


AN INTROOUCTION TO THE BASICS 
OF REllABlllTY RHO RISK ANALYSIS 



SERIES ON QUALITY, RELIABILITY AND ENGINEERING STATISTICS 

Series Editors: M. Xie (National University of Singapore) 
T. Bendell (Nottingham Polytechnic) 
A. P. Basu (University of Missouri) 

Published 

VOl. 1: 

VOl. 2: 

Vol. 3: 

VOl. 4: 

Vol. 5:  

Vol. 6: 

Vol. 7: 

Vol. 8: 

VOl. 9: 

Software Reliability Modelling 
M. Xie 

Recent Advances in Reliability and Quality Engineering 
H. Pham 

Contributions to Hardware and Software Reliability 
P. K. Kapur, R. 6. Garg and S. Kumar 

Frontiers in Reliability 
A. P. Basu, S. K. Basu and S. Mukbopadhyay 

System and Bayesian Reliability 
Y. Hayakawa, T. Irony and M. Xie 

Multi-State System Reliability 
Assessment, Optimization and Applications 
A. Lisnianski and G. Levitin 

Mathematical and Statistical Methods in Reliability 
B. H. Lindqvist and K. A. Doksum 

Response Modeling Methodology: Empirical Modeling for Engineering 
and Science 
H. Shore 

Reliability Modeling, Analysis and Optimization 
H. Pham 

Vol. 10: Modern Statistical and Mathematical Methods in Reliability 
A. Wilson, S. Keller-McNulty, Y. Armuo and N. Limnios 

Vol. 1 1 : Life-Time Data: Statistical Models and Methods 
J. V. Deshpande and S. G. Purohit 

Vol. 12: Encyclopedia and Handbook of Process Capability Indices: 
A Comprehensive Exposition of Quality Control Measures 
W. L. Pearn and S. Kotz 



Series in Quality, Reliability and Engineering Statistics VO I 1 

AN INTRODUCTION TO THE BASICS 
OF R E l l A B l l l T Y  AND RlSH ANAlYS lS  

Enrico Zio 
Polytechnic of Milan, Italy 

World Scientific Y 
N E W  J E R S E Y  * L O N D O N  - S I N G A P O R E  * B E l J l N G  * S H A N G H A I  * H O N G  K O N G  - T A I P E I  * C H E N N A I  

13



Published by 

World Scientific Publishing Co. Re. Ltd. 
5 Toh Tuck Link, Singapore 596224 
USA ofice: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 
UK ofice: 57 Shelton Street, Covent Garden, London WC2H 9HE 

British Library Catalognhgin-Publication Data 
A catalogue record for this book is available from the British Library. 

Series on Quality, Reliability and Engineering Statistics - Vol. 13 
AN INTRODUCTION TO THE BASICS OF RELIABILITY AND RISK ANALYSIS 

Copyright Q 2007 by World Scientific Publishing Co. Re. Ltd. 
All rights reserved. This book, or parts thereoJ may not be reproduced in any form or by any means, 
electronic or mechanical, including photocopying, recording or any information storage and retrieval 
system now known or to be invented, without written permission from the Publisher. 

For photocopying of material in this volume, please pay a copying fee through the Copyright 
Clearance Center, lnc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to 
photocopy is not required from the publisher. 

ISBN-I 3 978-981-270-639-3 
ISBN-10 981-270-639-9 

Printed in Singapore by World Scientific Printers (S)  Pte Ltd 



l o  my hye team mem6ers: GWrgia, Aurora, Cecilia andMatteo 

l o  my work team mem6ers: my studenb andcolh6orators 

Milano, 21 December 2006 



This page intentionally left blankThis page intentionally left blank



About the Book 
This book introduces the principal concepts and issues related to the 
safety of modem industrial activities and presents the classical 
techniques for reliability analysis and risk assessment used in the current 
practice. It is aimed at providing an organic view of the subject. 

The contents of the book comprise: i) a basic illustration of some 
methods of system analysis commonly used in practice for the 
identification of the hazards associated to industrial plants and processes; 
ii) a review of the basics of probability theory, tailored to its application 
to reliability analysis and risk assessment; iii) an overview of the basics 
of reliability, availability and maintainability applied to standard system 
configurations, such as series, parallel, stand-by and others; iv) a 
presentation of the fault tree and event tree analysis methods, which 
constitute powerful tools widely used in practice for the reliability and 
risk assessment of complex systems; v) a review of the statistical 
methods for the estimation of failure rates; vi) a sketch of some 
modelling techniques of reliability growth and prediction. 

The book can serve as any senior undergraduate or post-graduate 
university course on the subject or as reference for the initiation of young 
researchers to the field. In this view, several numerical examples are 
provided when appropriate, as guide for the comprehension. 
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- 
Introduction 

The necessity of expertise for tackling the complicated and 
multidisciplinary issues of reliability and risk analysis has slowly 
permeated into all engineering applications, with risk analysis and 
management gaining a relevant role both as a tool in support of plant 
design and operation, and as an indispensable means for emergency 
planning in accidental situations. 

Failure is an unavoidable phenomenon in all technological products 
and systems. From the scientific and engineering point of view, the 
investigation of the uncertain and ‘obscure’ domain of failures entails the 
exploration of the functional and physical limits of systems, in an effort 
to understand how, why and when a device may not function properly. In 
this respect, the required approach is complementary to the traditional 
engineering viewpoint which focuses on how and when a machine 
functions in an optimal way. 

Whatever particular failure one is considering, proper control and 
management of it become essential. Areas of application which involve 
failure-oriented and failure-driven aspects are Reliability, Availability, 
Maintainability, Safety (RAMS), Risk, Quality control (QC), Fault 
Detection and Identification (FDI), security and others. As such, failure 
analysis presents a strong connotation of multi-disciplinarity which 
significantly adds to its inherent difficulty. Hence, these failure-oriented 
disciplines have become more and more important and closely connected 
so as to require an integrated view. This entails the acquisition of 
appropriate modeling and analysis tools as complement to the basic and 
specific engineering knowledge for the technological area of application. 

The present lecture notes draw from the specialized literature to 
address the above issues related to the safety of modern industrial 
activities and illustrate the classical techniques available for the 
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2 1 Introduction 

evaluation, the management and the control of the associated risks. The 
motivation behind the effort of editing such notes derives from the need 
to offer a more organic view of the subject to the students who are 
attending my courses. In this sense, the contents are limited to the topics 
I teach in the classroom and are thus certainly not exhaustive of the very 
extensive subject of reliability and risk analysis and surely lacking in 
many ways. In any case, I believe that they can be of use in any senior 
undergraduate university course on the subject or as basis for the 
initiation of young researchers to the field. To this aim, several numerical 
examples are provided when appropriate, for ease of understanding. 

Enrico Zio 
Milano, December 2006 



M 
Basic Concepts of Safety and Risk Analysis 

2.1 

The subject of risk has become very popular in the last few years and is 
much talked about at all levels of industry. We shall first give a 
definition of risk in qualitative terms and then translate it in quantitative 
terms [5]  in the following Section. 

A first, intuitive observation comes from the fact that there is risk if 
there exists a potential source of damage, or hazard. When a hazard 
exists, e.g. posed by a system which in certain conditions may cause 
undesired consequences, safeguards are typically devised to prevent the 
occurrence of such hazardous conditions and its associated undesired 
consequences. However, the presence of a hazard does not suffice itself 
to define a condition of risk. Indeed, inherent in the latter there is the 
uncertainty that the hazard translates fiom potential to actual damage. 
Thus, the notion of risk involves some kind of loss or damage that might 
be received and the uncertainty of its transformation in an actual loss or 
damage: 

A qualitative definition of risk 

Risk = Damage + Uncertainty 

This qualitative analysis is reflected in the various Dictionary-definitions 
of risk, such as ‘possibility of loss or injury and the degree of probability 
of such loss’. 

3 



4 2 Basic Conceots of Safetv and Risk Analvsis 

Fig. 2.1 : The main components of the concept of risk 

2.2 A ~~~~~~~~U~~~ ~~~~~~~~~ sf risk 

Let x and p denote a given damage and the probability of receiving 
such damage, respectively. From a quantitative point of view, it is 
common to define a measure of the associated risk R as: 

R =I X * P  (2.1) 

In practice, often, the perception of risk is such that the relevance 
given to the damaging consequences x is far greater than that given to 
its probability of occurrence p so that Eq. (2.1) is slightly modified to: 

(2.2) k R = x  - p  with k > l  

By so doing, numerically larger values of risk are associated to larger 
consequences. 

When considering complex systems, the above quantitative 
definitions must be extended to account for the fact that typically more 
than one undesirable event exists. With n undesirable events associated 
with the operation of a given system, Eq. (2.1) is usually extended to the 
following de~nition of composite risk which accounts for all hazards 
present, in an integral way: 

ve definition
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n 

R = C xi .pi 
i=l (2.3) 

and similarly for Eq. (2.2). 
The quantitative definitions of risk in Eqs. (2.1), (2.2), (2.3) are 

however little informative for the purposes of risk analysis, management 
and regulation. Suppose you were considering two different systems A 
and B of equal risk R, = RB as defined by (2.1). Let the risk of A be due 
to a potentially large consequence x, occurring with small probability 
p A  and vice versa for the risk of B. Then, if we wish to intervene on the 
design, operation and regulation of the two systems in order to reduce the 
associated risks, we act differently knowing the different natures of the 
risk in the two cases. To reduce R, we would implement emergency 
systems which mitigate the accident (mitigation) and containment 
systems which limit its consequences to the outside environment 
(protection); on the contrary, if we were to reduce R, we would allocate 
additional redundancies and improve the reliability of the system 
components so as to reduce the probability of an accident (prevention). 
Thus, if we simply know the value of R, we may not be effective in 
reducing it by limiting its probability part or by mitigating its 
consequences; hence, the importance of keeping separate the constituents 
of risk: scenarios, p and x .  Note also how the key concepts of the 
defense-in-depth approach, i.e. prevention, mitigation, protection, come 
into play in the management of risk. 

The situation is even worse in the case of the composite risk of Eq. 
(2.3) where the probabilities and consequences of all potentially 
dangerous events are combined together in a single risk value. 

From the above said, an informative and operative definition of risk 
should allow answering the three fbndamental questions of any risk 
analysis [I], [2l, [51, [7], [81, 1% [lo]: 
- Which sequences of undesirable events transform the hazard into an 

actual damage? 
What is the probability of each of these sequences? 
What are the consequences of each of these sequences? 

- 

- 
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The answers to these questions lead to a definition of risk in terms 
of a set of triplets [ 5 ] :  

where si is the sequence of undesirable events leading to damage, pi is 
the associated probability and x, the consequence. Thus, the outcome of 
a risk analysis is a list of scenarios, such as the one in Table 2. l ?  which 
represents the risk. 

Table 2.1 : Risk as a list of triplets 

On the basis of this information, the designer, the manager and the 
regulator, can act effectively so as to reduce risk. 

2.3 Risk analysis 

From the previous definition of risk, it is evident that a rational 
management of it entails a proper treatment of the uncertainties 
associated with the occurrence of accidental scenarios. 

Classically, the management and control of the risk associated to a 
given plant has been based on the definition of a group of sequences of 
events leading to undesired consequences, representing credible worst- 
case accident scenarios, { s * }, and on the prediction and analysis of 
their consequences, { x * } . Then, the safety and protection of the system 
is designed against such events (design-basis accidents), to prevent them 
and to protect from, and mitigate, their associated consequences. 

This structuralist defense-in-depth viewpoint and the safety margins 
derived from it, have been embedded into conservative regulations under 
the creed that the identified worst-case, credible accidents would 
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envelope all credible accidents, for what concerns the challenges and 
stresses posed on the system and its protections. The underlying principle 
has been that if a plant were designed to withstand all the large credible 
accidents, then it would be ‘by definition’ protected against any credible 
accident. 

This approach has been the one classically undertaken, and in many 
instances it still is, to protect a plant from the uncertainty of the unknown 
failure behaviours of its components, systems and structures, without 
quantifying it, and to provide reasonable assurance that a plant can be 
operated without undue risk. 

However, the practice of referring to “worst” cases implies a high 
level of subjectivity and arbitrariness which may lead to the 
consideration of scenarios characterized by really catastrophic 
consequences, albeit highly unlikely. This somewhat arbitrary approach 
to safety can lead to excessive conservatism, with a penalization of the 
industry due to the imposition of unnecessarily stringent regulatory 
burdens. This is particularly so for those industries, such as the nuclear 
one, in which accidents may lead to potentially large consequences. 

With the growing use of the nuclear energy in the 1960s, the need 
soon arose for a more rational and logical approach to the design, 
regulation, operation and management of hazardous systems. A new 
viewpoint was then proposed, based on the analysis of the reliability of 
the consequence-limiting protection systems involved in all potential 
accident scenarios, with no longer any differentiation between credible 
and incredible, large and small [ 31. 

The nuclear community in Canada, in particular, was a strong 
supporter of such a probabilistic approach to safety. This was mainly due 
to the consideration that their nuclear reactor design, the Pressurized 
Heavy Water Reactor (PHWR) is indeed characterized by an intrinsically 
dangerous physical feature (the so called positive temperature feedback 
which could lead to a dangerous escalation of the nuclear reaction 
process, under certain conditions), but on the other hand this unsafe 
feature is counteracted by a highly-reliable and quick shut-down system 
(which works at low pressure and temperature and is separated by the 
primary cooling circuit whose failure cannot damage it). Then, the only 
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way of accounting for this aspect is the introduction in the analysis of 
probabilistic measures of the likelihood of the accident scenarios. 

This sparked a series of studies in the mid 1960s aimed at 
investigating the merits of a more quantitative approach, based on 
probability, to the treatment of uncertainty associated with accident 
scenarios [4]. The findings of these studies motivated the first complete 
and full-scale probabilistic risk assessment of a nuclear power 
installation [lo]. This extensive work showed that indeed the dominant 
contributors to risk need not be necessarily the design-basis accidents, 
a ‘revolutionary’ discovery undermining the fundamental creed 
underpinning the structuralist, defense-in-depth approach to safety. 

Along these lines of thoughts and after several ‘battles’ for 
demonstration and recognition, a new approach to risk analysis has 
arisen, not limited only to the consideration of worst-case accident 
scenarios but which looks to all feasible scenarios and its related 
consequences, with the probability of occurrence of such scenarios 
becoming an additional key aspect to be quantified in order to rationally 
handle uncertainty [l], [2], [ 5 ] ,  [7], [S], [9], [lo]. 

On this basis, new regulatory criteria have been introduced, which 
account for both the consequences of the scenarios and their probabilities 
of occurrence under a now rationalist defense-in-depth approach. An 
example of criterion of this kind can be represented graphically as shown 
in Figure 2.2, where the probabilities p of the scenarios are plotted 
against their consequences x (the so-called Farmer curve). A 
proportionality line divides the ( x , p )  space into two zones: scenarios 
above such line (i.e. in the dark zone) lead to unacceptable risks whereas 
those below (i.e. in the clear zone) represent acceptable risks. This allows 
accepting risks associated to scenarios characterized by high 
consequences, provided they have very low probability of occurrence 
(e.g. the point in Figure 2.2). 
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x 

Fig. 2.2: Probability-consequence curve 

When, as depicted in Figure 2.2, the slope is -1, probability and 
consequence carry the same importance in defining the risk level; on the 
contrary, when more emphasis is placed on consequences than on 
probabilities, the slope of the line is increased, as shown in Figure 2.3. 

P t  

X 

Fig. 2.3: Probability - consequence curve with a slopc such that consequences have more 
importance than probability 

The introduction of probabilities in the consideration of risk has 
been very controversial from the beginning and only after several years 
the proper recognition has been given to its usehlness for a balanced 
evaluation and a rational management o f  risk. 

