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About the Book

This book introduces the principal concepts and issues related to the
safety of modern industrial activities and presents the classical
techniques for reliability analysis and risk assessment used in the current
practice. It is aimed at providing an organic view of the subject.

The contents of the book comprise: i) a basic illustration of some
methods of system analysis commonly used in practice for the
identification of the hazards associated to industrial plants and processes;
ii) a review of the basics of probability theory, tailored to its application
to reliability analysis and risk assessment; iii) an overview of the basics
of reliability, availability and maintainability applied to standard system
configurations, such as series, parallel, stand-by and others; iv) a
presentation of the fault tree and event tree analysis methods, which
constitute powerful tools widely used in practice for the reliability and
risk assessment of complex systems; v) a review of the statistical
methods for the estimation of failure rates; vi) a sketch of some
modelling techniques of reliability growth and prediction.

The book can serve as any senior undergraduate or post-graduate
university course on the subject or as reference for the initiation of young
researchers to the field. In this view, several numerical examples are
provided when appropriate, as guide for the comprehension.
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1

Introduction

The necessity of expertise for tackling the complicated and
multidisciplinary issues of reliability and risk analysis has slowly
permeated into all engineering applications, with risk analysis and
management gaining a relevant role both as a tool in support of plant
design and operation, and as an indispensable means for emergency
planning in accidental situations.

Failure is an unavoidable phenomenon in all technological products
and systems. From the scientific and engineering point of view, the
investigation of the uncertain and ‘obscure’ domain of failures entails the
exploration of the functional and physical limits of systems, in an effort
to understand how, why and when a device may not function properly. In
this respect, the required approach is complementary to the traditional
engineering viewpoint which focuses on how and when a machine
functions in an optimal way.

Whatever particular failure one is considering, proper control and
management of it become essential. Areas of application which involve
failure-oriented and failure-driven aspects are Reliability, Availability,
Maintainability, Safety (RAMS), Risk, Quality control (QC), Fault
Detection and Identification (FDI), security and others. As such, failure
analysis presents a strong connotation of multi-disciplinarity which
significantly adds to its inherent difficulty. Hence, these failure-oriented
disciplines have become more and more important and closely connected
so as to require an integrated view. This entails the acquisition of
appropriate modeling and analysis tools as complement to the basic and
specific engineering knowledge for the technological area of application.

The present lecture notes draw from the specialized literature to
address the above issues related to the safety of modern industrial
activities and illustrate the classical techniques available for the



2 1 Introduction

evaluation, the management and the control of the associated risks. The
motivation behind the effort of editing such notes derives from the need
to offer a more organic view of the subject to the students who are
attending my courses. In this sense, the contents are limited to the topics
I teach in the classroom and are thus certainly not exhaustive of the very
extensive subject of reliability and risk analysis and surely lacking in
many ways. In any case, I believe that they can be of use in any senior
undergraduate university course on the subject or as basis for the
initiation of young researchers to the field. To this aim, several numerical
examples are provided when appropriate, for ease of understanding.

Enrico Zio
Milano, December 2006
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Basic Concepts of Safety and Risk Analysis

2.1 A qualitative definition of risk

The subject of risk has become very popular in the last few years and is
much talked about at all levels of industry. We shall first give a
definition of risk in qualitative terms and then translate it in quantitative
terms [5] in the following Section.

A first, intuitive observation comes from the fact that there is risk if
there exists a potential source of damage, or hazard. When a hazard
exists, e.g. posed by a system which in certain conditions may cause
undesired consequences, safeguards are typically devised to prevent the
occurrence of such hazardous conditions and its associated undesired
consequences. However, the presence of a hazard does not suffice itself
to define a condition of risk. Indeed, inherent in the latter there is the
uncertainty that the hazard translates from potential to actual damage.
Thus, the notion of risk involves some kind of loss or damage that might
be received and the uncertainty of its transformation in an actual loss or
damage:

Risk = Damage + Uncertainty

This qualitative analysis is reflected in the various Dictionary-definitions
of risk, such as ‘possibility of loss or injury and the degree of probability
of such loss’.
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Fig. 2.1: The main components of the concept of risk

2.2 A quantitative defiRition of risk

Let x and p denote a given damage and the probability of receiving
such damage, respectively. From a quantitative point of view, it is
common to define a measure of the associated risk R as:

R=x-p 2.

In practice, often, the perception of risk is such that the relevance
given to the damaging consequences x is far greater than that given to
its probability of occurrence p so that Eq. (2.1) is slightly modified to:

R=x"-p with £ >1 (2.2)

By so doing, numerically larger values of risk are associated to larger
consequences.

When considering complex systems, the above quantitative
definitions must be extended to account for the fact that typically more
than one undesirable event exists. With » undesirable events associated
with the operation of a given system, Eq. (2.1) is usually extended to the
following definition of composite risk which accounts for all hazards
present, in an integral way:



2.2 A qualitative definition of risk 5

k= ;x,. L (2.3)

and similarly for Eq. (2.2).

The quantitative definitions of risk in Egs. (2.1), (2.2), (2.3) are
however little informative for the purposes of risk analysis, management
and regulation. Suppose you were considering two different systems A
and B of equal risk R, =R, as defined by (2.1). Let the risk of A be due
to a potentially large consequence x, occurring with small probability
p, and vice versa for the risk of B. Then, if we wish to intervene on the
design, operation and regulation of the two systems in order to reduce the
associated risks, we act differently knowing the different natures of the
risk in the two cases. To reduce R, we would implement emergency
systems which mitigate the accident (mitigation) and containment
systems which limit its consequences to the outside environment
(protection); on the contrary, if we were to reduce R, we would allocate
additional redundancies and improve the reliability of the system
components so as to reduce the probability of an accident (prevention).
Thus, if we simply know the value of R, we may not be effective in
reducing it by limiting its probability part or by mitigating its
consequences; hence, the importance of keeping separate the constituents
of risk: scenarios, p and x. Note also how the key concepts of the
defense-in-depth approach, i.e. prevention, mitigation, protection, come
into play in the management of risk.

The situation is even worse in the case of the composite risk of Eq.
(2.3) where the probabilities and consequences of all potentially
dangerous events are combined together in a single risk value.

From the above said, an informative and operative definition of risk
should allow answering the three fundamental questions of any risk
analysis [1], [2], [5], [7], [8]. [9], [10]:

—  Which sequences of undesirable events transform the hazard into an
actual damage?

—  What is the probability of each of these sequences?

—  What are the consequences of each of these sequences?
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The answers to these questions lead to a definition of risk in terms
of a set of triplets [5]:

R———{(s,.,p,.,x,)}

where s, is the sequence of undesirable events leading to damage, p, is
the associated probability and x; the consequence. Thus, the outcome of
a risk analysis is a list of scenarios, such as the one in Table 2.1, which
represents the risk.

Table 2.1: Risk as a list of triplets

H a1 H
i Sequence : Probability . Consequence
S1 : P 2
P T R
1 2 2
i Sn ; Pn § X,

On the basis of this information, the designer, the manager and the
regulator, can act effectively so as to reduce risk.

2.3 Risk analysis

From the previous definition of risk, it is evident that a rational
management of it entails a proper treatment of the uncertainties
associated with the occurrence of accidental scenarios.

Classically, the management and control of the risk associated to a
given plant has been based on the definition of a group of sequences of
events leading to undesired consequences, representing credible worst-
case accident scenarios, {s*}, and on the prediction and analysis of
their consequences, { x* }. Then, the safety and protection of the system
1s designed against such events (design-basis accidents), to prevent them
and to protect from, and mitigate, their associated consequences.

This structuralist defense-in-depth viewpoint and the safety margins
derived from it, have been embedded into conservative regulations under
the creed that the identified worst-case, credible accidents would
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envelope all credible accidents, for what concerns the challenges and
stresses posed on the system and its protections. The underlying principle
has been that if a plant were designed to withstand all the large credible
accidents, then it would be ‘by definition’ protected against any credible
accident.

This approach has been the one classically undertaken, and in many
instances it still is, to protect a plant from the uncertainty of the unknown
failure behaviours of its components, systems and structures, without
quantifying it, and to provide reasonable assurance that a plant can be
operated without undue risk.

However, the practice of referring to “worst” cases implies a high
level of subjectivity and arbitrariness which may lead to the
consideration of scenarios characterized by really catastrophic
consequences, albeit highly unlikely. This somewhat arbitrary approach
to safety can lead to excessive conservatism, with a penalization of the
industry due to the imposition of unnecessarily stringent regulatory
burdens. This is particularly so for those industries, such as the nuclear
one, in which accidents may lead to potentially large consequences.

With the growing use of the nuclear energy in the 1960s, the need
soon arose for a more rational and logical approach to the design,
regulation, operation and management of hazardous systems. A new
viewpoint was then proposed, based on the analysis of the reliability of
the consequence-limiting protection systems involved in all potential
accident scenarios, with no longer any differentiation between credible
and incredible, large and small [3].

The nuclear community in Canada, in particular, was a strong
supporter of such a probabilistic approach to safety. This was mainly due
to the consideration that their nuclear reactor design, the Pressurized
Heavy Water Reactor (PHWR) is indeed characterized by an intrinsically
dangerous physical feature (the so called positive temperature feedback
which could lead to a dangerous escalation of the nuclear reaction
process, under certain conditions), but on the other hand this unsafe
feature is counteracted by a highly-reliable and quick shut-down system
(which works at low pressure and temperature and is separated by the
primary cooling circuit whose failure cannot damage it). Then, the only
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way of accounting for this aspect is the introduction in the analysis of
probabilistic measurcs of the likelihood of the accident scenarios.

This sparked a series of studies in the mid 1960s aimed at
investigating the merits of a more quantitative approach, based on
probability, to the treatment of uncertainty associated with accident
scenarios [4]. The findings of these studies motivated the first complete
and full-scale probabilistic risk assessment of a nuclear power
installation [10]. This extensive work showed that indeed the dominant
contributors to risk need not be necessarily the design-basis accidents,
a ‘revolutionary’ discovery undermining the fundamental creed
underpinning the structuralist, defense-in-depth approach to safety.

Along these lines of thoughts and after several ‘battles® for
demonstration and recognition, a new approach to risk analysis has
arisen, not limited only to the consideration of worst-case accident
scenarios but which looks to all feasible scenarios and its related
consequences, with the probability of occurrence of such scenarios
becoming an additional key aspect to be quantified in order to rationally
handle uncertainty [1], [2], [5], [7], [8], [9], [10].

On this basis, new regulatory criteria have been introduced, which
account for both the consequences of the scenarios and their probabilities
of occurrence under a now rationalist defense-in-depth approach. An
example of criterion of this kind can be represented graphically as shown
in Figure 2.2, where the probabilities p of the scenarios are plotted
against their consequences x (the so-called Farmer curve). A
proportionality line divides the (x, p) space into two zones: scenarios
above such line (i.e. in the dark zone) lead to unacceptable risks whereas
those below (i.e. in the clear zone) represent acceptable risks. This allows
accepting risks associated to scenarios characterized by high
consequences, provided they have very low probability of occurrence
(e.g. the point in Figure 2.2).
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Fig. 2.2: Probability-consequence curve

When, as depicted in Figure 2.2, the slope is —1, probability and
consequence carry the same importance in defining the risk level; on the
contrary, when more emphasis is placed on consequences than on
probabilitics, the slope of the line is increased, as shown in Figure 2.3.

x

Fig. 2.3: Probability — consequence curve with a slope such that consequences have more
importance than probability

The introduction of probabilities in the consideration of risk has
been very controversial from the beginning and only after several years
the proper recognition has been given to its uscfulness for a balanced
cvaluation and a rational management of risk.

For further insights in the Subject, the interested reader is advised to
consult the specialized technical literature, e.g. [1], [2], [5], [7], [8], [9].
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Methods for Hazard Identification

The first step into the analysis of the risk of a given system is that of
identifying the hazards associated to its operation. The output of this task
consists of a list of the sources of potential danger, i.e. those accident
initiators (component failures, process deviations, external events,
operator errors) which have a probability of occurrence not equal to zero
and which can give rise to significant consequences. The identification of
the accident initiators is obviously a key aspect of the overall safety
analysis and great care must be put into its completeness since those
accident events not included at this stage are very unlikely to enter in the
analysis at a later stage.

The methods developed for performing this step consist, in general,
in a qualitative analysis of the system and its functions, within a
systematic framework of procedures. The methods strongly rely on the
expertise of the designers, analysts and personnel who have designed,
operated and maintained the system. Some of the methodologies most
commonly used are:

Check list

Hazard index method

Hierarchical trees

System Identification of Release Points (SIRP)
Failure Mode and Effect Analysis (FMEA)
HAZard and OPerability analysis (HAZOP)

A e

Such methodologies are not mutually exclusive but, rather, they are often
used in a complementary way.

As the first two methods are of straightforward application, here we
limit ourselves to giving few insights into the principles of the other four

11
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methods in the list. For more details, the interested reader should consult
the specialized literature, e.g. [1].

3.1 Hierarchical trees

This deductive method allows the identification of the initiating causes of
a pre-specified, undesired event, through the development of a structured
logic tree. Obviously, such event must be known a priori. That is the
reason why it was initially developed for the nuclear industry, where the
undesired event (e.g. offsite release of radioactive material) is well
defined a priori.

The construction of the tree (see Fig. 3.1 for an example related to
the hazard of an offsite release from a nuclear power plant) starts at the
top with the undesired event (offsite release) at the public impact level,
the undesired event may occur due to various pathways (release of
core/non-core material) which are explicited as independent branches at
the damage pathway level; these pathways are generated due to loss of
the various containments and/or mitigation functions which are indicated
in the tree at the containment or mitigation level; the containment
function becomes necessary after loss of the devised safety functions
which should prevent the accident and which are listed at the safety
Jfunction level so that to each containment and mitigation barrier we can
associate the correlated safety functions; finally, such safety functions
can be linked to the primary initiator events which require such safety
functions and which constitute the root causes (initiating event level) of
the top event of the tree.

Note that this approach finds its natural application in systems, such
as the nuclear and aerospace ones, which have been designed in a safety-
oriented manner so that safety functions, mitigation and containment
barriers etc. are clearly and uniquely defined.
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RELEASE OF RELEASE OF RELEASE
CORE MATERIAL NONCORE
MATERIAL PATH
l ‘ AND
RCS PRESSURE CONTAINMENT
CORE DAMAGE CONTAINMENT
BOUNDARY FAILURE FAILURE MITIGATION
— = |
INSUFF. INSUFF. SUFF. INSUFE.! INSUFF. SAFETY
REACTIVITY CORE HEAT RCS HEAT IRCS PRESSURE] COOLANT FUNCTIONS
CONTROL REMOVAL REMOVAL CONTROL INVENTORY
’ INITIATING
LOHS EVENTS
OR
I I |
INSUFF. RCS INSUFF. INSUFF. P&T INSUFF.
PRESSURE | | o Lo arion || COMBUSTIBLE
CONTROL GAS CONTROL

! i

Fig. 3.1: Example of a hierarchical tree for the hazard of offsite release from a nuclear
power plant

3.2 Systematic Identification of Release Points (SIRP)

This approach aims at identifying the points of most likely release on the
basis of historical data. Ducts, containments, release valves and rupture
discs are identified as potential release points. Given the design and
structural characteristics of these items, historical data is used to
associate to them a most likely dimension of break and a probability of
break occurrence. Expert judgment is then used to eliminate those break
points whose position, dimension and probability are such to render the
consequences irrelevant. Finally, equivalent, reference break points are
identified in the circuit for grouping those break points leading to similar
accident evolutions.

Figure 3.2 reports an example in which four release points, R1, R2,
R3, R4, have been identified. R1 is obviously the most critical point
since a break in this position would lead to the release of the whole
amount of hazardous substance contained in the tank S1, whereas the
other break points can be isolated by proper action on the valve V. The
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criticality ranking of the remaining three release points depends on the
consequences on people and structures they lead to, and therefore should
depend on the type of hazardous substance:

— If the substance is toxic but not burnable, then the second most
dangerous release point is R2, since it is at a lower height, of
potential danger for the personnel that could be around,

—  If the substance is burnable, then R3 becomes more dangerous for
the possible domino effect on the second container, S2.

R3

\

. i

NP

Fig. 3.2: Example of a system and its identified points of release

3.3 Failure Mode and Effect Analysis (FMEA)

This is a qualitative method, of inductive nature, which aims at
identifying those failure modes of the components which could disable
system operation or become initiators of accidents with significant
external consequences.

The analysis proceeds as follows:

1. Decompose the system in functionally independent subsystems; for
each subsystem identify the various operation modes (start-up,
regime, shut-down, maintenance, etc.) and its configurations when
operating in such modes (valves open or closed, pumps on or off,
etc.).
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2. For each subsystem in each of its operation modes, compile a
Table such as Table 3.1, without neglecting any of the subsystem
components. The Table for a component should include its failure
modes and the effects that such failure has on other components, on
the subsystem and on the whole plant.

The analysis considers only the effects of single-failures, except for the
case of stand-by components for which the effects of its failure are
obviously considered only conditioned on the demand of its intervention
due to the failure of the main component. In general, then, there is no
indication of the risk associated with multiple or common cause failures.

To ensure a coherent analysis, the analyst must be sure that similar
components are given the same failure modes, with same probability
qualifications.

An extension of FMEA often employed in practice is FMECA
(Failure Mode, Effect and Criticality Analysis) in which a criticality
class is assigned to each failure mode according to the following ranking:

Safe = no relevant effects;
Marginal = partially degraded system but no damage to humans;
Critical = system damaged and damages also to humans; if no

protective actions are undertaken the accident could
lead to loss of the system and serious consequences on
the humans;

Catastrophic = Loss of the system and serious consequences on
humans.

Figure 3.3 presents a simple system whose FMECA Table is
reported in Table 3.2.

If the analysis is carried out in the design phase, it is difficult to base
the analysis on the components (yet to be defined) and on their failure
modes; in this case, the analysis can refer to the different functions
required to the subsystems and the effects of the functions not being
performed.

For complex systems, a FMEA can be rather burdensome. There
are several computer tools available on the market which guide the
implementation of such techniques, with friendly check lists.



Table 3.1: Typical FMECA Table [1]

SYSTEM:

OPERATION

MODE:

Component | Failure Effects on Effects on Effects on Probability | Criticality Detection Protections |Remarks
mode other subsystem plant methods and

components mitigation

Description | Failure Effects of Effects on the | Effects on the |Probability of | Criticality Methods of | Protections |Remarks and
modes failure mode |functionality |functionality |failure rank of the detection of ~ [and suggestions
relevant for |on adjacent of the and occurrernce failure mode | the occurrence | measures to | on the need
the components | subsystem availability of | (usually on the basis of | of the failure |avoid the to consider
operational |and the entire qualitative) its effects and |event failure the faiture
mode surrounding plant probability occurrence | mode as
indicated environment (qualitative accident

estimation of initiator

risk)

91
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Overall, the procedure of FMEA is rather simple and schematic, and
it allows one to carefully analyze the whole system. Often, this analysis
is used in support of the construction of fault trees (Chapter 7) and of
reliability-centered maintenance programs to find optimal maintenance
strategies. In the latter case, the effects and criticality of the various
failure modes are examined not only from the safety viewpoint but also
from that of plant availability.

3.3.1 Example of FMECA: Domestic Hot Water System

Hot water faucet
{normally closed)

Flue Cold
gases water

Vo2

Pressure
relief vaive

V04

Temperature
measuring

and TSCO1

comparing
device

‘ Controlier J

SOi >0~
v

Stop Z\

valve
Gas—».-_____DEﬁ

ir

Vo3

Fig. 3.3: Schematic of the domestic hot water system [1]



Table 3.2: FMECA Table for the domestic hot water system [1]

Component Failure mode Effects on whole Critically class Failure frequency | Detection methods | Comp ting
system provision and remarks
Pressure relief valve | Jummed open Increasing operation | Safe Reasonably Observe at Shut off water supply,
(V04) of temperature probable pressure relief reseal or replace relief
sensing controller; valve valve
Gas flow due to hot
water loss
Jammed close Rupture of container | Critical Probabie Manual testing If combined with other
or pipes component failures,
otherwise this failure
has no consequence
Gas valve Jammed open Burner continues to | Critical Reasonably Water at faucet Open hot water faucet
(Vo3) operale, pressure probable too hot: pressure | to relieve pressure.
relief valve opens relief valve open | Shut off gas supply.
(observation) Pressure relief valve
compensates. IE].
Jammed close Burner ceases to Safe Remote Observe at output
operate (Water
temperature too
low)
Temperature Fail to react to Controller, gas valve, | Critical Remote Observe at output | Pressure relief valve
measuring and temperature rise burner continue 10 (faucet) compensates. Open
comparing device above preset level function “on”. hot water faucet to
(Tsc01) Pressure relief valve relieve pressure.
opens Shut off gas supply.
IE2.
Fail to react to Controller, gas valve, | Safe Remote Observe at output

temperature drop
below preset level

burner continue to

Sfunction “off”.

(faucet)

IE: initiating Event

81
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3.4 HAZard and OPerability analysis (HAZOP)

HAZOP is a qualitative methodology which combines deductive aspects
(search for causes) and inductive aspects (consequence analysis) with the
objective of identifying the initiating events of undesired accident
sequences. Contrary to FMEA, which is mainly based on the
structural/hardware aspects of the system, HAZOP looks at the processes
which are undergoing in the plant. Indeed, the method, initially
developed for the chemical process industry, proceeds through the
compilation of Tables (such as Table 3.3) which highlight possible
process anomalies and their associated causes and consequences.
The analysis proceeds as follows:

1. Decompose the system in functionally independent process units
(reaction unit, storage unit, pumping unit, etc.); for each process
unit identify the various operation modes (start-up, regime, shut-
down, maintenance, etc.).

2. For each process unit and operation mode, identify the potential
deviations from the nominal process behaviour. In order to do this,
we must:

a) specify all the unit incoming and outgoing fluxes (energy, mass,
control signals, etc.) and the characteristic process variables
(temperature, flow rate, pressure, concentration, etc.);

b) write down the various functions that the unit is supposed to
attend (heating, cooling, pumping, filtering, etc.).

¢) apply keywords such as low, high, no, reverse, etc., to the
previously identified process variables and unit functions, so as
to generate deviations from the nominal process regime.

3. For each process deviation, qualitatively identify its possible causes
and consequences. For the consequences, include effects also on
other units: this allows HAZOP to account also for domino effects
among different units.

On the market, there are software tools available to guide an
HAZOP analysis.
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Table 3.3: Typical HAZOP Table [1]

UNIT:
OPERATION
MODE:
Keyword Deviation Cause Consequence Hazard Actions needed
More More Additional | Higher pressure | Release due to | Install high
Temperature | Thermal in tank Overpressure | temperature
resistance warning and
pressure relief
valve
References

[1] Henley, E.J. and Kumamoto, H., Probabilistic risk assessment, NY,

IEEE Press, 1992.
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Basics of Probability Theory for Applications
to Reliability and Risk Analysis

4.1 Definitions

In probabilistic terminology an experiment ¢ is defined as a process
whose outcome is a priori unknown to the analyst. The possible
outcomes are all a priori known and classified but which one will occur
is unknown at the time the experiment is performed. This definition is
consistent with the Bayesian view of probability according to which the
outcome of an experiment may be deterministic, but at the moment
unknown (e.g. the current number of sons of a friend with which one has
lost contact long time ago) as well as stochastic (e.g. the result of a dice
toss).

To each experiment € is associated a sample space , which
represents the set of all possible outcomes of & . The sample space can
be discrete finite (e.g. for an experiment of a coin or dice toss), countably
infinite (e.g. the number of persons crossing the street in a given period
of time: in principle, it could be infinite and yet be counted) or
continuous (e.g. the value of the dollar currency in the year 3012).

An event E is then a group of possible outcomes of the experiment
£, 1.e. a subset of €. In particular, each possible outcome represents an
(elementary) event itself, being a subset of (. Further, the null set &
and the sample space (2 can also be considered events.

__ To each event E is possible to associate its complementary event
E, constituted by all possible outcomes in €2 which do not belong to
E.

We say that event £ occurs when the outcome of the experiment &

is one of the elements of E.

21
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4.2 Boolean logic operations

In the logic of certainty (Boolean logic), an event can either occur or not
occur. Thus, it is represented by a statement, or proposition which can
only be either true or false, and at a certain point in time, after the
experiment is performed, the analyst will know its actual state.

Correspondingly, to event E we can associate an indicator variable
X ; which takes the value of 1 when the event occurs in the experiment
and 0 when it does not. As a counter-example, the statement “It may rain
tomorrow” does not represent an event because it does not imply a “true”
or “false” answer. We define the following operations involving Boolean
events:

Negation: Given event E, represented by the indicator variable X, its
negation E is described by

X, =1-X, (4.1)

Union: The event AJ B, union of the two events A and B, is true, e.g.
X ,u5 =1, if any one of 4 or B is true. Hence,
Xqup =1-(-X))A-Xp)
=1-[Ta-xp=]] x,=x,+x, -x,x, (“2
j=A,B j=A,B
Often in practice this event is indicated as 4+B.
Intersection: The event A () B, intersection of the events 4 and B, is true,

e.g. X np =1, if both 4 and B are simultaneously true. Hence,

Xounp = X, X (4.3)

Often in practice this event is indicated as AB and referred to as the joint
event 4 and B.

Mutually exclusive events: Two events 4 and B are said to be mutually
exclusive if their intersection is the null set, i.e.

Xans =0 (4.4)
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Example 4.1 [1]

Strong wind at a particular site may come from any direction between
due east (8 = 0°) and due north (6 = 90°). All values of wind speed V are
possible.

1. Sketch the sample space for wind speed and direction.
2. Let A= {V>20 mph}
B = {12 mph < V<30 mph}
C={6<30°
Identify the events A, B, C, and A in the sample space
sketched in part 1.
3. Use new sketches to identify the following events:

() D=4ANC
G) E=4UB
(i) F=ANBNC

4. Are the events D and E mutually exclusive? How about events A
and C?

Solution

4.1.1 Sample Space for wind speed and direction

Vﬂr

[¥=)) SRR O S

-
>
]

0°

Fig. 4.1: Shaded area represents Sample Space
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4.1.2 Sketches of Events

30° 90° @

Fig. 4.4: Shaded area represents Event C = {8 < 30%)
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Fig. 4.5: Shaded area represents Event Z = {V <20mph}

4.1.3 Sketches of Events

()D=4NC

e

i)

30° 90°

Fig. 4.6: Shaded area represents Event D = A n C
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()E=4U B

P

-,

i
)

P R
R i
I,

e,

T

—

0

Fig. 4.7: Shaded area represents Event E=A U B

(i) F=ANBNC

0

90°
Fig. 4.8: Shaded area represents Event F=4A NB N C

4.1.4 Mutually Exclusive
D and E are not mutually exclusive. (Because DN E# &, in fact
DNE=D,).

A and C are not mutually exclusive. (Because ANC = O, in fact
ANnC=D,).
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4.3 Logic of uncertainty: definition of probability

As previously explained, for a statement to be an event, it can only have
two possible states, either true or false, and at a certain point in time the
exact state will become known as a result of the actual performing of the
associated experiment.

4.3.1 Axiomatic Definition

At the current state of knowledge it is possible that the state of an event
be uncertain, although at some point in the future uncertainty will be
removed and replaced by either the true or the false state. Inevitably, if
one needs to make decisions based on the current state of knowledge, he
has to deal with such uncertainty. In particular, one needs to be able to
compare different uncertain events and say whether one is more likely to
occur than another. Hence, we accept the following axiom as a primitive
concept which does not need to be proven:

Uncertain events can be compared

It represents a concept very similar to that of the value of objects and
goods which need to be compared for the purpose of exchanging them.
In this latter case at one point in history, the monetary scale was
introduced as an absolute scale against which to compare different goods
with respect to their values. Similarly, it is necessary to introduce a
measure for comparing uncertain events.

Let us consider an experiment & and let {2 be its sample space. To
each event £ we assign a real number p(E), which we call probability
of E and which satisfies the following three Kolmogorov axioms:

I. Foreachevent E, 0< p(E) <1
II. Forevent Q,itis p(2) =1; for event &, it is p(J )=0.
I, Let E,E,,.,E, be a finite set of mutually exclusive events.
Then,
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p(LnJE,-] = ip(Ei) (4.5)

The latter axiom is called the addition law and is assumed to maintain its
validity also in the case of countably infinite sample spaces.

