and this autocorrelation function is
related to the PSDF via the Wiener—Khinchine relation (Caughey, 1963, 1971) as:

(10.94)

where it is assumed that Sff(ω) dω< 0. Using eqn (10.94) in eqn (10.93) gives:

(10.95)

Since the integrals involved in the above equation are convergent, the order of integration
may be reversed. Using the definition of h(t) in eqn (10.30) and carrying out the integrations
gives:

(10.96)

where |H(ω)|−2 can be found by recourse to eqn (10.68) as:

(10.97)

As t→ ∞in eqn (10.96), as expected. Furthermore, as t→ ∞,

, a result in agreement with harmonic (i.e. steady state)
analysis of the SDOF system that was also recovered in conjunction with eqn (10.87). Finally,



a common approximation for a lightly damped SDOF system is to set Sff(ω)=2S0/π, as shown
in Figure 10.8. In that case,
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Figure 10.8 Random SDOF system response.

, a result for stationary conditions that can be found in many references
(Hinch, 1991).

10.4 STRUCTURES WITH UNCERTAIN PROPERTIES

10.4.1 Static analysis
So far, we have examined the case where a structure is deterministic and its excitation is
random. We will now look at a FEM formulation for stochastic cases where randomness can
be expressed in the general form , with z0 being the deterministic value of a
material property (such as the elastic modulus) or a structural component (such as the moment
of inertia of a member) and γbeing a random, zero mean small fluctuation about z0. Following
(Vanmarke et at., 1986), we will utilize the FEM stiffness approach which gives the following
system of algebraic equations for the static case:

(10.98)

As before, [K] is the N×N stiffness matrix and {x} and {f} are N×1 column vectors containing
the nodal displacements and forces, respectively. The important distinction to be made here is
that the uncertainty in the structure is reflected in the stiffness matrix and, upon solution, on
the nodal displacements. Also, since the case of random input was examined in the previous
sections, {f} is assumed to be deterministic here.

The stiffness matrix can now be expanded about the uncertainty using Taylor series as:

(10.99)
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where n denotes the total number of random parameters γi. As before, superscript denotes a
deterministic quantity, while the next two terms in the expansion respectively denote first and
second rates of change which are evaluated by differentiating [K] with respect to the random
parameters γi. Note that the use of commas indicates partial differentiation with respect to the
subscript that follows.

The same type of expansion can also be used for the displacements, that is:

(10.100)

where the range of the summation indices is omitted for reasons of notational convenience.
Substitution of the above two expansions in eqn (10.98) and a subsequent perturbation-type
ordering of the terms gives the following system of equations:

(10.101)

The structure of the above system of equations is similar to that of eqn (10.80) which was
obtained for non-linear systems in Section 10.3.4 using perturbations. Thus, all unknown
displacement terms can be obtained sequentially, starting from the deterministic solution {x0}
and substituting the newly found terms in the right-hand side of the next equation. As a result,
the deterministic stiffness matrix needs to be inverted only once, resulting in an efficient
solution scheme. Also, the non-zero terms in [K] ;i and [K],ij are relatively few so that the
right-hand sides can be quickly formed. The same approach can be used for problems
involving lack of fit in structural members by introducing the concept of initial strains, as well
as for structures on an elastic foundation with uncertain foundation modulus by introducing
the foundation reaction matrix. Finally, uncertainty in the boundary conditions can be
accounted for by inserting virtual springs at the boundaries and taking the spring constants as
uncertain.

Following the displacement solution, the unknown stress tensor on any point within a finite
element can be found after the stress terms {σ0}, {σ},i and {σ},ij have been evaluated in the
usual way from their corresponding displacement terms {x0}, {x},i and {x}ij.Thus, the final
expression for the stress tensor is:

(10.102)

Based on the above equation, the expectation and variance of the stresses are:

(10.103)
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and

(10.104)

respectively. The second moments of the random variables γi are related to the power
spectrum Sγγ(k) via the Wiener—Khinchine relation (Lampard, 1954) as:

(10.105)

where r is the distance between nodal co-ordinates and k denotes the wave number.
Since local changes in a structural parameter cause non-linear changes in the structural

response, a second order Taylor series expansion such as the one used here is necessary to
cover such non-linearities. Third order expansions are preferable, but computation becomes
prohibitively expensive since sixth moments of the random variables γi are necessary for
compatibility in the computation of stress variances.

10.4.2 Dynamic analysis

As a first step, we consider the eigenvalue problem:

(10.106)

where [M] is the mass matrix, λare the eigenvalues and {φ} are the eigenvectors. As before,
uncertainty in the stiffness and mass matrices filters, upon solution, to the eigenproperties of
the structure. We begin (Liu et al., 1986) by expanding both eigenvalues and eigenvectors in a
Taylor series about the randomness γas:

(10.107)

and

(10.108)

respectively. Substitution of the above two expressions in eqn (10.106) along with eqn (10.99)
and a similar expansion for the mass gives, after the usual perturbation-type ordering, the
following system of equations:
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(10.109)

By taking advantage of symmetry in [H0], λ,i can be computed from the second of eqns
(10.109) as:

(10.110)

Determination of {φ}i from the second of eqns (10.109) is not, however, feasible because of
the singularity of [H0]. To overcome this drawback, a reduction in the rank of [H0] is
necessary. The same situation holds for the evaluation {φ},ij of since only the right-hand side
of eqns (10.109) changes. As with the static case, each new eigenvalue solution depends on
the previously obtained eigenproperties.

As far as time history analyses are concerned, the most rational approach is to go to a
modal co-ordinate environment and assume that properties such as the modal damping ratios ζ
are uncertain. Although this ignores the fact that uncertainty is first manifested at the physical
co-ordinate level in terms of uncertain stiffness and mass, the convenience of decoupled
modal equations is too tempting to ignore.

The analysis at the modal co-ordinate level is essentially the same as the perturbation
approach used in Section 10.3.4 for a non-linear SDOF system under random input. In
particular, the modal damping ratio is written as:

(10.111)

where i is a modal DOF, while the modal co-ordinate yi is expanded as

(10.112)

where superscripts (1), (2) on y respectively denote first and second order perturbation terms
which are random processes. Substitution of the above two expansions in the ith uncoupled
equation of motion (see eqn (10.39)) gives the following system of equations:



(10.113)
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Numerical integration of the above system can proceed without difficulties. Following
solution for all expansion terms of yi(t), one may return to physical co-ordinates (see eqn
(10.37)) and apply the statistical averaging using the expectation to find the response statistics.
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