For further insights in the Subject, the interested readcr is advised to 
consult the specialized technical literature, e.g. [I], [2], [ 5 ] ,  [71, [a], [9 ] .  

[ 1 ] 
[2] 

[ 3 ]  

Aven, T., Foundations of Risk Analysis, Wiley, 2003. 
Bedford, %. and Cooke, R., Probabilistic Risk Analysis, Cambridge 
~ ~ ~ v ~ ~ s ~ ~  Press, 200 f . 
Farmer, F.R., The Growth of Reactor Safety Criteria in the United 
Kingdom, Anglo-Spanish Power Symposium, Madrid, 1964. 
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1 3 1  - 
Methods for Hazard Identification 

The first step into the analysis of the risk of a given system is that of 
identifying the hazards associated to its operation. The output of this task 
consists of a list of the sources of potential danger, i.e. those accident 
initiators (component failures, process deviations, external events, 
operator errors) which have a probability of occurrence not equal to zero 
and which can give rise to significant consequences. The identification of 
the accident initiators is obviously a key aspect of the overall safety 
analysis and great care must be put into its completeness since those 
accident events not included at this stage are very unlikely to enter in the 
analysis at a later stage. 

The methods developed for performing this step consist, in general, 
in a qualitative analysis of the system and its functions, within a 
systematic framework of procedures. The methods strongly rely on the 
expertise of the designers, analysts and personnel who have designed, 
operated and maintained the system. Some of the methodologies most 
commonly used are: 

1. Checklist 
2. Hazard index method 
3. Hierarchical trees 
4. 
5 .  
6. 

Such methodologies are not mutually exclusive but, rather, they are often 
used in a complementary way. 

As the first two methods are of straightforward application, here we 
limit ourselves to giving few insights into the principles of the other four 

System Ident$cation of Release Points (SIRP) 
Failure Mode and Effect Analysis (FMEA) 
HAZard and Operability analysis (HAZOP) 

11 



12 3 Methods for Hazard Identification 

methods in the list. For more details, the interested reader should consult 
the specialized literature, e.g. [ 13. 

3.1 Hierarchical trees 

This deductive method allows the identification of the initiating causes of 
a pre-specified, undesired event, through the development of a structured 
logic tree. Obviously, such event must be known a priori. That is the 
reason why it was initially developed for the nuclear industry, where the 
undesired event (e.g. offsite release of radioactive material) is well 
defined a priori. 

The construction of the tree (see Fig. 3.1 for an example related to 
the hazard of an offsite release from a nuclear power plant) starts at the 
top with the undesired event (oflsite release) at the public impact level; 
the undesired event may occur due to various pathways (release of 
corehon-core material) which are explicited as independent branches at 
the damagepathway level; these pathways are generated due to loss of 
the various containments andor mitigation functions which are indicated 
in the tree at the containment or mitigation level; the containment 
function becomes necessary after loss of the devised safety functions 
which should prevent the accident and which are listed at the safety 
function level so that to each containment and mitigation barrier we can 
associate the correlated safety functions; finally, such safety functions 
can be linked to the primary initiator events which require such safety 
functions and which constitute the root causes (initiating event level) of 
the top event of the tree. 

Note that this approach finds its natural application in systems, such 
as the nuclear and aerospace ones, which have been designed in a safety- 
oriented manner so that safety functions, mitigation and containment 
barriers etc. are clearly and uniquely defined. 



3.2 Systemic Identification of Release Points (SIRP) 13 

PUBLIC IMPACT 
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I 

Fig. 3 .1:  Example of a hierarchical tree for the hazard of offsite release from a nuclear 
power plant 

3.2 

This approach aims at identifying the points of most likely release on the 
basis of historical data. Ducts, containments, release valves and rupture 
discs are identified as potential release points. Given the design and 
structural characteristics of these items, historical data is used to 
associate to them a most likely dimension of break and a probability of 
break occurrence. Expert judgment is then used to eliminate those break 
points whose position, dimension and probability are such to render the 
consequences irrelevant. Finally, equivalent, reference break points are 
identified in the circuit for grouping those break points leading to similar 
accident evolutions. 

Figure 3.2 reports an example in which four release points, R1, R2, 
R3, R4, have been identified. R1 is obviously the most critical point 
since a break in this position would lead to the release of the whole 
amount of hazardous substance contained in the tank S 1, whereas the 
other break points can be isolated by proper action on the valve V. The 

Systematic Identification of Release Points (SIRP) 
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criticality ranking of the remaining three release points depends on the 
consequences on people and structures they lead to, and therefore should 
depend on the type of hazardous substance: 

- If the substance is toxic but not burnable, then the second most 
dangerous release point is R2, since it is at a lower height, of 
potential danger for the personnel that could be around; 
If the substance is burnable, then R3 becomes more dangerous for 
the possible domino effect on the second container, S2. 

- 

i 

R1 R2 

Fig. 3.2:  Example of a system and its identified points of release 

3.3 

This is a qualitative method, of inductive nature, which aims at 
identifying those failure modes of the components which could disable 
system operation or become initiators of accidents with significant 
external consequences. 

Failure Mode and Effect Analysis (FMEA) 

The analysis proceeds as follows: 

Decompose the system in functionally independent subsystems; for 
each subsystem identify the various operation modes (start-up, 
regime, shut-down, maintenance, etc.) and its configurations when 
operating in such modes (valves open or closed, pumps on or off, 
etc.). 

1. 
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2. For each subsystem in each of its operation modes, compile a 
Table such as Table 3.1, without neglecting any of the subsystem 
components. The Table for a component should include its failure 
modes and the effects that such failure has on other components, on 
the subsystem and on the whole plant. 

The analysis considers only the effects of single-failures, except for the 
case of stand-by components for which the effects of its failure are 
obviously considered only conditioned on the demand of its intervention 
due to the failure of the main component. In general, then, there is no 
indication of the risk associated with multiple or common cause failures. 

To ensure a coherent analysis, the analyst must be sure that similar 
components are given the same failure modes, with same probability 
qualifications. 

An extension of FMEA often employed in practice is FMECA 
(Failure Mode, Effect and Criticality Analysis) in which a criticality 
class is assigned to each failure mode according to the following ranking: 

Safe = no relevant effects; 
Marginal = partially degraded system but no damage to humans; 
Critical = system damaged and damages also to humans; if no 

protective actions are undertaken the accident could 
lead to loss of the system and serious consequences on 
the humans; 

Catastrophic = Loss of the system and serious consequences on 
humans. 

Figure 3.3 presents a simple system whose FMECA Table is 
reported in Table 3.2. 

If the analysis is carried out in the design phase, it is difficult to base 
the analysis on the components (yet to be defined) and on their failure 
modes; in this case, the analysis can refer to the different functions 
required to the subsystems and the effects of the functions not being 
performed. 

For complex systems, a FMEA can be rather burdensome. There 
are several computer tools available on the market which guide the 
implementation of such techniques, with friendly check lists. 
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Overall, the procedure of FMEA is rather simple and schematic, and 
it allows one to carefully analyze the whole system. Often, this analysis 
is used in support of the construction of fault trees (Chapter 7) and of 
reliability-centered maintenance programs to find optimal maintenance 
strategies. In the latter case, the effects and criticality of the various 
failure modes are examined not only from the safety viewpoint but also 
from that of plant availability. 

3.3.1 Example of FMECA: Domestic Hot Water System 

Fig. 3.3: Schematic ofthe domestic hot water system [ l ]  
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3.4 HAZard and Operability analysis (HAZOP) 

HAZOP is a qualitative methodology which combines deductive aspects 
(search for causes) and inductive aspects (consequence analysis) with the 
objective of identifying the initiating events of undesired accident 
sequences. Contrary to FMEA, which is mainly based on the 
structuralhardware aspects of the system, HAZOP looks at the processes 
which are undergoing in the plant. Indeed, the method, initially 
developed for the chemical process industry, proceeds through the 
compilation of Tables (such as Table 3 . 3 )  which highlight possible 
process anomalies and their associated causes and consequences. 

1. 

2. 

3.  

The analysis proceeds as follows: 

Decompose the system in functionally independent process units 
(reaction unit, storage unit, pumping unit, etc.); for each process 
unit identify the various operation modes (start-up, regime, shut- 
down, maintenance, etc.). 
For each process unit and operation mode, identify the potential 
deviations from the nominal process behaviour. In order to do this, 
we must: 
a) specify all the unit incoming and outgoing fluxes (energy, mass, 

control signals, etc.) and the characteristic process variables 
(temperature, flow rate, pressure, concentration, etc.); 

b) write down the various functions that the unit is supposed to 
attend (heating, cooling, pumping, filtering, etc.). 

c) apply keywords such as low, high, no, reverse, etc., to the 
previously identified process variables and unit functions, so as 
to generate deviations from the nominal process regime. 

For each process deviation, qualitatively identify its possible causes 
and consequences. For the consequences, include effects also on 
other units: this allows HAZOP to account also for domino effects 
among different units. 

On the market, there are software tools available to guide an 
HAZOP analysis. 
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More 
Temperature 

Table 3.3: Typical HAZOP Table [ I  J 

Additional 
Thermal 
resistance 

UNIT: 

Higher pressure 
in tank 

OPERATION 
MODE: 

Release due to 
Overpressure 

Kevword 
More 

Deviation I Cause Conseauence I Hazard 

I 

Actions needed 
Install high 
temperature 
warning and 
pressure relief 
valve 
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1 4 1  
Basics of Probability Theory for Applications 
to Reliability and Risk Analysis 

4.1 Definitions 

In probabilistic terminology an experiment E is defined as a process 
whose outcome is a priori unknown to the analyst. The possible 
outcomes are all a priori known and classified but which one will occur 
is unknown at the time the experiment is performed. This definition is 
consistent with the Bayesian view of probability according to which the 
outcome of an experiment may be deterministic, but at the moment 
unknown (e.g. the current number of sons of a friend with which one has 
lost contact long time ago) as well as stochastic (e.g. the result of a dice 

To each experiment E is associated a sample space Q ,  which 
represents the set of all possible outcomes of E . The sample space can 
be discrete finite (e.g. for an experiment of a coin or dice toss), countably 
infinite (e.g. the number of persons crossing the street in a given period 
of time: in principle, it could be infinite and yet be counted) or 
continuous (e.g. the value of the dollar currency in the year 3012). 

An event E is then a group of possible outcomes of the experiment 
E , i.e. a subset of 0. In particular, each possible outcome represents an 
(elementary) event itself, being a subset of R . Further, the null set 0 
and the sample space R can also be considered events. 
- To each event E is possible to associate its complementary event 
E ,  constituted by all possible outcomes in R which do not belong to 
E .  

We say that event E occurs when the outcome of the experiment E 

is one of the elements of E . 

toss). 

21 
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4.2 Boolean logic operations 

In the logic of certainty (Boolean logic), an event can either occur or not 
occur. Thus, it is represented by a statement, or proposition which can 
only be either true or false, and at a certain point in time, after the 
experiment is performed, the analyst will know its actual state. 

Correspondingly, to event E we can associate an indicator variable 
X, which takes the value of 1 when the event occurs in the experiment 
and 0 when it does not. As a counter-example, the statement “It may rain 
tomorrow” does not represent an event because it does not imply a “true” 
or “false” answer. We define the following operations involving Boolean 
events: 

Negation: Given event E, represented by the indicator variable X, , its 
negation E is described by 

- 
X, =l-X, (4.1) 

Union: The event A u B , union of the two events A and B , is true, e.g. 
XAU, = 1, if any one of A or B is true. Hence, 

XA”, = 1 - (1 - XA)( l  - X , )  

Often in practice this event is indicated as A +B. 

Intersection: The event A n B , intersection of the events A and B, is true, 
e.g. XA, ,  = 1 , if both A and B are simultaneously true. Hence, 

Often in practice this event is indicated as AB and referred to as the joint 
event A and B. 

Mutually exclusive events: Two events A and B are said to be mutually 
exclusive if their intersection is the null set, i.e. 
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Example 4.1 [l] 

Strong wind at a particular site may come from any direction between 
due east (0 = 0') and due north (0 = 90O). All values of wind speed Vare 
possible. 

1. 
2. 

Sketch the sample space for wind speed and direction. 
Let A = { V >  20 mph} 

B =  {12mph< V530mph) 
c= {e I 300) 

Identify the events A ,  B, C, and 2 in the sample space 
sketched in part 1. 
Use new sketches to identify the following events: 3. 

(i) D = A n C  

(ii) E = A  u B 

(iii) F = A  B fl C 

4. Are the events D and E mutually exclusive? How about events A 
and C? 

Solution 

4.1.1 Sample Space for wind speed and direction 

Fig. 4.1 : Shaded area represents Sample Space 
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4.1.2 Sketches of Events 

I 

V 

2 
I 
I 
I 
I 
I 
I 
I 

r 

90" 8 

Fig. 4.2: Shaded area represents Event A = {V > 20 mph) 

L 

Fig. 4.3: Shaded area represents Event B = { 12 < V 5 30) 

V 
I I 

I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

I 
1 
I 

Fig. 4.4: Shaded area represents Event C = (0 5 30') 
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/ I  L 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- 
Fig. 4.5: Shaded area represents Event A = {V 5 20inph) 

4.1.3 Sketches of Events 

(i)D=A fl C 

30" 900 e 
Fig. 4.6: Shaded area represents Event D = A n C  
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(ii) E = A u B 

I I 
I 
I 

r 

90" 0 

Fig. 4.7: Shaded area represents Event E = A u B 

(iii) F = A  n B  n C 

I 

v 4  : 
I 
I 

I !  
30 

20 

I :  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 4.8: Shaded area represents Event F = A n B n C 

4.1.4 Mutually Exclusive 

D and E are not mutually exclusive. (Because D n E f 0, in fact 
D n E = D, ). 
A and C are not mutually exclusive. ( B e c a u s e A n C g  0, in fact 
A n C = D ) .  
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4.3 

As previously explained, for a statement to be an event, it can only have 
two possible states, either true or false, and at a certain point in time the 
exact state will become known as a result of the actual perfonning of the 
associated experiment. 

Logic of uncertainty: definition of probability 

4.3.1 Axiomatic Definition 

At the current state of knowledge it is possible that the state of an event 
be uncertain, although at some point in the future uncertainty will be 
removed and replaced by either the true or the false state. Inevitably, if 
one needs to make decisions based on the current state of knowledge, he 
has to deal with such uncertainty. In particular, one needs to be able to 
compare different uncertain events and say whether one is more likely to 
occur than another. Hence, we accept the following axiom as a primitive 
concept which does not need to be proven: 

Uncertain events can be compared 

It represents a concept very similar to that of the value of objects and 
goods which need to be compared for the purpose of exchanging them. 
In this latter case at one point in history, the monetary scale was 
introduced as an absolute scale against which to compare different goods 
with respect to their values. Similarly, it is necessary to introduce a 
measure for comparing uncertain events. 

Let us consider an experiment E and let R be its sample space. To 
each event E we assign a real number p(E) , which we call probability 
of E and which satisfies the following three Kolmogorov axioms: 

I. 
11. 

111. 

For each event E , 0 5 p ( E )  I 1 
For event C2, it is p(C2) = 1 ; for event 0, it isp( 0 ) = 0 .  
Let E,,E,,  ..., E,be a finite set of mutually exclusive events. 
Then, 
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The latter axiom is called the addition law and is assumed to maintain its 
validity also in the case of countably infinite sample spaces. 