This axiomatic view constitutes the Bayesian, or subjectivist,
interpretation of probability according to which everything is made
relative to an assessor which declares ‘a priori’ its ‘belief” regarding the
likelihood of uncertain events in order to be able to compare them. Thus,
in this view, the probability of an event E represents a degree of belief, or
degree of confidence, of the assessor with regards to the occurrence of
that event. In other words, probability is nothing more than a measure of
uncertainty about the likelihood of an event. A probability assignment is
a numerical encoding of a state of knowledge of the assessor, rather than
a property of the ‘real world’. Because the probability assignment is
subjectively based on the assessor’s internal state, in most practical
situations there is no ‘true’ or ‘correct’ probability for a given event and
the probability value can change as the assessor gains additional
information (experimental evidence). Obviously, it is completely
‘objective’ in the sense that it is independent of the personality of the
assessor who must assign probabilities in a coherent manner, which
requires obeying to the axioms and laws of probability, in particular to
Bayes theorem for updating the probability assignment on the basis of
newly collected evidence (see Section 4.4.4 below). By so doing, two
assessors sharing the same total background of knowledge and
experimental evidence on a given event must assign the same probability
for its occurrence.

4.3.2 Empirical Frequentist Definition

Let £ be an event associated to experiment £ . Suppose that we repeat
the experiment # times and let & be the number of times that event E
occurs. The ratio k/n represents the relative frequency of occurrence of
E . As the number of repetitions # approaches infinity we empirically
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observe that the ratio k/n settles around an asymptotic value, p , and we
say that p is the probability of E .

From a rigorous point of view, this empirical procedure does not
follow the usual definition of mathematical limit and it can be
synthesized as follows:

—k——p <¢ (4.6)

n

lim

n-—»x

with & > 0. Obviously, this definition may be somewhat unsatisfactory
as probability is defined in terms of likelihood of a large number of
repeated experiments.

4.3.3 Classical Definition

This definition is very similar to the empirical one of the previous
Section 4.3.2. The only fundamental difference is that it is not necessary
to resort to the procedure of taking a limit. Let us consider an experiment
with N possible elementary, mutually exclusive and equally probable
outcomes 4,, 4, ,..., A, . We are interested in the event £ which occurs
if anyone of M elementary outcomes occurs, A,4,,...,4,,, ie.
E=4U4U..U4,.
Since the events are mutually exclusive and equally probable,

(E)= number of outcomes of interest @

"~ total number of possible outcomes

This result is very important because it allows computing the probability
with the methods of combinatorial calculus; its applicability is however
limited to the case in which the event of interest can be decomposed in a
finite number of mutually exclusive and equally probable outcomes.
Furthermore, the classical definition of probability entails the possibility
of performing repeated trials; it requires that the number of outcomes be
finite and that they be equally probable, i.e. it defines probability
resorting to a concept of frequency. '
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4.3.4 Probability space

Once a probability measure is defined in one of the above illustrated
ways, the mathematical theory of probability is founded on the three
fundamental axioms of Kolmogorov introduced in Section 4.3.1,
independently of the definition. All the theorems of probability follow
from these three axioms.

When assigning probability values to events of a sample space, a
difficulty arises for continuous sample spaces, e.g. 2 =(0,1). Indeed,
continuous intervals cannot be constructed by adding elementary points
in a countable manner and correspondingly, probabilities of continuous
intervals cannot be assigned by the addition law of probability. In other
words, if we were to assign to each £ €(0,1)a probability p(E), then
the sum of all p(E)’s would go to infinity, unless p(E) =0 for ‘almost
all’ Ee(0,).

The way to overcome this difficulty is to assign a probability not to
each individual outcome E but to subsets of Q. For example, one could
define the probability of a subset A= (a,b) = (0,1) as the measure
l(A) = b—a. In particular, each countable set of individual outcomes
{E k}, taken as the interval (E,,E,), has null measure and, thus, zero
probability. By so doing, it is possible to assign a measure, and thus a
probability to any set A made of unions, intersections and complements
of intervals. Still, there are ill sets which cannot be constructed as
explained, to which it is not possible to assign probabilities coherently
with the third Kolmogorov axiom and which are, thus, termed not
probabilizable. From the theoretical viewpoint, this difficulty is
overcome by limiting our consideration to one of the many families
F of subsets of QO which are well-behaved. Such family is called a o=
algebra and we assign probability values only to subsets belonging to F:
correspondingly, the term event refers only to such subsets. In more
details, a o-algebra is a family F of subsets of Q which satisfies the
following conditions:

i, fEcF thenalso E=Q-EcF



4.4 Probability laws 31

. If E|,E,,...1s a countable infinity of subsets in F, then UE,. eF

i=l

and ﬁEi el.
i=1

In words, a o-algebra is a family of sets of the space 2 which is closed
with respect to the operation of complement and to the formation of a
countable infinity of unions and intersections.

Since the space Q is the union of Eand E , it belongs to the o-
algebra, ie. Q € F . Examples of o-algebra are:

—  The largest o-algebra in Q is the family of all subsets of Q).

—  The smallest o-algebra in € consists of Q and the null set &.

—  Let us consider the space Q =R' and a c-algebra F constituted by
subsets of E. If to each xe FE we associate all values
x*1,x+2,...we obtain another o-algebra.

The triplet (€, F, p) defines the probability space.

4.4 Probability laws

As previously mentioned, to the generic random event E is associated
an indicator variable X ,which takes the value of 1 when the event
occurs in the experiment and 0 when it does not. Correspondingly, a real
number p(E) is assigned to measure the probability of E and which
satisfies the three Kolmogorov axioms. Given the binary nature of the
indicator variable, X ;. can only take values of 0 or 1 so that:

P(E)=p(Xp=1)-1+ p(X =0)-0=E[X[] (4.8)

4.4.1 Union of non-mutually exclusive events

Consider »n events E, not mutually exclusive. Their union Ey is
associated with an indicator variable Xy which is the extension of the
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formula (4.2) for the union of the two events 4 and B. For example, for
the intersection of the three events 4, B and C we have

X,=1- IT (1-x,)=1-(1-x ) (1-X,)(1- X.) =

Jj=4,B,C
=X, + X+ X -X, X, -X, X, (4.9)
- XX+ X, XX,

Following (4.8), the probability of the event Ey can then be computed
applying to (4.9) the (linear) expectation operator. More generally, for
the union of » non-mutually exclusive events:

P(E,) = E[X,]= ZE[X] E[ZZXX]+ A (- 1)"”HE[X

i=l j=i+l

_ZP(E) ZZP(E NE)+...+(- 1)”*‘HP(E)

i=l j=i+l
(4.10)

From an engineering practice point of view, it is often necessary to
introduce reasonably bounded approximations of (4.10). Keeping only
the first sum, one obtains an upper bound,

P(E,)< Y P(E)) (4.11)
j=1
whereas keeping the first two sums gives a lower bound,

P(E, )>ZP(E ) Z ZP(E NE)) (4.12)

i=l j=i+]

More refined upper and lower bounds can then be obtained by alternately
keeping an odd or even number of sum terms in (4.10).

Since in reliability and risk calculations the probability of high-
order joint events is very small , it is common practice to use the upper
bound (4.11), which is often referred to as the rare-event approximation.
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4.4.2 Conditional Probability

In many practical situations, it is important to compute the probability of
an event 4 given that another event B has occurred. This probability is
called the conditional probability of A given B and it is given by the
ratio of the probability of the joint event A B over the probability of
the conditioning event B, viz.

P(ANB)

P(4|B) = 05)

(4.13)

Intuitively, P(A|B) gives the probability of the event A not on the
entire possible sample space (2 but on the sample space relative to the
occurrences of B . This is the reason for the normalization by P(B) of
the probability of the joint event P(4 M B) in (4.13).

Based on the conditional probability, it is possible to introduce the
concept of statistical independence: event A is said to be statistically
independent from event B if P(A|B)= P(A). In other words,
knowing that B has occurred does not change the probability of 4. From
(4.13), it follows that if 4 and B are statistically independent
P(ANB)=P(A)P(B). Note that the concept of statistical
independence should not be confused with that of mutual exclusivity
(X ,X; =0, Section 4.2) which is actually a logical dependence:
knowing that 4 has occurred (X , =1), guarantees that B cannot occur
(X, =0).

Example 4.2 [1]

There are two streams flowing past an industrial plant. The dissolved
oxygen, DO, level in the water downstream is an indication of the degree
of pollution caused by the waste dumped from the industrial plant. Let
A denote the event that stream a is polluted, and B the event that
stream b is polluted. From measurements taken on the DO level of each
stream over the last year, it was determined that in a given day

P(4)=2/5 and P(B)=3/4
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and the probability that at least one stream will be polluted in any given
day is P(4 U B) =4/5.

1. Determine the probability that stream a is also polluted given that
stream b is polluted.

2. Determine the probability that stream b is also polluted given that
stream @ is polluted.

Solution

First, we compute the probability that both streams are polluted. Since

P(4 U B) = P(4) + P(B) - P(A N B)

We have
P(ANB)=P4)+P@B)-PA4 U B)
= (2/5) + (3/4) — (4/5)
= (7/20)
4.2.1 P(A|B)
P(A|B) = P(AN B) = 7720 =7/15=0.46
P(B) 3/4
4.2.2 P(B|4)
P(B|4) = P(A( B) 120 7/8 = 0.875

P(4)  2/5

In other words, stream & is very likely to be polluted when stream a is
polluted, whereas chances are less than 50% that stream a will be
polluted when stream b is polluted.
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4.4.3 Theorem of Total Probability

Let us consider a partition of the sample space 2 into » mutually
exclusive and exhaustive events £ =1 2, ..., n . In terms of Boolean
events, this is written as:

E,NE, =0 Vi UE, =0 (4.14)
j=1

whereas in terms of the indicator variables,
XX, =0 Vi > X =1 (4.15)

Given any event 4 in (), its probability can be computed in terms of
the partitioning events £ pJ= I,2,..,n and the conditional
probabilities of A4 on these events, viz.

P(A)=P(A|E)P(E)+P(A|E,))P(E,)+..+P(4|E))P(E,) (4.16)

Example 4.3 [1]

The air pollution in a city is caused mainly by industrial (/) and
automobile (4) exhausts. In the next 5 years, the chances of successfully
controlling these two sources of pollution are, respectively, 75% and
60%. Assume that if only one of the two sources is successfully
controlled, the probability of bringing the pollution below acceptable
level would be 80%.

1.  What is the probability of successfully controlling air pollution in
the next 5 years?

2. If, in the next 5 years, the pollution level is not sufficiently
controlled, what is the probability that is entirely caused by the
failure to control automobile exhaust?

3. If pollution is not controlled, what is the probability that control of
automobile exhaust was not successful?
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Solution

A = event of successful control of the automobile exhausts
I event of successful control of the industrial exhausts
E = event of bringing the pollution below the acceptable level

il

From the problem statement we have:
PH=0.75
P(4) = 0.60
and

P(E|A]) =P(E|Al)=0.8
P(E|AI)=0
P(E|AI) =1

4.3.1 Probability of controlling air pollution in the next 5 years

The possible combinations of the two pollution events are
Al LAl AI,AI. If we assume statistical independence between
controlling industrial (/) and automobile (4) exhausts, we have:

P(AI) = 0.60-0.75 = 0.45
P(41)=0.600.25=0.15
P(AI)=0.40-0.75 = 0.30
P(A4I)=0.400.25=0.10

Al AT Al Al are mutually exclusive and collectively exhaustive
events. Then, we can use the theorem of total probability (Fig. 4.9):

P(E) =P(E|Al) P(AIl)
+P(E|AI) P(AI)+P(E|A]) P(AI)+P(E|AT) P(AI)=0.81
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Fig. 4.9: Partitioning of event E

4.3.2 Probability of pollution not controlled due to failure of controlling
automobile exhaust

P(E | AD)P(AD) _[1- P(E| AD)]P(AT)

2 = =0.32
P(E) P(E)

P(AI|E) =

4.3.3 Probability of automobile exhaust not controlled given that
pollution is not controlled

(E|41)plar)  plE[aT)P(aT)

P{a|B)= P{a1 L 41|E)= P(AIE)+ P(ATIE)= 4 HE) F(E)

=0'2'0'3+1'0'1=0.84

0.19 0.19

4.4.4 Bayes theorem

Assume now that you have experimental evidence that event A has
occurred. What is the probability that event E; has also occurred? This
may be considered as a ‘reverse’ probability with respect to the
probability question underlying the previous theorem of total probability.
To the joint event 4N E, we can apply the conditional probability
(4.13) from both the points of view of 4 and of E|,
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P(ANE,))=P(A|E)P(E)=P(E, | A)P(4) 4.17)
From this, Bayes theorem is readily derived:
_P(A|E)P(E,) __P(4|E)P(E,)

P(E, | 4) -
P(4) S P(4|E,)P(E,)

(4.18)

Eq. (4.18) updates the prior probability value P(E,) of event E, to the
posterior probability value P(E,|A) in reflection of the acquired
experimental evidence on the occurrence of event 4 whose unknown
probability P(A) is computed by applying the theorem of total
probability (4.16).

Thus, coherently with the Bayesian definition of probability, the
assignment of the probability measure of an event depends on the
knowledge that the assessor has relative to such event. If such state of
knowledge changes, then the probability assignment must change
accordingly, coherently with the Kolmogorov axioms underlying the
theory of probability. This is done by application of the updating rule of
Bayes theorem, which becomes very controversial when one considers
the estimation of statistical parameters from the point of view of the
classical, frequentist statistics or of the Bayesian, subjectivist statistics
(Chapter 9).

Example 4.4 [1]

Consider a pile foundation, in which pile groups are used to support the
individual column footings. Each of the pile group is designed to support
a load of 200 tons. Under normal condition, this is quite safe. However,
on rare occasions the load may reach as high as 300 tons. The foundation
engineer wishes to know the probability that a pile group can carry this
extreme load of up to 300 tons.

Based on previous experience with similar pile foundations,
supplemented with blow counts and soil tests, the engineer estimated a
probability of 0.70 that any pile group can support a 300-ton load. Also,
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among those that have capacity less than 300 tons, 50% failed at loads
less than 280 tons.

To improve the estimated probability, the foundation engineer
orders one pile group to be proof-loaded to 280 tons.

1. If the pile group survives the specified proof load, what is the
probability that the pile group can support a load of 300 tons?

Solution

Let

A = event that the capacity of pile group > 300 tons
T = event of a successful proof load.

Then, according to the information given above, P(T | A )=0.5, P(4) =
0.70 and P(T | A )= 1. Bayes’ theorem then gives:

P(4|T)= P(T | A)P(A) _ (1.00)(0.70) _
P(T | A)P(A) + P(T| A)P(A) (1.00)(0.70) + (0.5)(0.3)

Therefore, if the proof test is successful, the required probability is
increased from 0.70 to 0.824.

4.5 Random variables

The outcome @ of a random experiment in the sample space () can be
described by a real random variable X(w) € #. For example, we can
describe any event associated with the outcomes of an experiment of
rolling a dice by a real variable X in #. For a given numerical value x
we can then define the event described by all possible outcomes
associated to values of the random variable X less than x: for example,
for x=4.72 the event {X <4.72} corresponds to the union of the
outcomes {1U2U3U4}; the event {X <0} is the null set since the
outcomes of the roll of the dice are not associated to any negative value
of X ; for x=o the event {X < oo} is the full sample space Q.
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By establishing a univocal mapping between the outcomes of a
random experiment and the values of a random variable, one can handle
the uncertain events in terms of their mathematical abstractions, sparing
the need of an actual word description for each particular physical
phenomenon. In other words, general mathematical models of random
behaviours can be built which apply to different physical phenomena
which behave similarly.

4.5.1 Probability functions

Cumulative distribution function

The cumulative distribution function (cdf) F, (x) of the random variable
X gives the probability of the event {X < x} for any numerical value
x. From the definition, the following properties of F', (x) hold:

—  lim F,(x)=0
- lim F,(x) =1
—  F,(x) is a non-decreasing function of x

—  The probability that X takes on a value in the interval [a,b] is
Pla< X <b}=F,(b)-F,(a)

Probability mass function (discrete random variables)

Consider a random variable X which can take on only discrete values
x;,1=12,...n. The discrete function of the probability values p, with
which X takes on the values x;, i =1,2,...n, is termed probability mass
Junction (pmf) and gives a more detailed information on the behaviour of
the random variable.
The corresponding cumulative distribution function is given by

Fy(x)= p, (4.19)

Xi<x
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Probability density function (continuous random variables)

Consider a random variable X which can take on continuous values x
in R, with cdfF,,(x). As mentioned in Section 4.3.4, continuous
intervals cannot be constructed by adding elementary points in a
countable manner and correspondingly, probabilitiecs of continuous
intervals cannot be assigned by the addition law of probability. Thus, the
probability of X taking on a particular value x is zero. Instead, we can
consider a small interval dx centred around the value x and consider
the probability of the random variable X taking any value within such
interval:

P{x< X <x+dx}=Fy(x+dx)~ Fy(x) = fy(x)dx (420

where f(x) is the so-called probability density function (pdf) of X.
Taking the limit for the interval dx becoming infinitesimal,

Fy(x+dx)-F,(x) dF,
dx dx

fr@=lim (421)
Note that f, (x) is not a probability but a probability per unit of x, i.e.
a probability density: when multiplied by dx it becomes the probability
of X falling in the interval [x, x + dx).

4.5.2 Summary measures: percentiles, median, mean, variance

The cumulative distribution and probability mass and density functions
give the most complete description of the behaviour of a random
variable. Yet, in engineering practice a pointwise description of the
location and shape of such probability distributions is often needed. For
this reason, various summary measures can be adopted.

Distribution Percentiles

The a percentile of the distribution F, (x) is the value x, at which
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a
F,.(x,)=—— 4.22
X( a) 100 ( )
In particular, the 50-th percentile x5, is called the median of the
distribution and it represents the numerical value for which there is a
symmetric probability of 0.5 that the random variable X takes values
below or above, 1.e.

Fy(xy)=0.5 (4.23)

In other words, half of the probability mass lies below x;, and half
above.

Mean

The mean of the distribution F, (x) provides information as to where the
probability distribution is located on R, i.e. where the probability mass is
concentrated on average. It is often referred to as expected value of the
distribution, defined as

Uy =EX]=<X>= in )2 (discrete random variables)
. = (4.24)
= Ixf o (x)dx (continuos random variables)

Central moments

The central moments of the distribution /'y, (x) provide information on
its shape relative to the mean. In general, the n-th central moment of the
distribution is defined as:

o :Z( X, — ly )n )2 (discrete random variables)

(4.25)
(x— )" 1o (x)dx (continuos random variables)

ét_,S ~
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Often used are the second and third moments, » =2 and 3 respectively.
The former (&} ), called variance and often indicated also as Var[X],
gives a measure of the spread of the distribution around the mean: the
larger it is, the more the distribution is spread out over R around the
mean; the smaller it is, the more the distribution is peaked on the mean
value. The latter ( 0')3( ) is called kurtosis and gives a measure of
asymmetry: a value close to zero indicates a fairly symmetric
distribution; negative values indicate that the distribution is skewed to
the right (i.e. values smaller than the mean are more dispersed in a large
tail); positive values indicate that the distribution is skewed to the left
(i.e. values larger than the mean are more dispersed in a large tail).
Finally, a combined measure of spread and location, called
coefficient of variation (Cov) is often used in civil engineering:

Cov, =% (4.26)
Hx

where o, is the square root of the variance and is called standard
deviation (often also indicated as Std[X]).

Chebychev’s inequality

Chebychev's inequality provides an estimate of the probability of
dispersion around the mean of the values of a random variable X with
distribution F, (x). From the definition of the variance, we have:

ot = - P Aoz [l pf (> 0h [f (ekin =

|x—pylzkoy [x-py|2koy

=k20')2(qu—,uX{ > ko)
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J. - Hx fx(x)dX> J.(x—yx)zfx(x)dekZO'; J-fx(x)dx=
|x-ux|zkoy |x=puy|zkoy
=k20'XP(|x— ,uX| 2 kO'X)
4.27)

from which it follows that

1
P(x—py, 2koy)< yEl (4.28)

Example 4.5 (discrete random variable) [1]

A contractor is planning the purchase of equipment, including
bulldozers, needed for a new project in a remote area. Suppose that from
his previous experience, he figures there is a 50% chance that each
bulldozer can last at least 6 months without any breakdown.

1. If he purchased 3 bulldozers, what is the probability that there will
be only 1 bulldozer left operative in 6 months?

2. Let X Dbe the random variable whose values represent the number
of good bulldozers after 6 months. The probability that a bulldozer
will remain operational after 6 months is p = 0.8. Using the above
information, plot the probability mass function (pmf) as well as the
cumulative distribution function (cdf) of X.

3. Using information from part 2., compute the following:

(i) Meanof X

(ii) Variance of X

(iii) Standard Deviation of X

(iv) Coefficient of Variation of X

Solution
4.5.1 Let

G = event where a Bulldozer is in good condition.
B = event where a Bulldozer is in bad condition.
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The possible statuses of the three bulldozers would be:
{GGG, GGB, GBB, BBB, BGG, BBG, GBG, BGB}

In this case, there are a total of 8 possibilities. Since the condition of a
bulldozer is equally likely to be good or bad, the 8 possible statuses of
the 3 bulldozers are also equally likely to occur. The events of interest
are GBB, BBG, BGB. Therefore, the probability of having only 1
bulldozer left operative in 6 months is simply = 3/8 = 0.375

4.5.2 The possible values of X are {0, 1, 2, 3}.Then,

Px(0) =(1-p)=(0.2) =0.008

Px (1) = 3p(1 -p)’ = 3(0.8)(0.2)* = 0.096
Px(2) = 3p*(1 -p) = 3(0.8)*(0.2) = 0.384
Py(3)=p’=(0.8°=0512

4
Pa) 0.512

0.384

0.096
0.008

v

0 1 2 3 X

Fig. 4.10: pmf of X
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F
334 1.00
0.488
0.104
0.008 .
0 1 2 3 x
Fig. 4.11: Cdf of X
4.5.3
(i) Mean of X

E[X] = 0(0.008) + 1(0.096) + 2(0.384) + 3(0.512) = 2.40
(ii) Variance of X

Var[X] = 0.008(0 — 2.4)° + 0.096(1 — 2.4)° + 0.384(2 — 2.4)° +
+0.512(3-2.4°= 048

(iii) Standard Deviation of X
Std[X]= +0.48 = 0.69
(iv) Coefficient of Variation of X
Cov, =(0.69)/(2.40) = 0.29

Example 4.6 (continuous random variable) [1]

Suppose that a random variable X has a pdf of the form (Fig. 4.12):



4.5 Random variables 47

fx(x) = ox’ 0<x<10
=0 elsewhere

1. Under what condition (i.e. what value of a) is this function a bona
fide pdf?
2. Whatis P(X > 5)?
3. Compute the following:
(i) Mean of X
(ii) Variance of X
(iii) Standard Deviation of X
(iv) Coefficient of Variation of X
(v) Median of X

Sy 4

v
=

Fig. 4.12: pdf of X

Solution

4.6.1
In order to satisfy all the properties of a pdf, we must have

10
J'axzdx =1
0

from which we get that
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a
—(10)’ =1.0
5 10

Therefore, solving for o, we get

a = (3/1000)
4.6.2
5 3x2 53
P(X>5)=1-P(X<5)=1- dx=1- =0.875
¢ 1000 1000
4.6.3
(i) Mean of X

10 2 10 . 4
ElX] = fx 3% V= [——3—x4:| _310 30 54
371000 4000 |, 4000 4

(ii) Variance of X

10 2 10
3x 3 2
Var[X]= [(x-7.5)’ dx = f15%° +(7.5)" % |dx=3.75
arl ] (,I(x ) [1000] 1000 Oj[x X +(75) ]
(iii) Standard Deviation of X
Std[X]=~/3.75 = 1.94
(iv) Coefficient of Variation of X

Cov,, =(1.94)/(7.50) = 0.26
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(v) Median of X

From Fig. 4.12, the modal value is obviously X = 10. To
determine the median, one must solve

Ty o 2
3% =050
5 1000
from which we get
Xn =500

and thus the median is

Xm = 7.94.

4.5.3 The hazard function

Continuous random variables are often used in risk and reliability
analyses. Of particular importance is the time to failure of a component
T whose cdf F,(¢t) and pdf f,.(¢) are typically called the failure
probability and density functions at time ¢ The complementary
cumulative function (ccdf) R(t)=1-F,.(f)=P(T >t) 1is called
reliability or survival function of the component at time ¢ and gives the
probability that the component survives up to time ¢ with no failures.

Another information of interest for monitoring the failure evolution
process of a component is given by the probability that it fails in an
interval df knowing that it has survived with no failures up to the time
of beginning of the interval, ¢ This probability is expressed in terms of
the product of the interval df times a conditional probability density
called hazard function or failure rate and usually indicated by the
symbol A, (1) :

Pu<T<t+d) _ fr@dl 45

h()dt =Pt <T <t+dt|T>1t)= PS>0 ()



50 4 Basic of Probability Theory for Applications to Reliability and Risk Analysis

The hazard function /4, (f) gives the same information of the pdf and cdf
to whom it is univocally related by eq. (4.29) and its integration, i.e.
= {Ap(s)ds
Fit)=1-¢? (4.30)

Fig. 4.13 shows the most common patterns of evolution of #; (t)
encountered in practice [2].

Failure
rate L} ) The bath-tub curve: infant mortality followed by a stable and
wearout periods {case 1).
Use time
A Constant failure rate followed by a pronunced wear out period
{(case 2).
JE Gradually increasing failure rate. No identitiable wear out age
{case 3).

Low failure rate when component is new followed 10 a to a quick
increase to a constant level (case 4).

Constant failure rate over usefule life (case 5)

K Infant mortality followed by a constant or stowly increasing
failure rate (case 6).
.

Fig. 4.13: Patterns of time evolution of the hazard function (or failure rate) [2]

PT
V‘V

A

In principle, the hazard function follows the so called ‘bath-tub’
curve (Fig. 4.13, case 1) which shows three distinct phases in the life of a
component: the first phase corresponds to a failure rate decreasing with
time and it is characteristic of the infant mortality or burn in period
whereupon the more the component survives, the lower becomes its
probability of failure (this period is central for warranty analysis); the
second period, called useful life, corresponds to a failure rate independent
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of time: during this period, failures occur at random times with no
influence on the usage time of the component; finally, the last period
sees an increase in the failure rate with time and corresponds to the
development of irreversible aging processes which make the component
more and more prone to fail as time goes by.

Deviations from this general behaviour (cases 2-6 in Figure 4.13)
may occur, depending on the burn-in and maintenance procedures
adopted by the particular industry.

4.6 Probability distributions

A number of classes of stochastic processes can be described
mathematically in terms of special analytical forms of the pdf and cdf.

4.6.1 Univariate discrete distributions

Binomial Distribution

Consider 7 independent realizations (trials) of the stochastic experiment
known as Bernoulli process, described by a discrete random variable Y
with only two possible outcomes: 1 (success), with probability p and 0
(failure), with probability 1 — p .

Let X be the discrete random variable describing the number of
successes (realizations of the outcome 1) out of the n trials,
independently of the sequence with which the successes appear. The
sample space of X comprises all discrete values from 0 to 7.

The random variable X is related to the random variables Y,
i=1,2,...n, describing the individual Bernoulli trials as follows:

X = ZY “.31)
i=1

The distribution of the discrete random variable X above defined is
called Binomial. Its probability mass function b(k;n,p) gives the
probability of obtaining & successes out of #» Bernoulli trials when the
probability of success in the individual trial is p :
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b(k;n, p) = (ijk(l - p)* k=12,...n (4.32)

The expected value and variance of the distribution are:

E[X]=np

Var[X]=np(1- p) (4-33)

Geometric Distribution

Considering the previous problem setting of independent trials of the
stochastic experiment known as Bernoulli process, we focus now on the
probability that the first success occurs at the ¢ - th trial.

Only one specific sequence is now considered, i.e. that with all
failures in the first #—1 trials (each one occurring with probability
1 — p) and a success at the #-th trial (which occurs with probability p ).

The distribution of the corresponding random variable is called
Geometric. Tts probability mass function is

gp)=01-p)'p  t=12.. (4.34)

Note that (4.34) is also the distribution of the number of trials between
two successive occurrences of success (realizations of 1), since the
Bernoulli trials are independent and the probability of success p remains
the same in all trials.