This axiomatic view constitutes the Bayesian, or subjectivist, 
interpretation of probability according to which everything is made 
relative to an assessor which declares ‘a priori’ its ‘belief regarding the 
likelihood of uncertain events in order to be able to compare them. Thus, 
in this view, the probability of an event E represents a degree of beliei or 
degree of confidence, of the assessor with regards to the occurrence of 
that event. In other words, probability is nothing more than a measure of 
uncertainty about the likelihood of an event. A probability assignment is 
a numerical encoding of a state of knowledge of the assessor, rather than 
a property of the ‘real world’. Because the probability assignment is 
subjectively based on the assessor’s internal state, in most practical 
situations there is no ‘true’ or ‘correct’ probability for a given event and 
the probability value can change as the assessor gains additional 
information (experimental evidence). Obviously, it is completely 
‘objective’ in the sense that it is independent of the personality of the 
assessor who must assign probabilities in a coherent manner, which 
requires obeying to the axioms and laws of probability, in particular to 
Bayes theorem for updating the probability assignment on the basis of 
newly collected evidence (see Section 4.4.4 below). By so doing, two 
assessors sharing the same total background of knowledge and 
experimental evidence on a given event must assign the same probability 
for its occurrence. 

4.3.2 Empirical Frequentist Definition 

Let E be an event associated to experiment E . Suppose that we repeat 
the experiment n times and let k be the number of times that event E 
occurs. The ratio k/n represents the relative frequency of occurrence of 
E , As the number of repetitions n approaches infinity we empirically 
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observe that the ratio Wn settles around an asymptotic value, p , and we 
say that p is the probability of E . 

From a rigorous point of view, this empirical procedure does not 
follow the usual definition of mathematical limit and it can be 
synthesized as follows: 

with 5 > 0 .  Obviously, this definition may be somewhat unsatisfactory 
as probability is defined in terms of likelihood of a large number of 
repeated experiments. 

4.3.3 Classical Definition 

This definition is very similar to the empirical one of the previous 
Section 4.3.2. The only fundamental difference is that it is not necessary 
to resort to the procedure of taking a limit. Let us consider an experiment 
with N possible elementary, mutually exclusive and equally probable 
outcomes A, A,  ).. ., A ,  . We are interested in the event E which occurs 
if anyone of M elementary outcomes occurs, A , ,  A,  y . . . y  A,, i.e. 
E = A ,  U A , U  ... UA,. 

Since the events are mutually exclusive and equally probable, 

(4.7) 
number of outcomes of interest 

total number of possible outcomes p p > =  

This result is very important because it allows computing the probability 
with the methods of combinatorial calculus; its applicability is however 
limited to the case in which the event of interest can be decomposed in a 
finite number of mutually exclusive and equally probable outcomes. 
Furthermore, the classical definition of probability entails the possibility 
of performing repeated trials; it requires that the number of outcomes be 
finite and that they be equally probable, i.e. it defines probability 
resorting to a concept of frequency. 
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4.3.4 Probability space 

Once a probability measure is defined in one of the above illustrated 
ways, the mathematical theory of probability is founded on the three 
fundamental axioms of Kolmogorov introduced in Section 4.3.1, 
independently of the definition. All the theorems of probability follow 
from these three axioms. 

When assigning probability values to events of a sample space, a 
difficulty arises for continuous sample spaces, e.g. R = (0,l). Indeed, 
continuous intervals cannot be constructed by adding elementary points 
in a countable manner and correspondingly, probabilities of continuous 
intervals cannot be assigned by the addition law of probability. In other 
words, if we were to assign to each E E (0,l) a probability p ( E )  , then 
the sum of all p ( E )  ’s would go to infinity, unless p ( E )  = 0 for ‘almost 
all’ E E (0,l). 

The way to overcome this difficulty is to assign a probability not to 
each individual outcome E but to subsets of R. For example, one could 
define the probability of a subset A = (a,b) c (0,l) as the measure 
l ( A )  = b - a .  In particular, each countable set of individual outcomes 
{ E k } ,  taken as the interval ( E k ,  E k )  , has null measure and, thus, zero 
probability. By so doing, it is possible to assign a measure, and thus a 
probability to any set A made of unions, intersections and complements 
of intervals. Still, there are ill sets which cannot be constructed as 
explained, to which it is not possible to assign probabilities coherently 
with the third Kolmogorov axiom and which are, thus, termed not 
probabilizable. From the theoretical viewpoint, this difficulty is 
overcome by limiting our consideration to one of the many families 
F of subsets of Cl which are well-behaved. Such family is called a o- 
algebra and we assign probability values only to subsets belonging to F: 
correspondingly, the term event refers only to such subsets. In more 
details, a o-algebra is a family F of subsets of R which satisfies the 
following conditions: 

i. If E E F then also E = R - E E F 
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m 

ii. If E, ,E, ,... is a countable infinity of subsets in F, then U E j  E F 
i=l 

m 

and n E i  E F .  
i=l 

In words, a o-algebra is a family of sets of the space R which is closed 
with respect to the operation of complement and to the formation of a 
countable infinity of unions and intersections. 

Since the space R is the union of E and E ,  it belongs to the o- 
algebra, i.e. C2 E F . Examples of o-algebra are: 

- 

- 

- 

The largest o-algebra in R is the family of all subsets of R . 
The smallest o-algebra in R consists of R and the null set 0. 
Let us consider the space R = %' and a o-algebra F constituted by 
subsets o f E .  If to each x E E we associate all values 
x * 1, x f 2, ... we obtain another o-algebra. 

The triplet (R, F ,  p )  defines the probability space. 

4.4 Probability laws 

As previously mentioned, to the generic random event E is associated 
an indicator variable X,which takes the value of 1 when the event 
occurs in the experiment and 0 when it does not. Correspondingly, a real 
number p(E) is assigned to measure the probability of E and which 
satisfies the three Kolmogorov axioms. Given the binary nature of the 
indicator variable, X, can only take values of 0 or 1 so that: 

4.4.1 Union of non-mutually exclusive events 

(4.8) 

Consider n events En not mutually exclusive. Their union ELI is 
associated with an indicator variable Xu which is the extension of the 
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formula (4.2) for the union of the two events A and B. For example, for 
the intersection of the three events A, B and C we have 

xu =1- n (l-xj)=l-(l-xA)(l-xB)(l-xc)= 
j = A , B , C  

= x, + x, + x, - x,x, - x,x, (4.9) 
- x,xc + x,x,xc 

Following (4.81, the probability of the event Eu can then be computed 
applying to (4.9) the (linear) expectation operator. More generally, for 
the union of n non-mutually exclusive events: 

n n-l n n 

P(E,) = E [ X U ]  = C E [ X j ]  - E [ C  p i x j ]  + ... + (-l),+,, E [ X j ]  = 
j=l  i=l j=i+l  j = l  

j=1 i=l j=i+l j=l 

(4.10) 

From an engineering practice point of view, it is often necessary to 
introduce reasonably bounded approximations of (4.10). Keeping only 
the first sum, one obtains an upper bound, 

j=l 

whereas keeping the first two sums gives a lower bound, 

n n-l n 

(4.11) 

(4.12) 
j=l i=l j=i+l 

More refined upper and lower bounds can then be obtained by alternately 
keeping an odd or even number of sum terms in (4.10). 

Since in reliability and risk calculations the probability of high- 
order joint events is very small , it is common practice to use the upper 
bound (4.1 l), which is often referred to as the rare-event approximation. 
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4.4.2 Conditional Probability 

In many practical situations, it is important to compute the probability of 
an event A given that another event B has occurred. This probability is 
called the conditionalprobability of A given B and it is given by the 
ratio of the probability of the joint event A n B over the probability of 
the conditioning event B , viz. 

(4.13) 

Intuitively, P ( A  I B )  gives the probability of the event A not on the 
entire possible sample space R but on the sample space relative to the 
occurrences of B . This is the reason for the normalization by P(B) of 
the probability of the joint event P(A  n B) in (4.13). 

Based on the conditional probability, it is possible to introduce the 
concept of statistical independence: event A is said to be statistically 
independent from event B if P(A I B) = P(A)  , In other words, 
knowing that B has occurred does not change the probability of A. From 
(4.13), it follows that if A and B are statistically independent 
P ( A  n B) = P(A)P(B) . Note that the concept of statistical 
independence should not be confused with that of mutual exclusivity 
(X,X, = 0 , Section 4.2) which is actually a logical dependence: 
knowing that A has occurred (X, = 1 ), guarantees that B cannot occur 
(X, = 0). 

Example 4.2 [l] 

There are two streams flowing past an industrial plant. The dissolved 
oxygen, DO, level in the water downstream is an indication of the degree 
of pollution caused by the waste dumped from the industrial plant. Let 
A denote the event that stream a is polluted, and B the event that 
stream b is polluted. From measurements taken on the DO level of each 
stream over the last year, it was determined that in a given day 

P(A) = 215 and P(B) = 314 
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and the probability that at least one stream will be polluted in any given 
day is P(A u B) = 415. 

1. 

2. 

Determine the probability that stream a is also polluted given that 
stream b is polluted. 
Determine the probability that stream b is also polluted given that 
stream a is polluted. 

Solution 

First, we compute the probability that both streams are polluted. Since 

P(A u B) = P(A) + P(B) - P(A fl B) 

We have 

P(A f l  B) = P(A) + P(B) - P(A u B) 
= (2/5) + (3/4) - (4/5) 
= (7/20) 

4.2.1 P(A1B) 

= 7/15 = 0.46 
P ( A n q  - 7/20  

P(B) 3 / 4  
P(A I B) = - 

4.2.2 P(B1A) 

In other words, stream b is very likely to be polluted when stream a is 
polluted, whereas chances are less than 50% that stream a will be 
polluted when stream b is polluted. 
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4.4.3 Theorem of Total Probability 

Let us consider a partition of the sample space R into n mutually 
exclusive and exhaustive events E j ,  j = 1,2, ..., n . In terms of Boolean 
events, this is written as: 

n 

E i n E j  = O  V i #  j U E j  =a (4.14) 
j=l 

whereas in terms of the indicator variables, 

n 

X i X i  = O  'di# j Ex; = 1  (4.15) 
j=l 

Given any event A in R ,  its probability can be computed in terms of 
the partitioning events E j ,  j = 1, 2, ..., n and the conditional 
probabilities of A on these events, viz. 

P( A )  = P( A 

Example 4.3 

E,)P(E,)  + P(A  I E 2 ) P ( E 2 )  + ... + P ( A  

The air pollution in a city is caused mainly by industrial (I) and 
automobile (A) exhausts. In the next 5 years, the chances of successfully 
controlling these two sources of pollution are, respectively, 75% and 
60%. Assume that if only one of the two sources is successfully 
controlled, the probability of bringing the pollution below acceptable 
level would be 80%. 

1. 

2. 

What is the probability of successfully controlling air pollution in 
the next 5 years? 
If, in the next 5 years, the pollution level is not sufficiently 
controlled, what is the probability that is entirely caused by the 
failure to control automobile exhaust? 
If pollution is not controlled, what is the probability that control of 
automobile exhaust was not successful? 

3 .  
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Solution 

A = event of successful control of the automobile exhausts 
I = event of successful control of the industrial exhausts 
E = event of bringing the pollution below the acceptable level 

From the problem statement we have: 

P(l) = 0.75 

P(A) = 0.60 

and 

P(EI2I) = P(EIA7) 4 . 8  
P(EI2I) = 0 
P(E1AI) = 1 

4.3.1 Probability of controlling air pollution in the next 5 years 

The possible combinations of the two pollution events are 
A I ,  A I ,  A I ,  A 1  , If we assume statistical independence between 
controlling industrial (0 and automobile (A) exhausts, we have: 

_ -  -- 

P(AI) = 0.60-0.75 = 0.45 

P(Aj )  = 0.604.25 = 0.15 

P(Af) = 0.40.0.25 = 0.10 

P(AI) = 0.40075 = 0.30 

- -  -- 
A I ,  A I ,  A I ,  A I  are mutually exclusive and collectively exhaustive 
events. Then, we can use the theorem of total probability (Fig. 4.9): 

P(E) = P(EIAZ) P(AI) 
+P(EIAJ) P(AJ)+P(EITI) P(;?I)+P(EJ2?) P(x?)= 0.81 
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Fig. 4.9: Partitioning of event E 

S 

4.3.2 Probability of pollution not controlled due to failure of controlling 
automobile exhaust 

= 0.32 P ( E  I AZ)P(AI) - - [l - P(E I AZ)]P(AZ) 

P(E)  P(E)  
P(AI  I E) = 

4.3.3 Probability of automobile exhaust not controlled given that 
pollution is not controlled 

4.4.4 Bayes theorem 

Assume now that you have experimental evidence that event A has 
occurred. What is the probability that event Ej  has also occurred? This 
may be considered as a ‘reverse’ probability with respect to the 
probability question underlying the previous theorem of total probability. 
To the joint event A n E ,  we can apply the conditional probability 
(4.13) fiom both the points of view of A and of Ei , 
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From this, Bayes theorem is readily derived: 

j=l 

Eq. (4.18) updates the prior probability value P(E,) of event Ej  to the 
posterior probability value P(E, I A )  in reflection of the acquired 
experimental evidence on the occurrence of event A whose unknown 
probability P(A) is computed by applying the theorem of total 
probability (4.16). 

Thus, coherently with the Bayesian definition of probability, the 
assignment of the probability measure of an event depends on the 
knowledge that the assessor has relative to such event. If such state of 
knowledge changes, then the probability assignment must change 
accordingly, coherently with the Kolmogorov axioms underlying the 
theory of probability. This is done by application of the updating rule of 
Bayes theorem, which becomes very controversial when one considers 
the estimation of statistical parameters from the point of view of the 
classical, frequentist statistics or of the Bayesian, subjectivist statistics 
(Chapter 9). 

Example 4.4 [l] 

Consider a pile foundation, in which pile groups are used to support the 
individual column footings. Each of the pile group is designed to support 
a load of 200 tons. Under normal condition, this is quite safe. However, 
on rare occasions the load may reach as high as 300 tons. The foundation 
engineer wishes to know the probability that a pile group can carry this 
extreme load of up to 300 tons. 

Based on previous experience with similar pile foundations, 
supplemented with blow counts and soil tests, the engineer estimated a 
probability of 0.70 that any pile group can support a 300-ton load. Also, 
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among those that have capacity less than 300 tons, 50% failed at loads 
less than 280 tons. 

To improve the estimated probability, the foundation engineer 
orders one pile group to be proof-loaded to 280 tons. 

1. If the pile group survives the specified proof load, what is the 
probability that the pile group can support a load of 300 tons? 

Solution 

Let 

A = event that the capacity of pile group 2 300 tons 
T = event of a successful proof load. 

- -  
Then, according to the information given above, P( T I A ) = 0.5, P(A) = 

0.70 and P( T 1 A ) = 1. Bayes’ theorem then gives: 

= 0.824 - (1.00)(0.70) P ( A  I T )  = P(T I A)P(A) - 
P(T 1 A)P(A) + P(T 1 A)P(A) (1.00)(0.70) + (0.5)(0.3) 

Therefore, if the proof test is successful, the required probability is 
increased from 0.70 to 0.824. 

4.5 Random variables 

The outcome LL) of a random experiment in the sample space R can be 
described by a real random variable X ( w )  E %. For example, we can 
describe any event associated with the outcomes of an experiment of 
rolling a dice by a real variable X in %. For a given numerical value x 
we can then define the event described by all possible outcomes 
associated to values of the random variable X less than x: for example, 
for x =4.72 the event {X 54.72) corresponds to the union of the 
outcomes (1 u 2 u 3 u 4); the event {X S 0} is the null set since the 
outcomes of the roll of the dice are not associated to any negative value 
of X ; for x=oo the event (X I a} is the full sample space R . 
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By establishing a univocal mapping between the outcomes of a 
random experiment and the values of a random variable, one can handle 
the uncehain events in terms of their mathematical abstractions, sparing 
the need of an actual word description for each particular physical 
phenomenon. In other words, general mathematical models of random 
behaviours can be built which apply to different physical phenomena 
which behave similarly. 

4.5.1 Probability functions 

Cumulative distribution function 

The cumulative distribution function (cdf) F, ( x )  of the random variable 
X gives the probability of the event {X I x }  for any numerical value 

x .  From the definition, the following properties of F, ( x )  hold: 

- lim F,(x)=O 
x j - m  

- lim F , ( x ) = l  
x++m 

- 

- 
F, (x) is a non-decreasing function of x 
The probability that X takes on a value in the interval [a,b] is 
P{" < x I b}= ~ , ( b )  - F , ( ~ )  

Probabilitv mass function (discrete random variables) 

Consider a random variable X which can take on only discrete values 
x i ,  i = 42, ... n . The discrete function of the probability values pi with 
which X takes on the values xi, i = 1,2, ... n , is termedprobability mass 
function (pmf) and gives a more detailed information on the behaviour of 
the random variable. 

The corresponding cumulative distribution function is given by 

(4.19) 
xi <x 



4.5 Random variables 41 

Probability density function (continuous random variables) 

Consider a random variable X which can take on continuous values x 
in '$3, with cdfF,(x). As mentioned in Section 4.3.4, continuous 
intervals cannot be constructed by adding elementary points in a 
countable manner and correspondingly, probabilities of continuous 
intervals cannot be assigned by the addition law of probability. Thus, the 
probability of X taking on a particular value x is zero. Instead, we can 
consider a small interval dc centred around the value x and consider 
the probability of the random variable X taking any value within such 
interval: 

P ( x ~ X < ~ + d ~ ) = F , ( ~ + d c ) - F , ( ~ ) = f , ( x ) d x  (4.20) 

where f, (x) is the so-called probability density function (pdf) of X.  
Taking the limit for the interval dx becoming infinitesimal, 

F,(x+dx)-F,(x) - - dF' fx(x) = lim 
dX+O dx dx 

(4.2 1) 

Note that fx (x) is not a probability but a probability per unit of x , i.e. 
a probability density: when multiplied by dx it becomes the probability 
of X falling in the interval [x, x + dx) . 

4.5.2 Summary measures: percentiles, median, mean, variance 

The cumulative distribution and probability mass and density fimctions 
give the most complete description of the behaviour of a random 
variable. Yet, in engineering practice a pointwise description of the 
location and shape of such probability distributions is often needed. For 
this reason, various summary measures can be adopted. 

Distribution Percentiles 

The a percentile of the distribution F, (x) is the value x, at which 



42 4 Basic of Probability Theory for ADDliCatiOnS to Reliabilitv and Risk Analvsis 

(4.22) 

In particular, the 50-th percentile x50 is called the median of the 
distribution and it represents the numerical value for which there is a 
symmetric probability of 0.5 that the random variable X takes values 
below or above, i.e. 

Fx (x,,) = 0.5 (4.23) 

In other words, half of the probability mass lies below xs0 and half 
above. 

Mean 

The mean of the distribution F, (x) provides information as to where the 
probability distribution is located on %, i.e. where the probability mass is 
concentrated on average. It is often referred to as expected value of the 
distribution, defined as 

n 

px = E [ X ]  = < x > = C x ; p ,  (discrete random variables) 
(4.24) i=l 

m 

= lxf,(x)dx (continuos random variables) 
-x 

Central moments 

The central moments of the distribution F, (x) provide information on 
its shape relative to the mean. In general, the n-th central moment of the 
distribution is defined as: 

4 = C ( x ;  -P& (discrete random variables) 
i 
m (4.25) 

= J ( ~ - P J . r ; : ( X ) ~  (continuos random variables) 
-x 
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Often used are the second and third moments, n =2 and 3 respectively. 
The former (0: ) , called variance and often indicated also as Var[X] , 
gives a measure of the spread of the distribution around the mean: the 
larger it is, the more the distribution is spread out over % around the 
mean; the smaller it is, the more the distribution is peaked on the mean 
value. The latter (a:) is called kurtosis and gives a measure of 
asymmetry: a value close to zero indicates a fairly symmetric 
distribution; negative values indicate that the distribution is skewed to 
the right (i.e. values smaller than the mean are more dispersed in a large 
tail); positive values indicate that the distribution is skewed to the left 
(i.e. values larger than the mean are more dispersed in a large tail). 

Finally, a combined measure of spread and location, called 
coeflcient of variation (Cov) is often used in civil engineering: 

cov, =- 0, (4.26) 
P X  

where ox is the square root of the variance and is called standard 
deviation (often also indicated as Std[A) .  

Chebvchev 's inequalitv 

Chebychev 's inequality provides an estimate of the probability of 
dispersion around the mean of the values of a random variable X with 
distribution F, (x) . From the definition of the variance, we have: 

0: = I(x - p x ) 2  f, ( X ~ X  2 
m I(x - p ,  f, (x)& 2 k 2 0 :  If, ( x ) ~ x  = 

-m l x - ~ x l ~ k ~ x  1 x - p ~  I>kox 

=k*o;Pdx-p , /  >/tox) 
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(4.28) 
1 

k2  
P(I x - p X  12 ko,) I - 

Example 4.5 (discrete random variable) [l] 

A contractor is planning the purchase of equipment, including 
bulldozers, needed for a new project in a remote area. Suppose that from 
his previous experience, he figures there is a 50% chance that each 
bulldozer can last at least 6 months without any breakdown. 

1. 

2. 

3. 

If he purchased 3 bulldozers, what is the probability that there will 
be only 1 bulldozer left operative in 6 months? 
Let X be the random variable whose values represent the number 
of good bulldozers after 6 months. The probability that a bulldozer 
will remain operational after 6 months is p = 0.8. Using the above 
information, plot the probability mass function (pmf) as well as the 
cumulative distribution function (cdf) of X 
Using information from part 2., compute the following: 
(i) Meanof X 
(ii) Variance of X 
(iii) Standard Deviation of X 
(iv) Coefficient of Variation of X 

Solution 

4.5.1 Let 

G = event where a Bulldozer is in good condition. 
B = event where a Bulldozer is in bad condition. 

from which to follows that
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The possible statuses of the three bulldozers would be: 

JGGG, GGB, GBB, BBB, BGG, BBG, GBG, BGB) 

In this case, there are a total of 8 possibilities. Since the condition of a 
bulldozer is equally likely to be good or bad, the 8 possible statuses of 
the 3 bulldozers are also equally likely to occur. The events of interest 
are GBB, BBG, BGB. Therefore, the probability of having only 1 
bulldozer left operative in 6 months is simply = 3/8 = 0.3 75 

4.5.2 The possible values ofXare {O, I ,  2, 3).Then, 

PX (0) = ( I  -p)’ = (0.2)’ = 0.008 
Px (1) = 3p(I -p)’ = 3(0.8)(0.2)2 = 0.096 

Px (2) = 3p2(1 -p) = 3(0.8)’(0.2) = 0.384 
Px (3) =p3 = (0. 8,)3 = 0.51 2 

0 1 2 3 X 

Fig. 4.10: pmf ofX 
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0 1 2 3 

Fig. 4.1 1 : Cdf o fX 

4.5.3 

(1, Mean of X 

E[X] = O(0.008) + l(0.096) + 2(0.384) + 3(0.512) = 2.40 

(ii) Variance of X 

Var[x] = 0.008(0 - 2.4)2 + 0.096(1 - 2.4)2 + 0.384(2 - 2.4)2 + 
+ 0.512(3 - 2.4)2= 0.48 

(iii) Standard Deviation o fX  

Std[A= 40.48 = 0.69 

(iv) Coefjcient of Variation of X 

Cov, = (0.69)/(2.40) = 0.29 

Example 4.6 (continuous random variable) [l] 

Suppose that a random variable X has a pdf of the form (Fig. 4.12): 
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f X ( 4  = ax 2 O l X l l O  

= O  elsewhere 

1. Under what condition (i.e. what value of a) is this function a bona 
fide pdf? 

2. What is P( X > 5)? 
3. Compute the following: 

(i) Meanof X 
(ii) Variance of X 
(iii) Standard Deviation of X 
(iv) Coefficient of Variation of X 
(v) Medianof X 

f x ( x )  t 3/10 

-X 
0 10 

Fig. 4.12: pdf of x 

Solution 

4.6. I 
In order to satisfy all the properties of a pdf, we must have 

= 1 
0 

from which we get that 
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a = L O  
3 

Therefore, solving for a, we get 

a = (3/1000) 

4.6.2 

3x2  53 
0 1000 1000 

P ( X  > 5) = 1 - P(X 5 5) = 1 - 1- & = 1 - - = 0.875 

4.6.3 

(9 Mean of X 

-7.50 
3.104 30 10 10 

E [ A = 1 x [ X ) ’ x =  [ L x 4 ]  =- - - _ _  
0 1000 4000 4000 4 

(ii) Varianceof X 

10 

~ a r [ ~ ]  = J ( x  - 7.512 
0 

(iii) Standard Deviation of X 

~ t d A =  J3.75 = 1.94 

(iv) CoefJicient of Variation of X 

COV, =(1.94)/(7.50) = 0.26 
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(v) Median of X 

From Fig. 4.12, the modal value is 
determine the median, one must solve 

obviously x" = 10. To 

xm 3x2 
= 0.50 

0 

from which we get 

xm3 = 500 

and thus the median is 

x m  = 7.94. 

4.5.3 The hazard function 

Continuous random variables are often used in risk and reliability 
analyses. Of particular importance is the time to failure of a component 
T whose cdf FT( t )  and pdf f,(t) are typically called the failure 
probability and density functions at time t. The complementary 
cumulative function (ccdf) R( t )  = 1 - FT(t )  = P(T > t )  is called 
reliability or survival function of the component at time t and gives the 
probability that the component survives up to time t with no failures. 

Another information of interest for monitoring the failure evolution 
process of a component is given by the probability that it fails in an 
interval dt knowing that it has survived with no failures up to the time 
of beginning of the interval, t. This probability is expressed in terms of 
the product of the interval dt times a conditional probability density 
called hazard function or failure rate and usually indicated by the 
symbol h, ( t )  : 

(4.29) P(t < T I t + dt) fT ( t )d t  h,(t)dt = P(t < T I t + dt I T > t )  = =- 
P(T > t )  R( t )  
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The hazard function h, ( t )  gives the same information of the pdf and cdf 
to whom it is univocally related by eq. (4.29) and its integration, i.e. 

I 

- p r  ($Ids 

F J t ) = l - e  O (4.30) 

common patterns of evolution of h, ( t )  Fig. 4.13 shows the most 
encountered in practice [2]. 

I'ailurc 
rate t \ J The hith-tub cme: infant nmrtality followd hy a stable and 

mmout Lxrioiods (case I). 

Constant failure rdtc follo\wd by a pronuriced wear out priod 
(case 2). 

Gradidly increasing failure ratc Nu idcntifiahlc \war out age 
( u s e  3). 

Lou, failute nte u b i  component is new followed to a to a quick 
increase to a constitlit level (caye 4). 

Cmistant failurelate o w  usefiile life (case 5 )  

Fig. 4.13: Patterns of time evolution of the hazard function (or failure rate) [2] 

In principle, the hazard function follows the so called 'bath-tub' 
curve (Fig. 4.13, case 1) which shows three distinct phases in the life of a 
component: the first phase corresponds to a failure rate decreasing with 
time and it is characteristic of the infant mortality or burn in period 
whereupon the more the component survives, the lower becomes its 
probability of failure (this period is central for warranty analysis); the 
second period, called useful l fe ,  corresponds to a failure rate independent 
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of time: during this period, failures occur at random times with no 
influence on the usage time of the component; finally, the last period 
sees an increase in the failure rate with time and corresponds to the 
development of irreversible aging processes which make the component 
more and more prone to fail as time goes by. 

Deviations from this general behaviour (cases 2-6 in Figure 4.13) 
may occur, depending on the burn-in and maintenance procedures 
adopted by the particular industry. 

4.6 Probability distributions 

A number of classes of stochastic processes can be described 
mathematically in terms of special analytical forms of the pdf and cdf. 

4.6.1 Univariate discrete distributions 

Binomial Distribution 

Consider n independent realizations (trials) of the stochastic experiment 
known as Bernoulli process, described by a discrete random variable Y 
with only two possible outcomes: 1 (success), with probability p and 0 
(failure), with probability 1 - p . 

Let X be the discrete random variable describing the number of 
successes (realizations of the outcome 1) out of the n trials, 
independently of the sequence with which the successes appear. The 
sample space of X comprises all discrete values from 0 to n . 

The random variable X is related to the random variables Y,, 
i = 1,2,. . . n , describing the individual Bernoulli trials as follows: 

n 

X = C y I  
i=l 

(4.3 1) 

The distribution of the discrete random variable X above defined is 
called Binomial. Its probability mass function b(k; n, p ) gives the 
probability of obtaining k successes out of n Bernoulli trials when the 
probability of success in the individual trial is p : 
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The expected value and variance of the distribution are: 

E [ X ]  = np 
Var[X] = np(1- p )  

Geometric Distribution 

(4.33) 

Considering the previous problem setting of independent trials of the 
stochastic experiment known as Bernoulli process, we focus now on the 
probability that the first success occurs at the t - th trial. 

Only one specific sequence is now considered, i.e. that with all 
failures in the first t -1 trials (each one occurring with probability 
1 - p ) and a success at the t-th trial (which occurs with probability p ). 

The distribution of the corresponding random variable is called 
Geometric. Its probability mass function is 

g(t; p )  = (1 - p y l  p t = I ,  2,. . . (4.34) 

Note that (4.34) is also the distribution of the number of trials between 
two successive occurrences of success (realizations of l), since the 
Bernoulli trials are independent and the probability of success p remains 
the same in all trials. 

The expected value of the geometric distribution is computed as 
follows: 

P 1 m 

E [ T ] =  C t ( l - p ) ' - ' p = p [ l + 2 ( l - p ) + 3 ( 1 - p ) *  +...I= 
/=1 [l - (1 - p)I2 = p 

(4.35) 

This quantity is often called the return period of the stochastic process. 
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Poisson Distribution 

Consider now stochastic events that occur in a continuum period (e.g. the 
number of earthquakes which occur in a given region over a given period 
of time, the number of cars crossing a given intersection over a given 
period of time, the number of failures of a given type of component over 
a given period of time). 

The rate of occurrence A of the events is assumed constant and the 
events are assumed independent of each other. 

The distribution of the discrete random variable K describing this 
process is called Poisson. Its probability mass function gives the 
probability that k events occur in the period of observation (0, t )  and is 
defined as: 

The expected value and variance of the distribution are: 

E [ K ]  = At 
Var[ K ]  = At 

(4.36) 

(4.37) 

As it can be intuitively understood, the Poisson distribution derives from 
the binomial one in the limit for p + 0, n + 00 so that the product 
np = At remains constant. 