The expected value of the geometric distribution is computed as
follows:

N 1
ET1=SN11=p)" p=p[l+2(1- M-p)Y 4 =P
[T] ;( p) p=pll+2(-p)+31-p) +..] T-0-2F 7
(4.35)

This quantity is often called the refurn period of the stochastic process.
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Poisson Distribution

Consider now stochastic events that occur in a continuum period (e.g. the
number of earthquakes which occur in a given region over a given period
of time, the number of cars crossing a given intersection over a given
period of time, the number of failures of a given type of component over
a given period of time).

The rate of occurrence A of the events is assumed constant and the
events are assumed independent of each other.

The distribution of the discrete random variable K describing this
process is called Poisson. Its probability mass function gives the
probability that £ events occur in the period of observation (0,¢) and is
defined as:

k
p(k:(0,0),2) = %e” k=1,2,.. (4.36)

The expected value and variance of the distribution are:

E[K]=At
Var[Kl= At

(4.37)

As it can be intuitively understood, the Poisson distribution dertves from
the binomial one in the limit for p — 0, n — © so that the product
np = At remains constant.

Example 4.7 (Poisson distribution) [1]

On the average two damaging earthquakes occur in a certain country
every 5 years. Assume the occurrence of earthquakes is a Poisson
process in time. For this country, compute the following:

1. Determine the probability of getting 1 damaging earthquake in
3 years.

2. Determine the probability of no earthquakes in 3 years.

What is the probability of having at most 2 earthquakes in one year?

4. What is the probability of having at least 1 earthquake in 5 years?

w
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Solution
2
A=Z=04y"
5 Y

4.7.1 P(1 earthquake in 3 years) = p(1,;(0,3),0.4)= (0.4t)e™** |’=3 =0.3614

(o]
4.7.2 P(0 earthquake in 3 years) = p(0;(0,3),0.4) = S%Le"“’ | =03

=3

4.7.3 P(K<2in | year) = Zz: P(%:(0,3),0.4) = p(0;(0,3),0.4)+ p(1:(0,3),0.4)

k=0

2

4.7.4 P(K>1in5years)=1-P(K=0in5 years)=1 - ¢ ** |’=5= 1-e?=0.864

Example 4.8 (Binomial and Poisson distribution) [1]

The occurrences of floods may be modelled by a Poisson process with
rate v. Let p(k; t, v) denote the probability of k flood occurrences in
t years.

1. If the mean occurrence rate of floods for a certain region 4 is once
every 8 years, determine the probability of no floods in a 10-year
period; of 1 flood; of more than 3 floods.

2. A structure is located in region 4. The probability that it will be
inundated, when a flood occurs, is 0.05. Compute the probability
that the structure will survive if there are no floods; if there is 1
flood; if there are » floods. Assume statistical independence
between floods.

3. Determine the probability that the structure will survive over the 10-
year period.
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Solution

1 N
==0.125

n y
P{K=0in 10 years} =& =0.286

481 v=

P{K=11n 10 years} = 1.25(e’**) = 0.3525

3
P{K>3in10years} =1—-P{K<3in10years} =1- Zp(k;t =10,0 =0.125)
k=0

2 3
5z 1250

=1-0.286-0.3575 - 125 7% =0.0394
2! 3!

4.8.2 P{structure fails | flood} = 0.05
P{structure survives | flood} = 0.95

P{structure survives, 0 flood} = P{0 flood} P{structure survives | 0 flood}
=0.286 (1)=0.286

P{structure survives, 1 flood}= P{l flood} P{structure survives | 1 flood}
=(0.3525)(0.95)
=0.3396

P{structure survives, n independent floods} =
= P{n floods} P{structure survives | » independent floods}

_ {1.25 ]0.95"
n!

4.8.3 P{structure survives over 10 years} = Zkzls—e"'zs (0.95)" = Z—ng?s—e‘m
n=0 n=0 n
= QMETS-I2S _ 00625

=0.9394

4.6.2 Univariate continuous distributions

Exponential Distribution

Consider a component operating at time ¢ =0 and characterized by a
constant failure rate /,(f)=A. Let us consider a given time 7 and
subdivide the time period (0,7) in # subintervals of equal length Af. In
each subinterval, the component either survives with constant survival
probability equal to 1— AAf¢ or fails with complementary probability
AAt. Hence, each interval represents a Bernoulli trial. Then, the
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probability that the component has no failures up to time ¢ is given by the
binomial distribution (4.32) for the discrete random variable number of
Jailures, evaluated at k =0,

b(0; 1, AAL) = (ZJ(/IAt)"(l —AAD™ = (1= AAL)" (4.38)

In (4.38) the random variable is the number of failures in # Bernoulli
trials. Looking at the stochastic process in terms of the continuous
random variable failure time T, the reliability of the component at time
t, i.c. the probability that the component does not fail up to time ¢, is the
probability that 7" takes on values larger than ,

R(t) = P(T > 1) = lim (1 - AA7)" = lim(l - /11) =e”  (439)
n—>0 n—yco n

At—o
The cdf of T is then:
F.(t)=P(T<t)=1-¢* (4.40)

with corresponding pdf (Fig. 4.14):

A it
() =1Ae 120 441)
=0 r<0
and hazard function:
=219 _ 5 i>0
R(?) (4.42)

=0 t<0

Such distribution is called exponential and it is the only distribution
characterized by a constant hazard rate. For this reason it is widely used
in reliability practice to describe the flat, constant part (useful life) of the
bath-tub hazard function of a component (section 4.5.3).
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The expected value and variance of the distribution are:
E[T]=

1
A | (4.43)
Var[T] = =

When T is the time to failure, the expected value represents the return
period of failures and is often called Mean-Time-To-Failure (MTTF).

L)t

v

Fig. 4.14: Exponential distribution

Note that the probability of the failure time I" being larger than a given
value # is equal to the probability of having O failures in the period
(0,1): in the case of constant failure rate A, the former is given by the
exponential complementary cumulative distribution function (4.39),
whereas the latter is given by the Poisson distribution (4.36) for £ =0.

Finally, when the failure rate is constant, the process is said to be
memoryless. Indeed, suppose that a component with constant failure rate
A is found still operational at a given time f, and that one is interested
in the probability of its failure before 7, >¢ . This is given by the
following conditional probability:
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P(t,<T<t) F(,)-F() e* -’

—_ l —_ e_/l("z_’l)
—At,
P(T >t) R(1) e

Pt,<T<t,|T>1)=
(4.44)

The distribution of the failure times starting from ¢, is still exponential
with failure rate A4, so that knowing that the component has survived
with no failures up to # does not change the probability of its failure
within the next interval of duration (¢, —¢,).

Weibull Distribution

In practice, the age of a component influences its failure process so that
the hazard rate does not remain constant throughout the lifetime (Fig.
4.13 in Section 4.5.3). To account for the time evolution of the failure
process, the Weibull distribution is often used in reliability practice.

The cdf is:

F.)=P(T<t)=1-¢™ (4.45)
with corresponding pdf:

fr(t)=Aat™'e™ 120
=dat“ e ™ <0 (4.46)

The expected value and variance of the Weibull distribution are:

E[T]= %r(é + 1)

Var[T]:L r 3~1—1 -T —1—+1
A \a a

where the Gamma function I'(:) is the generalization to non-integer
numbers of the factorial and is defined as

(4.47)
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T(k)= [x*"e~dx k>0 (4.48)
0

which by integration by parts yields,
rky=k-nrk -1 (4.49)

Normal or Gaussian Distribution

The importance of the normal or Gaussian distribution is related to the
famous central limit theorem: for any distribution of independent random
variables X, their sum X, + X, +...+ X, is a random variable which
for large » tends to be distributed as a normal distribution. This, for
example, justifies the use of the normal distribution to describe
experimental errors which are typically the effect of several independent
random phenomena.

The Gaussian distribution is the only distribution with a symmetric,
bell shape. Its pdf is

1 x—ux
LA
S py,0¢)=—=—e " ™" —0< X,y <0, 04 >0
X x> Ox \/5_7;0')( X X
(4.50)
The expected value and variance of the Gaussian distribution are:
E[X]= Hy

4.51)
Var[ X1= o3

A random variable distributed as a normal with mean x, and standard

deviation o, is typically indicated as X ~ N(uy,0,). Often in
practice, one refers to the so called standard normal variable

E= M ~ N(0,1) which is easily tabulated (Appendix A).

Oy
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Log-normal Distribution

Let us consider a stochastic process of a random variable X which,
beginning from an initial value x, >0 is increased by successive
random, independent contributions proportional to the current value of
X . Let {r} be the sequence of independent random variables such that:

X =X T X, (4.52)
. . X —X;
Assuming small relative increases Ax; = —————=:
xi
Ax,  Ax, Ax,
FAr+..+r =—+—%+  + (4.53)
X, X, x,

which for large number n becomes:

[ﬂ_Fsz + +Axn] xndu X,

X X, X

lim(r, +r, +...+7,)=lim

n—eo n—»0

(4.54)

For the central limit theorem, the first limit ten)ccis to a normal random
variable and so does Z =In X, with X =lim—2. The distribution of
X is called log-normal. In other words, X" is K5¢g-normal if Z =In X
is a normal random variable.

Denoting by f,(-) and g,(-) the pdfs of the normal random
variable Z (4.52) and of the log-normal random variable X,
respectively, from

frdz =g dx (4.55)

one obtains the log-normal pdf:
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1 1 _l(lnx-,uz Jz
gX(x;,UZ,O-Z)=—\/2——n-‘O-—;€ G X,0, >0 (4.56)
V4

where u, and o, are the mean and standard deviation of the
corresponding normal distribution of Z = In X . The expected value and
variance of g, (x; u,,0,) are:

2
o
H ==

E[X]=e *
Var[ X ]= e*7*% (e — 1)

(4.57)

The log-normal distribution is asymmetric, skewed to the right and it is
often used to represent the uncertainty in the estimates of the components
failure rates. In this view, it is often characterized in terms of percentiles
and the error factor

Kos _ Xso _ ptoe (4.58)
Xso  Xs

where £ ~ N(0,1).

Example 4.9 (exponential and Gaussian distribution) [1]

The daily concentration of a certain pollutant in a stream has the
exponential distribution shown in Fig. 4.15.

1. If the mean daily concentration of the pollutant is 2 mg/ 10° liter,
determine the constant ¢ in the exponential distribution.

2. Suppose that the problem of pollution will occur if the concentration
of the pollutant exceeds 6mg/10° liter. What is the probability of a
pollution problem resulting from this pollutant in a single day?

3. What is the return period (in days) associated with this
concentration level of 6 mg/10’ liter? Assume that the concentration
of the pollutant is statistically independent between days.

4. What is the probability that this pollutant will cause a pollution
problem at most once in the next 3 days?
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5. If instead of the exponential distribution, the daily pollutant
concentration is Gaussian with the same mean and variance, what
would be the probability of pollution in a day in this case?

fx(x)‘r

fx(x)=ce™ ; c=constant

x (mg/10°T)

Solution

4.9.1 First, we verify the normalization of the probability density function, i.e.

@

=1

J'ce’“dx =l= -
0 0
Then, from the expected value of the exponential distribution we have:

EX]=1/c=2=c=05

EX] =T(x2)o.5e‘°-”dx =38 oy =E[X’]-E*X]=8-4=4

0

6 6
4.9.2  P(pollution) =P(X>6)=1-P(X<6)=1- j 0.5¢dx =1+¢e™**| =0.0498
0 0

For simplicity of notation, we shall denote P(X > 6) by px-s = 0.0498.

1 1

493 ElTysl= =
[Zi-e] P 0.0498

=20 days
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1
4.9.4  P(pollution at most once in 3 days) = Y. (3 ) pkos (1= Pyos) ™™
k=0

= (1 - 0.0498) + (3)(0.0498) (1 — 0.0498)

=(0.993

495 PX>6)=1-PX<6)=1-P(l<2)=1-(2)=1-0977=0.023

where £ ~ N(0,1) is the standard normal variable (Appendix A).

Example 4,10 (Gaussian and Log-normal distributions) [1]

A contractor estimates that the expected time for completion of job A is
30 days. Because of uncertainties that exist in the labor market, materials
supply, bad weather conditions, and so on, he is not sure that he will
finish the job in exactly 30 days. However, he is 90% confident that the
job will be completed within 40 days. Let X denote the number of days
required to complete job A .

1.

Assume X to be a Gaussian random variable; determine g and o
and also the probability that X will be less than 50, based on the
given information.

Recall that a Gaussian random variable ranges from —oo to +o0.
Thus X may take on negative values that are physically
impossible. Determine the probability of such an occurrence. Based
on this result, is the assumption of the normal distribution for X
reasonable?

Let us now assume that X has a log-normal distribution with the
same expected value and variance as those in the normal
distribution of part (1). Determine the parameters 4, and o, and
also the probability that X will be less than 50. Compare this with
the result of part (1).



64

4 Basic of Probability Theory for Applications to Reliability and Risk Analysis

Solution

4.10.1

4.10.2

4.10.3

Let X be the number of days required to complete job 4.
E[X]= u,=30 X~ N(30, av)

P(X<40)=0.9 = P> =20 < 40=30

X X

y=09 = PE< ﬂ) =09
Ox

From the tabulated values ®(&) of the normal standard variable & (Appendix A):

10

@ (£)= 0.9 = =00.9)=129 = &, =7.752

Oy X
Therefore P(X < 50) = P(§ < 2.58) = ©(2.58) = 0.995

The limit value is X =0 which corresponds to the following value of the standard
normal variable:

Then, the probability of negative values is:
PE<E)=1-0(3.87)=1-0.999946 = 5.4 -(10°)

which is negligible: the assumption of normal distribution is acceptable.
X~ fx(x; iy, 0;) with g, =30and o, =7.752

12
Hz ‘702

Hy =€

2
ol = ln[1+a—’2()= 0.0646 s, =Inp, —+o2=33688
Hx 2

Therefore, X ~ f(x,3.3688, 0.0646)

mX-u, < n50-u,

Oz Oz

P(XSSO):P( ]:P(§s2.137)=(1>(2.137)= 0.983
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4.7 Regression and correlation analyses

When dealing with two or more variables, the functional relation
between the variables is often of interest. However, if one or more
variables are random, for a given value of one variable (the controlled
variable), there is a range of possible values of the others and thus a
probabilistic description is required.

If the probabilistic relationship between the variables is described in
terms of the mean and variance of one random variable as a function of
the other variables, we have what is known as “regression analysis”.
When the analysis is limited to linear mean value functions, it is called
“linear regression”. In general, however, regression may be nonlinear.

4.7.1 Regression with constant variance

Considering pairwise data of two variables, X and Y, the possible value
of one variable, e.g. Y, may depend on the values of the other variable
X . For this reason, it would be inappropriate to analyse the data for ¥
(e.g. in determining the mean and variance of Y ) without due
consideration of X . In the case of Fig. 4.16, we observe that there is a

Y y' = a+8x

0‘ .

e il

. (xi,yﬂ

L

Fig. 4.16: Linear regression analysis of data for two variables
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general tendency for the values of Y to increase with increasing values
of X (X may be deterministic or random). Hence, the mean value of ¥
will also increase with increasing values of X although, due to the
stochastic behavior of the process, the actual values of Y may not
always increase with increasing values of X .

In general, the mean value of Y will depend on the value of X .
Suppose that this relationship is linear; that is,

Elr|x =x]=a+px (4.59)

where «, [ are constants and the variance of ¥ may be independent or
a function of X . This is known as the linear regression of ¥ on X .

Let us consider the case with Var[Y IX = x] = constant.
Depending on the values of @ and [, there are many straight lines
that could represent the function £ [Y 'X = x] in the light of the available

data. The ‘best’ line is that which passes through the data points with the
least error. The coefficient of this line with least total error can be found
by minimizing the sum of the squared errors:

n 2 n 2

A2=Z(yz'_y;) :Z(yi_a_ﬂxi) (4.60)

i=1 i=1
where n is the number of data points, y, is the observed value,

y z =a+ fx;.
To minimize A> we take the derivatives with respect to & and /3
and set them equal to 0:

OA? <
E:ZZ(yi—a—ﬂxi)(—l)=0 (4.61)
a 2 n
a—’AB—=Z2(yi—a—ﬂxi)(—xi)=0 (4.62)

from which we get the least-squares estimates of ¢ and £
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L 1 B & \
a=- y,—'—g— x,=y-px (4.63)
n g n i
C 2xy-nEy Y -%)(y - )
p== = (4.64)

Strictly speaking, the regression line £ [Y |X = x] =a+ /?x is valid only
over the range of values of x for which the data has been observed.

The dual regression line £ [X |Y = y] is in general a different linear
equation which intersects E [Y |X = x] at ()?, i)

The conditional variance Var[Y |X = x] about the regression line

can be estimated as:

g S = 203 R =

n—2'i=l n—2 i3 i=1 n—-2
(4.65)

The physical effect of the linear regression of ¥ on X can be
measured by the reduction of the original variance of Y,

1
2

n
Syl =ﬁ-2(yi _3}_)2 , obtained from taking into account the

i=}

general trend with X:
P (4.66)

The assumptions of linear model and constancy of variance underlying
linear regression are, in fact, inherent properties of populations that are
jointly normal. In this case we have:
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E[Y|X =x]=py + p T (x— pz,) (4.67)
Ox
Var Y| X = x]=c2(1- p*) (4.68)

where p is the correlation coefficient (see definition (4.85)  below).
Thus, if two variates are jointly normal, the regression of ¥ on X is linear
with constant conditional variance and

O-)’
b= P30 = Hy —Bux (4.69)

X

Therefore, if the underlying populations are jointly normal, it is
appropriate to use linear regression.

4.7.2 Regression with non-constant variance

The conditional variance about the regression line, Var[Y IX = x] may
be a function of the independent (controlled) variable. This is the case
when the degree of scatter varies with the different values of the
controlled variable. This variation may be expressed as:

Var [Y|X = x]= o’g?(x) (4.70)

where g(x) is a predefined function and & is an unknown constant.

In determining the regression equation F [Y |X = x]: o+ fx, it
would seem reasonable that data points in regions of small variance
should have more “weight” than those in regions of large variance. On
this premise, we assign weights inversely proportional to the variance:

. 1 1
w., = =
2
' Var[Ylexi] o’g*(x,)

(4.71)

Then, the squared error is:
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A’ = Zw;(y,. —~a-pBx) (4.72)
i=l
from which the least-square estimates of o and 8 become

iwiyi “éznlwixi i(zn:wiyixi)_(anwiyi)(iwi’xij
4 = = i=1 i=1

i=l D i=t i=]
u ’ ﬂ = n n n 2
Z}:Wi Zwi(Zwifo—(Zwixi)
= i=] i= i=1
(4.73)
v 1
where, w, = o’w, = .
g2 (xi)

An unbiased estimate of the unknown o is:

" 2
ZW,-(,Vi _d_ﬂxi)
_ =l

2

S 4.74
— (4.74)
and an unbiased estimate of the conditional variance is:
s)%[x = Szgz(x) (4.75)

4.7.3 Multiple linear regression

Linear regression analysis for more than two variables is simply a
generalization of the previous one for two variables. The assumptions
underlying multiple regression analysis are as follows:

1. The mean value of Y is a linear function of x,,x,,...,X,,

E [Y'xl,xz,...,xm]=ﬂ0 +Bx +..+B,x, (4.76)
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2. The conditioned variance of ¥ given X;,X,,..., X, is constant.

Var [le,,xz,...,xm]: O'Zgz(xl,xz,...,xm) (4.77)

The regression analysis then determines estimates for £,,4,...., 5, and
o based on a set of observed data (x/,x%,...,x", )i =1,2,....,n.

The function F [Y | X, ,xz,...,xm] can be written also as

E[lel,xz,....,xm]z o +ﬂ1(x1 *3_51)+-~-+,Bm (xm —)?m) (4.78)

in which the X;’s are the sample means of X, and « is a readjusted

constant.
Restricting to the case of constant conditioned variance we have:

" 2

A= Zl(yf -y;) = Z[y —a- Bl -7 ) B, x5, )]
4.79)

Minimizing A%, we get the following estimate
= _Z y, = (4.80)

and a set of m linear equations involving the m unknowns S, B,,.... 5,

ﬁ,Zn:(xl’—f,) +ﬂ2‘ ( x,Xx2—x2)+ +ﬁ Z( —x,Xx -X ) ( x,Xyl

i=1 =1

The conditional variance Var[Y |x1 X, ,...,xm] can be estimated as:
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) A Z[yi~d—ﬂAl(xli_fl)_"'_ﬂAm(x;—fm)]z

" n-m-—1 n—m-1

4.7.4 Non Linear Regression

Relationships between engineering variables are not always adequately
described by linear models. The determination of such non-linear
relationships on the basis of observational data involves non-liner
regression analysis.

Non-linear regression is usually based on an assumed non-linear
mean value function with some unknown coefficients to be evaluated
from experimental data.

The simplest type of non-linear regression of ¥ on x is:

ElY|X =x]=a+pg(x) (4.83)

where g(x) is a predefined non-linear function of x such as x+x7,

e’ ,lnx.

By defining a new variable x = g(x),
Elr|x=x]=a+p8x (4.84)

and transforming the data (x,., y,.) into (g(x,. ), yi) we are back to linear
regression.

4.7.5 Correlation Analysis

The study of the degree of linear interrclation between random variables
is called correlation analysis. Indeed, the accuracy of a linear model
between variables depends on the correlation between them, measured by
the so called correlation coefficient,
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= (4.85)
OxOy OxOy

o= Covariance X, Y] E[(X —pu )Y - p,)]

Based on a set of observed values of X andY , the correlation coefficient
may be estimated by

ol i=1 i=1 o
p= . = . -1<p

n-1 SySy n-1 SySy

IA

1

(4.86)

If p ~ 1, then there is strong linear relationship between X and Y, and
linear regression analysis is adequate. On the other hand, if o ~ 0, this
would indicate a lack of linear relationship between the variables

It is possible to show that,

S - #Ny, - 7)

5 = &=L X plx 4.87)

n

Z(xi _)_6)2 *r S

i=1

Furthermore,

vl o)=L S0 -7 - 2

n—2 i=1 S)z( i=1 2
(4.88)
from which,
2 2 2
A 11—2 S X SY _S X
pre1-izf e T (4.89)
n-1 s, Sy

Thus, we can say that the larger the value of | [)| , the greater will be the
reduction in the variance when the trend between the variables is taken
into account and more accurate will be the prediction based on the
regression equation,
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Example 4.11 (constant variance) [1]

Tabulated in the first three columns of Table 4.1 are values of shear
strengths, in kips per square foot (ksf), obtained from 10 specimens taken
at various depths of a clay stratum. Determine the mean and variance of
the shear strength as a linear function of depth. Assume that the variance
is constant with depth.

Solution

Table 4.1 summarizes the computations in the regression analysis.

Table 4.1: Computational Tableau for the Example

To determine & and 3

To determine SYIX

Depth  Strength

Specimen (ft (ksf)
no. 2 2 ' ' '
X; Yi X Vi X; Yi yiza+ B yi-y (yi - Y
1 6 0.28 1.68 36 0.078 0.325 -0.045 0.0020
2 8 0.58 4,64 64 0336 0.429 0.151 0.0228
3 14 0.50 7.00 196  0.250 0.739 -0.239 0.0571
4 14 0.83  11.63 196  0.689 0.739 0.091 0.0083
5 18 0.71 1278 324 0.504 0.946 -0.236 0.0557
6 20 Lol 2020 400 1.020 1.049 -0.039 0.0015
7 20 129 2580 400 1.662 1.049 0.241 0.0580
8 24 150 3600 576 2250 1.257 0.243 0.0590
9 28 129 3610 784 1.662 1.463 0.173 0.0299
10 30 158 4740 900 2495 1.566 0.014 0.0002
> 182 957 20323 3876  10.946 A? =0.2945
=182 _10- 2
2 10946100957
3 =0.957
Spe= 0'29425 =0.0368
- 203.23-10-18.2-0.957
= =0.0516 = =
B 3876101822 543, =+/0.0368 = 0.192
P2 2122368 o513

& =0.957-0.0516-18.2=0.018

0.197
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On the basis of the calculations in Table 4.1, the least-squares mean
shear strength (in ksf) as a function of depth x is given by

E[Y|x]=a+Bx=0018+0.0517x (4.90)

whereas the variance of the shear strength at a given depth is estimated to
be 0.0368 (ksf)’, giving S§|x = 0.192ksf . If the linear trend with depth

is not taken into account, the unconditional variance of the shear strength
would be 0.197 (ksf)’, and s, =0.44ksf . Hence the conditional

standard deviation SY' . 1s considerably smaller than Sy .

The regression equation obtained above may be used to predict the
shear strength from 6 ft to 30 ft deep. It may not apply to depths beyond
30 ft, unless the linear trend can be justified beyond this depth on
physical ground (for example, the same soil type).

Graphically, the regression line obtained above is shown in Fig.
4.17; also shown is the envelope with SY| . from the regression line.

This represents a band width of one (conditional) standard deviation
from either side of the regression line.

Shear Sirength, y, kst

1.0 2.
Oo 3\ i io >
0018 + 0.0317«
- o
-
o
a
A
a
20—
o~ Envelope
30—
Y

Fig. 4.17. Regression line for shear strength with depth [1]
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Reliability of Simple Systems

5.1 Simple system configurations

We consider a system comprised of a set of N independent components,
i=1,2,..N, each of which has probability p; of being functioning and

g,=1-p, of being failed. Knowing the probability values p;,
i=1,2,..N, and the system configuration, we wish to calculate the

probability P that the system is functioning properly.

For time dependent situations we can calculate the reliability of the
system R(#) as a function of the components’ reliabilities R;(?),
i=12,.N [1], [2], [3]), [4], [5]- In this case, we may also calculate the

mean time to failure, m:

m= ij(r )dt =R(0) (5.1)

where R(s)= J. e " R(t)dt = L[R( t )] is the Laplace transform of R(¥).
0

m= o]t f(tyde =9 (5.2)
0 W ] PO
where 7(s) = L[f(t)] and df(s) =L tf(t)]

77
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5.2 Series system

Consider the series system of Fig. 5.1. The logic of operation is that all
components must function for the system to function.

(Y (. (M
A o/

Fig. 5.1: Series System

In terms of the probability that the system functions (intersection of the
events that all components function), we have:

N
P=]]xr (5.3)
i=1
and of the system reliability,
N
RO =] R (54)
i=1

For exponential components, the system reliability becomes
R(®)=e™< Ri(t)=¢* i.ec. less than the reliability of the less reliable

unit, with

N
A=) A, = system failure rate
2 5.9

1

m= — = mean time to system failure

The series system is the only logic configuration in which components

with constant failure rates induce a constant failure rate for the system. In

all other configurations, the reliability of the system is not exponential.
The system fails at min(z,, #,, ...,ty), where ¢ is the failure time of

component i.
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5.3 Parallel system

Consider the parallel system of Fig. 5.2.

()
-/

()
o/

Fig. 5.2: Parallel system: all components perform the same function so that anyone can
successfully continue the operation

In terms of probability of the system functioning (union of the individual
events of the components functioning) we have:

N
P=1-1]-p) (5.6)

=1

which in terms of reliability becomes:
N
R(t)=1-T]I- Rt )] (5.7)
i=]

For N exponential components with different failure rates,

NN w 1 N-2 Nl N 1 v 1
_ 1 + _— 1
m Z‘/l > ;M[&”j] ,-=1,§ ST A, + 2] (-1) )
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Since the system fails when all its elements fail, the time-to-failure of the
system is max(t;, t;, ...,ty)

Example 5.1

Consider two exponential units, with failure rates 4, and A,,

respectively. The system reliability is time-dependent

Rt)=1-(1-")(1-*) =

=g Mt g M — g > Ryt) and Ro(t) > &7 = M4 (series)
C—
R R
1 1 1
Mm=—t—
A A [t

In the case of identical elements, we can compare the series and parallel
configurations:

1
Y N
nAl o am =L<Zl:/1m

series parallel
N “n

N
parallel m= z

n

i
—

series m=

5-

5.4 r-out-of-NN systems

Consider N identical components which function in parallel but only r <
N are needed for the system to function (the parallel system is a
particular case with » = I). In terms of probability of the system
functioning:

N
P {any kof N functioning}= P, = [kj p*(1-p)"™*  (binomial)

(5.10)
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N N
P {at least r of N functioning}: P= ZPk = Z[Z]pk(l —p)N*
k=

k=r r

(5.11)

Considering N exponential components with equal A, the system
reliability reads:

YN N—k
R(t)= Z(k Je“ ”"(l—e'“) (5.12)

with mean time to failure equal to:

51
m=) —

k=r kﬂ’

which gives the mean time to r+/ failures, given that » successes are
required for the system success.

5.5 Standby systems

A common feature of the previous series and parallel systems is that they
are not time dependent: the logic of the system dictates the eventual time
dependence so that the expressions for reliability are derived by simply
replacing p; with R;(?). The formulas for P may be interpreted as holding
at every point in time and the state of the system is determined by the
present state of its components. This is no longer true for standby
systems for which the whole story of the system from ¢ = 0 must be
considered.

In a standby system, one component is functioning and when it fails
it is replaced immediately by another component (sequential operation of
one component at a time) (Fig. 5.3).
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W

i

Fig. 5.3: Standby system

5.5.1 Cold Standby

A cold standby is a configuration in which the standby component is not
subject to failure until it is switched on. Moreover, the switch is assumed
to be perfect.

Since the components are operated sequentially, the system fails at

N
time T = ZTI , which is a random variable sum of N independent
i=]
random variables. The pdf of T can then be found with the use of the
convolution theorem.
For simplicity, consider a nominal component 1 and a standby

component 2, with random failure times T; and 7, distributed as fl(t)
and f,(¢), respectively. The probability density function f; (t) of the

system failure 7 =T, + T, is given by the convolution product:

£ 0= A0 1,0= ARG = 10 A6 619

Where the symbol * indicates the convolution product. Taking the
Laplace transform,

7. =Llf, @0 * £,0]= 7() F,(5)

Generalizing, for a system with 1 nominal component and N-/ standby
components we have,
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7:(5) =ﬁ7,(s) (5.14)

Inverse-transforming 77 (s) into f; (t), we can obtain the system
reliability

R(t)y=1- ]fT(x)dx (5.15)

Example 5.2

Consider N identical exponential components, all with failure rate A. The
probability density function of the components times to failure and
corresponding Laplace transforms are:

f.t)=Ae™ F)=—2— i=12..N
s+A4
From (5.14), the system Laplace transform ]N‘T (s) is:
~ ﬁN
fr&)=—"—F%
(s + /1)
Inverse-transforming
thN—l u
t)=70———€ Gamma distribution
/:(t) A ( )
and from (5.15):
k
N-1 ﬂt
R(t)=¢™* Z(——)— (Poisson distribution)

i k!
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The system reliability shows that with N —1 cold standby components,
the system can sustain up to N-/ failures (including that of the operating
component as well) and still be functioning: The mean time to sytem
failure m is:

dfe| N
ds A

ms=

Example 5.3
Consider two different exponential components with failure rates A, and
A, , respectively.

From (5.14), the system Laplace transform fT (s) is:

;T(S)_LL

S+A s+ 4,

Inverse-transforming,
_ A4, At At
1= e =)

and from (5.15):

—Aaf __ ﬂze_llt
A= A2
I 1

m=-—+-—

A A

R(t) - Aie

For N dissimilar exponential components, with failure rates A,
i=12,...N, the mean time to failure becomes:
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51

m=21—

i=1 i

Note that the purpose of standby units is to increase the reliability and
the system MTTF, m, over the values which would be obtained without
it. Indeed, comparing with the parallel configuration:
Y1
A Mparallel = Z_ <N=21 Mstandby

n=l

Example 5.4 (Imperfect switching)

Consider the case of two different exponential components 1 and 2 with
failure rates 4, and A,, respectively, and component 2 in cold standby,
and an imperfect switch with constant probability of good switching
equal to R,,. There are two mutually exclusive ways for the system to
survive up to .

i)  Switch fails: reliability of the system R(?)= e™ (the system can
rely only on component 1).

ii) Switch does not fail: reliability of the system = reliability of the
system as if the switch were perfect:

—Aqt — A
e " —Jae™

21_22

R(t)=ﬂ'l

Then, the system reliability is:

— At — At
/he ? _/126 !

Zvl_/lZ

R(t)=(-Ry)e™+Rs.

5.5.2 Hot Standby

Up to now we were able to assume independent failures: the failure of
any unit was not influenced by the failures of the other units. In the case
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of a hot standby this is not so since the standby unit has a finite
probability to fail also while in standby.
Let f,(¢) be the pdf of the time to failure of the component, f, (l‘)

that of the standby unit while in standby and f, (t) that of the standby
unit when online. Let R, (t), R, (t) and R, (t) be the corresponding

reliabilities.
The convolution theorem can no longer be used to calculate the
reliability of the system, because there is no independence of the failure

events any more.
The system will perform its task in the interval (0, ¢) in either of two

mutually exclusive ways:

(i) the online component 1 does not fail in (0, £) , with probability
¢
Rl(t)=l— _[fl(x)dx;
1]

(i1) the online component fails in (T,T+d2'), with probability

Kz
the standby component 2 does not fail in (0, 7), with probability
R, (1') and it operates successfully from 7 to ¢ with probability

Rz(t—r).

Then, the system reliability is given by the sum of the probabilities of the
two mutually exclusive events:

t
R(t)=Ry(1)+ [fi(z)dR (T )Ry(1~7) (5.16)
0
For exponential components,

!
R(t)=e™ + fﬂle_l‘ref’l”e_m'_”dr =
0

- A1 ~ -

— A Aot (A At

=g+ [e P—e ] 5.17
At As— A -17)
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In the limit cases:

A, =0 — Rty =e 1+ ) cold standby
= = ﬂ/

ll iz } N R(t) — ze—ﬂj _e—Zﬂ

As = parallel
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6

Availability and Maintainability

6.1 Introduction

Reliability and availability represent important performance parameters
of a system, with respect to its ability to fulfil the required mission
during a given functioning period [1], [2], [3], [4], [5]. From this point of
view, two main types of systems can be defined:

1. Systems which must satisfy a specified mission within an assigned
period of time: in this case, the reliability is the appropriate
performance indicator of the ability to achieve the desired objective
without failures;

2. Systems maintained: in this case, the availability quantifies in a
suitable way the system ability to fulfill the assigned mission at any
specific moment of its life time. Basic maintenance procedures can
be distinguished in:

a. Off-schedule (corrective): this amounts to the replacement or
repair of failed units;

b. Preventive: this amounts to performing regular inspections, and
possibly repair, following a given maintenance plan;

c. Conditioned: it amounts to performing a repair action upon
detection of degradation.

6.2 Availability definition

As above said, an important figure of merit for a system undergoing
maintenance (i.e., corrective, preventive or conditioned maintenance) is
its (un)availability [1], [2], {3], [4], [5].

89
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Let X(t) be an indicator variable denoting the state at time ¢ of a
system undergoing maintenance, such that (Fig. 6.1):

X(t)=1, system is operating at time t
X(1)=0, system is failed at time t

F = Failed; R = under Repair

X4 F F F
N b
0

~Yy

R R R

Fig. 6.1: System state indicator variable

The instantaneous availability p(t) and unavailability q(t) are defined as
the probability that the system is operating at time ¢ and as the
probability that the system is failed at time #, respectively:

p(t)=Plx () =1]= E[x (0] (6.1)
q(t) = PLX(t) =0]=1- p(2) (6.2)

Notice the difference in the meaning of p(z), the probability that the
system is functioning at time ¢, from the reliability R(?), ie. the
probability that the system functions continuously with no failures up to
time 7.

To judge the performance of a maintainable system, so as to be able
to compare different maintenance strategies, we need to define
appropriate quantities for an average description of its probabilistic
behavior. We distinguish two cases:

—  For components whose behavior can be described by finite Markov
processes, we introduce the /imiting or steady state availability:
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p = lim p() (6.3)

By definition, it represents the probability that the component is
functioning at an arbitrary moment of time, after the transient failure
and repair processes have stabilized. It is obviously an undefined
measure for systems under periodic maintenance, for which the
limit does not exist.

For components under periodic maintenance, the average
availability over a given period of time 7 is introduced as the proper
indicator of system performance, and it is given by:

1 7 UPtime
=—-|p(t)dt =—— 6.4
Pr=7 0Ip( ) = (6.4)

where UPtime is the average time the system is functioning (UP)
within 7. From the definition, it follows that pr is not a probability,
but represents the expected proportion of time that the system is
operating in [0, T]. At steady-state, the limiting average availability
can be defined as:

o1 7
Do =§{f;go T ij( t)dt (6.5)

Note that if the limiting availability p exists, then p_ = p.

6.3 Contributions to unavailability

The main contributions to the unavailability of a system generally come
from:

1.

Unrevealed failure, i.c. when a stand-by component fails unnoticed.
The system goes on without noticing the component failure until a
test on the component is made or the component is demanded to

function.
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2. Testing/preventive maintenance, 1.e. when a component is removed
from the system because
it has to be tested or must undergo preventive maintenance.

3. Repair, 1.e. when a component 1s unavailable because under repair.

6.4 The availability of an unattended component (no repairs)

An unattended component will function till its first failure and remain
failed after that, since repairs are not allowed. Hence, the probability ¢(?)
that at time ¢ the component is not functioning is equal to the probability
that it failed before ¢, i.e. the cumulative failure probability F(?). In other
words, the instantancous unavailability of the component will be equal to
the cumulative distribution function of failure times:

q(1) = F(@) (6.6)
and the component availability will be equal to its reliability:

p(®)=1-q(t)=R() (6.7)

6.5 The availability of a continuously monitored component

For a continuously monitored component it is assumed that restoration
starts immediately after its failure. Still, we need to define the
probabilistic model describing the duration of the repair process.

We indicate with G(?) the cumulative distribution function of the
random time duration of the repair process:

G(t)=P{repair process ends before t units from failure} (6.8)

and with g(?) the corresponding probability density function.

To analyze the failure and repair processes, we suppose that we start
with N items at time 7 = 0. At any successive time ¢, some items will be
functioning (UP) whereas the others will be failed (DOWN), so that the
total number N is conserved.
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We can then establish a balance equation between time ¢ and time
t+At. At time ¢ the number of items which are UP is N - p(¢); at time

t+At the number of items which are UP is N - p(t + At).

Assuming, for simplicity, that the components have exponentially
distributed failure times with rate A, then A-Af is the conditional failure
probability in Az, given that the item was UP at time . Considering that
p(?) is the probability of the item being UP at time ¢, at the beginning of
At, we get the unconditional failure probability p(f)-A-Ar. Thus, the
number of items failing during the interval A¢, i.e. the loss term in the
balance equation is given by N - p(¢)- 4 - At.

Following the same logic, we obtain the gain term of the balance
equation due to components that had failed in (7,7 + A7) and whose

restoration terminates in (¢, t+Af) (Fig. 6.2).
A
component failed in (r, T+A z')
repair completed in (t,t + At)

11 A\ A
1 T

[l
I
T T+AT t t+ At

v

Fig. 6.2: Gain term due to restoration of components in At

Obviously, the failure can occur at any 7 < ¢ so that we need to integrate
over time:

[N-p(z)-2-Ar-g(t-7)-At (6.9)

where,

p(7)-A-At is the item unconditional probability of failing in the

interval A7 (A1-At is the conditional failure probability in
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A7), knowing that the item was UP at time t (p(7) is the
probability of the i-zA item being UP at time 7).

g(t-1) At is the probability of completing in (¢, #+Af) the
restoration which had started upon failure in (z, t+A7).

The balance equation then writes:

N-p(t+At)=N-p(t)——N-p(t)-/1-At+].N-p(r)-/l-Ar-g(t—r)-At
(6.10)

Dividing by N'At, subtracting p(¢f) on both sides and letting Ar tend to
zero, we obtain the integral-differential form of the balance:

—dpd(tt)=—/1-p(t)+]ﬂ-p(f)'g(t“f)'df (6.11)

where the integral term on the right-hand side of the equation,
4
_[/I-p(r)-g(t—r)-dr (6.12)
0

represents the convolution of the instantancous availability function and
the restoration probability density function.

As initial condition of the integral-differential equation (6.11), we
will assume, in general, p(O) =1, which means that the component is
UP at the initial time.

The solution to the integral-differential equation (6.11) can be easily
obtained introducing the Laplace transforms:

00

f(x) i L[f(x)]=F(s)= [e** f(x)dx

df(x) df(x) 0 ©19
x) ()| _ oz
ol L[ " } s-7(s)-f(0)
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Applying the Laplace transform to the balance equation (6.11) we obtain
the following algebraic equation in the unknown p(s) :

s-p()=1=-4-p(s)+A-p(s)- g(s) (6.14)
which can be solved for p(s):

1
s+2-(1-&(s))

Applying the inverse Laplace transform to p(s), the instantaneous

()=

(6.15)

availability p(?) is determined.
Furthermore, to determine the limiting availability, p_, the final-

value theorem can be exploited:

—llm t ~hms s h 6.16
p(1) = limfs - 5(s)] = OLM 56 ))} (6.16)
As s tends to 0, a first order approximation of g(s)can be considered:

§(s)=0]'e'”g(r)a’r=Oj.(l—s~r+...)g(r)dr51~s-°}r-g(z‘)dr-—-l—si,e
(6.17)

where 7, is the expected value of the restoration time distribution G(¢),

also called the mean-time-to-repair, MTTR,

Hence,
. s 1 /A
Py = lim — = — = — =
205+ A-5:7T, 1+A-T, 1/A+7,
B MTTF 3 average time the component is UP
MTTF + MTTR ~ average period of a failure / repair " cycle”
(6.18)

Note that this result is valid for any repair process G(7).
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Example 6.1

Find the instantaneous and the limiting availabilites for a component
whose restoration probability density is:

gO)=p-e”

Solution:

The Laplace transform of the restoration density is:

Z(s) :L[g(r>]=;“;

Then, substituting g(s) in the above expression (6.15) for p(s), we
get:

1 _ s+ u
s-(s+pu+)

p(s)=
SHA——
s+ u

Applying the inverse Laplace transform, we obtain the instantaneous
availability:

M, A Y
H+A u+i

p)=

and the limiting availability is:

__H
H+A

P

which can also obtained directly from (6.18).
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6.6 The availability of a component under periodic test and
maintenance

Safety systems are generally in standby until an accident occurs, which
calls for their operation. Hence, their components must be periodically
tested. The components are unattended between tests and their failure is
revealed only when tested.

For a component under periodic test and maintenance, the
instantaneous unavailability is a periodic function of time, and, as such, it
does not posses a limit. In this case, the performance indicator used is the
average unavailability. The calculation of the average unavailability over
a period of time T utilizes its definition:

DOWNtime

T
qr = ~6[q(t)dt=———T—— (6.19)

1
T
where DOWNtime is the average time the system is failed (DOWN)
within 7. For simplicity, let us consider the simple case of the
unavailability being due to unrevealed random failures that can occur at
any moment of time with constant rate A.

Assuming instantaneous and perfect testing and maintenance
procedures, the instantaneous availability within a period 7 coincides
with the reliability because the component is unattended between two
successive maintenance times, i.e. between (k - 1)1' and k7, k=1,2, ...

p(H4

1
R(1)

t

[NCTEET [N S ————
[URY [N D———

T T

Fig. 6.3: Availability of a component under periodic test and maintenance, with period t

Note that since p(f) and R(¢) are periodic functions we can derive them
within one period.
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For the calculation of the average unavailability, we refer to Fig. 6.4
which shows a generic random behavior of the component under periodic
test and maintenance.

4 : : : component renewed instantaneously
X s : when test is performed
1 L4 :
/— Tp = DOWNtime = 1-¢
Tt 2t 3t t

Fig. 6.4: State indicator variable for a component under periodic test and maintenance

The average unavailability within one period 7 is, by definition:

_ DOWNtime _To

. (6.20)
T T

where the mean DOWNtime, ?D , is:

To = [(v=t)f(t)dt= [(z=1)ar (6.21)
0 0
Integrating by parts:
To=(r-t)-F(t) + jF(t )dt = jF(t )t (6.22)
0 0

Hence, the average unavailability within 7 has the following expression:

g, =—=0—r (623)
T T

7 ;[F(t )dt
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and the average availability:

p=—2=0 (6.24)
T T

7 i (]‘R(t)dt

where T v is the mean UPtime within z.

Expressions (6.23) and (6.24) are just the definitions of the average
unavailability and availability over the period 7, since g(¢¥) = F(¢) and p(?)
= R(?) within the interval rin which the component is unattended. Then,
we are in the situation that for different systems, with different logics of
redundancy, we can compute g, ,p, by first computing their failure

distribution and reliability, according to the logic of operation, and then
applying the above expressions.

If the component has exponentially distributed failure times with
constant rate 1, we have that the cumulative distribution is:

F(t)=1-e* (6.25)

For failure rates and for times such that the inequality A-¢<0.10 is
satisfied, then the cumulative distribution function could be
approximated as follows:

Fi)=1~e* =t (6.26)
and the average unavailability would take the form:

]F(t)dt ]ﬂ-tdt
0 0

g, = = == Ar (6.27)
T T 2

Intuitively, we would expect the component with constant failure rate to
fail halfway the period.
Finally, assuming a finite repair time 7 ., this must be counted as

DOWNtime, if significant. Hence, the average unavailability and
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availability over the complete maintenance cycle period 7+7, will

change into:

rp+ [F(t)dt
0

qg= (6.28)
T+7T,
j R(t)dt
p=2— (6.29)
T+7T,
If the repair time 73 is small compared with the period 7, we get:
o+ j F(t)dt
T R—— (6.30)
T
f R(t)dt
p=— (6.31)
T

6.6.1 Single component under periodic maintenance: a more
realistic case

To compute the average unavailability of a component over its lifetime
[0, T], we need to compute the average DOWNtime and then compute
the average unavailability using its definition:

_ TD(OT)
qOT = T (632)

Before making any prediction on the component unavailability, we must
define its failure characteristics, underlying the causes which lead the
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component into a malfunctioning state. We consider the following causes
of failure:

— random failure at any time, modeled by the cumulative distribution
function F(¥)

—  on-line switching failure on demand, with occurrence probability Oy

— maintenance disabling the component, with probability », (due to
human error during inspection, testing or repair)

An example of the latter cause could be forgetting to return a manually
operated valve to proper configuration after testing (typical occurrence
probability, 3, = 107).

Let us assume that the component is initially working i.e., g(0) = 0,
p(0) = 1. In order to compute the component average unavailability g, ,

we refer to its timeline of Fig. 6.5.

7= time period between successive maintenances
7z = duration of a maintenance action

T = component lifetime

maintenance maintenance
A i B T C ¢ F
i } } } t o
0 1T T+, 2ty 21421y T

Fig. 6.5: Timeline of a component under periodic maintenance

We have:

e 04 - From the initial working state at time O to the first
maintenance (4), the probability of finding the component DOWN at
the generic time ¢ is due either to the fact that it was demanded to
start but failed or to the fact that it randomly failed unrevealed before
t. Thus, the instantaneous unavailability at ¢, 0 < ¢ < 7, reads:

9o, =0p +(1=0y) - F(1) (6.33)
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and the average DOWNtime:
Tooa) = [qou(t)dt =0y -7 +(1-0)- [F2)ar (6.34)
0 0
e AB - during the maintenance period, the component remains

disconnected and, thus, the average DOWNtime is the whole
maintenance time:

fD(AB) =Tg (6.35)

e BC - at the generic time ¢ between two maintenances, the
component can be found failed because, by error, it remained
disabled from the previous maintenance or as before, because it
failed on demand or randomly before #. Thus the instantaneous
unavailability at time # is given by

Goc =7, +1=7,)-[0, +(1-0,) F()] (6.36)

and the average downtime:
Toese) =y 7+(1=7,)"| Q-7 +(1-Qy)- [F(t)dt|  (637)
0

e CF - The normal maintenance cycle is repeated throughout the
component lifetime 7. The number of repetitions, i.e. the number of
AB-BC maintenance cycles, is:

T

k= (6.38)
T+ 7Ty

Then, the average DOWNtime between the first maintenance occurrence
and the end of the lifetime T (thus, excluding the negligible first transient
interval to first maintenance, 0A, which is typically much smaller than 7)
is:
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T pcar) =

'{TR +707+(1_70)'l:Q0'T+(1_Qo)'].F(t)dt:I}

(6.39)

R

whereas the total expected DOWNtime (including the first transient
interval to first maintenance) would be:

Towr) =0, +(1—Qo)~]F(t)dt+ {TR +7/OT+(1—70)[Q0 T+(1-0, ) ]F(t)dt}}

(6.40)

T+,

Correspondingly, the average unavailability over the component lifetime
T becomes:

1
T+ T,

- TD(OT) - &

1_Q0r
+—=- |F(t)dt+
wE oj()

{[R +}/OT+(1_70)|:Q0 'T+(1—Qo)']F(t)dt:|}
(6.41)

Neglecting the first contribution related to the transient period 0A,
because Q, and F(f) are generally very small and T is large, since
typically 7z << 7 and 7 << T, the average unavailability can be
realistically simplified to:

Tor 224704 (1-7,): [Qo P ]F(r)dt} (642)

Considering an exponential component with small, constant failure rate 4
and, thus, a cumulative distribution function approximated as:

F(=1l—-e* =2t (6.43)

the average unavailability takes the form:

1
qOTE%_*_}/O+(1_}/0)'th0+(1_Q0)'5'A'Til (6.44)
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Often in practice, y << 1, Qp << 1. Then:
_ Tr 1
q0T57+70+Q0+5-/1-1 (6.45)

From this formula it is possible to distinguish each contribution to the
unavailability of the component as follows:

3 unavailability during maintenance

7 unavailability due to an error which leaves the unit DOWN
after test

Qo unavailability due to the switch failing on demand

1

—2~'/1-z' unavailability due to random, unrevealed failures between

successive tests

6.7 Maintainability

When it is observed that a system or piece of equipment fails to perform
its function satisfactorily, all or part of it is taken out of operation to
locate and correct the fault. The fault may be corrected by a repair or a
part may be replaced by a spare.

When it has been verified by appropriate test that the fault is
corrected, the equipment is returned to service. It may be placed back in
operation, or it may be placed in standby, depending on the operational
conditions at the time.

The total time from system failure until return to service constitutes
the system DOWNtime. DOWNtime can be divided into two categories

[6]:
a) active repair time — sensitive to environment, technician skill level,

procedures, etc.
b) administrative time — sensitive to administrative procedures, filing,

storage, etc.
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Active repair can be divided into recognition or detection time, fault
location or diagnosis time, correction or repair time, and verification of
final malfunction check time. The administrative contribution to
DOWNtime is that required to obtain the spare or in waiting for
personnel, manuals, tools, or test and tuning equipment.

The time required to perform the activities associated to each of
these categories varies statistically from one failure to another,
depending on the conditions associated with the particular maintenance
events. The variety of alternate courses of action that maintenance
technicians may follow in this repair process suggests both a large
number of relatively short-time repair periods and a smaller number of
long periods. The former would correspond to the more usual case where
the failed unit is replaced by a spare at the operational site upon detection
of a failure. The long DOWNtimes would occur when diagnosis is
difficult or no spare is immediately available, and might represent the
length of time to repair the failure at the maintenance area. This is why in
practice the log-normal distribution often is a good representation of
maintenance action times.

System maintainability is defined as the probability that an item will
be restored to specified conditions within a given period of time when
maintenance action is performed in accordance with prescribed
procedures and resources [6].

Let Tp denote the item DOWNtime random variable, distributed
according to a density function g(#). Then, maintainability can be written
as [6]:

T
P(T,<T)= j 2(1)dt (6.46)
0

and the mean DOWNtime fp 1S:

To = [t-g(t)dt (6.47)
0
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The maintainability analysis of a system is focused on the calculation of

Tho.

6.8 A policy of preventive and corrective maintenance

We present an example of a maintenance policy applied to a component
in continuous operation, which encompasses both a corrective
maintenance action upon failure and a preventive, periodic maintenance
[6].

Let us introduce the following notation for the scheduled, periodic
maintenance and the corrective, emergency maintenance upon failure:

T time of continuing operation without failure, after which we
perform the scheduled maintenance; in other words, it represents
the maintenance period between two successive maintenances.
Note that we allow 7 to be infinite, in which case the preventive
maintenance is not scheduled;

® time interval required to perform a scheduled maintenance
action;
t time of system failure in correspondence of which a corrective,

emergency maintenance action is started;

T time interval required to perform the emergency maintenance
action.
We assume that any maintenance action restores the system “as good as
e

new”.
The quantities of interest are:

—  the Mean Time Between Failures MTBF; it is the item UPtime, i.c.
the mean operating time until replacement, which takes into account
the two mutually exclusive scenarios of no failure within the period
rand failure at time ¢ within ©:

MTBF =17 -R(7)+ ]t - f(t)dt = ]R(t )dt (6.48)
0 0
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—  the DOWNtime 7 p; it is the mean time needed to replace the item
at failure or to repair it at the scheduled maintenance:

Tp= T, -[1 —R(r)]+ T, - R(7) (6.49)

The average availability of the component is then:

[R(1)dt
UPtime MTBF ;

" UPtime + DOWNtime MTBF +Tp

pT T
[R(t)dt+7,-[1=R(z)]+ 7, - R(7)

(6.50)
which can be re-written as:

1
1+ (r, —70) [F RO+,

Pr (6.51)

The objective is that of finding the optimal maintenance period 7" which
maximizes pr. To this aim, we compute the derivative of pr with respect
to 7,

0y R(T)+ RE(0)-(ty ~7,)= R(7)-(rq —7, ) [R(1)d

dp; _
dr : 2
{IR(t)dt +7,-[1-R(7))+ 7, -R(z')}
(6.52)
Note that (Fig. 6.6):
R'(7)= AR@) <0 V>0 (6.53)
dr
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R(9)

\ 4

I

Fig. 6.6: Behavior of the reliability function R(7)
Then, we can distinguish two cases:

A. TR 27

e

: . d) .
In this case, py is an increasing function of [ﬂ— > 0) , independently
T

of the functional form of the failure density f{(r), with or without aging.
Hence, there is no 7 such that prachieves a maximum value.

B. Tp <T,
In this case, it depends on the functional form of £¥).

d
B.1  Iff{7) is such that 2T
dr

>0, Vr >0, then no T exists such that
pr is maximum;

d
B.2  Iff(%) is such that —c—i—p-T— =0, then
T

R J-R(t )t -[1- R(z" )]_ (6.54)

R( ) T

from which the optimal value 7", can be determined.
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Introducing the failure rate A (7):

dF
Aty =-dt K@) (6.55)
R R(z")
we obtain the expression:
(r,—7x) A7) = TR+(T€;TR)'(1—R(T ) (6.56)
j R(t)dt
0
and the maximum value of pr is:
. 1
pr(t7)= (6.57)

1+ (Te — T )’?'(f*)

Example 6.2 [6]

Consider an exponential component, with failure time pdf
f(t)=A-e*" . Eq. (6.52) becomes:

dp; _ Tpe 0

dr (re +;1:)'(1 —e"”)+ T, e

As expected, no 7 exists for which pr will achieve the maximum value.
This means that no optimal preventive maintenance policy exists if the
failure rate is constant: this is obvious since there is no aging.

Example 6.3 [6]

Consider a gamma component, with failure time pdf f(t) = A* -t-e *’.

In this case the failure rate has the following expression:
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At
At) =—
® 1+A4-¢
and the reliability function:
ROY=(1+4-1)- e

Maximizing the average availability pr:

Ppr _,
dr

we obtain the optimal value 7 in correspondence of which the average
availability pris:

1+4-7°
1+A-2"+(z,—75) A 2"

pT(Z*) =

6.9 A policy of preventive replacement with economical
optimization

Before proceeding with the development of a replacement model, it is
important to note that preventive replacement actions, that is, those taken
before the equipment reaches a failed state, require two necessary
conditions:

a. The total cost of the replacement must be greater after failure than
before (if “cost” is the appropriate criterion — otherwise the
appropriate criterion, such as UPtime, is substituted in place of
cost). This may be caused by a greater loss of production since
replacement after failure is unplanned or failure of one piece of
plant may cause damage to other equipment.

b. The failure rate A(¢) of the equipment must be increasing. Note,
however, that preventive maintenance of a general nature which
does not return equipment to the as new condition, may be
appropriate for equipment subject to a constant failure rate.
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Determination of the best level of such preventive work is related to
the problem of determination of the optimal frequency of inspection
and minor maintenance of complex equipment.