Example 4.7 (Poisson distribution) [l] 

On the average two damaging earthquakes occur in a certain country 
every 5 years. Assume the occurrence of earthquakes is a Poisson 
process in time. For this country, compute the following: 

1. Determine the probability of getting I damaging earthquake in 
3 years. 

2. Determine the probability of no earthquakes in 3 years. 
3. What is the probability of having at most 2 earthquakes in one year? 
4. What is the probability of having at least 1 earthquake in 5 years? 
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Solution 

4.7.1 P(l earthquake in 3 years) = p(1;(0,3),0.4)= (0.4t)e-0.4r I = 0.3614 
1=3 

(0'4t)0 e-0.41 I = 0.3 
1=3 

4.7.2 P(0 earthquake in 3 years) = p(0; (0,3),0.4) = - 
O! 

2 

4.7.3 P(K 5 2 in 1 year) = cp(x;(0,3),0.4) = p(0;(0,3),0.4)+ p(1;(0,3),0.4) 
k=O 

= 1 - e-'= 0.864 
lr=5 

4.7.4 P(K 2 1 in 5 years) = 1 - P(K = 0 in 5 years) = 1 - e-0.4r 

Example 4.8 (Binomial and Poisson distribution) [l] 

The occurrences of floods may be modelled by a Poisson process with 
rate 2). Let p(k; t, u) denote the probability of k flood occurrences in 
t years. 

1. 

2. 

3 .  

If the mean occurrence rate of floods for a certain region A is once 
every 8 years, determine the probability of no floods in a 10-year 
period; of 1 flood; of more than 3 floods. 
A structure is located in region A .  The probability that it will be 
inundated, when a flood occurs, is 0.05. Compute the probability 
that the structure will survive if there are no floods; if there is 1 
flood; if there are n floods. Assume statistical independence 
between floods. 
Determine the probability that the structure will survive over the 10- 
year period. 
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1 
4.8.1 U =  -=0.125y-' 

8 

P{K= 0 in 10 years} = e-'.*' = 0.286 

P { K =  1 in 10years) = 1.25(e-'.25)=0.3525 

3 
P { K >  3 in 10 years} = 1 - P { K S  3 in 10 years} = 1 - x p ( k ; t  = 10,o = 0.125) 

k=O 

1.25' -1.25 1.253 e-i .z5= o,0394 -- 7 1 - 0.286 - 0.3575 - - e 
2! 3! 

4.8.2 P{structure fails I flood} = 0.05 

P{structure survives I flood} = 0.95 

P{structure survives, 0 flood} =P(O flood} P{structure survives 1 0 flood} 
= 0.286 (1)  = 0.286 

P{structure survives, 1 flood}= P{ 1 flood} P{structure survives I 1 flood} 
= (0.3525)(0.95) 
= 0.3396 

P{structure survives, n independent floods} = 
= P(n  floods} P{structure survives I n independent floods} 

1.25" -1.25 1.1875" -,.25 4.8.3 P{structure survives over 10 years} = c - e  (0.95)" = c----. 
n! n=O n! 

- - e1.1875-1.25 - - e4.0625 

= 0.9394 

4.6.2 Univariate continuous distributions 

Exponential Distribution 

Consider a component operating at time t = 0 and characterized by a 
constant failure rate h T ( t )  = A. Let us consider a given time t and 
subdivide the time period (0 , t )  in n subintervals of equal length A t .  In 
each subinterval, the component either survives with constant survival 
probability equal to 1 - AAt or fails with complementary probability 
AAt . Hence, each interval represents a Bernoulli trial. Then, the 
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probability that the component has no failures up to time t is given by the 
binomial distribution (4.32) for the discrete random variable number of 
failures, evaluated at k = 0 , 

b(O;n,AAt) = [;)(AAt)'(l- AAt)"-' = (1 - AAt)" (4.38) 

In (4.38) the random variable is the number of failures in n Bernoulli 
trials. Looking at the stochastic process in terms of the continuous 
random variable failure time T, the reliability of the component at time 
t , i.e. the probability that the component does not fail up to time t , is the 
probability that T takes on values larger than, 

R ( t ) = P ( T > t ) =  l im(1-AAt)" = l im  (4.39) 
n+m n-tm 
At+w 

The cdf of T is then: 

~ ~ ( t )  = P(T I t )  = 1 - 8' 

with corresponding pdf (Fig. 4.14): 

and hazard function: 

= O  t<O 

(4.40) 

(4.41) 

(4.42) 

Such distribution is called exponential and it is the only distribution 
characterized by a constant hazard rate. For this reason it is widely used 
in reliability practice to describe the flat, constant part (useful life) of the 
bath-tub hazard function of a component (section 4.5.3). 
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The expected value and variance of the distribution are: 

1 
E [ T ] = -  

A. 
1 

Var[T] = - 
A2 

(4.43) 

1. .Len T is the time to failure, the expecteL value represents the return 
period of failures and is often called Mean-Time-To-Failure (MTTF). 

Fig. 4.14: Exponential distribution 

Note that the probability of the failure time T being larger than a given 
value t is equal to the probability of having 0 failures in the period 
(0, t )  : in the case of constant failure rate A ,  the former is given by the 
exponential complementary cumulative distribution function (4.39), 
whereas the latter is given by the Poisson distribution (4.36) for k = 0 . 

Finally, when the failure rate is constant, the process is said to be 
rnernoryless. Indeed, suppose that a component with constant failure rate 
A is found still operational at a given time t, and that one is interested 
in the probability of its failure before t, > t,. This is given by the 
following conditional probability: 
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(4.44) 

The distribution of the failure times starting from t, is still exponential 
with failure rate A ,  so that knowing that the component has survived 
with no failures up to t, does not change the probability of its failure 
within the next interval of duration (tz  - t , )  . 

Weibull Distribution 

In practice, the age of a component influences its failure process so that 
the hazard rate does not remain constant throughout the lifetime (Fig. 
4.13 in Section 4.5.3). To account for the time evolution of the failure 
process, the Weibull distribution is often used in reliability practice. 

The cdf is: 

FT ( t )  = P(T I t )  = I - e-"" (4.45) 

with corresponding pdf 

The expected value and variance of the Weibull distribution are: 

(4.46) 

(4.47) 

where the Gamma function r(.) is the generalization to non-integer 
numbers of the factorial and is defined as 
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m 

r ( k )  = I ~ ~ - ' e - " d x  k > 0 (4.48) 
0 

which by integration by parts yields, 

Normal or Gaussian Distribution 

The importance of the normal or Gaussian distribution is related to the 
famous central limit theorem: for any distribution of independent random 
variables Xi, their sum X, + X, + ... + X, is a random variable which 
for large n tends to be distributed as a normal distribution. This, for 
example, justifies the use of the normal distribution to describe 
experimental errors which are typically the effect of several independent 
random phenomena. 

The Gaussian distribution is the only distribution with a symmetric, 
bell shape. Its pdf is 

The expected value and variance of the Gaussian distribution are: 

E[XI = ~x 
Var[X] = 0; 

(4.50) 

(4.51) 

A random variable distributed as a normal with mean px and standard 
deviation ox is typically indicated as X - N(px,oX) . Often in 
practice, one refers to the so called standard normal variable 

5 =  - px - N(0, I )  which is easily tabulated (Appendix A). 
O x  
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Log-normal Distribution 

Let us consider a stochastic process of a random variable X which, 
beginning from an initial value x,, > 0 is increased by successive 
random, independent contributions proportional to the current value of 
X . Let {r}  be the sequence of independent random variables such that: 

xi+l = x i  +pi (4.52) 

Xi+l  - X i  . Assuming small relative increases Axi = 
X i  

4 hx, h n  5 +r2 +...+ rn =-+-+ ...+- 
4 x2 x n  

(4.53) 

which for large number n becomes: 

(4.54) 

For the central limit theorem, the first limit tends to a normal random 
variable and so does 2 = In X , with X = lim . The distribution of 
X is called log-normal. In other words, J??; l6g-normal if 2 = In X 
is a normal random variable. 

Denoting by f,(.) and gx(.) the pdfs of the normal random 
variable Z (4.52) and of the log-normal random variable X , 
respectively, from 

X 

f,dz = g,d. (4.55) 

one obtains the log-normal pdf 
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x,az  > 0 (4.56) 

where pz and a, are the mean and standard deviation of the 
corresponding normal distribution of 2 = In X . The expected value and 
variance of g, (x; pZ , az ) are: 

(4.57) 

The log-normal distribution is asymmetric, skewed to the right and it is 
often used to represent the uncertainty in the estimates of the components 
failure rates. In this view, it is often characterized in terms of percentiles 
and the error factor 

(4.58) 

where 5 - N(0,l) 

Example 4.9 (exponential and Gaussian distribution) [ 11 

The daily concentration of a certain pollutant in a stream has the 
exponential distribution shown in Fig. 4.15. 

1. If the mean daily concentration of the pollutant is 2 mg/103 liter, 
determine the constant c in the exponential distribution. 

2. Suppose that the problem of pollution will occur if the concentration 
of the pollutant exceeds 6mg/103 liter. What is the probability of a 
pollution problem resulting from this pollutant in a single day? 

3. What is the return period (in days) associated with this 
concentration level of 6 mg/103 liter? Assume that the concentration 
of the pollutant is statistically independent between days. 
What is the probability that this pollutant will cause a pollution 
problem at most once in the next 3 days? 

4. 
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5 .  If instead of the exponential distribution, the daily pollutant 
concentration is Gaussian with the same mean and variance, what 
would be the probability of pollution in a day in this case? 

0 2 4  6 8 

Fig. 4.15 

Solution 

4.9.1 First, we verify the normalization of the probability density function, i.e. 

Then, from the expected value of the exponential distribution we have: 

E[X] = l / c  = 2 a c  = 0.5 

6 6 

4.9.2 P(pol1ution) =P(X> 6) = 1 - P(X5  6) = 1 - 10.5e?'A = 1 + e-'." I = 0.0498 
0 0 

For simplicity of notation, we shall denote P(X> 6) bypx>6 = 0.0498. 

1 - 1 4.9.3 E[Tx>6] = - - - =20 days 
px,6 0.0498 
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1 

4.9.4 P(pol1ution at most once in 3 days) = x( i )p i ,6 ( l -  pX,6)3-k  
k=O 

= (1 - 0.0498)3 + (3)(0.0498) (1 - 0.0498)2 

= 0.993 

4.9.5 P(X> 6) = I - P(X56)  = I -P(c52)  = 1 -@(2) = I - 0.977= 0.023 
where 4 - N(0,l) is the standard normal variable (Appendix A). 

Example 4.10 (Gaussian and Log-normal distributions) [l] 

A contractor estimates that the expected time for completion of job A is 
30 days. Because of uncertainties that exist in the labor market, materials 
supply, bad weather conditions, and so on, he is not sure that he will 
finish the job in exactly 30 days. However, he is 90% confident that the 
job will be completed within 40 days. Let X denote the number of days 
required to complete job A .  

1. Assume X to be a Gaussian random variable; determine p and CT 
and also the probability that X will be less than 50, based on the 
given information. 
Recall that a Gaussian random variable ranges from - 00 to + co . 
Thus X may take on negative values that are physically 
impossible. Determine the probability of such an occurrence. Based 
on this result, is the assumption of the normal distribution for X 
reasonable? 
Let us now assume that X has a log-normal distribution with the 
same expected value and variance as those in the normal 
distribution of part (1). Determine the parameters pz and oZ , and 
also the probability that X will be less than 50. Compare this with 
the result of part (1). 

2. 

3. 
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Solution 

4.10.1 

4.10.2 

Let Xbe  the number of days required to complete job A .  

E[X] = px= 30 X- N(30, ax) 

' x - 3 0  40-30 10 

e x  e x  D X  
P(X< 40) = 0.9 -P(- 5 - ) = 0.9 a P ( s <  -) = 0.9 

From the tabulated values @(c) of the normal standard variable 5 (Appendix A): 

10 10 

O X  G X  
(D(-)=O.9 a - =@-'(0.9)=1.29 ox =7.752 

Therefore P ( X 5  50) = P(5 5 2.58) = (D(2.58) = 0.995 

The limit value is X = 0 which corresponds to the following value of the standard 
normal variable: 

- 0-30 
(=- = -3.87 

7.752 

Then, the probability of negative values is: 

P(5 ip) = 1 - (D(3.87) = 1 - 0.999946 = 5.4 .(lo-') 

which is negligible: the assumption of normal distribution is acceptable. 

4.10.3 X-fx(x;p,,c,) with pX=30andox=7.752 

ci =In I + %  =0.0646 ( 
Therefore, X-f.x;3.3688, 0.0646) 

puz =Inp ,  --02=3.3688 1 
2 

= P(( <2.137)=(D(2.137)=0.983 I n X - p ,  In50-pz 
5 

0 2  
P(X < 50) = P 
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4.7 Regression and correlation analyses 

When dealing with two or more variables, the functional relation 
between the variables is often of interest. However, if one or more 
variables are random, for a given value of one variable (the controlled 
variable), there is a range of possible values of the others and thus a 
probabilistic description is required. 

If the probabilistic relationship between the variables is described in 
terms of the mean and variance of one random variable as a function of 
the other variables, we have what is known as “regression analysis”. 
When the analysis is limited to linear mean value functions, it is called 
“linear regression ”. In general, however, regression may be nonlinear. 

4.7.1 Regression with constant variance 

Considering painvise data of two variables, X and Y ,  the possible value 
of one variable, e.g. Y ,  may depend on the values of the other variable 
X. For this reason, it would be inappropriate to analyse the data for Y 
(e.g. in determining the mean and variance of Y )  without due 
consideration of X . In the case of Fig. 4.16, we observe that there is a 

I - 
0 x 

Fig. 4.16: Linear regression analysis of data for two variables 
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general tendency for the values of Y to increase with increasing values 
of X ( X may be deterministic or random). Hence, the mean value of Y 
will also increase with increasing values of X although, due to the 
stochastic behavior of the process, the actual values of Y may not 
always increase with increasing values of X . 

In general, the mean value of Y will depend on the value of X .  
Suppose that this relationship is linear; that is, 

E[YIX = x] = a + px (4.59) 

where a, /3 are constants and the variance of Y may be independent or 
a function of X . This is known as the linear regression of Y on X . 

Let us consider the case with Var[YIX = x] =constunt. 

Depending on the values of a and p , there are many straight lines 

that could represent the function E[Y(X = x] in the light of the available 
data. The ‘best’ line is that which passes through the data points with the 
least error. The coefficient of this line with least total error can be found 
by minimizing the sum of the squared errors: 

L n  

A2 = g ( y i  - y i )  = c ( y i  - a - P x i )  
L 

(4.60) 
i=l i=l 

where n is the number of data points, yi  is the observed value, 

y ;  = a + pxi * 
To minimize A2 we take the derivatives with respect to a and /3 

and set them equal to 0: 

dA2 
da i=l 

- = c 2 ( y i  - a - pxi  1- 1) = 0 

- = C 2 ( y ,  i?A2 - a - p x i x - x i ) = o  
ap i=l 

(4.61) 

(4.62) 

from which we get the least-squares estimates of a and P : 
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(4.63) 

2 x i y i  - n x y  T ( x ;  -x).(yi -7) 
(4.64) p =  i=l - i=l 

E x ;  - nX2 
- 

2 ( X i  - q2 
i=l i=l  

Strictly speaking, the regression line E[YIX = x] = 6 + Bx is valid only 
over the range of values of x for which the data has been observed. 

The dual regression line E[XIY = y ]  is in general a different linear 

equation which intersects E[YIX = x] at (X, y) . 
The conditional variance Var[Y(X = x] about the regression line 

can be estimated as: 

1 "  2 1 "  A2 
n - 2 i=l n - 2  i=, i=l  n - 2  

(4.65) 

The physical effect of the linear regression of Y on X can be 
measured by the reduction of the original variance of Y, 

1 "  s2 = -. c ( y i  - y)2 , obtained from taking into account the 
'Ix n - 1 i=l 

general trend with X 
2 2  

YI 
s y  -s 

2 r =  4 
(4.66) 

The assumptions of linear model and constancy of variance underlying 
linear regression are, in fact, inherent properties of populations that are 
jointly normal. In this case we have: 
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E[Y 1 x = x] = #By + p (x - Px ) 
O X  

(4.67) 

V a r [ Y I X = x ] = O ; ( 1 - p 2 )  (4.68) 

where p is the correlation coefficient (see definition (4.85) below). 
Thus, if two variates are jointly normal, the regression of Yon Xis  linear 
with constant conditional variance and 

(4.69) 

Therefore, if the underlying populations are jointly normal, it is 
appropriate to use linear regression. 

4.7.2 Regression with non-constant variance 

The conditional variance about the regression line, Var[YIX = x] may 
be a function of the independent (controlled) variable. This is the case 
when the degree of scatter varies with the different values of the 
controlled variable. This variation may be expressed as: 

Var [Y Ix = x]= 0 2 g 2 ( x )  (4.70) 

where g(x) is a predefined function and o is an unknown constant. 

In determining the regression equationE[YIX = x] = a + Px , it 
would seem reasonable that data points in regions of small variance 
should have more “weight” than those in regions of large variance. On 
this premise, we assign weights inversely proportional to the variance: 

(4.71) 

Then, the squared error is: 
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A2 = T w ; ( y i  - a - - p ~ ~ ) ~  (4.72) 
i=l 

from which the least-square estimates of a and p become 

A 2 j = l  wi y i  - /g i=l wixi A g [ g W i Y i X i )  - (g WiYi ][g wi X i )  

2 a =  ; p  = 2 wi 
i=l 

(4.73) 

2 '  1 
where, wi = o wi = - 

g 2  ( x i )  * 

An unbiased estimate of the unknown o2 is: 

s 2  = i= l  

n - 2  

and an unbiased estimate of the conditional variance is: 

s;,, =sZg2(x) 

(4.74) 

(4.75) 

4.7.3 Multiple linear regression 

Linear regression analysis for more than two variables is simply a 
generalization of the previous one for two variables. The assumptions 
underlying multiple regression analysis are as follows: 

1. The mean value of Y is a linear function of x, x2 )...) X, 

[y I x1 x, J . .  .? xm ] = Po + P1.5 + ... + P,x ,  (4.76) 
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2. The conditioned variance of Y given XI, X 2  ,..., X, is constant. 

(4.77) 2 2  vav [Y I XI ' X 2  ,... > x,] = CT g (XI , x 2  ,..., x, ) 

The regression analysis then determines estimates for Po ,PI, . . . . ,p, and 

o based on a set of observed data (x:, xi , .... , xk , y,) ,  i = 1,2, .. . ., n . 
The function E[YIx, ,x2 ,  ..., x,] can be written also as 

2 

E[YIx,, x2 ,.... x, ] = cx + PI (xI - TI) + ... + p, (x, - Fm) (4.78) 

in which the Xi 's are the sample means of X i  and a is a readjusted 
constant. 

Restricting to the case of constant conditioned variance we have: 

2 "  

A2 = A ( y [  - y i )  = c [ y i  -a-pI (x:  - ? l ) - . . . - ~ m ( x ~  -x, 
i=l i=l 

(4.79) 

Minimizing A2, we get the following estimate 

(4.80) 

, . A  A 

and a set of m linear equations involving the m unknowns Po ,PI ,...,p, : 

z n  

b,T(x: -.,xx; -z ,)+b*T(x; -.,xx; - Y z ) + . . + b m 2 ( x ;  -Ym) =c(x: -&, - j )  
,=I  ,=I ,=I ,=I 

(4.81) 

The conditional variance Var[Ylx,,x, 7...7 x, ] can be estimated as: 



4.7 Regression and correlation analyses 71 

(4.82) 

4.7.4 Non Linear Regression 

Relationships between engineering variables are not always adequately 
described by linear models. The determination of such non-linear 
relationships on the basis of observational data involves non-liner 
regression analysis. 

Non-linear regression is usually based on an assumed non-linear 
mean value function with some unknown coefficients to be evaluated 
from experimental data. 

The simplest type of non-linear regression of Y on x is: 

E [Y Ix = x]= a +pg(x)  (4.83) 

where g ( x )  is a predefined non-linear function of x such as x + x2, 
ex  , lnx . 

By defining a new variable x' = g(x>, 

E [Y I x = .'I= a + p x' (4.84) 

and transforming the data ( x , , y , )  into (g(x , ) ,y , )  we are back to linear 
regression. 

4.7.5 Correlation Analysis 

The study of the degree of linear interrelation between random variables 
is called correlation analysis. Indeed, the accuracy of a linear model 
between variables depends on the correlation between them, measured by 
the so called correlation coefficient, 
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Based on a set of observed values of X and Y , the correlation coefficient 
may be estimated by 

If b M +1, then there is strong linear relationship between X and Y , and 
linear regression analysis is adequate. On the other hand, if /i) M 0,  this 
would indicate a lack of linear relationship between the variables 

It is possible to show that, 

Furthei 

Var [Y 

i=l 

(4.87) 

nore, 

(4.88) 

from which, 

Thus, we can say that the larger the value of 1b1, the greater will be the 
reduction in the variance when the trend between the variables is taken 
into account and more accurate will be the prediction based on the 
regression equation. 
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Example 4.11 (constant variance) [I] 

Tabulated in the first three columns of Table 4.1 are values of shear 
strengths, in kips per square foot (ksf), obtained from 10 specimens taken 
at various depths of a clay stratum. Determine the mean and variance of 
the shear strength as a linear function of depth. Assume that the variance 
is constant with depth. 

Table 4.1 summarizes the computations in the regression analysis. 

Table 4.1 : Computational Tableau for the Example 

To determine & and 3 To determine syl, 

Depth Strength 
(ft) ( k 4  Specimen 

no. 
Xi Yi X i Y i  x,? Y: Y ; = a + B i  Y i - Y :  (YL-Y j )2  

1 6 0.28 1.68 36 0.078 0.325 -0.045 0.0020 

2 8 0.58 4.64 64 0.336 0.429 0.151 0.0228 

3 14 0.50 7.00 196 0.250 0.739 -0.239 0.0571 
4 14 0.83 11.63 196 0.689 0.739 0.091 0.0083 

5 18 0.71 12.78 324 0.504 0.946 -0.236 0.0557 

6 20 1.01 20.20 400 1.020 1.049 -0.039 0.0015 

7 20 1.29 25.80 400 1.662 1.049 0.241 0.0580 

8 24 1.50 36.00 576 2.250 1.257 0.243 0.0590 

9 28 1.29 36.10 784 1.662 1.463 -0.173 0.0299 

10 30 1.58 47.40 900 2.495 1.566 0.014 0.0002 

182 9.57 203.23 3876 10.946 A’ = 0.2945 

X = 18.2 

7 = 0.957 

p = 203.23-10~18.2~0.957 =o,0516 
3876- 10.18.22 

10.946-10.0.957* = o.197 
s: = 

9 

s;,= = 10-2 0.2945 - - 0.0368 

sYl, = Joo368 = 0.192 
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On the basis of the calculations in Table 4.1, the least-squares mean 
shear strength (in ksf) as a hnction of depth x is given by 

E [ Y ~ x ] = a + p x = o . o 1 8 + 0 . 0 5 1 7 x  (4.90) 

whereas the variance of the shear strength at a given depth is estimated to 
be 0.0368 (ksf)’, giving s:,, = 0.192ksf. If the linear trend with depth 

is not taken into account, the unconditional variance of the shear strength 
would be 0.197 (ksf)’, and sy = 0.44ksf. Hence the conditional 

standard deviation s is considerably smaller than S y  . 
YI 

The regression equation obtained above may be used to predict the 
shear strength from 6 ft to 30 ft deep. It may not apply to depths beyond 
30 ft, unless the linear trend can be justified beyond this depth on 
physical ground (for example, the same soil type). 

Graphically, the regression line obtained above is shown in Fig. 
4.17; also shown is the envelope with k s from the regression line. 

This represents a band width of one (conditional) standard deviation 
from either side of the regression line. 

YI 

Shear Strength, y ,  ksf  

Fig. 4.17: Regression line for shear strength with depth [ 11 
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Reliability of Simple Systems 

5.1 Simple system configurations 

We consider a system comprised of a set of N independent components, 
i = 1,2, ... N , each of which has probability p i  of being functioning and 
qi = b p i  of being failed. Knowing the probability values p i ,  
i = 1,2, ... N , and the system configuration, we wish to calculate the 
probability P that the system is hnctioning properly. 

For time dependent situations we can calculate the reliability of the 
system R(t) as a function of the components' reliabilities Ri(t), 
i = 1,2, ... N [l], [2], [3], [4], [5]. In this case, we may also calculate the 
mean time to failure, m: 

m 

m = IR(t)dt = x ( 0 )  
0 

where x ( s )  = je-"R(t)dt = L[R(t)] is the Laplace transform of R(t). 

or 
0 

where J?(s) = L l f ( t ) ]  and 
ds 

77 

5
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5.2 Series system 

Consider the series system of Fig. 5.1. The logic of operation is that all 
components must function for the system to function. 

- - - - - -  w+ 
Fig. 5.1 : Series System 

In terms of the probability that the system functions (intersection of the 
events that all components function), we have: 

N 

i=l 

and of the system reliability, 

(5.4) 

For exponential components, the system reliability becomes 
R(t)  = < Ri( t )  = e-Iir, i.e. less than the reliability of the less reliable 

unit, with 

N 

A = C = system failure rate 
i=l 

1 
A 

m= - = mean time to system failure 

The series system is the only logic configuration in which components 
with constant failure rates induce a constant failure rate for the system. In 
all other configurations, the reliability of the system is not exponential. 

The system fails at min(t1, t2, ..., t N ) ,  where ti is the failure time of 
component i. 
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5.3 Parallel system 

Consider the parallel system of Fig. 5.2. 

Fig. 5.2:  Parallel system: all components perform the same function so that anyone can 
successfully continue the operation 

In terms of probability of the system hnctioning (union of the individual 
events of the components functioning) we have: 

N 

P = l-n(l-pi) 
i=l 

which in terms of reliability becomes: 

For N exponential components with different failure rates, 



80 5 Reliability of Simple Systems 

Since the system fails when all its elements fail, the time-to-failure of the 
system is max(tl, t2, ..., tN) 

Example 5.1 

Consider two exponential units, with failure rates A1 and A,, 
respectively. The system reliability is time-dependent 

In the case of identical elements, we can compare the series and parallel 
configurations: 

5.4 r-out-of-N systems 

Consider N identical components which function in parallel but only r < 
N are needed for the system to function (the parallel system is a 
particular case with r = I ) .  In terms of probability of the system 
functioning: 

P {any k of N functioning (binomial) 

(5.10) 
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(5.1 1) 

Considering N exponential components with equal I I ,  the system 
reliability reads: 

(5.12) 

with mean time to failure equal to: 

k=r 

which gives the mean time to r+l failures, given that r successes are 
required for the system success. 

5.5 Standby systems 

A common feature of the previous series and parallel systems is that they 
are not time dependent: the logic of the system dictates the eventual time 
dependence so that the expressions for reliability are derived by simply 
replacing pi with Ri(t). The formulas for P may be interpreted as holding 
at every point in time and the state of the system is determined by the 
present state of its components. This is no longer true for standby 
systems for which the whole story of the system from t = 0 must be 
considered. 

In a standby system, one component is functioning and when it fails 
it is replaced immediately by another component (sequential operation of 
one component at a time) (Fig. 5.3). 
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Fig. 5.3: Standby system 

5.5.1 Cold Standby 

A cold standby is a configuration in which the standby component is not 
subject to failure until it is switched on. Moreover, the switch is assumed 
to be perfect. 

Since the components are operated sequentially, the system fails at 

time T = ZT, , which is a random variable sum of N independent 

random variables. The pdf of T can then be found with the use of the 
convolution theorem. 

For simplicity, consider a nominal component 1 and a standby 
component 2, with random failure times TI and T2 distributed as f i ( t )  
and f 2  ( t )  , respectively. The probability density function f, ( t )  of the 
system failure T = T, + T2 is given by the convolution product: 

N 

i=l 

Where the symbol * indicates the convolution product. Taking the 
Laplace transform, 

Generalizing, for a system with 1 nominal component and N-l standby 
components we have, 
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(5.14) 

Inverse-transforming yT ( s )  into f, ( t )  , we can obtain the system 
reliability 

t 

R(t) = 1 - I f , ( X ) r n  
0 

(5.15) 

Example 5.2 

Consider N identical exponential components, all with failure rate A. The 
probability density function of the components times to failure and 
corresponding Laplace transforms are: 

- 
, i = 1,2, ... N a 

f ; ( t )  =Ae-h f ; @ >  = - 

From (5.14), the system Laplace transform 

S + A  

YT(s)  is: 

Inverse-trans forming 

AN N-1 

(Gamma distribution) -2 f T ( t ) =  (N-1) ! e 

and from (5.15): 

(Poisson distribution) 
N - l ( a t ) X  

R(t)  = .-ax- 
k=O k! 
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The system reliability shows that with N - 1 cold standby components, 
the system can sustain up to N-I failures (including that of the operating 
component as well) and still be functioning: The mean time to sytem 
failure rn is: 

- I  

Example 5.3 

Consider two different exponential components with failure rates A1 and 
A,, respectively. 

From (5.14), the system Laplace transfonn yT (s) is: 

Inverse-transforming, 

and from (5.15): 

1 1  
A1 A2 

m=-+- 

For N dissimilar exponential components, with failure rates ili, 
i = 42, ... N , the mean time to failure becomes: 



5.5 Standbv svstems 85 

Note that the purpose of standby units is to increase the reliability and 
the system MTTF, m, over the values which would be obtained without 
it. Indeed, comparing with the parallel configuration: 

Example 5.4 (Imperfect switching) 

Consider the case of two different exponential components 1 and 2 with 
failure rates Al and A,, respectively, and component 2 in cold standby, 
and an imperfect switch with constant probability of good switching 
equal to Rsw. There are two mutually exclusive ways for the system to 
survive up to t: 

i) 

ii) 

-Ilt 
Switch fails: reliability of the system R(Q= e (the system can 
rely only on component 1). 
Switch does not fail: reliability of the system = reliability of the 
system as if the switch were perfect: 

Then, the system reliability is: 

5.5.2 Hot Standby 

Up to now we were able to assume independent failures: the failure of 
any unit was not influenced by the failures of the other units. In the case 
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of a hot standby this is not so since the standby unit has a finite 
probability to fail also while in standby. 

Let f, ( t )  be the pdf of the time to failure of the component, f, ( t )  
that of the standby unit while in standby and f,(t) that of the standby 
unit when online. Let R,(t),Rs(t) and R,(t) be the corresponding 

reliabilities. 
The convolution theorem can no longer be used to calculate the 

reliability of the system, because there is no independence of the failure 
events any more. 

The system will perform its task in the interval (0, t )  in either of two 
mutually exclusive ways: 

(i) the online component 1 does not fail in (0, t )  , with probability 
t 

R, ( t )  = 1 - If, (x)dx ; 
0 

(ii) the online component fails in (z,z+ d z ) ,  with probability 

the standby component 2 does not fail in (0, z), with probability 
R,(z) and it operates successfully from z to t with probability 

R, (t - z). 

f, k )dz  ; 

Then, the system reliability is given by the sum of the probabilities of the 
two mutually exclusive events: 

For exponential components, 

(5.16) 

(5.17) 



5.5 Standby systems 87 

In the limit cases: 

A, = o  + ~ ( t )  = e-a (1 + ~ t )  cold standby 

parallel 
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Availability and Maintainability 

6.1 Introduction 

Reliability and availability represent important performance parameters 
of a system, with respect to its ability to fulfil the required mission 
during a given functioning period [l], [2], [3], [4], [ 5 ] .  From this point of 
view, two main types of systems can be defined: 

1. Systems which must satisfy a specified mission within an assigned 
period of time: in this case, the reliability is the appropriate 
performance indicator of the ability to achieve the desired objective 
without failures; 
Systems maintained: in this case, the availability quantifies in a 
suitable way the system ability to fulfill the assigned mission at any 
specific moment of its life time. Basic maintenance procedures can 
be distinguished in: 
a. Off-schedule (corrective): this amounts to the replacement or 

repair of failed units; 
b. Preventive: this amounts to performing regular inspections, and 

possibly repair, following a given maintenance plan; 
c. Conditioned: it amounts to performing a repair action upon 

detection of degradation. 