We will now deal with the calculation of the optimal preventive
replacement of equipment subject to breakdown [6]. The time at which
the preventive replacement occurs, depends on the age of the equipment.
When failures occur, failure replacements are made. The problem is to
balance the cost of preventive replacement against their benefits and we

do this by determining the optimal preventive replacement age t; for the

equipment to minimize the total expected cost of replacements per unit
time. Let C, be the cost of preventive replacement, Cr the cost of a
replacement at failure and f{f) the probability density function of the
failure times of the equipment. The replacement policy is to perform a
preventive replacement once the equipment has reached a specified age
1, and failure replacements when necessary. This policy is illustrated in
Fig. 6.7.

failure preventive
replacement replacement
P IP . P tp N
JV v v J' > t
143 I

Fig. 6.7: Preventive replacement policy [6]

The objective is to determine the optimal replacement age t; of the

equipment which minimizes the total expected replacement cost per unit
time.

In this problem, there are two possible cycles of operation: one
cycle being determined by the equipment reaching its planned
replacement age #,, the other being determined by the equipment ceasing
to operate due to a failure occurring before the planned replacement time.
This two possible cycles are illustrated in Fig. 6.8.
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preventive failure
replacement replacement
< Operation > _ Operation
A
4, OR Y,
P Cycle 1 i Cycle2
= > —

Fig. 6.8: Possible cycles under the preventive replacement policy [6]

Based on these two possible cycles, the total expected cost of
replacement per unit time C(#,) is computed as the fraction between the
total expected replacement cost per cycle and the expected cycle length.
The total expected replacement cost per unit time C(#,) is given by:

Total ted repl t cost l
ct, )= otal expected replacement cost per cycle (6.58)
Expected cycle length

The total expected replacement cost per cycle is equal to the sum of the
cost of a preventive cycle multiplied by the probability of a preventive
cycle and the cost of a failure cycle multiplied by the probability of a
failure cycle.

The probability of a preventive cycle equals the probability of no
failure before £, which is given by R(%,). The probability of a failure cycle
is the probability of a failure occurring before time ¢, which is equal to:

F(,)=1-R(,) (6.59)

The expected cycle length is equal to the sum of the length of a
preventive cycle multiplied by the probability of a preventive cycle plus
the expected length of a failure cycle multiplied by the probability of a
failure cycle, i.c.

t,-R(t,)+M(,) [1-R(,)] (6.60)

where M(t,) denotes the length of a failure cycle.
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As t, is the maximum failure time, the distribution of the failure
times has to be conditioned by the probability of a failure cycle which is
1-R(2,). So the expected length of a failure cycle is given by:

o St
M@,)= Ojt TR (6.61)

Summarizing, the total expected replacement cost per unit time C(,) is
given by:

)= C, - R(t,)+C,-(1-R(,)) 662)
?7 o, -R(t,)+M(@,)-(1-R(,)) ’

This model relates the replacement age #, to the total expected
replacement cost per unit time. A variation to this model is for example
taking into account the time required to perform a failure or a preventive
replacement.
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7

Fault Tree Analysis

7.1 Introduction

For complex multi-component systems, for example such as those
employed in the nuclear, chemical, process and aerospace industries, it is
important to analyze the possible mechanisms of failure and to perform
probabilistic analyses for the expected frequency of such failures. Often,
each such system Is unique in the sense that there are no other identical
systems (same components interconnected in the same way and
operating under the same conditions) for which failure data have been
collected: therefore a statistical failure analysis is not possible.
Furthermore, it is not only the probabilistic aspects of failure of the
system which are of interest but also the initiating causes and the
combination of events which can lead to a particular failure.

The engineering way to tackle a problem of this nature, where many
events interact to produce other events, is to relate these events using
simple logical relationships (intersection, union, etc.) and to
methodically build a logical structure which represents the system.

In this respect, Fault tree analysis is a systematic, deductive
technique which allows to develop the causal relations leading to a given
undesired event. It is deductive in the sense that it starts from a defined
system failure event and unfolds backward its causes down to the
primary (basic) independent faults. The method focuses on a single
system failure mode and can provide qualitative information on how a
particular event can occur and what consequences it leads to, while at the
same time allowing the identification of those components which play a
major role in determining the defined system failure. Moreover it can be
solved in quantitative terms to provide the probability of events of

115
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interest starting from knowledge of the probability of occurrence of the
basic events which cause them.

In the following, we shall give only the basic principles of the
technique. The interested reader is invited to look at the specialized
literature for further details, e.g. [1], [2], [3], [4], [5], [6], [6], [8], [9],
[10], [11], [12], [13] from which most of the material herein contained
has been taken.

7.2 Fault tree construction

A fault tree is a graphical representation of causal relations obtained
when a system failure mode is traced backward to search for its possible
causes. To complete the construction of a fault tree for a compex system,
it is necessary to first understand how the system functions. A system
flow diagram (e.g. a reliability block diagram) is used for this purpose,
e.g. to depict the pathways by which materials are transmitted between
components of the system.

The first step in fault tree construction is the selection of the system
failure event of interest. This is called the fop event and every following
event will be considered in relation to its effect upon it.

The next step is to identify contributing events that may directly
cause the top event to occur. At least four possibilities exist [3]:

1. no input to the device;

2. primary failure of the device (under operation in the design envelope,
random, due to aging or fatigue);

3. human error in actuating or installing the device;

4. secondary failure of the device (due to present or past stresses caused
by neighboring components or the environments: ¢.g. common cause
failure, excessive flow, external causes such as earthquakes).

If these events are considered to be indeed contributing to the system
fault, then they are connected to the top event logically via an OR
function and graphically through the OR gate (Fig. 7.1):



7.2 Fault tree construction 117

No
Top event
CB TRIP
OR gate
Random E- ----- T i Possible common
failure event CB NO . F]Ie i cause failure event
failed Trip signal i damage

Fig. 7.1: Top and first level of a fault tree for a circuit breaker (CB) failing to trip an
electrical circuit (see Example 7.2) [14]

Once the first level of events directly contributing to the top has been
established, each event must be examined to decide whether it is to be
further decomposed in more elementary events contributing to its
occurrence. At this stage, the questions to be answered are:

1. is this event a primary failure?
2. is it to be broken down further in more primary failure causes?

In the first case, the corresponding branch of the tree is terminated and
this primary event is symbolically represented by a circle. This also
implies that the event is independent of the other terminating events
(circles) which will be eventually identified and that a numerical value
for the probability of its occurrence is available if a quantitative analysis
of the tree is to be performed.

On the contrary, if a first level contributing event is not identified as
a primary failure, it must be examined to identify the sub-events which
contribute to its occurrence and their logical relationships (Fig. 7.2).
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No
trip signal
Q AND gate
[ |
Relay A Relay B
closed closed

Fig. 7.2: AND function example for the circuiti breaker of the electrical system with the
top event of Fig. 7.1 (see Example 7.2) [14]

The procedure of analyzing every event is continued until all
branches have been terminated in independent primary failures for which
probability data are available. Sometimes, certain events which would
require further breakdown can be temporarily classified as primary at the
current state of the tree structure and assigned a probability by rule of
thumb. These underdeveloped events are graphically represented by a
diamond symbol rather than by a circle (see Example 7.1 below).

Example 7.1: mechanical holding latch

Consider the failure of the mechanical holding latch of Figure 7.3(a). The
corresponding fault tree is given in Figure 7.3(b).

o »
Hydraulic —————I -
Control A v
] xr;kage
Hydraulic —J {
Control B
onero Actualors -

Fig. 7.3(a): Mechanical holding latch [5]
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Latch does not trip

I
Actuators fail to
refract Linkage fails

extended

I ]
Actuators A fails to Actuators B fails to
retract retract

Actuator A Actuator B

fails extended

Hydraulic
control A
fails in
extended
mode

Hydraulic
control B
fails in
extended
mode

fails extended

Fig. 7.4(b): Fault tree for the failure of the mechanical holding latch

Example 7.2: Circuit breaker trip

Draw the fault tree for the failure to trip of the circuit breaker shown in
Figure 7.4(a). The circuit breaker opens when there is no voltage across
the UV trip coil. Assume for simplicity that of all components only the
UV trip coil cannot fail.
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Constred cirowit
&

&
%

ontred cirouii

B

LY -

trip coil

L. Relay B

Fig. 7.5(a): Circuit breaker system

The fault tree is given in Figure 7.4(b) below.

st

S hegaloor

Fig. 7.4(b):

Fault tree solution

No CB trip
Primary No input to Secondary
failure the device failure
[ 1
Relay A Relay B
closed closed
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Tables 7.1 and 7.2 report the symbols employed to represent the events
and their relationships in a fault tree.

Table 7.1: Event Symbols

Event Symbol Meaning of Symbol

Basic event with sufficient
data

Undeveloped event

Event represented by a gate

Condition event used with
inhibit gate

House event. Either
occurring or not occurring

=0 oo

Transfer symbol
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Table 7.2: Gate Symbols

Gate Symbol Gate Name Causal Relation

Output event occurs if
AND gate all input events occur
simultaneously.

Output event occurs if
OR gate any one of the input
events occurs.

Input produces output
Inhibit gate when conditional event
occurs.

Output event occurs if

Priori .
ority all input events occur

AND .

in the order from left to
Gate .

right.
Exclusive Output event occurs if
OR one, but not both, of the
Gate input events occur.
m out of n gate Output event occurs if
(volume or sample|m out of n input events
gate) occur.

=D jDE}QS:}H}

n input
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It is interesting to note that all the more complicated gate symbols
can be constructed with the basic AND, OR and NOT symbols. Some
examples are presented in Figs. 7.6-7.12 [5].

Operator fails to
shut down system

Operator pushes wrong switch
when alarm sounds

Alarm sounds

Fig. 7.6: Example of inhibit gate

Operator fails to
shut down system

Alarm sounds

Operator pushes wrong switch
when alarm sounds

Fig. 7.7: Equivalent logical form to Fig. 7.6
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Power is unavailable
in the system

AN o
Principal Standhy Swireh Principst
umit fails unit fails controtier unit {ails
faiis

Fig. 7.8: Example of priority AND gate

Power
unavailable

PR . %
: / Switch conlroller |
~—— failure exists wh

N % principal unit fails ;
Principal Standby
unit fails unit fails

Switch Principal
controller unit faiis
{fails

Fig. 7.9: Equivalent logical form to Fig. 7.8
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Power
unavailable

o < . - . Switch controller
Principal Standby Switch Principal oo o
gt O . s failure exists when
unig fails unit fai controller unit fails P 8 .
fail principal unit fails
ails

Fig. 7.10: Equivalent logical form to Fig. 7.8

Partial loss

uf power

Partial 1pss
of power

e N 2N
Generator | Generator I ; i
fails fails §
Generawor | Generator 11 Generator | Generator 11
{ails operates operates fails

Fig. 7.11: Example of exclusive OR gate and its equivalent logical expression
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Unnecessary

shutdown
./ '\\
2 ‘
Monitor 1 Monitor 11 Manitor HI
generaies generates generates
spurious spurious spurious
signal signal signal

Fig. 7.12: Example of a 2-out-of-3 gate

Linnecessary
shutdown

T
/ 3

[

Spurious Spurious Spurious Spurtous Spurious Spurious
signal signal signal signal signal signal
from from from from from from
moniter morstor monitor MOHor Monitor monitor
i i1 )il Hl 1 I

Fig. 7.13: Equivalent logical form to Fig 7.11

Actual construction of fault trees is an art as well as a science and
comes mainly through experience. Below some useful guidelines are
reported [6].
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Rule 1.

Rule 2.

State the fault event as a fault, including the description and

timing of a fault condition at some particular time. Include:

(a) what the fault state of that system or component is;

(b) when that system or component is in the fault state.

Test the fault event by asking:

(a) Isita fault?

(b) Is the what-and-when portion included in the fault
statement?

There are two basic types of fault statements, state-of-system

and state-of-component. To continue the tree:

(a) if the fault statement is a state-of-system statement, use
Rule 3;

(b) if the fault statement is a state-of-component statement, use
Rule 4.

Rule 3. A state-of-system fault may use an AND, OR, or INHIBIT gate

Rule 4.

Rule 5.

Rule 6.

or no gate at all. To determine which gate to use, the faults must

be the:

(a) minimum necessary and sufficient fault events;

(b) immediate fault events. To continue, state the fault events
input into the appropriate gate.

A state-of-component fault always uses an OR gate. To

continue, look for the primary, secondary, and command failure

fault events. Then state those fault events:

(a) primary failure is failure of that component within the
design envelope or environment;

(b) secondary failures are failures of that component due to
excessive environments exceeding the design environment;

(c) command faults are inadvertent operation of the component
because of a failure of a control element.

No gate-to-gate relationships, i.e., put an event statement
between any two gates.

Expect no miracles; those things that would normally occur as
the result of a fault will occur, and only those things. Also,
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normal system operation may be expected to occur when faults
occur.

Rule 7. In an OR gate, the input does not cause output. If any input
exists, the output exists. Fault events under the gate may be a
restatement of the output events.

Rule 8. An AND gate defines a causal relationship. If the input events
coexist, the output is produced.

Rule 9. An INHIBIT gate describes a causal relationship between one
fault and another, but the indicated condition must be present.
The fault is the direct and sole cause of the output when that
specified condition is present. Inhibit conditions may be faults
or situations, which is why AND and INHIBIT gates differ.

7.3 Qualitative analysis: coherent structure functions and
minimal cut sets

7.3.1 Structure functions

A fault tree can be described by a set of Boolean algebraic equations, one
for each gate of the tree. For each gate, the input events are the
independent variables and the output event is the dependent variable.
Utilizing the rules of Boolean algebra it is then possible to solve these
equations so that the top event is expressed in terms of sets of primary
events only.

When dealing with a Boolean event £, we can introduce an

indicator variable X ; Which is equal to 1 if the event is true and 0 if it is

false. If the system and components are considered from the point of
view of reliability then X =1 indicates success and X =0 failure;
viceversa from the point of view of safety.

The top event of a fault tree can be represented by an indicator
variable X, which is a Boolean function of the Boolean variables

X,,X,,...,X, describing the states of the » events of the system:
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X, =0(X,X,,..,X,) (7.1)

Such function is called a swifching or structure function and incorporates
all the causal relations among the events which lead to the top event. It
maps an n-dimensional vector X = (X X g X n) of 0’s and 1’s onto

a binary variable equal to 0 or 1. For example, looking at a simple series
system from the reliability viewpoint, we have that its success occurs
when all its components are in a success state. From the rules of Boolean
algebra, the corresponding structure function is:

X, = HX ; (7.2)

For a parallel system, at least one of the components must be in the
success state for the system to be successful. Correspondingly, we have:

X, =1-(1-x,1-X,).(1-X,)= HX (7.3)

Obviously, for a given system there are various forms which can be used
to write the structure function. The task that we wish to undergo is that of
using the rules of Boolean algebra to reduce a structure function to its
most simplified equivalent version.

First of all, we introduce the concept of fundamental product which
is a product containing all of the » input variables, complemented or
not. For n variables there are 2" such products; for example, for n=3,
we have:

X X, X, X, X, X, X, X, X, X, X, X, X, X, X

S
S
IS
3
i
i
Kl
S
i

Clearly a fundamental product is 1 if and only if all its variables are 1.
An important theorem states that a structure function can be written
uniquely as the union of the fundamental products which correspond to
the combinations of the variables which render the function true (i.c.,
® =1). This is called the canonical expansion or disjunctive normal

form of @ [2].
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Using the rules of Boolean algebra (see Table 7.3), the canonical
expansion can be simplified further to obtain an irreducible expression of
the structure function in terms of minimal cutsets.

Table 7.3: Some rules of Boolean algebra for events

1Y)

2)

3)

4

5)

6)

7)

@
(b

(@
(®)

@
(b)

@
(b

(a)
(b)

@
®)
(©

(@
(b)

Commutative Law:
XY =YX
X+Y=7Y+X

Associative Law

x(rz) = (xv)z
X+(+2z)= (x+1)+Z
Idempotent Law

XX =X
X+X =X

Absorption Law

X(xX+7Y)=x
X+XY =X

Distributive Law

X¥+z)= xv+Xxz

(X+Y)X+2Z2)=X+YZ

Complementation*

=

+X=Q

=X

5

Ml <

Unnamed relationships but frequently useful
X+XY=X+7Y
X(X+Y)= XY

*The universal event € iss sometimes denoted by I, and the null event & is

sometimes denoted by 0.
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7.3.2 Coherent structure functions and minimal cut sets

A physical system would be quite unusual (or perhaps poorly designed)
if improving the performance of a component (that is, replacing a failed
component by a functioning one) caused the system to change from the
success to the failed state. Thus, we restrict consideration to structure
functions that are monotonically increasing in each input variable. These
structure functions do not contain complemented variables; they are
called coherent and can always be expressed as the union of fundamental
products.
The main properties of a coherent structure function are:

1. (I)(l) =1 if all the components are in their success state, the system is

successful,
2. CD(Q) =0 if all the components are failed, the system is failed;

3. O(X)2d(Y)for X2Y

The last property accounts for the fact that considering two distinc
system configurations, represented by the indicator variable X and Y if

CD(Z ) =1 and a failed component in Y is repaired in X , this cannot
cause the system to fail (CD(X_ ) =1); in other words if the system in Y
was failed (CD(X ) =0), in X it can either remain failed or be repaired
(@(X ) =1); otherwise, if the system in ¥ was successful ((I)(Z ) =1),
the additional repair can only make it maintain its successful status.

Coherent structure functions can be expressed in reduced
expressions in terms of minimal path or cut sets. A path set is a set X

such that @(X)=1; a cut set is a set X such that (D(K)=O.

Physically, a path (cut) set is a set of components whose functioning
(failure) ensures the functioning (failure) of the system.

A minimal path (cut) set is a path (cut) set that does not have
another path (cut) set as a subset. Physically, a minimal path (cut) set is
an irreducible path (cut) set: failing (repairing) one element of the set
fails (repairs) the system. Therefore, removing one element from a path
(cut) set makes the set thereby obtained no longer a path (cut) set. Once
the path (cut) scts are identified, the system structure function can be
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expressed as the union of the path (cut) sets: this constitutes a unique and
irreducible form of the coherent structure function of the system.

From this analysis we see that any fault tree can be equivalently
written in a form with an OR gate in the first level below the top event
combining all the minimal cut sets, each one in turn represented by an
AND gate intersecting all the elements comprising the given minimal cut
set.

For trees of systems with relatively few components, the minimal
cut sets can be identified by inspection. Most often, however, such an
approach is very inefficient, if possible at all, since the number of
minimal cut sets increases very rapidly as the complexity of the tree
increases. Therefore, a more systematic approach should be undertaken
by which after writing the Boolean equations for each gate, Boolean
algebra is used to solve the top event structure function in terms of the
cut sets; using again Boolean algebra one can then eliminate all the
redundancies in the events to obtain the minimal cut sets. Several
computerized approaches exist to perform this task.

After the minimal cut sets have been obtained, the qualitative
analysis is complete and the failure modes contributing to the top event
have been identified. The analysis provides us with some indications on
the criticality of the various components: those appearing in minimal cut
sets of low order (number of primary events constituting the cut set) and
those most frequently appearing in the various cut sets are good
candidate to be critical for the system safe operation.

Two general rules of thumb for judging the importance of a
minimal cut set are :

1. the importance of a minimal cut set is inversely proportional to its order;
2. any one-event minimal cut set should be avoided by re-design if
possible.

7.4 Quantitative analysis

Quantitative analysis of the fault tree consists of transforming its logical
structure into an equivalent probability form and numerically calculating
the probability of occurrence of the top event from the probabilities of
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occurrence of the basic events. The probability of the basic event is the
failure probability of the component or subsystem during the mission
time of interest.

From the definition of the structure function CD(X ) as a function of

the indicator variables of the basic events X = (X . ST, ¢ ), we see

that the structure function is itself an indicator variable which is equal to
1 when the top event is verified and 0 otherwise. Consequently we may
write, for the probability of the top event:

P(@(X)=1) = E[®]=0-P(@(X)=0)+1- P(@(X)=1)  (75)

where E[] is the expectation operator. Given the expression of the

structure function @ in terms of the indicator variables of the basic
events, it is possible to write the probability (7.5) in terms of the
probability values of the independent basic events, P(X, =1)= E [Xx, ]

Consistent with what previously said concerning the qualitative
analysis of fault trees, there exist two approaches for calculating the
probability of the top event from the probabilities of the basic events. If
the fault tree is not solved for the minimal cut sets, then the probability
of the top event can be calculated by hand, provided that the size and
complexity of the tree are not too large. This is done proceeding in an
orderly fashion from the bottom to the top of the tree and computing at
each gate the probability of the output from the probabilities of the input
events, using the laws of probability corresponding to that gate structure
(AND, OR, etc.). This can be “automatically” done through Eq. (7.5).
For example, the probability of the output ¥ of an AND gate with two
independent input events X,,X,, with probability P; and P,

respectively, is
P(Y =1) = E[X | X,]= E[X,]- E[X,] = R P, (7.6)

while for the output of an OR gate,
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Py =1)= - (- X i X))
= E[X, + X, + X, X,]= E[x, ]+ E[x, ]+ E[x, X,]= R+ P, - B,
(7.7)

where B, is the probability of the intersection event X, X, =1, given
by (7.6) in the case that X, and X, are independent.
On the contrary, if a qualitative analysis has been performed to

determine the system minimal cut sets M,,M,,..., M, by definition

mes 2

the probability of each of them is the probability of the intersection of
the independent basic events comprising that minimal cut set, 1.¢.,

p(M,)=P(x))P(Xi)..  i=12,.,mes (7.8)

where the product is extended to all the events comprising M,. By

definition, the system structure function is the intersection of the mcs
minimal cut sets:

o(X)=1-(1-M,)1-M,).(1-M, )= M, (7.9)

=

and the probability of the top event is

P(d(X)=1)= E[fMj -mf fM,,Mj RER O ) il [ iji =
j=l j=1

i=t j=i+l
=E{§Mj}—5{mf fMM }r A (=) []'"’[M }
j=1 il ji+l
mcs mes—1 mes mcs
=21:P(M,.)— ) ZIP(MiMj)+...+( )t [HM ]
j= =l j=i+
(7.10)

For two minimal cut sets, the formula gives the well-known result (7.7),

P(d(X)=1)= P(M,)+P(M,)- P(M,M,) (7.11)
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It can be shown that the following upper and lower bounds to eq. (7.10)
hold (Egs. (4.11) and (4.12) in Section 4.4.1):

mcs

P(o(x)=1)< ;P(Mj)

mes mes—1 mes (7.12)
Plol)=1)> 5 plu,)- 315 Pl 1)

In reliability and risk calculations, basic events are typically rare (low
probability events), so that the probability of their intersection in
minimal cut sets , i.e. that some of them are verified simultaneously so
as to verify a minimal cut set, is very small; therefore, one can
approximate using the first of the eq. (7.12) (rare-event approximation,
Section 4.4.1):

Plo(x)=1)=Y P(rM,) (7.13)

7.5 Comments

Although actual construction of fault trees is an art as well as a science
and comes only through experience, fault tree analysis is a widely
adopted tool for safety and risk analyses. Some of its recognized
advantages are:

1. Straightforward modelization via few, simple logic operators;

2. Directing the analysis to ferret out failures;

3. Focus on one top event of interest at a time;

4. Pointing out the aspects of the system important to the failure of
interest;

5. Providing a graphical communication tool whose analysis is

transparent;

Providing an insight into system behaviour;

7. Minimal cut sets are a synthetic result which identifies the critical
components.

N
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8

Event Tree Analysis

8.1 Introduction

Event trees are inductive logic methods for identifying the various
accident sequences which can generate from a single initiating event.
The approach is based on the discretization of the real accident evolution
in few macroscopic events. The accident sequences which derive are
then quantified in terms of their probability of occurrence.

The events delineating the accident sequences are usually
characterized in terms of: i) the intervention (or not) of protection
systems which are supposed to take action for the mitigation of the
accident (system event tree), ii) the fulfillment (or not) of safety
functions (functional event tree), iii) the occurrence or not of physical
phenomena (phenomenological event tree).

Typically, the functional event trees are an intermediate step to the
construction of system event trees: following the accident-initiating
event, the safety functions which need to be fulfilled are identified; these
will later be substituted by the corresponding safety and protection
systems.

The system event trees are used to identify the accident sequences
developing within the plant and involving the protection and safety
systems.

The phenomenological event trees describe the accident
phenomenological evolution outside the plant (fire, contaminant
dispersion, etc.).

In the following, we shall give only the basic principles of the
technique. The interested reader is invited to look at the specialized
literature for further details, e.g. [1], [2], [3], [4], [5], [6], [7], [8], from
which most of the material herein contained has been taken.
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8.2 Event tree construction

An event tree begins with a defined accident-initiating event which could
be a component or an external failure. It follows that there is one event
tree for each different accident-initiating event considered. This aspect
obviously poses a limitation on the number of initiating events which can
be analyzed in details. For this reason, the analyst groups similar
initiating events and only one representative initiating event for each
class is investigated in details. Initiating events which are grouped in the
same class are usually such to require the intervention of the same safety
functions and to lead to similar accident evolutions and consequences.

Once an initiating event is defined, all the safety functions that are
required to mitigate the accident must be defined and organized
according to their time of intervention. For example (Fig. 8.1) if the
initiating event (/) is the rupture of a tube with release of inflammable
liquid and the sparking of jet-fire, the first function required would be
that of interception of the released flow rate, followed by the cooling of
adjacent tanks and finally the quenching of the jet. These functions are
structured in the form of headings in the functional event tree. For each
function, the set of possible success and failure states must be defined
and enumerated. Each state gives rise to a branching of the tree
(Fig. 8.1). For example, in the typical binary success/failure logic it is
customary to associate to the top branch the success of the function and
to the bottom branch its failure.

Besides the time-order, also the logic order of the required functions
must be accounted for. In other words, if the successful fulfillment of a
given function is dependent on the fulfillment of another one, the tree
needs to be re-ordered in such a way that the dependent functions follow
those upon which they depend. This allows pruning of some sequences.
Consider, for example, a dependent function S, whose fulfillment

depends on the success of a function .S, ; then, the branch following the
failure of S, needs not be further decomposed in two branches for §
successful or not, because failure of §, implies no fulfillment of
(Fig. 8.2).
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1 S S, S,
Jet fire
Tanks quenching
cooling
Flow

interception

Tube rupture with
release of burnable
liquid

Fig. 8.1: Example of functional event tree

The functions in the tree are then substituted by the safety systems
which must perform them: again respecting the logical dependencies
may lead to additional pruning. System dependencies can be functional,
if the failure of intervention of a system renders helpless the intervention
of the successive one, or structural if the systems share some common
parts or flow so that malfunctioning of that part makes them both fail.

Once the system failure and success states have been properly
defined, the states are combined through the tree branching logic to
obtain the various accident sequences that are associated with the given
initiating event.

Fig. 8.3 shows a graphical example of a system event trec: the
initiating event is depicted by the initial horizontal line and the system
states are then connected in a stepwise, branching fashion: system
success and failure states have been denoted by § and F', respectively.
The accident sequences that result from the tree structure are shown in
the last column. Each branch yields one particular accident sequence; for
example, IS\F, denotes the accident sequence in which the initiating

event (I ) occurs, system 1 is called upon and succeeds (.9) ), and system
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2 is called upon but fails to perform its defined function (F,). For larger

event trees, this stepwise branching would simply be continued. Note
that the system states on a given branch of the event tree are conditional
on the previous system states having occurred. With reference to the
previous example, the success and failure of system 1 must be defined
under the condition that the initiating event has occurred; likewise, in the
upper branch of the tree corresponding to system 1 success, the success
and failure of system 2 must be defined under the conditions that the
initiating event has occurred and system 1 has succeeded.

I S, S, Sequence
Seq. 1 15,8,
—1 555,
1SS,

Seq. 4 15,5,

1 S, S, Sequence
_ Seq.l JAS
Seq. 3 IE}SJ
Seq. 5 ISx§2

Fig. 8.2: Functional dependences: the negated events S‘: , i=1,2, denote failure of the
corresponding function



8.3 Event tree evaluation 141

Initiating event System 1 System 2 Accident
sequences
Success state .
N R 15, 5
Succesy state &
5 Y -
o Failyre siate o
[ritiating event w3 1&-1 iix
{n Success stale X
SUCCe 2 I, S,
- 154 )
Failure state
Fp .
: Failure state F.E
() §72

Fig. 8.3: Illustration of event tree branching [8]

8.3 Event tree evaluation

Once the final event tree has been constructed, the final task is to
compute the probabilities of system failure. Each event (branch) in the
tree can be interpreted as the top event of a fault tree which allows the
evaluation of the probability of the occurrence of such event. The value
thus computed represents the conditional probability of the occurrence of
the event, given that the events which precede on that sequence have
occurred. Multiplication of the conditional probabilities for each branch
in a sequence gives the probability of that sequence (Fig. 8.4).

In the case of structural dependencies, two approaches to accident
sequence modelling are available [5]. One approach is called event free
with boundary conditions and consists in decomposing the system so as
to identify the supporting parts or functions upon which some
components and systems are simultaneously dependent. The supporting
parts thereby identified appear explicitly as system event tree headings,
preceding the dependent protection systems and components. Since
dependent parts are extracted and explicitly treated as boundary
conditions in the event tree, this approach leads to large fault trees and
relatively small cvent trees.
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18,8, P(S,|S,1 )P(S,|[ )P(I)

Suceess wiatg

By

IS\ Fyr P(F|S,1)P(S\|T)P(I)

Indtintiog event ' 3

SQCERy hat

IS, P(S,|FI)P(F|I)P(1)

| | wisssss IRy P(FRIP(E|P(I)

Fig. 8.4: Schematics of the event tree shown with the fault trees used to evaluate the
probabilities of different events

For example, consider an initiating event which requires two systems, S,
and S,, to intervene and suppose that S, nceds the pumps of S, to
operate. Then, one could extract the common part and consider three
systems: S, , S; , which is the .S, system without the pumps common to
S,, and S, , which represents the pumps used by both S, and S, (Fig.
8.5). Then, the dependencies are explicitly represented in the tree and the
branching associated to S, and S; is ecliminated when S§; is not
functioning. Thus, all the conditional probabilities are independent and
the probability of the accident sequences can be computed by simple
multiplication. This way of proceeding simplifies considerably the

computations but it requires a great deal of expertise by the analyst. In
fact, since system interactions and dependencies are treated primarily
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within the inductive logic of the event tree, those dependencies not
recognized by the analyst may not be incorporated into the analysis.

*

I s, S, s,

__|: P(S3[8,S,1)P(S,|S,1)P(S,|1)P(T)

Fig. 8.5: Event tree with boundary conditions

The second approach is called Fault-tree link [5]. In this method, the
dependencies from support systems or common parts are modeled in the
fault trees, so that at the level of the event tree the systems are inserted
without any care of their structural dependencies. For each sequence of
the event tree, then, the fault trees of the composing events are linked in
one large fault tree which follows the logic depicted in the event tree and
the large fault tree is then solved with the usual techniques to compute
the probability of occurrence of that sequence.

Fig. 8.6 shows the previous example of Fig. 8.5. Only systems S,

and §, are explicited on the event tree without particular care to their

dependence. If we now want to evaluate the probability of the sequence
IS,S,, we build a fault tree whose top event occurs when the initiating

event I and the failure of both systems S, and S, occur. In place of the
events S, and S, we can substitute their corresponding system fault

trees, thus obtaining a large fault tree which can be logically simplified
(accounting for the existing dependencies) and evaluated so as to give
the probability of the top event, i.e. the probability of the sequence of
interest. With this method, the dependencies are properly treated even if
the analyst was, a priori, unaware that they existed. On the other hand,
the resulting fault tree for an accident sequence may be rather large.
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I Si S
1SS,
5 ]
S, IS\F, IFF,
1
AND
% |—|—\
A IFks F; £,

GG
DEE @

Fig. 8.6: Fault tree linking for the sequence IF}F,

In summary, in the event trees with boundary conditions all the
significant dependencies among systems are explicitly represented in the
event tree; the fault trees for the individual events are then simple and
independent but the analyst must take great care in identifying all the
existing dependencies. In the fault tree-link approach, dependencies are
included in the fault trees for the various systems and thus they are not
dependent; the linked fault tree of a generic accident sequence of interest
is rather large and complex but all dependencies are treated
automatically.

Finally, in Fig. 8.7 we report a simplified version of a functional
event tree for the case of a large break of a pipe in the primary cooling
circuit of a nuclear reactor.
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Pipe Reactor Containment Core Coneaitment Core
break suh cal ONEIDPESSUIZLLION wooling OvErprEssutization cogdng .
(73} &S} oD (ECT (COR} {ECR) Seguene

No.

— .
—

—— 2
- -
8
30
Seq. No. RS CoIl EC1 COR ECR Remarks
1 Core cooled
2 f Slow melt
3 Core cooled
4 f f Slow melt
5 f NA NA Melt
6 f NA Core cooled
7 f NA f Slow melt
8 f f NA NA Melt
9 f NA NA NA Melt
10 f f NA NA NA Melt

f = function failure; NA = not applicable.

Fig. 8.7: Functional event tree for a large break LOCA (Loss of Coolant Accident) in a
nuclear reactor
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Estimation of Reliability Parameters from
Experimental Data

9.1 Estimation of equipment reliability from tests

To obtain information about the life distribution F7, (t) of a component,

it is necessary to carry out a ‘life test’ where » identical units of the
component are activated and their lifetimes recorded.

The fundamental assumptions that are made are that the lifetimes
of the n components are statistically independent and identically
distributed according to the continuous distribution function F;. (t)

The assumption of identically distributed lifetimes corresponds to
the assumption that the components are nominally identical, that is of
same type and exposed to approximately the same environmental and
operational stresses.

The assumption of independence means that the components are not

affected by the operation or failure of any other component in the set.
' Any censoring mechanism (see below) must also be ‘independent’,
i.e. censorings occur independent of any information gained from
previously failed components in the set.

9.1.1 Complete data set

If the test is allowed to run until all the » components have failed and
the lifetimes are recorded, the data set thereby obtained is said to be
complete (Figure 9.1).
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Unit /]\

4 7N\

3 X

2 —X

1 X
N
i

t, t, t t time

Fig. 9.1: Life timelines for a complete failure data set of 7 =4 test components. The
symbol x indicates failure

9.1.2 Censored data sets

Often, it is impractical or too expensive to wait until all the components
have failed. Hence, censoring is applied to cease the test before all
components have failed.

A right-censored data set is composed also of units that did not fail
during the test (Fig. 9.2).

/N

X

AN

time

Fig. 9.2: Life timelines for a right-censored data set of » =4 test components. The
symbol % indicates failure; the symbol e indicates success

An interval-censored data set reflects uncertainty as to when the
units actually failed, due to the fact that units are inspected at fixed times
so that their statuses are known only at the time of inspection. Thus, the
failure of a unit is revealed upon inspection and it is known only that it
occurred between inspections, but not the exact time of failure.
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N

Fig. 9.3: Life timelines for a complete failure data set of n = 4 test components. The
symbol x indicates failure; the symbols > < indicate the uncertainty interval due to the
inspection scheduling

A left-censored data set is a special case of interval censored data in

which the time-to- failure for a particular unit is known to occur between
time zero and some inspection time.

N

N\

X

r—<

X

N
Ve
time

Fig. 9.4: Life timelines for a complete failure data set of » =4 test components. The
symbol x indicates failure; the symbols > < indicate the uncertainty interval due to the
inspection scheduling

9.1.3 Test plans

Test plans are characterized by (Figs. 9.5 and 9.6):

—  the moment of termination of testing, at fixed time #; (Type I) or at
the 7 -th failure (Type 1I);
—~  whether items are replaced upon failure (R) or not (W).

In the former case (R), »n items are under testing at all times: the
units are continuously monitored and upon failure they are
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immediately replaced. In the latter case (W), the items are not
replaced upon failure, so that the number of items under testing
decreases in time, as failures occur.

dan /N

ARNN

f t

Fig. 9.5: Test I ( R or W). The variable d(f) denotes the number of failures that occur
before ¢. The information resulting from the test is: s <n observed lifetimes

t,,t,,...,t,; n—s components survived up to #,

a@) 7

WP
3 1L l_—

2 4

—
{
I

N
7/

t ¢

r

Fig. 9.6: Test Il (R or W). d(¢) denotes the number of failures that occur before 7. The
information resulting from the test is: » <n observed lifetimes f),¢5,...,t.; n—*r

components survived up to ¢,
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There exists also a type III censoring which is a combination of I
and II: the test terminates at the time that occurs first, ¢, or ¢, .

Finally, if » identical units are activated at different points in time
and censored stochastically, the censoring is said to be of type I'V.

9.1.4 The method of maximum likelihood estimation applied to test
components lifetimes

Consider a data set of uncensored component lifetimes, ¢, #,, ...,7

realizations of the underlying failure time probability density function
Ir (t|9) where @ is the parameter of the distribution which we wish to

estimate. The likelihood of the lifetime realisations observed is:
n
L(0)=HfT(ti |6) .1
i=1

For right-censored data with some components surviving the test, the
likelihood function becomes:

L&) =[1/r@10[TRG;19)
%r__l JHF_J

failures right-censored (9 2)

where R(Z; |6) is the reliability of the component at time 7; at which
the test of the j -th unit, still functioning, has been interrupted.

To compute an estimate & of the unknown distribution parameter
@ , based on the available data set, generally one takes the log-likelihood

1(6) = In[L(6)] (9.3)

and maximises with respect to 6 :
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0
_l =0 (9.4)
06

As an example, let us consider the right-censored testing of »n
exponential units with f7(¢) = Ae ™ . Let r be the number of failure

observations. Then, the likelihood is given by

—iit,. -A it,- -Aitk
LA)=2e = e = =1e = (9.5)

and the log-likelihood is

I(A)=rlnd-A) ¢ (9.6)
k=1
Taking the derivative,
o r <
—=—=)1 9.7
) ; k 9.7)

A

By setting (9.7) equal to zero, one obtains the estimate A of the
component failure rate,
¥ r _ #of failures observed (9.8)

il
i T total test time

where T is here used to denote the total test time of the component.

9.1.5 Statistics of exponential components with or without
replacement

Let us consider in further details the lifeé test of a component
characterized by exponentially distributed failure times. This is the most
common assumption for reliability and risk calculations. We can use the
failure data obtained in the test within a Maximum Likelihood
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Estimation (MLE) procedure to estimate the parameter A of the
exponential distribution, i.e. the failure rate of the component. We
consider two cases: '

W. Without replacement

Given n components under test, one could wait for all of them to fail but
that would take a long time for very reliable components. Therefore, one
censors the test fixing an end time #, (I) or stopping the test at the 7 -th

failure (II).

IW. TYPE I (test ends at f,); without replacement.

The sample of lifetime data is (tl,tz,...,tr,to), where the first r times
are the failure times of the » components which fail within the censoring
time 7.

Then, at ¢, there are still n—r components functioning. The
likelihood function L(A) for this case reads:

L(A) o< (Ae ™ dt\Ae e )---(2e M dit Je (" 9.9)

—l‘:itﬁ(n—r)to}
L(A)=Ae U =AeM (9.10)

-
where the unit total time on testis 7 = Zt sr(n=r),.
j=1

Setting the derivative with respectto A equal to zero,

a._ 0, A le™ —Te™ =0 (9.11)
oA
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the maximum likelihood estimate of the component failure rate is
obtained:

1-r_ #of failures observed

(9.12)
T fotal test time

IIW. TYPE II (test ends at r -th failure); without replacement.

The sample of lifetime data is (tl, Ly tr), where the first 7 times are
the failure times of the r components which fail within the censoring
time 7, .

Then, at ¢, there are still n—r components functioning. The
likelihood function L(A) for this case reads:

L(2) o (Ae ™ dt)Ae *edr)--(ae™ dit)e " (9.13)

—l{itﬁ(n—r)t,}
LA)=Ae L~ =Ae (9.14)

where the unit total time on testis T = Zt st (n=n, .
j=1
Setting the derivative with respect to 4 equal to zero,
oL 1 - -
I e —¥Te™ =0 (9.15)

the maximum likelihood estimate of the component failure rate is
obtained:

r _#of failures observed
T total test time

A=

(9.16)
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R. With replacement

When a test with replacement is considered, every time a component
fails it is replaced by a new identical one.

IR. TYPE I (test ends at £;); with replacement.

Let us consider again the testing of » identical units. At some time ¢,

one fails and n—1 are left under test. Since the components are
exponential (no aging), the failed component can be replaced with a new
identical one, so that at any time there are # units under test, whose
failure times follow the same failure distribution (Figure 9.7). This is
possible only for exponential components, which do not suffer aging. At
the generic time #, the total test time is n-¢ .

Time 0 4 t
| | |
I | l
- Number of initial units n n-1
- Added units +1
- Total units under test n n

Figure 9.7: Testing with replacement

The sample of lifetime data is (tl,tz,...,tr,to). The likelihood function
L(A) reads:

L(A) o (A dtae it )--- AeH - C(2) (9.17)

where C(A) is a complicated expression related to the failure and
survival of the replaced units.

For example, for the case of » =1 component that is replaced at
each failure, the likelihood is:
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L) = Je~ M je~Mh=t) 4 ,=At=0) | 4 ,=A 1) p= A1)

9.18
R (9.18)
where T = ¢, is the total time on test of a unit of that kind.
For n components,
L(A)= e ™™o = pre*" (9.19)

where T = n-{, is the total time on test of a unit of that kind. Then, the

maximum likelihood estimate is obtained by setting the derivative of
L(A) equal to zero:

s~ F
A=— 9.20
T (9.20)

IIR. TYPE II (test ends at r -th failure); with replacement.

The sample of lifetime data is (¢,7,,...,2,).The likelihood function
L(A) then reads:

LAy =Xe ™ = e (9.21)
where the total time on test is T = n#,. Then, the failure rate 1s estimated

by:

A~ F
A=— 9.22
T (9.22)

In general, then, the estimate of the failure rate is always given by the
ratio between the number of failures » and the total test time 7T, i.e.

~

A= % , independently of the test strategy, and what changes is the total

time on test 7 depending on the type of test.
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9.1.6 Confidence limits for reliability parameters

It is difficult to generalise about a given statistical population when only
a point value characteristic (e.g. the mean) of a finite size sample is
measured, since such sample may not be representative of the
population. As the sample size increases, the characteristic values of the
sample and those of the population will, of course, agree more closely.

Example 9.1: Coin toss (binomial)

Consider a simple experiment of coin tossing, giving the following
results in two samples of size 10 and 1000 tosses, respectively:

4 heads,10tosses
400 heads, 1000 tosses

In both cases the maximum likelihood estimate of the probability of
heads can be shown to be:

. _ # of heads

= =04
Pan # of tosses

The point estimates are the same in the two cases but it is intuitive that
there is more confidence in the experimental evidence given by the
second sample. Evidently, the point estimates do not give a measure of
the confidence in the result.

Since one cannot be certain that a sample is representative of a
population, it is important to associate a ‘degree of confidence’ to an
estimated sample characteristic. In particular, we are interested in
associating confidence limits to probabilistic parameters estimated from
reliability tests, e.g. the failure rate and the reliability of a component.
For example, one would like to be (1—2a ) confident that the unknown

true reliability of a component is at least (or at most) a certain value,
where « , the level of confidence, must lie in [0,0.5]. Figure 9.8 shows a
set of one-sided upper limits of the unknown reliability at a given
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confidence level, estimated form 5 different reliability test samples.
Figure 9.9 shows two-sided confidence limits at a given confidence
level, for 7 different reliability test samples. Note that the confidence
interval varies according to the results of the different tests.

unknown
reliability 4\
1+
72 TeT
rue
0 N

/
1 2 3 4 5 test sample number

Fig. 9.8: The circles represent the values of the one-sided upper limit at a given
confidence level, for different reliability test samples [1]

unknown N
reliability
1+
O Q o
o @)
true
0 >
1 2 3 4 5 test sample number

Fig. 9.9: The circles define the upper and the lower limits of the two-sided confidence
interval at a given confidence level for different reliability test samples [1]

Consider a sample of realizations (%, ¢,, ...., f,) drawn from the

population distribution. Let & be the unknown characteristic of the
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population, e.g. the mean 4 or the standard deviation o and

S =g(t,t,,...,t,) the corresponding estimator. § is a function of the
random sample (#,, t,, ..., t,), with distribution Fg( s|.9 ) dependent on

9. The two-sided confidence interval of S at a level of confidence
1-2e is obtained by determining the values s;(:%) and s,($) such that

(Figure 9.10):
51(9)

j fo(s|9)ds=a wj fs(s|9)ds = a (9.23)

52¢9)

These are equivalent to
Pr[sI(S)SS]=I—a : Pr[SSsz(S)]=1—a (9.24)
which lead to (Figure 9.10)

Pr[s (8)< S <s,(8)] =1-2a (9.25)

f(s[$)

' ]
! 1
' ]
! 1
' |
1 |
' ]
' '
' '
H

(24 a

s1(9) s2(%) s
Fig. 9.10: Confidence interval at level 1-2a [1]
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The above expressions can be rewritten to express explicit inequalities in
terms of the unknown characteristic 3 [1].

Two random variables 6, and €, are introduced as the following
functions of the estimator:

0, =s
=5 (s) (9.26)
0, = S; (s)
From (9.24), it follows that
P[9<6]=1-a
(9.27)
Plo, <9]=1-a

Thus, the introduced random variables &, and €, constitute upper and
lower (1—a)-confidence limits of the unknown parameter &, so that
the random interval [62,91] becomes the 100(1—2a)% confidence

interval, i.c.
Plg,<9<6,]=1-2a (9.28)

In other words, with probability 1—2a the interval contains the true,
unknown value of the parameter 4.

Example 9.2
Consider a normal distribution with known standard deviation & :

=
e 20

fT(t) = \/EO’

The objective is to estimate the unknown mean p and its 90% confidence
interval from a sample of # realizations (¢, ¢,, ...., {, ). This means
that 1-2a=0.9 or a=0.05 and that we must find the 5-th and the
95-th percentiles of the distribution of the estimator.
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Solution:

The 90% confidence interval means that a =0.9, from which
1-a=0.05.
The estimate of x is the sample mean, i.e.:

n

S

f=tf=2
n

_ 2
The random variable ¢t ® N ( M, G—j. Then, passing to the standard
n

normal variable & ~ N(0,1) (Chapter 4),

L—u t—u
P <— < =P -1.645< <1.6451=0.90
[60.5 O'/—\/; 50.95i| i: o_/ p

where &, and &), represent the 5-th and the 95-th percentiles of the

standard normal distribution N(0,1) tabuled in Appendix A.

Notice that this probabilistic statement refers to the estimator ;,
which is the random variable in question, notto x# and o which are the

distribution parameters.
Given that o is known and solving for 4 :

j2 {E —1.645-L < u<t+ 1.645i} = 0.9

T s

(o

Vn

where the interval li? ~1.645-LZ ;;‘ + 1.645

7

} depends on t and

is, thus, random itself.
For a different random (#, #,, ..., ¢,), one obtains a different

estimate ¢ of 4 and thus a different confidence interval (Figure 9.11).
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-~
cqmmm—————

)

Fig. 9.11: Random confidence intervals for three different samples and corresponding

estimates 7, 7*and 7 of the mean value z.

Hence, the above 90%-probability statement concerning the confidence
interval means that taking 1000 samples and evaluating each time the

estimate 7 and the corresponding confidence interval, 900 times out of

1000 the interval will include 4. In other words, the sample average ¢
gives an estimate of u and the corresponding confidence interval
contains the unknown g with a probability of 0.9. Notice that increasing
the sample size n leads to tighter intervals, as the dependence goes with

| ) . .
—«/: . In other words, confidence increases with the sample size.
n

Example 9.3

Consider a sample of type II-censored exponentially distributed data
(fixed number of failures r, Section 9.1.5). The estimate of the failure
rate is:

i=L T=th+(n—r)tr
T =

Find the « -confidence limits of the Mean Time to Failure MTTF

g=1

&5
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Solution:

What is the probability distribution of the estimator A?
Let D; denote the time interval from the (j - 1)-th to the j-th failure;
then,

I,=D,
T, =D, +Dy+........ +D,

and

DT, =rD, +(r—1)D, +....+D

(n-rT,=(m-r)(D,+D, +..+D,)

Therefore, the total test time of the unit at time 7, is:
T =nDy +(n=1)D, +..+ [n—(r-1)]D,= D [n-(j-DID, = 3'D;
=1 j=l

It can be proved that 24 Dl* , 24 D;, v 24 D: are independent and
,{2 - distributed random variables, each one with two degrees of freedom
[1], so that 2 A T'is also )(2 -distributed with 2r degrees of freedom. This
distribution is tabulated in Appendix B.

Let ;(f, (2r) be the 100 percentile of the chi-square distribution,
with 0 < o <1. Then, from the definition of the percentiles:

PRAT < y22n]=«a
or

2
P[lgw]=a
2T
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From percentiles, the confidence limits for the estimate of MTTF g =

1
— can be obtained, for both censoring of Type I and II :

1, fixed ¢, 11, fixed r
I _2r
one-sided 1 @er+2) Za(2r)
(IOWCI') l # of degrees of freedom
percentile
two-sided
(lower and > 2r . = 2T > 2r = 2T
upper) Zp,_a(2"+2) ;(1;,1_(2;’) Xia(2r) Zx__.,(zr)

2 2 2 2

For example, the one-sided, lower a-confidence limit for the test of type

I (fixed #5), is such that P 9> 2_22’_ =a
Xa(Cr+2)

Example 9.4

Estimate the 95¢h percentile for the MTTF of a nuclear reactor given a
sample of 1 failure (Three Miles Island) in 2000 reactor-years. The value

of Zies(4) is 9.49. Then,

2-2000

hos = ———— =421 reactor-years

9.49

b

Example 9.5

Assume 30 identical components placed on Type II censoring with » =
20. The 20th failure has a time to failure (TTF) of 39.89 min, i.c., ¢ =
39.89, and the other 19 times to failure are listed in Table 9.1 along with
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times to failure which would occur if the test were to continue after the
20th failure. Find the 95% two-sided confidence limits for the MTTF, 3.

Solution:

Let N=30,r=20,1=39.89, a =0.95.

(30 -20)x39.89 +291.09
20

§=S5 =34.50

From the chi-square distribution,

Xra(27) = Xons(40) =59.3417

2

Xiea(2r) = Xoms(40) = 24.4331

2

Then,
0 =—2L __or % _2x20x 229 326
Xira (2r) Xoors(2r) 59.3417
2
0,=—2L _or % _px20x20 5648
Xia (2r) Xoos(2r) 24.4331

2
Then,
23.36<9<5648

Thus, we are 95% confident that the true, unknown mean time to failure
(9) is in the interval [23.36, 56.48]. As a matter of fact, TTFs in Table
9.1 were generated from an exponential distribution with the MTTF, 3=
26.64. The obtained confidence interval includes this true MTTF.
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Table 9.1: TTFs Data for Example 9.5

TTFs After
TTFs Up to 20th Failure 20th Failure
t 0.26 i 11.04 1 (4084)
ty 1.49 t12 12.07 t22 47.02)
t3 3.65 t13 13.61 13 (54.75)
t4 4.25 t1a 15.07 to4 (61.08)
ts 543 t1s 19.28 t2s (6436)
ts 6.97 t16 24.04 t2s (64.45)
t7 8.09 ti7 26.16 t7 (65.92)
tg 9.47 tig 31.15 tog (70.82)
ty 10.18 t19 38.70 tao (97.32)
tio 10.29 t20 39.89 t30 (164.26)

For the reliability of this kind of component, with exponential
distribution (Chapter 4):

R)=e™ =9

and the confidence intervals can be obtained by substituting ®; and ©,:
e % < R(H) < O

Thus, for the data in Example 2,

e—t/23.36 < R(t) < e—t/56.48

Similarly, the confidence interval for the true, unknown failure rate A4 is
given by

<A<+
®2
<)<
56.48 2336

1
0,
1

A
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9.2  Accelerated Life Testing
9.2.1 Introduction

Many of the devices produced today for complex technical systems have
very high reliability under normal use conditions. The time involved in a
life test such as those described in Section 9.1 would therefore be
prohibitive. Furthermore, the device is likely to be obsolete by the time
the test is completed. The questions then arise of how to make the
optimal choice between several types or designs of a device and how to
collect information about the corresponding life distributions under
normal use conditions.

A common way of tackling these problems is to expose the device
to sufficient overstress to bring the mean time to failure down to an
acceptable level. Thereafter, one tries to "extrapolate" from the
information obtained under over stress to normal use conditions. This
approach is called Accelerated Life Testing (ALT) or overstress testing
[2-8, 11].

Depending on the kind of device in question, the accelerated testing
conditions may involve a higher level of temperature, pressure, voltage,
load, vibration, and so on, than the corresponding levels occurring in
normal use conditions. These variables are called stressors (stress
variables or covariates). In a specific situation, there may be one or
several (m) stressors s, §,..., Sn acting simultaneously. The vector s =
(51, S2,..., Sp) 1s called the stress vector.

In simple situations, there is only one stressor s occurring on two
levels s™ and s, where s < 5. Let s <s™ denote normal stress. The
situation becomes somewhat complicated when m stressors 5,5y, ...,8,, are
involved and stressor s; occurs on #; levels,

Sﬁ-l) < sﬁ.z) < Sﬁn") for j=1,2,...,m (9.29)
Let 5% (< sj(l)) denote normal stress for stressor j, forj = 1, 2, ..., m. The
situation becomes more complicated when the stressors are continuously
increasing with time. The first two cases lead to Step-stress Accelerated
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Life Tests (SALTs); the last one leads to Progressive-stress Accelerated
Life Tests (PALT).

9.2.2 Experimental designs for ALT

Let us for the sake of simplicity suppose that there is only one stressor s.
The testing experiment can be conducted according to different designs.
We will discuss three such designs.

Design I

The experiment involves use of k stress levels sV <s@ <. <s® (see
Figure 9.12). Let s < s denote normal stress. A (large) number of test
units are assumed to be available for the experiment and #; of these are to
be exposed to the stress s?. Censoring of type II (test terminates at r-th
failure, Section 9.1.3) is applied. The experiment is then carried out as
follows:

1. One stress level s” is chosen at random among s @ ... s® and n;
test units are chosen at random among the test units at hand. These
n; units are then exposed to stress level s, The test is terminated
when 7; (< n;) failures have occurred. Let T;,,T;,,...,T;, , denote the

2tin 0
times to failure or censoring.
2. Another stress level s is chosen at random among the remaining
levels, n; test units are chosen at random among the remaining units
and exposed to stress level s?. The test is terminated when 7, < n;

failures have occurred. Let ]}1’]}2""’]}"/‘ denote the times to

failure or censoring. This procedure is continued until & stress levels
have been selected.
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Stress level

A

Level k&

Level 2
Level 1

time

Figure 9.12: Design I for accelerated tests

. . k )
If the number of test units at hand is large compared to n = ijl n;,it

scems reasonable to assume that 74,7, ,..., T}, are independent, which

simplifies the analysis.

Design 11

Fix % points of time 0 <1, <f; < ... < < t. Put n randomly chosen test
units on test at time 0. In the time interval (0, #] the units are subject to
stress s”; in the interval (¢;, #;] the units that have not failed by time
are kept in operation under stress s”. In the next interval (z,, 5] the units
that still have not failed by time ¢, are kept in operation under stress s,
and so on (see Figure 9.13). In the time interval (%, oo] the units that have
not failed by time # are kept in operation under stress s**” until they

have all failed (hence, no censoring). The lifetimes of the # test units are
denoted T}, ...,T,,.
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Stress level
A

'—l

: :

,—' ]

o i i

1 ¢ '
s s i i R
7] t t3 Uy -

time

Figure 9.13: Design II for accelerated tests

Design 111

A number » of test units are chosen at random among the test units
at hand and exposed to a stress s(?), which is increasing with time until
the units have all failed. The stress function s(z) is assumed known
(Figure 9.14). The lifetimes of the n test units observed are denoted

If » is small compared to the number of units at hand and if the n
units are operating independently, it seems reasonable to assume that
1,,...,1,, are independent, in both design II and design III.
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Stress level
A

time
Figure 9.14: Design III for accelerated tests

9.2.3 Parametric models used in step-stress accelerated tests

The data obtained in the test is supposed to give information about:

—  the lifetime distribution function F; (t,' g) = P(T <t g)
— the survival function R, (t; s ) =1-F; (t,' S )

ﬂ,(t,-§) = Jr (ti)

—  the failure rate
1-F,(ts)

For the sake of simplicity, let us suppose that we succeed in establishing
an a priori, parametric life distribution under normal use conditions, €.g.
exponential or Weibull etc. What will be the effect of overstress on this
baseline distribution?