2. 

6.2 Availability definition 

As above said, an important figure of merit for a system undergoing 
maintenance (i.e., corrective, preventive or conditioned maintenance) is 
its (un)availability [l], [2], [3], [4], [ 5 ] .  

89 

6
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Let X(t) be an indicator variable denoting the state at time t of a 
system undergoing maintenance, such that (Fig. 6.1): 

X(t)=l, system is operating at time t 
X(t)=O, system is failed at time t 

F = Failed; R = under Repair 

0 l i  t 

Fig. 6.1 : System state indicator variable 

The instantaneous availability p(t) and unavailability q(t) are defined as 
the probability that the system is operating at time t and as the 
probability that the system is failed at time t, respectively: 

p ( t )  = P[X( t )  = I] = E[X( t )]  

q ( t )  = P [ X ( t )  = 01 = 1 - p ( t )  

(6.1) 

(6.2) 

Notice the difference in the meaning of p(t), the probability that the 
system is functioning at time t, from the reliability R(t), i.e. the 
probability that the system functions continuously with no failures up to 
time t. 

To judge the performance of a maintainable system, so as to be able 
to compare different maintenance strategies, we need to define 
appropriate quantities for an average description of its probabilistic 
behavior. We distinguish two cases: 

- For components whose behavior can be described by finite Markov 
processes, we introduce the limiting or steady state availability: 
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p = l imp(t)  (6.3) 
t+m 

By definition, it represents the probability that the component is 
functioning at an arbitrary moment of time, after the transient failure 
and repair processes have stabilized. It is obviously an undefined 
measure for systems under periodic maintenance, for which the 
limit does not exist. 

- For components under periodic maintenance, the average 
availability over a given period of time T is introduced as the proper 
indicator of system performance, and it is given by: 

l T  UP time 
p - -. Ip(t)dt  = 

T - T  T 

where Uptime is the average time the system is functioning (UP) 
within T. From the definition, it follows that p T  is not a probability, 
but represents the expected proportion of time that the system is 
operating in [0, r ] .  At steady-state, the limiting average availability 
can be defined as: 

p m  = lim -. p(t)dt  
T- tm T 'i 0 

Note that if the limiting availabilityp exists, then p m  = p 

6.3 Contributions to unavailability 

The main contributions to the unavailability of a system generally come 
from: 

1. Unrevealed failure, i.e. when a stand-by component fails unnoticed. 
The system goes on without noticing the component failure until a 
test on the component is made or the component is demanded to 
hnction. 
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2. Testinghreventive maintenance, i.e. when a component is removed 
from the system because 
it has to be tested or must undergo preventive maintenance. 
Repair, i.e. when a component is unavailable because under repair. 3. 

6.4 The availability of an unattended component (no repairs) 

An unattended component will function till its first failure and remain 
failed after that, since repairs are not allowed. Hence, the probability q(t) 
that at time t the component i s  not functioning is equal to the probability 
that it failed before t, i.e. the cumulative failure probability F(t). In other 
words, the instantaneous unavailability of the component will be equal to 
the cumulative distribution function of failure times: 

and the component availability will be equal to its reliability: 

p ( t )  = 1 - q(t) = R(t) 

6.5 The availability of a continuously monitored component 

For a continuously monitored component it is assumed that restoration 
starts immediately after its failure. Still, we need to define the 
probabilistic model describing the duration of the repair process. 

We indicate with G(t) the cumulative distribution function of the 
random time duration of the repair process: 

G(t) =P{repair process ends before t units from failure) (6.8) 

and with g(t) the corresponding probability density hc t ion .  
To analyze the failure and repair processes, we suppose that we start 

with N items at time t = 0. At any successive time t, some items will be 
functioning (UP) whereas the others will be failed (DOWN), so that the 
total number N is conserved. 
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We can then establish a balance equation between time t and time 
t+At. At time t, the number of items which are UP is N p ( t )  ; at time 

t+At the number of items which are UP is N p(t + A t ) .  
Assuming, for simplicity, that the components have exponentially 

distributed failure times with rate A, then AVAt is the conditional failure 
probability in At, given that the item was UP at time t .  Considering that 
p ( t )  is the probability of the item being UP at time t, at the beginning of 
At, we get the unconditional failure probability p(t) .AAt.  Thus, the 
number of items failing during the interval At, i.e. the loss term in the 
balance equation is given by N . p ( t )  . A . At . 

Following the same logic, we obtain the gain term of the balance 
equation due to components that had failed in (z, T + A z) and whose 
restoration terminates in (t, t+At) (Fig. 6.2). 

component fa i l ed  in (z, z + A T )  
repair  completed in ( t ,  t + A t )  

z z + A z  t t + A t  

Fig. 6.2: Gain term due to restoration of components in At 

Obviously, the failure can occur at any ZI t so that we need to integrate 
over time: 

where, 

p ( z ) . i l . A ~  is the item unconditional probability of failing in the 
interval AT (A.Az is the conditional failure probability in 
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AT), knowing that the item was UP at time z @(z) is the 
probability of the i-th item being UP at time z). 

g(t-z) .At is the probability of completing in (t,  t+At) the 
restoration which had started upon failure in (z, *AT). 

The balance equation then writes: 

I 

N .  p ( t  i- At)  = N .  p ( t ) -  N .  p ( t ) .  2.. At + I N .  p ( z ) .  2.. A T .  g ( t  - z). At 

(6.10) 
0 

Dividing by N.At, subtracting p( t )  on both sides and letting At tend to 
zero, we obtain the integral-differential form of the balance: 

d p ( f ) = - A . p ( t ) +  j A . p ( r ) . g ( t - z ) . d r  
dt 0 

where the integral term on the right-hand side of the equation, 

f 

IA . p ( z )  . g( t  - z) . dz 
0 

(6.11) 

(6.12) 

represents the convolution of the instantaneous availability hnction and 
the restoration probability density hnction. 

As initial condition of the integral-differential equation (6.1 l), we 
will assume, in general, p(0)  = 1, which means that the component is 
UP at the initial time. 

The solution to the integral-differential equation (6.1 1) can be easily 
obtained introducing the Laplace transforms: 

a) 

L[ f (x)] = Y(s) = JC"" f (x)dx 
0 (6.13) 
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Applying the Laplace transform to the balance equation (6.1 1) we obtain 
the following algebraic equation in the unknown p"(s) : 

s * F(s) - 1 = -A * p"(s) + A.. j?(s). E(s) (6.14) 

which can be solved for p"(s) : 

1 
s + A *(l- Z(s)) 

3 s )  = (6.15) 

Applying the inverse Laplace transform to p"(s), the instantaneous 
availability p(t)  is determined. 

Furthermore, to determine the limiting availability, p ,  , the final- 
value theorem can be exploited: 

As s tends to 0, a first order approximation of g(s) can be considered: 

m m (0 

g(s) = [e'"'g(r)dt = (r1-s.  r +...)g( z )dr  z 1 - s .  sr . g ( z )dz  = 1 -s.ZR 

(6.17) 

where ZR is the expected value of the restoration time distribution G(t), 
also called the mean-time-to-repair, MTTR. 

0 0 0 

Hence, 

- MTTF - average time the component is UP - - 
MTTF + MTTR average period of a failure / repair " cycle" 

(6.18) 

Note that this result is valid for any repair process G(t). 
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Example 6.1 

Find the instantaneous and the limiting availabilites for a component 
whose restoration probability density is: 

Solution: 

The Laplace transform of the restoration density is: 

Then, substituting g"(s) in the above expression (6.15) for p"(s), we 
get: 

Applying the inverse Laplace transform, we obtain the instantaneous 
availability: 

and the limiting availability is: 

P P, =- 
P + A  

which can also obtained directly from (6.18). 
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6.6 The availability of a component under periodic test and 
maintenance 

Safety systems are generally in standby until an accident occurs, which 
calls for their operation. Hence, their components must be periodically 
tested. The components are unattended between tests and their failure is 
revealed only when tested. 

For a component under periodic test and maintenance, the 
instantaneous unavailability is a periodic function of time, and, as such, it 
does not posses a limit. In this case, the performance indicator used is the 
average unavailability. The calculation of the average unavailability over 
a period of time Tutilizes its definition: 

DOWNtime 
(6.19) 

l T  q - -. fq(t)dt  = 
T - T  T 

where DOWNtirne is the average time the system is failed (DOWN) 
within T. For simplicity, let us consider the simple case of the 
unavailability being due to unrevealed random failures that can occur at 
any moment of time with constant rate A. 

Assuming instantaneous and perfect testing and maintenance 
procedures, the instantaneous availability within a period z coincides 
with the reliability because the component is unattended between two 
successive maintenance times, i s .  between (k - l)r and k z  , k=l ,  2, . . . 

Fig. 6.3: Availability of a component under periodic test and maintenance, with period T 

Note that since p(t)  and R(t) are periodic bc t ions  we can derive them 
within one period. 
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XO 

1 

For the calculation of the average unavailability, we refer to Fig. 6.4 
which shows a generic random behavior of the component under periodic 
test and maintenance. 

when test is performed 

To = DOWNtime = 5-t 

b 

2 t  22 32 t 

Fig. 6.4: State indicator variable for a component under periodic test and maintenance 

The average unavailability within one period z is, by definition: 
- 

DOWNtime - T D  - 4 ,  = z z 
- 

where the mean DOWNtime, T D  , is: 

7 r - 
T D  = I(T - t )  f (t)dt = I(T - t)dF 

0 0 

(6.20) 

(6.21) 

Integrating by parts: 

Hence, the average unavailability within z has the following expression: 

(6.23) 
L L 
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and the average availability: 

7 

- [R(t)dt 
T u  p = - = O  

z z 
(6.24) 

- 
where T u  is the mean Uptime within z. 

Expressions (6.23) and (6.24) are just the definitions of the average 
unavailability and availability over the period z, since q(t) = F(t) andp(t) 
= R(t) within the interval z in which the component is unattended. Then, 
we are in the situation that for different systems, with different logics of 
redundancy, we can compute q,  , p ,  by first computing their failure 
distribution and reliability, according to the logic of operation, and then 
applying the above expressions. 

If the component has exponentially distributed failure times with 
constant rate A, we have that the cumulative distribution is: 

For failure rates and for times such that the inequality A . t I 0.10 is 
satisfied, then the cumulative distribution function could be 
approximated as follows: 

and the average unavailability would take the form: 

(6.26) 

(6.27) 

Intuitively, we would expect the component with constant failure rate to 
fail halfway the period. 

Finally, assuming a finite repair time z R  , this must be counted as 
DOWNtime, if significant. Hence, the average unavailability and 
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availability over the complete maintenance cycle period z + zR will 
change into: 

5 

zR + IF(t)dt 
q =  0 

z + 2, 

p ' o  
z + zR 

If the repair time zR is small compared with the period z, we get: 

T 

z, + [F(t)dt 

(6.28) 

(6.29) 

(6.30) 

(6.3 1) 

6.6.1 Single component under periodic maintenance: a more 
realistic case 

To compute the average unavailability of a component over its lifetime 
[0, T ] ,  we need to compute the average DOWNtime and then compute 
the average unavailability using its definition: 

(6.32) 

Before making any prediction on the component unavailability, we must 
define its failure characteristics, underlying the causes which lead the 
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component into a malfinctioning state. We consider the following causes 
of failure: 

- random failure at any time, modeled by the cumulative distribution 
function F(t) 
on-line switching failure on demand, with occurrence probability QU 
maintenance disabling the component, with probability yo (due to 
human error during inspection, testing or repair) 

- 

- 

An example of the latter cause could be forgetting to return a manually 
operated valve to proper configuration after testing (typical occurrence 
probability, yu = 1 O-2). 

Let us assume that the component is initially working i.e., q(0) = 0; 
p(0) = 1. In order to compute the component average unavailability qOT, 
we refer to its timeline of Fig. 6.5. 

r= time period between successive maintenances 
ZR = duration of a maintenance action 
T = component lifetime 

maintenance maintenance 

F 
f I I I I I k t  
0 T Z+T, 2T+2, 22+2T, T 

+ J - B  T C J- 

Fig. 6.5: Timeline of a component under periodic maintenance 

We have : 

0 OA - From the initial working state at time 0 to the first 
maintenance (A),  the probability of finding the component DOWN at 
the generic time t is due either to the fact that it was demanded to 
start but failed or to the fact that it randomly failed unrevealed before 
t. Thus, the instantaneous unavailability at t, 0 < t < z, reads: 

(6.33) 
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and the average DOWNtime: 

0 AB - during the maintenance period, the component remains 
disconnected and, thus, the average DOWNtime is the whole 
maintenance time: 

BC - at the generic time t between two maintenances, the 
component can be found failed because, by error, it remained 
disabled from the previous maintenance or as before, because it 
failed on demand or randomly before t. Thus the instantaneous 
unavailability at time t is given by 

(6.36) 

and the average downtime: 

- 
0 CF - The normal maintenance cycle is repeated throughout the 

component lifetime T. The number of repetitions, i.e. the number of 
AB-BC maintenance cycles, is: 

T 
Z + Z R  

k = -  (6.38) 

Then, the average DOWNtime between the first maintenance occurrence 
and the end of the lifetime T (thus, excluding the negligible first transient 
interval to first maintenance, OA, which is typically much smaller than r )  
is: 
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(6.39) 

whereas the total expected DOWNtime (including the first transient 
interval to first maintenance) would be: 

Correspondingly, the average unavailability over the component lifetime 
T becomes: 

(6.41) 

Neglecting the first contribution related to the transient period OA, 
because Qo and F(t) are generally very small and T is large, since 
typically zR << z and z << T, the average unavailability can be 
realistically simplified to: 

Considering an exponential component with small, constant failure rate I I  
and, thus, a cumulative distribution function approximated as: 

(6.43) -I.t F ( t )  = I - e  z 2. t  

the average unavailability takes the form: 

qoT z%+y0 +( l -y , ) -  (6.44) - 

z 



104 6 Availabilitv and Maintainabilitv 

Often in practice, yo << 1, Qo << 1. Then: 

qOT - E - + Y 0  ‘R +Q, + - * A . z  1 z 2 
(6.45) 

From this formula it is possible to distinguish each contribution to the 
unavailability of the component as follows: 

- ZR unavailability during maintenance 

Yil 

Qo 

1 
- - A. z 
2 

z 

unavailability due to an error which leaves the unit DOWN 
after test 
unavailability due to the switch failing on demand 

unavailability due to random, unrevealed failures between 

successive tests 

6.7 Maintainability 

When it is observed that a system or piece of equipment fails to perform 
its function satisfactorily, all or part of it is taken out of operation to 
locate and correct the fault. The fault may be corrected by a repair or a 
part may be replaced by a spare. 

When it has been verified by appropriate test that the fault is 
corrected, the equipment is returned to service. It may be placed back in 
operation, or it may be placed in standby, depending on the operational 
conditions at the time. 

The total time from system failure until return to service constitutes 
the system DOWNtime. DOWNtime can be divided into two categories 
[61: 

a) active repair time - sensitive to environment, technician skill level, 
procedures, etc. 

b) administrative time - sensitive to administrative procedures, filing, 
storage, etc. 