There are two alternatives:

1. Different stress levels only lead to different parameters values but
leave unchanged the form of the distribution
2. Different stress levels modify also the type of distribution.
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We consider the simplest Case 1 and ask ourselves in which way does
the parameter vector of this family depend on the stress vector s.

9.2.4 Exponential distribution under design I

Suppose that the experiment is carried out as described in design I where
only one stressor s has been used and the family of life distributions is

1
9s)
We need to specify the function Z(s) describing the relation

between the stress and the failure rate. Three of the most commonly used
relations are:

the exponential with mean 3 (s), and hence failure rate /1(.5') =

power rule model (dielectric breakdown of

4(s)=c-s™ capacitors and fatigue testing of materials)  (9.30)
» Arrhenius model (thermal aging and
A(s)=c-e” semiconductor materials) (9.31)

As)y=ce-s™” simple Eyring model (constant thermal stress) (9.32)

The constants a, b, ¢ have to be estimated on the basis of the recorded
life lengths under overstress. Inserting the expression for l(s) in the
underlying (exponential) lifetime distribution, £, (t,'sj ) is now known
for any stress level s%, j = 1, 2,..., k, except for the values of the

constants a, b, ¢ which could be estimated from data by applying, for
example, the maximum likelihood estimation (MLE) or least squares

(LS) methods. The estimate a, l;,@ can then be inserted, together with
the normal stress level s in the lifetime distribution ﬁr (t,‘s(o) )

The total information that is obtained through the accelerated life
test under design I is:
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59 = stress level
n; = number of units tested at stress level 59 j=12,..,k

r; = number of units failed under 50

T,T.

jiod o ,T~,,j = lifetimes of the #; tested units which can be combined in

T.=ZTJ +(n —r)T = total time on test.

Then, we know that for type II-censored, exponentially-distributed data,
the variable Z, = 2/1(S(” )T . is y/-distributed with 2r; degrees of

freedom,j=1,2, ..., k
fZ_(zj-)=+)z;’e 2 5>0,j=1,2, ...k  (9.33)
Accordingly, fz( )dz —21( w ) T( )dt and

Jr (fj)=5;i(;f§[2'1(sw)'fj]r’_l b 9a(s0)=

=AY N S0,k
(9.34)

Hence, the joint distribution of the set (7}, 75, Ti) would be:

k .
(j) -l —l(s(”)t'
leTz o tl,tz, Lt ( ) t " e J t;>0
7=

(9.35)
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As an example, let us consider the case where the relation between the
stressors and the mean time 9(s) is described by the power rule model

for fatigue testing materials (9.30):
3(s07)= y(s(” )‘“ i=1,2, ..,k (9.36)

Then,

As?)=L(s2)° (937)
y

If we change the power rule slightly, without changing its basic
character, to

c\ s

s )= l(iﬁ] (9.38)

k
s = H s (weighted geometric mean of the s;” s) (9.39)

it turns out that the MLE, @ and ¢, of a and c, become asymptotically

independent.
Inserting (9.38) into (9.35), we can write the likelihood function,
dependent on the unknown parameters a, ¢ for a given sample data

(th by oo 1)

( 11! 1[5“)” o AF)

La ci t, b .., 8) = - tj.r’ -e (9.40)
I“irji c

and the log-likelihood function:

k s sy
la,c;t1,12,..., th) =_§; ~InT(r,)=7 Inc+ar; In — +(rj—1)1nzj—z =1y
=
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The estimates g and ¢ are obtained by solving the two derivative

equations, with respect to a and c:
o\ 0
s
- In ST tj =0 (942)
S S

o & EH(sPY 1
— =) -ZL+>|—1|1,=5=0 9.43
Foiad D Z[ I (943)

k
Ing =) —* Ins" (9.44)

Thus,
k .
> (lns(f) - lnE): 0 (9.45)

J=1

k (qDON ()
and (9.42) becomes Z — | In| —|-¢; =0 from which a can be
A s

obtained.
Then, from (9.43), we can determine ¢ :

1 & (sY
c‘=T—zT 1 (9.46)

Jj=1
N
i=1

It can then be shown that the asymptotic variances of dand ¢ are
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k VT
varw(c‘z)= er(ln—:—j (9.47)
S

k
var,, (¢)=c? {Z rj:l (9.48)

j=1
covw(&, é) =0 (independence) (9.49)
Finally, the estimate of the failure rate under normal stress s can be
computed as,
a

~ 1/ s

Jy =:(ST (9.50)
clL s

9.2.5 Inverse gaussian fatigue failure time distribution under
design I11

Let us consider » independent units put on test at time 0. In [0, 7], the
units are subject to normal stress s”; in [0, o] the units that have not
failed by time ¢ are kept in operation under stress s > s until they all
fail.

We suppose that the accumulated fatigue in the material is modeled

as a Wiener process W;(y), y >0, with drift 7 > 0 and diffusion
parameter 5° > 0. The Wiener process W,y(y) is defined to be an

independent increment Gaussian process with Wy(0) = 0 and mean
E[Wy(¥)]= n, in which each increment Wy(y,)—Wy(y,) has

variance §°(y, - y;). Failure occurs when the Wiener process Wy (»)

crosses a critical boundary w.
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Defining the fatigue time Y as the first time that the fatigue process
W,(y) crosses the critical boundary o and setting i = &/4, A = &/,

then Y has an inverse Gaussian distribution

_ A { (y-u)

fy(y;,u,ﬂ)z A ,euz y:l y>0,u>0A>0 (9.51)
27zy3

We now assume that at time 7, the stress is changed from s to

s and correspondingly the Wiener process changes from W,(y) to

M (»)=W,lt +a(y —1)], (Fig. 9.15).

Wi(y)

0 sv t sV

ENZ

Figure 9.15: The changing Wiener process

It can be shown that in this situation the distribution F;(#) of the stress
failure time T is

Fy(y) 0<y<t

F()= 9.52)
F(t+a(y-0) y>1

where Fy(y) is the cumulative distribution of the inverse Gaussian density
(9.40).
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(0 (0

Suppose now that at 7, s is changed to ¢-s'*, with ¢ > 1 being a
known constant. In this situation it might be reasonable to model the
fatigue process W(y) as having drift 77 in [0, #) and ¢'n in (¢, ). This
means that « = ¢, known.

Let y;, va,..., ¥, be the observed failure times:

¥y, Jor y, <t
¥, (@)= 9.53)
t+a(y;-t)) for y, >t

In this case of @ known, the likelihood function is:

Lo(wi)=a" ] foly,@)]
pE (9.54)

m=zn:[(yj >t) = number of y’ s > ¢
j=l

The likelihood is thus proportional to the inverse Gaussian (9.51) and the
MLE estimates are:

R 1
fa==2 (@) (9.55)

! =1§[;_;} 056

Ay nF|yle) ia)

a

which can be inserted in (9.51) to give an estimate of the life distribution

of the failure fatigue time under normal stress s'%.
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9.3 Empirical determination of distribution models

Sometimes, the properties of the physical stochastic process under
analysis suggest the form of the underlying probability distribution. For
example, if a process is composed of the sum of many individual effects,
the gaussian distribution may be appropriate on the basis of the central
limit theorem. Nevertheless, there are occasions when the required
probability distribution has to be determined empirically, that is based
solely on the available data.

In practice, the functional form of the probability distribution
underpinning a given process is often not easy to derive. Furthermore, an
assumed probability distribution (developed theoretically or determined
empirically) may be confirmed, or disapproved, in the light of available
data using certain statistical tests, known as ‘goodness-of-fit’ tests.

9.3.1 Probability paper

The simplest and longest used method for parameter estimation is that of
probability plotting. This methodology involves plotting the failure times
on a specifically-constructed plotting paper to determine the fit of the
data to a given distribution and, if applicable, estimates of the
distribution parameters.

Graph papers for plotting observed experimental data and their
corresponding cumulative frequencies are called ‘probability papers’.
Probability papers are constructed such that a given probability paper is
associated with a specific probability distribution.

Preferably, a probability paper should be constructed using a
transformed probability scale in such a manner as to obtain a linear graph
between the cumulative probabilities of the underlying distribution and
the corresponding values of the variate. Then, the linearity, or lack of
linearity, of a set of sample data plotted on a particular probability paper
can be used as a basis for determining whether the distribution of the
underlying population is the same as that of the probability paper.

Experimental data may be plotted on any probabilistic paper; the
‘plotting position’ of each data point can be determined as follows:
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1. arrange the N observations xj, x, ..., Xy in increasing order
m
2. plot|x,,
N +1

9.3.2 The normal probability paper

Let us report on the ordinate axis of a graph the values of the variate X in
arithmetic scale and on the abscissa axis two parallel scales: one
represents the values of the standard normal variate s whereas the other
shows the cumulative probabilities @«s), as shown in Fig. 9.16.

X A
Foss = Xoga —H
7
Bs)

v

Fig. 9.16: Normal probability paper [9]

A normal value X ~ (1 0) would then be represented on this paper by a
straight line passing through (@g(s) = 0.50, X = ) with a slope
X, = H
S
particular, at p = 0.84, s = 1 and the slope is then x g4 - 2.

= 0, where x, is the value of the variate at probability p. In
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If for a given set of data points the resulting graph shows a lack of
linearity, this would suggest that the underlying population is not a
gaussian, and vice versa.

The mean value and the standard deviation of the underlying
population may also be determined graphically from this straight line:

Mx = the value of X corresponding to @«(s) = 0.50

oy = slope of the line = x,, — 4.

9.3.3 The log-normal probability paper

The log-normal probability paper can be obtained from the normal
probability paper by simply changing the arithmetic scale for values of
the variate X (on the normal probability paper) to a logarithmic scale
(Figure 9.17). In this case, the standard normal variate becomes

In| —
s = % Xm = median of X (9.57)

Accordingly, the median x,, is simply the value of the variate on this line
corresponding to @, (s) = 0.50 whereas the parameter £ is given by the

slope of the line, i.e.

£ = é—ln( ;‘_p ] _ m(ifﬁ.} (9.58)
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zm T L - T Al T T T T T T L T T Ll
Lognormal { =.74'2%
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Fig. 9.17: Log-normal probability paper [9]

9.3.4 Construction of a probability plotting paper

As we have seen a probability plotting paper is constructed by linearizing
the cumulative density function of the distribution. As an example we
will use the well-known Weibull distribution. The cdf of the two-
parameter Weibull distribution is.

F.()=1- e_Gj (9.59)

We need to linearize this function into the form y =mx +b:

T

Infl - Fy ()] =i eﬂ(é]ﬂ N _(Ljﬂ
inf- - F (0} = B l”@
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1

-
y

y = fx—pBn(z) (9.60)
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Fig. 9.18: Weibull probability distribution paper {9]
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The estimate of #is simply the slope of the linearized line on the
Weibull probability plot.
To determine the estimate of 7, we have:

!

B
F,(f)=1- e_(?J - F(r)=1-¢" =0.632

Hence, 7 is the abscissa of the point on the straight line corresponding to
Fr(f)=0.632.
Figure 9.19 reports the exponential distribution probability paper.

0.98
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o
o

0.52
.48
0.40
0.32
0.24

0.16
0.08
0

Fig. 9.19: Exponential distribution probability paper [9]
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9.3.5 Testing the validity of an assumed distribution

When a theoretical distribution has been assumed, e.g. on the basis of the
data plotted on the corresponding probability paper, the validity of the
assumed distribution may be verified or disproved statistically by
goodness-of-fit tests.

9.3.5.1 Chi-square test

Consider a sample of » observed values of a random variable. The chi-
square goodness-of-fit test compares the observed frequencies
ny, By, ..., ng of k values of the variate with the corresponding

frequencies ¢, e,, ..., ¢, from the assumed theoretical distribution.

More precisely, we consider the distribution of the quantity:

k 2
Z—(n" ¢ 9.61)
i=l ei
which approaches the chi-square distribution with k& —1 degrees of
freedom as » — 0. However, if the parameters of the theoretical model
are unknown and must be estimated from the data, the above statement
remains valid if the degree of freedom is reduced by one for every
unknown parameter that must be estimated.

Let ¢ s be the random variable value corresponding to the

cumulative probability value (1-a) of the appropriate ;(/2, distribution

with f degrees of freedom (Figure 9.20). Then, an assumed theoretical
distribution is acceptable at the ‘significance level o’ if

k _ 2
Z(—”-e—) <o, (9.62)

i=1 €;

1
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k 2
. .. . n,—e; . .
The basis for this is that if E (’—’)— is a random variable
i=1 €;

H

approximately distributed as Z} , its value has a probability o of being

less than ¢4, 1.

v

Cl-a,f c

Figure 9.20: Chi-square distribution

In general, the y” - test for goodness of fit gives satisfactory results for
k> 5, e; > 5. Because of the arbitrariness in the choice of the significance
level o, the y°-test may not provide absolute information on the

validity of a specific distribution; a distribution may be acceptable at one
significance level o, but unacceptable at another one, a..

9.3.5.2 Kolmogorov-Smirnov test

The basic procedure for this test involves the comparison between the
experimental cumulative frequency and an assumed theoretical
distribution function.

If the discrepancy is large with respect to what is normally expected
from a given sample size, the theoretical model is rejected.
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For a sample of size n, we rearrange the set of observed data in
increasing order and construct the empirical cumulative distribution

function (Fig. 9.21):

0 x < x
k
Sn(x)= — X SX< Xy
n
1 xX2x,
S, (x), F(x) W
F(x)
S, (x)
0 > 5
X/ X2 X3 X4 Xn-1 Xn

Fig. 9.21: Empirical cumulative frequency vs. theoretical distribution function

In the Kolmogorov-Smimov test, the

maximum difference

D, = max|F (x)— S, (x)l between S,(x) and F(x) over the entire range

of X, is taken as the measure of discrepancy between the theoretical
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model and the observed data. Theoretically, D, is a random variable
whose distribution depends on n. We can define a critical value D as:

PID,<D%]=1-« (9.63)

Critical values D! at various significance levels « are tabulated in Table

9.2 for various values of n [9].
If D, < Dy, the proposed distribution is acceptable at the specified

significance level c.

The advantage of the Kolmogorov-Smirmov test over the chi-square
test is that it is not necessary to divide the data into intervals; hence
the problems associated with the chi-square approximation for small
¢; and/or small number of intervals £ would not appear with the
Kolmogorov-Smirnov test.

Table 9.2: Critical Values of D in the Kolmogorov-Smirnov Test [9]

) : 0.20 0.10 0.05 0.01
5 0.45 0.51 0.56 0.67
10 0.32 0.37 0.41 0.49
15 0.27 030 0.34 0.40
20 0.23 0.26 0.29 036
25 0.21 0.24 0.27 0.32
30 0.19 0.22 0.24 0.29
35 0.18 0.20 0.23 0.27
40 0.17 0.19 0.21 0.25
45 0.16 0.18 0.20 0.24
50 0.15 0.17 0.19 0.23

1.07 1.22 1.36 1.63

>50 T W I v
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9.4 Kaplan-Meier estimator of the survivor function

Let F,(t)denote the life distribution for a certain type of units. We

know the distribution to be continuous, but make no further assumption
about F,(t),i.e.anon parametric model.

Let ¢ denote the observed lifetime of unit j. On the basis of the
observed lifetimes of » units, j = I, 2, ..., n we want to estimate the
survival function,

R(t)=1-F,(1)

Then, the empirical cumulative distribution function is (Figure 9.22)

number of lifetimes <t

F ()= (9.64)
n
and the empirical reliability survival function (Figure 9.23)
- ~ mber of lifetimes > t
R=1-F@n="" L (9.65)

which is a step function decreasing by I/n at each observed failure time.

~ A
F

n

1/n =

Figure 9.22: Empirical cumulative distribution function
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v

Figure 9.23: Empirical survival function

The Kaplan-Meier estimator is regarded as the most direct non-
parametric estimator of the survival function. It is the only coherent
estimator of the survival function for censored tests [11].

The basic principle of the estimator is that being in good working
condition after + means i) being so already before ¢ and ii) not failing
at 7.

Let the time period [0, o] be divided into small intervals (u;, u;+/]
forj=1,2,...,n with #; = 0and the intervals short enough that we can
disregard the possibility that two or more units fail or are censored in the
same interval. Now let ¢ € (w;, u;+;]. Then,

R(t)=P(T > 1)

9.66
=P(T>u0)-P(T>ul|T>u0)-...-P(T>t|T>um) (9-66)

Since F,(t) is a continuous life distribution forall 20, P(T >u,) =
P(T > 0) = 1. Hence,

(9.67)
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where p,=PT>u

T>u,) j=01,2..ml

Jj+l
P, =PT>1T>u,) (9.68)

Kaplan-Meier’s idea is then that of estimating each single factor on the
right-hand side of (9.51) and thereafter use the product of these
estimators as an estimator of R(?).

The estimation procedure follows the steps reported below [11]:

1. If neither failure nor censoring occurs in(u;,%,,], then the same

number of units will be active at the start and at the end of this
interval. Then,

pj=1

2. Suppose that censoring of one unit occurs in (% Uy ;1. Then, due

to the assumption of short intervals, we may ignore the possibility
that another censoring or failure occurs in the same interval.
Accordingly, we record no failures in the intervals and

pj=1

3. Suppose that failures occur in (u, u;+;]. Due to the assumption of
short intervals we may ignore the possibility of more than one
failure occurring in this interval. Let n; denote the number of units at
risk (i.e. which are functioning and in observation) at the beginning
of the interval. The number of units at risk at the end is »; —-1.

Then,

Thus, the only intervals where the estimator p ; #1 are those in

which failure occurs. By increasing the number of intervals such
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that their length approaches zero (except for the last one which goes
to o), we see that the estimator p ; #1 only at the failure times, just

as in the empirical R.
From the above, it follows that we may disregard the intervals
where no failures occur. We then redefine (to simplify the notation):
n; = number of units at risk (functioning and in observation)
immediately before time £, 7 = 1, 2, ..., n.

The probability p; may now be estimated for infinitesimal intervals
around the #’s:

1 if acensoring occured at t,

n, -1 ) ) j=12 ..,n
if a failure occured at timet,

Then, we have the Kaplan-Meier estimator

R() =ﬁj)j =an - T ={t, of failure, t, <1} (9.69)
=0

jert j

The following properties of the Kaplan-Meier estimator are of relevance:

1.
2.

3.

It can be derived as a non parametric maximum likelihood estimator
It may account for data sets with ties, i.e. d; units failing at the same
time¢,i=1,2, .., n

—d

ﬁ(t) = Hnl_f

jer nj

It 1s a consistent estimator of R(f) under quite general conditions,
with estimated asymptotic variance
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A - 2 d :
vailkeo |-kl B =y

4. It has an asymptotic normal distribution, since it is a maximum
likelihood estimator. Hence, confidence limits for R(f) can be
determined using the normal approximation.

Example 9.6 [11]

Suppose that a test has been carried out as described above, with n = 16,
and the observed lifetimes are (given in months):

31.7 39.2 57.5 65.0 65.8 70.0 75.0 75.2
87.7 88.3 94.2 101.7 1058 1092 1100 130.0

The empirical distribution function ﬁn (1) is illustrated in Fig. 9.24. The
empirical survivor function Ié( t)=1- ﬁ'n (t) is illustrated in Fig. 9.25.

Lo - —

0.6 I

Fn(t)

0.4 [

-
0.0 +—r | S , e
0 20 40 60 80 100 120 140

Time t (months)

Fig. 9.24: Empirical distribution function I:“,,(t)
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10 g o e “
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0.6 -

01 1 L

0.2 - L‘
3

R(t)

0.0 — 1 7 T 7 i o T ¥ T T
0 20 40 60 80 100 120 140

Time t (months)

Fig. 9.25: Empirical survival function R(H)=1 —ﬁ‘n(t)

Next, let us show how to estimate R(f) from an incomplete data set with
censoring of type IV (Section 9.1.3). A set of » numbered units are

activated at time ?=0, and the censoring time for unit i, S, is

stochastic. Associated with unit 7 for i=1, 2, ..., n are two nonnegative
random variables, namely the lifetime 7, which would be observed if

unit ; where not exposed to censoring, called the potential lifetime, and
the time .S, when the unit is possibly censored. We will assume that the

vectors (71, S;) for i = 1, 2, ..., n, are iid. with a continuous
distributions. Further we assume that 7, and S, for i=1,2, ..., n are

independent with continuous marginal distribution. In this situation it is
only possible to record the smaller of 7; and S, for component i for i =

1,2, ..., n, though at the same time we know whether we are observing

a failure or a censoring.
Let us introduce

Y, =min(7}, §;) (9.70)

and the indicators
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1 if7,<S,
0, = . i=1,2,..,n (9.71)
0 if T, > S,

After the life test is terminated, we are left with the data set
(1},0)),(;,0,),....,(Y,,0,) (9.72)

The following Kaplan-Meier estimation procedure can be applied. Fix
t>0 andlet 2, <%, <...<t, denote the recorded functioning times,

either until failure or to censoring, ordered according to size. Let J,
denote the set of all indices j where 7,y < and £ represents a failure

time. Let »; denote the number of units, functioning and in observation
immediately before time L) J=12 ..,n Then, the Kaplan-Meier

estimator of R(?) is defined as

Rt =T]-

Jjed, J

n,—1
(9.73)
n

Example 9.7 [11]

We change the situation given in Example 9.6 so that only the recorded
lifetimes which are not starred (*) in Table 9.3 represent times to failure.
In Table 9.4, the Kaplan-Meier estimate is determined as a function of
time. In the time interval (0, 31.7) until the first failure, it is reasonable
to set ﬁ(t) =1. The estimate is displayed graphically by a Kaplan-Meier

plot in Fig. 9.26.
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Table 9.3: Computation of the Kaplan-Meier Estimate [11]

Rank j Im./erse Rank Orderec.l Fail};re and p; R(t(j))
n-j+1 Censoring Times f;
0 - - 1 1.000
1 16 317 15/16 0.938
2 15 39.2 14/15 0.875
3 14 57.2 13/14 0.813
4 13 65.0* 1 0.813
5 12 65.8 11/12 0.745
6 11 70.0 10/11 0.677
7 10 75.0* 1 0.677
8 9 75.2* 1 0.677
9 8 87.5* 1 0.677
10 7 88.3* 1 0.677
11 6 94.2* 1 0.677
12 5 101.7* 1 0.677
13 4 105.8 Ya 0.508
14 3 109.2* 1 0.508
15 2 110.0 423 0.254
16 1 130.0* 1 0.254

Note: Censoring times are starred(*)

Table 9.4: Kaplan-Meier Estimate as a Function of Time [11]

! R

0<t<317 =1

31.7<1<39.2 15/16=0.938

39.2<1<57.5 15/16-14/15=0.875
575<1<65.8 15/16-14/15-13/14=0.813
65.8<1<70.0 15/16-14/15:13/14-11/12=0.745

70.0<7<105.8

15/16-14/15-13/14-11/12-10/11=0.677

1058 <r< 110.0

15/16-14/15-13/14-11/12-10/11-3/4=0.508

110.0<¢

15/16-14/15-13/14-11/12-10/11-3/4-1/2=0.254
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We see from the equation (9.73) for the Kaplan-Meier estimator and also
from Figure 9.26 that I%(t) is a step function, continuous from the right,
that equals 1 at t=0. Ié(t) drops by a factor of (n; - 1)/n; at each failure
time #. The estimator Ié(t) does not change at the censoring times. The
effect of the censoring is, however, influencing the values of »; and hence
the size of the steps in R(?).

A slightly problematic point is that ﬁ(t) never reduces to zero
when the last time ¢, recorded is a censored time. For this reason ﬁ(t)

is usually taken to be undefined for ¢ > f,.

3
1.00 4
S
- Q.75
=
=]
-3
<
—  0.50 A
=,
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Z 0254
=
w
g M T A T S e
o] 50 100 150

time

Fig. 9.26: Kaplan-Meier plot of the estimated survival probability Ié(t) [11]

9.5 Reliability growth

It is common practice, during the development of a system, to make
engineering changes as the program develops. These changes are
generally made in order to correct design deficiencies and thereby to
increase reliability. This climination of design weakness is known as the

reliability growth.
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Reliability growth can be characterized by [12]:

1. Expressing the cumulative number of failures as a function of
operating time.

2. Expressing failure rate as a function of operating time

3. Expressing mean time between failures as a function of time.

A commonly used reliability growth model is the Duane model [10].
Using data from the development programs of several different and
complex equipments, Duane observed that the logarithms of observed

1
cumulative MTBFs, 5(—5 , was a linear function of time:
t

In9(t)=a+blnt (9.74)
where 9(1‘) reciprocal of the cumulative MTBF over the observation
period of operation [0, ], can be estimated as

) = Total number of failures H (¢)
Total operating period t

We can then also write In H (1) =—f1na + flnt, from which,

H()= (ijﬂ 9.75)

which describes a Non-Homogeneous Poisson-Process (NHPP) with
Weibull intensity

h(e)=H'(t)= (9.76)

The function A(f) has the same functional form of the instantaneous
hazard rate of the Weibull distribution. However, while the instantaneous
hazard rate is the conditional probability of failure at ¢ + A¢ given that
there was no failure prior to ¢ (Section 4.5.3), the present intensity
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function A(f) represents the unconditional probability of failure at time
t+ At

We then have:
1 . a’
—— = current MTBF at timet = (9.77)
h(z) B’

t : : . a?

¢(t) = —~ = cumulative MTBEF for the observation period [0,f] = ——
H(t) P
(9.78)
Ing(t)=Bina—(B—1)nt (9.79)

When the cumulative MTBF is plotted against the operating time on a
log-log paper, it falls on a straight line In ¢(t) =mlnt+q with:

m = Slope =1— 3, growth factor
q = Intercept = flna

The two cases which may occur are:

p<lI = reliability growth
p>1 = reliability degradation

The parameters of the Duane growth model, a and f, can be determined
either by estimation methods such as the maximum likelihood or by
graphical methods. Implicit in the model is the assumption that after
breakdown the system is returned to a state identical to that immediately
prior to failure.

9.5.1 Maximum likelihood estimation

Direct application of the maximum likelihood estimation on the failure
observation data leads to the following estimates of the parameters o
and # of the Duane Model:
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f=—=" (9.80)
< T
Zln(—)
i=1 ti
; T
a :W (981)

n = total number of failures
t;= failure time, i=1,2, ..., n

T = t, if the test terminates at time t,> t,, t, if the test terminates at
time t,

9.5.2 Least Square estimation

For the generic linear relation y = mx + g, the Least-Square estimation
method applied to the » observation pairs (x,., y,.), i=1,2,...,n, leads to
the following estimates:

"3 —[zx}

s g

m

(9.82)

q:
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Example 9.8 [12]
Consider the data given in Table 9.5.

Table 9.5: Reliability performance data.

(1) (2) (3) ) (%) (6)
Month of | Hours of | Cumulative No. of Cumulative | Cumulative
Operation | Operation Hours failures Number of MTBF

t failures H(¢) vH'()
1 541 541 3 3 180.3
2 1171 1712 5 8 214.0
3 1939 3651 4 12 304.3
4 2403 6054 1 13 465.7
S 1718 7772 2 15 518.1
6 2206 9978 2 17 586.9
7 1366 11244 3 20 562.2
8 1529 12873 0 20 643.7
9 1449 14322 2 22 651.0
10 1451 15773 2 24 657.2

To carry out a Duane analysis, the failure data can be arranged as in
columns 3 and 5 of Table 9.5. The cumulative MTBF in column 6 is
obtained by dividing the total number of failures by the total hours of
operation. Using the data from columns 3 and 6, Table 9.6 can be
constructed for the Least Square estimation of the slope and intercept
parameters of the Duane model (Egs. 9.82).
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Table 9.6: Reliability data for Least-Square estimation

In cum. Hours in cum. MTRF
Month of Operation ln[ - J
No. Int H(1)
x y Xy x
1 6.29 5.20 327 39.56
2 7.45 5.37 40.00 55.50
3 8.20 5.72 46.90 67.24
4 8.71 6.14 53.48 75.86
5 8.96 6.25 56.00 80.28
6 9.21 6.38 58.76 84.82
7 9.33 6.33 59.06 87.05
8 9.46 6.47 61 .21 89.49
9 9.57 6.48 62.01 91.59
10 9.67 6.49 62.76 93.51
z 86.85 60.83 532.89 764.90

Then,
Id n 2
ny x; —[in:| =10-764.90 - 86.85> = 7649 — 7543 =106
i=1 i=1

= 10-532.98-86.85-60.83 45.8

=0.432
106 106
764.90-60.83-532.89-86.85 247.37
q= = =233
106 106

The Least-Square estimates of & and f can be calculated as:

m=1-=0432 = B =1-0.432=0.568

233

g= flna = a =e%% =60.47
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The growth factor 1 — ,B is then 0.432. The current MTBF at time ¢ is
given by:

1 a”

and the current failure rate at time ¢ is given by

Hey =L

aﬂ .

For example, the current failure rate at the end of 1 month of operation
(541 hours) is:

~0.432 .
h(54]) = 0_'.5% =0.05526 - 5417°2 =3.645 fc;llures
60.47" 10° hours

and the current failure rate at the end of 10 months of operation
(i.e., 15773 hours) is:

failures

h(15773) = 0.05526 -15773 %% = 0.849 -
10° hours

Thus, there is an improvement of ﬁs—;—ffﬁ -100=76.7%.

The Duane plot with estimated current MTBF and cumulative
MTBEF lines are given in Fig. 9.27 [9].
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‘ RELIABILITY DATA (LEAST SQUARE
ESTIMATION)

p—— EXP(7.07) = 1176.15
} CURRENT FAILURE RATE =1/1176.15
= 0.85 Failures per 103 HRS.

LOG CUM. MTBF
i

9 10
LOG CUM. OPERATING TIME - HOURS

1

[+)]
~3
[« ]

Fig. 9.27: Duane plot for the least square estimation [9]

Example 9.9 [12]

The observed number of failures in a certain steam injection system on
an oil production platform are given in Table 9.7. Failure of this system
causes production stoppage, whose cost is estimated at £10,000 on
average (this includes cost of lost production and labour). The cost of
complete overhaul including lost production, replacement and labour is
estimated to be £50,000. What is the optimum overhaul policy?

Table 9.7: Observed failure for steam injection system

Month of Operation Observed Number of Failures

NN B W N =
~N W N e
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Solution:

Table 9.8 and Table 9.9 report the data for the Duane model parameters
estimation by Least-Square. The number » is equal to 6 since there are
only 6 intervals with failures.

Table 9.8: Optimum overhaul policy for steam injection system

Month of Observed Cumulative Cumulative
Operation Nun.lber of Nun.nber of MTBF
Failures Failures (months)
1 0 0 -
2 1 1 0.05
3 2 3 1.00
4 5 8 0.50
5 7 15 0.33
6 12 27 0.22
7 16 43 0.163
Table 9.9: Least Square estimation data
No. X y Xy x?
1 - - - -
2 0.69 0 0 0.48
3 1.10 0 0 0.21
4 1.39 -0.69 -0.96 1.93
5 1.60 -1.11 -1.78 2.56
6 1.79 -1.51 -2.70 3.20
7 1.95 -1.81 -3.53 3.80
Z 8.52 -5.12 -8.97 13.18

The parameters estimates are (Eqs. 9.82):
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6:(-8.97)-8.52(-5.12) -53.82+43.62 -102

= =-1
6*13.18 -8.52° 10.2 10.2

Slope =m =

13.8-(-5.12)-(-8.97)-8.52  -70.66+76.42 5.76

= =0.565
10.2 10.2 10.2

Intercept =q =

from which,

B 2
The cumulative number of failures is given by H (t) = (L) = (é] .
o .

Let C; be the cost associated with the breakdown and C, be the cost
associated with overhaul. Then, the total cost of operation for a time
period ¢ is given by:

C(t)=CH(t)+ C,

and the cost per unit operating time is given by:

_C()_CIH( )+C2
y(t)= ; = i

where }/(t) is the cost/unit operating time,

y@=3&31z2

t
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In order to minimize }/(t), one has to solve the following equation

ﬂC/
o

> cw VR Y
. a’C, /5
e

For the given data:
C,;=10000; (C,=50000; C,/C, =5, £=2; a=133;

and the optimal overhaul time is:

, 572
t =1.33 —I-J = 2.97 months

The equipment should be overhauled approximately once in every three
months. The corresponding cost/unit operating time is given by

10000'(3/1. 33)2 +50000 33626
3 month

y3)=

Since it is not always practicable to schedule the overhaul at the exact
optimum, it is useful to examine the sensitivity of the cost curve with
respect to the time between overhauls (Table 9.10 and Fig. 9.28).
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Table 9.10: Cost Curve

Expected Running cost Cost per
Month )
No. of Failures C HO + G, Unit Time
of Operation
(H@) £000) (£009)

0 -

1 0.57 55.7 55.7
2 2.26 72.6 36.3
3 5.09 100.9 33.6
4 9.05 140.5 35.1
5 14.10 191.0 38.2
6 20.35 253.5 423
7 27.70 327.0 46.7

60

[¢]
(=]

E
o

ed
[

Cost per unit operating time
= 8

«

0 2 4 6 8 10
Overhaul Schedule (Months)

Fig. 9.28: Optimum overhaul policy for the steam injection system

9.6 Reliability prediction from stress-strength models
9.6.1 Imtreduction

The prediction of reliability from failure statistics does not concern itself
with what happens inside the unit, although it is intuitive that a unit fails
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when the stress imposed exceeds the strength. To properly describe such -
failure mechanism quantitatively, stress-strength models need to be
introduced [13].

The stress on a unit is the total sum of internal (created by the
operational use) and external stresses (imposed by the environmental
conditions of use).

Obviously, the stress and strength operating on identical units are
not fixed quantities and vary from unit to unit even if the best quality
control procedures are used. Therefore, stress and strength should be
considered as random variables. In the following, an outline is given of
the basis for computing the component reliability from the knowledge of
the distributions associated with these random variables.

In the past, the concept of safety factors has been widely used in the
design of engineering systems:

ultimate strength

safety factor =

working stress

where the ultimate strength and the working stress are considered as
fixed known values, with no consideration given to their variability.

To illustrate this concept, let us assume that the stress or load L
applied to a component is normally distributed with density function f;(/)
characterized by a mean 4 and a standard deviation oy (Fig. 9.29). The
strength of the unit has been determined to be S;: thus, the unit may fail
only when the stress acting upon it is greater than S;. The probability of
failure is then given by [13]:

F=P[L>S,]= 0} £, (L)dl (9.83)

5
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Fig. 9.29: Reliability from Stress-Strength Model

Equation (9.83) gives the unreliability of a unit whose strength is a
known, invariant value S§;. When the variability of both stress and
strength is taken into considerations, the probability of failure of a unit
depends on the area of overlap between the distributions of the stress and
strength random variables (Fig. 9.30).

A
D,
). 55 Stress Strength
Jil) Is(s)
oy, os
Hr Us LS

Interference Area

Fig. 9.30: Probability of Failure from Stress-Strength Distributions
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To enhance the reliability of a unit, one can then (Figs. 9.31)

a)  Shift apart the stress and strength distributions

b) Reduce the variability of stress by a better regulation of stress and
control of the environmental conditions

c) Reduce the variability of strength by stricter quality control during
the production phase.

L0, fits) 4 Higher derating Higher safety factor
’ «— s
as
oL
2z L

Fig. 9.31a: Improving Reliability of a Unit using derating and safety factors

»
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s
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»

LS

Fig. 9.31b: Improving Reliability of a Unit using stress regulation
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Fig. 9.31c: Improving Reliability of a Unit using better quality control

In quantitative terms, the definition of the safety factors is given by:

sp=SL (9.84)

My

where no account is given to the variability of stress since no
consideration is given to u ; However, contrary to the general belief, a
high safety factor does not necessarily lead to a reliable design. It
becomes, therefore, necessary to study how the reliability of a unit can be
computed when both stress and strength are considered as random
variables with given density functions. This approach leads to economic
and reliable designs of engineering systems, eliminating the risk of over-
designing.

Another reason to base reliability predictions on stress-strength
models is the dependence on time. Whereas the stress remains more or
less the same, except for its spread, the strength of a unit varies with
time. Usually strength decreases in time due to wear and tear, corrosion,
metal fatigue and many other causes. The effect of all this is to reduce
the mean of the strength and the spread of its distribution (Fig. 9.32).
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0<t <t

Fig. 9.32: Degradation of Strength of a Unit Over Time

9.6.2 Internal and external causes of stress

The increase of the stress in a unit can be due to either internal or
external causes. One of the major unreliability causes is the poor thermal
transfer. In the majority of cases, the fault does not lie in the design but
in not having given adequate attention to the heat generated within the
components. If adequate cooling of the components inside the equipment
has not been planned, the component might experience a building up of
hot spots leading to higher localized stresses. This may even be due to
maintenance personnel’s failing to replace clocked air filters. In any case,
whatever the cause, poor heat transfer may lead to physical damage or
accelerated chemical reactions, which affect the material’s properties.



214 9 Estimation of Reliability Parameters from Experimental Data

Similarly, a sudden change in temperature or rapidly changing
temperature cycles produce additional stresses on components. Effects of
thermal shocks induce stresses, which may lead to loosening of solder
joints, cracking, delamination, etc.

Furthermore, the natural frequency of components must not be
overlooked since resonance may occur if the natural frequency is within
the vibration frequency range. Once the resonance occurs it can cause
deflection and may increase stresses beyond acceptable limits.

Excessive vibrations themselves, due to worn out bearings or
misalignments, can deteriorate mechanical strength and cause fatigue or
overstress in components.

Electromagnetic radiations and electrostatic discharges can also
cause excessive electrical stresses on components and subsystems.

In nuclear technology applications, radiation also affects the
properties of materials by altering their atomic or molecular structure.

Besides these internal factors, a system or equipment is also
subjected to many external environmental factors, which may greatly
impair its proper functioning. These factors depend on climatic
conditions such as daily maximum and minimum temperatures and their
variations, on altitude, on rain, on humidity, on sand or dust, on
atmospheric salinity, etc. All these factors increase the stress in the
components. Temperature and humidity are major factors.

9.6.3 Physics of failures

As mentioned before, the strength S of a component is a random variable
and varies not only from batch to batch of the production line of a given
unit but also decreases with time. Thus, the failure occurs when overtime
the strength becomes less than the applied load. To derive the reliability
model we must then know the law of decrease in time of the strength,
S(#), and its initial value, Sp.



9.6 Reliability prediction from stress-strength models 215

9.6.4 Reliability from stress-strength distributions

The reliability of a unit is the probability that the strength S is greater
than the stress or load L for all possible values of the load L [13]:

R =_£fL(l)UJﬁ(S)dS}d’ (9.85)

%{_/

Probability of the
strength § > | =1-F(])

or

R= [/, (s){ 7. (l)dl}ds

-
Probability of the load
L<s= FL(S)

(9.86)

If we express A =8 — L ,then S = A + L and
R=P[A20] = [f,(8)dS
0

21 d
Oj[ Oj f.(8+0)f.(1 )dl} 5 057

_——

~"

1(8)
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Appendix A: Table of Standard Normal Cumulative
Distribution
¢ 1
1 & e
F(&)=—= Ie 2 dx
2 2,

3 F(£) 3 F(¢£) ¢ F($)
0.00 | 0.500000 0.50 | 0.691463 1.00 | 0.841345
0.01 | 0.503989 0.51 | 0.694975 1.01 | 0.843752
0.02 | 0.507978 0.52 | 0.698468 1.02 | 0.846136
0.03 | 0.511966 0.53 | 0.701944 1.03 | 0.848495
0.04 | 0.515954 0.54 | 0.705401 1.04 | 0.850830
0.05 | 0.519939 0.55 | 0.708840 1.05 | 0.853141
0.06 | 0.523922 0.56 | 0.712260 1.06 | 0.855428
0.07 | 0.527904 0.57 | 0.715661 1.07 | 0.857690
0.08 | 0.531882 0.58 | 0.719043 1.08 | 0.859929
0.09 | 0.535857 0.59 | 0.722405 1.09 | 0.862143
0.10 | 0.539828 0.60 | 0.725747 1.10 | 0.864334
0.11 | 0.543796 0.61 | 0.729069 1.11 | 0.866500
0.12 | 0.547759 0.62 | 0.732371 1.12 | 0.868643
0.13 | 0.551717 0.63 | 0.735653 1.13 | 0.870762
0.14 | 0.555671 0.64 | 0.738914 1.14 | 0.872857
0.15 | 0.559618 0.65 | 0.742154 1.15 | 0.874928
0.16 | 0.563500 0.66 | 0.745374 1.16 | 0.876976
0.17 | 0.567494 0.67 | 0.748572 1.17 | 0.878999
0.18 | 0.571423 0.68 | 0.751748 1.18 | 0.881000
0.19 | 0.575345 0.69 | 0.754903 1.19 | 0.882977
0.20 | 0.579260 0.70 | 0.758036 1.20 | 0.884930
0.21 | 0.583166 0.71 | 0.761148 1.21 | 0.886860
0.22 | 0.587064 0.72 | 0.764238 1.22 | 0.888767
0.23 | 0.590954 0.73 | 0.767305 1.23 | 0.890651
0.24 | 0.549835 0.74 | 0.770350 1.24 | 0.892512
0.25 | 0.598706 0.75 | 0.773373 1.25 | 0.894350
0.26 | 0.602568 0.76 | 0.776373 1.26 | 0.896165
0.27 | 0.606420 0.77 | 0.779350 1.27 | 0.897958
0.28 | 0.610262 0.78 | 0.782305 1.28 | 0.899727
0.29 | 0.614092 0.79 | 0.785236 1.29 | 0.901475
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3 F(¢) 3 F(¢) 3 F(¢)
0.30 0.617912 0.80 0.788145 1.30 0.903199
0.31 0.621720 0.81 0.791030 1.31 0.904902
0.32 0.623517 0.82 0.793892 1.32 0.906583
0.33 0.629301 0.83 0.796731 1.33 0.908241
0.34 0.633072 0.84 0.799546 1.34 0.909877
0.35 0.636831 0.85 0.802337 1.35 0.911492
0.36 0.640576 0.86 0.805105 1.36 0.913085
0.37 0.644309 0.87 0.807850 1.37 0.914656
0.38 0.648027 0.88 0.810570 1.38 0.916207
0.39 0.651732 0.89 0.813267 1.39 0.917735
0.40 0.655422 0.90 0.815940 1.40 0.919243
0.41 0.659097 0.91 0.818589 1.41 0.920730
0.42 0.662757 0.92 0.821214 1.42 0.922196
0.43 0.666402 0.93 0.823815 1.43 0.923641
0.44 0.670032 0.94 0.826391 1.44 0.925066
0.45 0.673645 0.95 0.828944 1.45 0.926471
0.46 0.677242 0.96 0.831473 1.46 0.927855
0.47 0.680823 0.97 0.833977 1.47 0.929219
0.48 0.684387 0.98 0.836457 1.48 0.930563
0.49 0.687933 0.99 0.838913 1.49 0.931888
1.50 0.933193 2.00 0.977250 2.50 0.993790
1.51 0.934478 2.01 0.977784 2.51 0.993963
1.52 0.935744 2.02 0.978308 2.52 0.994132
1.53 0.936992 2.03 0.978822 2.53 0.994267
1.54 0.938220 2.04 0.979325 2.54 0.994457
1.55 0.939429 2.05 0.979818 2.55 0.994614
1.56 0.940620 2.06 0.980301 2.56 0.994766
1.57 0.941792 2.07 0.980774 2.57 0.994915
1.58 0.942947 2.08 0.981237 2.58 0.995060
1.59 0.944083 2.09 0.981691 2.59 0.995201
1.60 0.945201 2.10 0.982136 2.60 0.995339
1.61 0.946301 2.11 0.982571 2.61 0.995473
1.62 | 0.947384 2.12 | 0.982997 2.62 | 0.995604
1.63 0.948449 2.13 0.983414 2.63 0.995731
1.64 0.949497 2.14 0.983823 2.64 0.995855
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d F(¢) 3 F($) ¢ F($)
1.65 0.950529 2.15 0.984223 2.65 0.995975
1.66 0.951543 2.16 0.984614 2.66 0.996093
1.67 0.952540 2.17 0.984997 2.67 0.996207
1.68 0.953521 2.18 0.985371 2.68 0.996319
1.69 0.954486 2.19 0.985738 2.69 0.996427
1.70 0.955435 2.20 0.986097 2.70 0.996533
1.71 0.956367 2.21 0.986447 2.71 0.996636
1.72 0.957284 2.22 0.986791 2.72 0.896736
1.73 0.958185 2.23 0.987126 2.73 0.996833
1.74 0.959071 2.24 0.987455 2.74 0.996928
1.75 0.959941 2.25 0.987776 2.75 0.997020
1.76 0.960796 2.26 0.988089 2.76 0.997110
1.77 0.961636 2.27 0.988396 2.77 0.997197
1.78 0.962426 2.28 0.988696 2.78 0.997282
1.79 0.963273 2.29 0.988989 2.79 0.997365
1.80 0.964070 2.30 0.989276 2.80 0.997445
1.81 0.964852 2.31 0.989556 2.81 0.997523
1.82 0.965621 2.32 0.989830 2.82 0.997599
1.83 0.966375 2.33 0.990097 2.83 0.997673
1.84 0.967116 2.34 0.990358 2.84 0.997744
1.85 0.967843 2.35 0.990613 2.85 0.997814
1.86 0.968557 2.36 0.990863 2.86 0.997882
1.87 0.969258 2.37 0.991106 2.87 0.997948
1.88 0.969946 2.38 0.991344 2.88 0.998012
1.89 0.970621 2.39 0.991576 2.89 0.998074
1.90 0.971284 2.40 0.991802 2.90 0.998134
1.91 0.971933 2.41 0.992024 2.91 0.998193
1.92 0.972571 2.42 0.992240 2.92 0.998250
1.93 0.973197 2.43 0.992451 2.93 0.998305
1.94 0.973810 2.44 0.992656 2.94 0.998359
1.95 0.974412 2.45 0.992857 2.95 0.998411
1.96 0.975002 2.46 0.993053 2.96 0.998462
1.97 0.975581 2.47 0.993244 2.97 0.998511
1.98 0.976148 2.48 0.993431 2.98 0.998559
1.99 0.976705 2.49 0.993613 2.99 0.998605
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3 F($) 3 F(¢) 3 1-F($)
3.00 0.998630 3.50 0.999767 4.00 | 0.316712E-04
3.01 0-.998694 3.51 0.999776 4.05 1 0.256088E-04
3.02 0.998736 3.52 0.999784 4,10 | 0.206575E-04
3.03| 0.998777 3.53 0.999792 4,15 | 0.166238E-04
3.04 0.998817 3.54 0.999800 4.20 ) 0.133458E-04
3.05 0.998856 3.55 0.999807 4.25 | 0.106883E-04
3.06 1 0.998893 3.56 1 0.999815 4.30 | 0.853906E-05
3.07 | 0.998930 3.57 | 0.999821 4.35 | 0.680688E-05
3.08 0.998965 3.58 0.999828 4.40 | 0.541234E-05
3.09 0.998999 3.59 0.999835 4.45 | 0.429351E-05
3.10 | 0.999032 3.60 | 0.999841 4.50 | 0.339767E-05
3.11 0.999065 3.61 0.999847 4.55 | 0.268230E-05
3.12 | 0.999096 3.62 0.999853 4.60 | 0.211245E-05
3.13 0.999126 3.63 0.999858 4.65 | 0.165968E-05
3.14 0.999155 3.64 0.999864 4,70 | 0.130081E-05
3.15 0.992184 3.65 0.999869 4.75 | 0.101708E-05
3.16| 0.999119 3.66 | 0.999874 4.80 | 0.793328E-06
3.17 0.999238 3.67 0.999879 4,85 | 0.617307E-06
3.18 0.999264 3.68 0.999883 4.90 | 0.479183E-06
3.19 | 0.999289 3.69 | 0.999888 4.95 1 0.371067E-06
3.20| 0.999313 3.70 0.999892 5.00 | 0.286652E-06
3.21 0.999336 3.71 0.999806 5.10 1| 0.169827E-06
3.22 | 0.999359 3.72 | 0.999900 5.20 | 0.996443E-07
3.23 | 0.999381 3.73 | 0.999904 5.30 | 0.579013E-07
3.24 0.999402 3.74 0.999908 5.40 | 0.333204E-07
3.25 | 0.999423 3.75 | 0.99%8912 5.50 1| 0.189896E-07
3.26 | 0.999443 3.76 | 0.999915 5.60 | 0.107176E-07
3.27 0.999462 3.77 0.999918 5.70 | 0.599037E-08
3.28 0.999481 3.78 0.999922 5.80 | 0.331575E-08
3.29 | 0.999499 3.79 | 0.999925 5.90 1| 0.181751E-08
3.30| 0.99951¢6 3.80 | 0.999928 6.00 | 0.986588E-09
3.31 0.999533 3.81 0.999931 6.10 | 0.530343E-09
3.32 | 0.999550 3.82 0.999933 6.20 | 0.282316E-09
3.33 | 0.999566 3.83 | 0.999936 6.30 | 0.148823E-09
3.34 0.999581 3.84 0.999938 6.40 | 0.77688 E-10
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¢ F(£) 3 F(¢) ¢ 1-F (&)
3.35] 0.99959¢6 3.85 0.999941 6.50 | 0.40160 E-10
3.36 | 0.999610 3.86 | 0.999943 6.60 | 0.20558 E-10
3.37 | 0.999624 3.87 | 0.999946 6.70 | 0.10421 E~10
3.38 | 0.999637 3.88 | 0.999948 6.80 | 0.5231 E-11
3.39| 0.999650 3.89 0.9999850 6.90 0.260 E-11
3.40 0.999663 3.90 0.999952 7.00 0.128 E-11
3.41 1 0.999675 3.91 | 0.999954 7.10 0.624 E-12
3.42 0.999687 3.92 0.999956 7.20 0.301 E-12
3.43 | 0.999698 3.93 0.999958 7.30 0.144 E-12
3.44 0.999709 3.94 0.999959 7.40 0.68 E-13
3.45 0.999720 3.95 0.999961 7.50 0.32 E-13
3.46 | 0.999730 3.96 | 0.999963 7.60 0.15 E-13
3.47 | 0.999740 3.97 0.999964 7.70 0.70 E-14
3.48 | 0.998749 3.98 | 0.999966 7.80 0.30 E-14
3.49 | 0.999758 3.99 0.999967 7.90 0.15 E-14
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Appendix B: Table of Chi-Square Cumulative Distribution
2
2 (/)

f\a | 0.995| 0.99 | 0.975] 0.95 | 0.90 0.10 0.05 0.025 0.01 0.005
1 — -—— | 0.001{ 0.004 | 0.016 [ 2.706 3.841 5.024 6.635 7.879
2 0.010 [ 0.020 | 0.051 § 0.103 | 0.211 | 4.605 5.991 7.378 9.210 | 10.597
3 0.072  0.115] 0.216 | 0.352 ] 0.584 [ 6.251 7.815 9.348 | 11.345} 12.838
4 0.207 | 0.297 | 0.484 | 0.711 ] 1.064 | 7.779 0.488 | 11.143 ) 13.277 | 14.860
5 0.412 | 0.554 | 0.831 | 1.145} 1.610 | 9.236 | 11.070 j 12.833 | 15.086 | 16.750
6 0.676 | 0.872 [ 1.237 | 1.635| 2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548
7 0.989 | 1.239  1.650 | 2.167 | 2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278
8 1.344 | 1.646] 2.180 | 2.733 | 3.490 | 13.362 | 15.507 [ 17.535 | 20.090 | 21.955
9 1.735 | 2.088 ) 2.700 | 3.325 | 4.168 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589

10 | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188
11 | 2.603 | 3.053 | 3.816 | 4.575 | 5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757
12 | 3.074 | 3.571 | 4.404 | 5.226 | 6.304 | 18.549 | 21.026 | 23.337 | 26.217 | 28.300
13 | 3.565§ 4.107 [ 5.009 | 5.892 | 7.042 | 19.812 | 22.362 { 24.736 | 27.688 | 29.819
14 | 4.075 ] 4.660 | 5.629 | 6.571 | 7.790 | 21.064 | 23.685 { 26.119 | 29.141 | 31.319
15 | 4.601 | 5.229 | 6.262 | 7.261 | 8.547 | 22.307 | 24.9% | 27.488 | 30.578 | 32.801
16 | 5.142 | 5.812 | 6.908 | 7.962 | 9.312 | 23.542 | 26.296 { 28.845 | 32.000 | 34.267
17 | 5.697{ 6.408 | 7.564 | 8.672 | 10.085{ 24.769 | 27.587 | 30.191 | 33.409 | 35.718
18 § 6.265 7.015 | 8.231 | 9.390 | 10.865] 25.989 | 28.869 | 31.526 | 34.805 | 37.156
19 | 6.844 | 7.633 | 8.907 [ 10.117| 11.651| 27.204 | 30.144 | 32.852 | 36.191 | 38.582
20 | 7.434 | 8.260 | 9.591 [10.851)12.443| 28.412 | 31.410 { 34.170 | 37.566 | 39.997
21 | 8.034} 8.897 [ 10.283| 11.591 13.240] 29.615 | 32.671 | 35.479 | 38.932 | 41.401
22 | 8.643 | 9.542 [ 10.982|12.338| 14.041| 30.813 | 33.924 | 36.781 | 40.289 | 42.7%
23 | 9.260 [ 10.196 11.689| 13.091 | 14.848| 32.007 | 35.172 | 38.076 | 41.638 | 44.181
24 | 9.886 | 10.856( 12.401| 13.848( 15.659| 33.196 | 36.415 | 39.364 | 42.980 | 45.559
25 (10.520(11.524{13.120( 14.611| 16.473| 34.382 | 37.652 | 40.646 | 44.314 | 46.928
26 (11.160(12.198( 13.844(15.379| 17.292| 35.563 { 38.885 | 41.923 | 45.642 | 48.2%0
27 |11.808|12.879| 14.573( 16.151| 18.114| 36.741 | 40.113 | 43.195 | 46.963 | 49.645
28 (12.461(13.565| 15.308 | 16.928| 18.939| 37.916 | 41.337 | 44.461 | 48.278 | 50.993
29 | 13.121|14.256( 16.047(17.708| 19.768 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336
30 (13.787(14.953| 16.791{ 18.493| 20.599| 40.256 | 43.773 | 46.979 | 50.892 | 53.672
40 [20.707]22.164| 24.433( 26.509{ 29.051| 51.805 | 55.758 | 59.342 | 63.691 | 66.766
50 | 27.991|29.707( 32.357{ 34.764| 37.689| 63.167 | 67.505 | 71.420 | 76.154 { 79.490
60 | 35.534(37.485| 40.482] 43.188{ 46.459] 74.397 | 79.082 { 83.298 | 88.379 | 91.952
70 |43.275]45.442| 48.758 51.739( 55.329 85.527 | 90.531 | 95.023 | 100.425} 104.215
80 |51.172]53.540| 57.153| 60.391| 64.278{ 96.578 | 101.879| 106.629] 112.329 [ 116.321
90 |[59.196| 61.754| 65.647} 69.126| 73.291 | 107.565 | 113.145] 118.136 | 124.116 | 128.299
100 | 67.328] 70.065| 74.222| 77.929| 82.358| 118.498 | 124.342 | 129.561 | 135.807 | 140.169
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AN INTRODUCTION TO THE BRSICS OF RELIABILITY AND RISH ANRLYSIS

The necessity of expertise for tackling the complicated and multidisciplinary issues of
safety and risk has slowly permeated into all engineering applications so that risk analysis
and management has gained a relevant role, both as a tool in support of plant design and as
an indispensable means for emergency planning in aceidental situations. This entails the
acquisition of appropriate reliability modeling and risk analysis tools to complement the basic

and specific engineering knowledge for the technological area of application.

Aimed at providing an organic view of the subject. this book provides an introduction to
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the principal concepts and issues related to the safety of modern industrial activities. It

also illustrates the classical techniques for reliability analysis and risk assessment used in

current practice.
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