6.7 Maintainability 105 

Active repair can be divided into recognition or detection time, fault 
location or diagnosis time, correction or repair time, and verification of 
final malfunction check time. The administrative contribution to 
DOWNtime is that required to obtain the spare or in waiting for 
personnel, manuals, tools, or test and tuning equipment. 

The time required to perfonn the activities associated to each of 
these categories varies statistically from one failure to another, 
depending on the conditions associated with the particular maintenance 
events. The variety of alternate courses of action that maintenance 
technicians may follow in this repair process suggests both a large 
number of relatively short-time repair periods and a smaller number of 
long periods. The former would correspond to the more usual case where 
the failed unit is replaced by a spare at the operational site upon detection 
of a failure. The long DOWNtimes would occur when diagnosis is 
difficult or no spare is immediately available, and might represent the 
length of time to repair the failure at the maintenance area. This is why in 
practice the log-normal distribution often is a good representation of 
maintenance action times. 

System maintainability is defined as the probability that an item will 
be restored to specified conditions within a given period of time when 
maintenance action is performed in accordance with prescribed 
procedures and resources [6]. 

Let TD denote the item DOWNtime random variable, distributed 
according to a density function g(t). Then, maintainability can be written 
as [6]: 

T, 
P(T, I T )  = Jg(t)dt 

0 

(6.46) 

and the mean DOWNtime T o  is: 

m - 
T D  = It * g(t)dt 

0 

(6.47) 
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The maintainability analysis of a system is focused on the calculation of 

T D .  
- 

6.8 

We present an example of a maintenance policy applied to a component 
in continuous operation, which encompasses both a corrective 
maintenance action upon failure and a preventive, periodic maintenance 
[61. 

Let us introduce the following notation for the scheduled, periodic 

A policy of preventive and corrective maintenance 

maintenance and the corrective, emergency maintenance upon failure: 

z time of continuing operation without failure, after which we 
perform the scheduled maintenance; in other words, it represents 
the maintenance period between two successive maintenances. 
Note that we allow z to be infinite, in which case the preventive 
maintenance is not scheduled; 

time interval required to perform a scheduled maintenance 
action; 

time of system failure in correspondence of which a corrective, 
emergency maintenance action is started; 

time interval required to perform the emergency maintenance 
action. 

zR 

t 

z, 

We assume that any maintenance action restores the system “as good as 
new”. 

The quantities of interest are: 

- the Mean Time Between Failures MTBF; it is the item Uptime, i.e. 
the mean operating time until replacement, which takes into account 
the two mutually exclusive scenarios of no failure within the period 
rand failure at time t within z: 

MTBF = z. R ( z )  + i t .  f (t)dt = ]R(t)dt (6.48) 
0 0 
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- 
- the DOWNtime T o ;  it is the mean time needed to replace the item 

at failure or to repair it at the scheduled maintenance: 
- 
T D  = z, . [l- R(z)]+ zR . R ( z )  (6.49) 

The average availability of the component is then: 

0 

(6.50) 

which can be re-written as: 

The objective is that of finding the optimal maintenance period z* which 
maximizes pT.  To this aim, we compute the derivative of pT with respect 
to 2, 

5 

z, . R ( z )  + R 2  (2). (z, - z, ) - R ' ( z ) .  (z, - z,) . IR(t)dt 

IR(t)dt + z, - [l- R(z ) ]+  z, . R ( z )  

dPT - 0 - 

(6.52) 
Is d z  

Note that (Fig. 6.6): 

(6.53) 
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Fig. 6.6: Behavior of the reliability function R( r )  

Then, we can distinguish two cases: 

A. zR 2 re 

In this case, pT is an increasing function of z 

of the functional form of the failure densityfit), with or without aging. 
Hence, there is no z* such thatpr achieves a maximum value. 

B. ' R  "e 

In this case, it depends on the functional form offit). 

B.l Iffit) is such that - dpT > 0, Vz > 0,  then no z* exists such that 
d z  

p T  is maximum; 

B.2 Iff(t) is such that = 0 ,  then 
dz 

(6.54) 

from which the optimal value z*, can be determined. 
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Introducing the failure rate A (2): 

dF 

(6.55) 

we obtain the expression: 

z, + (z, - z,) * (1 - R(z ' ) )  

p w d t  

(z, - ZR) * A(z*) = (6.56) 
T* 

0 

and the maximum value OfPT is: 

1 
1 + (re - .,)A(.*) P T  (z*> = 

Example 6.2 [6] 

(6.57) 

Consider an exponential component, with failure time pdf 
f ( t )  = A.. e -a,[ . Eq. (6.52) becomes: 

As expected, no z* exists for whichpT will achieve the maximum value. 
This means that no optimal preventive maintenance policy exists if the 
failure rate is constant: this is obvious since there is no aging. 

Example 6.3 [6] 

Consider a gamma component, with failure time pdf f ( t )  = A2 t . e-'" 
In this case the failure rate has the following expression: 
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a2 . t  A( t )  = ~ 

l + A . t  

and the reliability function: 

R(t) = (1 + A . t )  . e-’.‘ 

Maximizing the average availability p ~ :  

T = O  dP 
d z  

we obtain the optimal value z* in correspondence of which the average 
availability pT is: 

6.9 A policy of preventive replacement with economical 
optimization 

Before proceeding with the development of a replacement model, it is 
important to note that preventive replacement actions, that is, those taken 
before the equipment reaches a failed state, require two necessary 
conditions: 

a. 

b. 

The total cost of the replacement must be greater after failure than 
before (if “cost” is the appropriate criterion - otherwise the 
appropriate criterion, such as Uptime, is substituted in place of 
cost). This may be caused by a greater loss of production since 
replacement after failure is unplanned or failure of one piece of 
plant may cause damage to other equipment. 
The failure rate A(t) of the equipment must be increasing. Note, 
however, that preventive maintenance of a general nature which 
does not return equipment to the as new condition, may be 
appropriate for equipment subject to a constant failure rate. 



6.9 A policy ofpreventive replacement with economical optimization 111 

Determination of the best level of such preventive work is related to 
the problem of determination of the optimal frequency of inspection 
and minor maintenance of complex equipment. 

We will now deal with the calculation of the optimal preventive 
replacement of equipment subject to breakdown [6]. The time at which 
the preventive replacement occurs, depends on the age of the equipment. 
When failures occur, failure replacements are made. The problem is to 
balance the cost of preventive replacement against their benefits and we 
do this by determining the optimal preventive replacement age t i  for the 

equipment to minimize the total expected cost of replacements per unit 
time. Let C, be the cost of preventive replacement, C’ the cost of a 
replacement at failure and At) the probability density function of the 
failure times of the equipment. The replacement policy is to perform a 
preventive replacement once the equipment has reached a specified age 
tp and failure replacements when necessary. This policy is illustrated in 
Fig. 6.7. 

failure preventive 
replacement replacement 

tl tf 

Fig. 6.7: Preventive replacement policy [6] 

The objective is to determine the optimal replacement age t i  of the 

equipment which minimizes the total expected replacement cost per unit 
time. 

In this problem, there are two possible cycles of operation: one 
cycle being determined by the equipment reaching its planned 
replacement age tp, the other being determined by the equipment ceasing 
to operate due to a failure occurring before the planned replacement time. 
This two possible cycles are illustrated in Fig. 6.8. 
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preventive 
replacement 1-4 Operation 

i-tp ! OR 

I Cycle 1 
a? y 

failure 
replacement 1 Operation 1 

I tf : ! 

Fig. 6.8: Possible cycles under the preventive replacement policy [6] 

Based on these two possible cycles, the total expected cost of 
replacement per unit time C(t,) is computed as the fraction between the 
total expected replacement cost per cycle and the expected cycle length. 
The total expected replacement cost per unit time C(t,) is given by: 

(6.58) Total expected replacement cost per cycle 
Expected cycle length C(t ,  ) = 

The total expected replacement cost per cycle is equal to the sum of the 
cost of a preventive cycle multiplied by the probability of a preventive 
cycle and the cost of a failure cycle multiplied by the probability of a 
failure cycle. 

The probability of a preventive cycle equals the probability of no 
failure before t, which is given by R(tp). The probability of a failure cycle 
is the probability of a failure occurring before time tp which is equal to: 

F(t,) = 1 - R(t,) (6.59) 

The expected cycle length is equal to the sum of the length of a 
preventive cycle multiplied by the probability of a preventive cycle plus 
the expected length of a failure cycle multiplied by the probability of a 
failure cycle, i.e. 

(6.60) 

where M(tp) denotes the length of a failure cycle. 
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As t, is the maximum failure time, the distribution of the failure 
times has to be conditioned by the probability of a failure cycle which is 
1 - R(t,) . So the expected length of a failure cycle is given by: 

t p  f (t)dt 
M(t,) = k .  

0 1 - N t ,  1 
(6.61) 

Summarizing, the total expected replacement cost per unit time C(tJ is 
given by: 

(6.62) 

This model relates the replacement age t, to the total expected 
replacement cost per unit time. A variation to this model is for example 
taking into account the time required to perform a failure or a preventive 
replacement. 
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U 
Fault Tree Analysis 

7.1 Introduction 

For complex multi-component systems, for example such as those 
employed in the nuclear, chemical, process and aerospace industries, it is 
important to analyze the possible mechanisms of failure and to perform 
probabilistic analyses for the expected frequency of such failures. Often, 
each such system is unique in the sense that there are no other identical 
systems (same components interconnected in the same way and 
operating under the same conditions) for which failure data have been 
collected: therefore a statistical failure analysis is not possible. 
Furthermore, it is not only the probabilistic aspects of failure of the 
system which are of interest but also the initiating causes and the 
combination of events which can lead to a particular failure. 

The engineering way to tackle a problem of this nature, where many 
events interact to produce other events, is to relate these events using 
simple logical relationships (intersection, union, etc.) and to 
methodically build a logical structure which represents the system. 

In this respect, Fault tree analysis is a systematic, deductive 
technique which allows to develop the causal relations leading to a given 
undesired event. It is deductive in the sense that it starts from a defined 
system failure event and unfolds backward its causes down to the 
primary (basic) independent faults. The method focuses on a single 
system failure mode and can provide qualitative information on how a 
particular event can occur and what consequences it leads to, while at the 
same time allowing the identification of those components which play a 
major role in determining the defined system failure. Moreover it can be 
solved in quantitative terms to provide the probability of events of 
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interest starting from knowledge of the probability of occurrence of the 
basic events which cause them. 

In the following, we shall give only the basic principles of the 
technique. The interested reader is invited to look at the specialized 
literature for further details, e.g. [I], [2], [3], [4], [5], [6], [6], [8], [9], 
[lo], [ 1 11, [ 121, [ 131 from which most of the material herein contained 
has been taken. 

7.2 Fault tree construction 

A fault tree is a graphical representation of causal relations obtained 
when a system failure mode is traced backward to search for its possible 
causes. To complete the construction of a fault tree for a compex system, 
it is necessary to first understand how the system functions. A system 
flow diagram (e.g. a reliability block diagram) is used for this purpose, 
e.g. to depict the pathways by which materials are transmitted between 
components of the system. 

The first step in fault tree construction is the selection of the system 
failure event of interest. This is called the top event and every following 
event will be considered in relation to its effect upon it. 

The next step is to identify contributing events that may directly 
cause the top event to occur. At least four possibilities exist [ 5 ] :  

1. no input to the device; 
2. primary failure of the device (under operation in the design envelope, 

random, due to aging or fatigue); 
3. human error in actuating or installing the device; 
4. secondary failure of the device (due to present or past stresses caused 

by neighboring components or the environments: e.g. common cause 
failure, excessive flow, external causes such as earthquakes). 

If these events are considered to be indeed contributing to the system 
fault, then they are connected to the top event logically via an OR 
function and graphically through the OR gate (Fig. 7.1): 
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Top event 

I I 

Random 

Trip signal 

: Possible common i Fire j cause failureevent 

i damage ~ 

I_ - - - . - - . . - . -1 

Fig. 7.1: Top and first level of a fault tree for a circuit breaker (CB) failing to trip an 
electrical circuit (see Example 7.2) [14] 

Once the first level of events directly contributing to the top has been 
established, each event must be examined to decide whether it is to be 
further decomposed in more elementary events contributing to its 
occurrence. At this stage, the questions to be answered are: 

1 .  is this event a primary failure? 
2. is it to be broken down hrther in more primary failure causes? 

In the first case, the corresponding branch of the tree is terminated and 
this primary event is symbolically represented by a circle. This also 
implies that the event is independent of the other terminating events 
(circles) which will be eventually identified and that a numerical value 
for the probability of its occurrence is available if a quantitative analysis 
of the tree is to be performed. 

On the contrary, if a first level contributing event is not identified as 
a primary failure, it must be examined to identify the sub-events which 
contribute to its occurrence and their logical relationships (Fig. 7.2). 
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Relay A 

closed 

I trip No signal I 

Relay B 

closed 

Fig. 7.2: AND function example for the circuiti breaker of the electrical system with the 
top event of Fig. 7.1 (see Example 7.2) [ 141 

The procedure of analyzing every event is continued until all 
branches have been terminated in independent primary failures for which 
probability data are available. Sometimes, certain events which would 
require hrther breakdown can be temporarily classified as primary at the 
current state of the tree structure and assigned a probability by rule of 
thumb. These underdeveloped events are graphically represented by a 
diamond symbol rather than by a circle (see Example 7.1 below). 

Example 7.1: mechanical holding latch 

Consider the failure of the mechanical holding latch of Figure 7.3(a). The 
corresponding fault tree is given in Figure 7.3(b). 

liydi-aulic 
Controi A 

Fig. 7.3(a): Mechanical holding latch [ 5 ]  
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Latch does not trip 

I 
Actuators fail to 
retract 

I I 
Actuators A fails to 
retract retract 

Actuators B fails to 

Hydraulic 
control B 

fails in 
extended 

Fig. 7.4(b): Fault tree for the failure of the mechanical holding latch 

Example 7.2: Circuit breaker trip 

Draw the fault tree for the failure to trip of the circuit breaker shown in 
Figure 7.4(a). The circuit breaker opens when there is no voltage across 
the UV trip coil. Assume for simplicity that of all components only the 
UV trip coil cannot fail. 
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Primary 

+- <' --- A, 

No input to 

I I I 

Relay A 
closed 

Fig. 7.5(a): Circuit breaker system 

The fault tree is given in Figure 7.4(b) below. 

Relay B 
closed 

No CB trip w 
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Tables 7.1 and 7.2 report the symbols employed to represent the events 
and their relationships in a fault tree. 

Table 7.1 : Event Symbols 

vent Symbol 

L1 

Meaning of Symbol 

Basic event with sufficient 
data 

Undeveloped event 

Event represented by a gat€ 

Condition event used wit1 
inhibit gate 

n House event. Eithe 
occurring or not occurring 
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Table 7.2: Gate Symbols 

;ate Symbol 

I 

Q 

11'1 
lill 

n 0 input 

Gate Name 

AND gate 

3R gate 

nhibit gate 

lxclusive 
)R 
>ate 

n out of n gate 
volume or sample 
,ate) 

Causal Relation 

Output event occurs i 
all input events occu 
simultaneously. 

Output event occurs i 
any one of the inpu 
events occurs. 

Input produces outpui 
when conditional even' 
occurs. 

3utput event occurs il 
111 input events occui 
!n the order from left tc 
ight. 

3utput event occurs if 
me, but not both, of the 
nput events occur. 

h tpu t  event occurs if 
n out of n input events 
)ccur. 
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It is interesting to note that all the more complicated gate symbols 
can be constructed with the basic AND, OR and NOT symbols. Some 
examples are presented in Figs. 7.6-7.12 [5] .  

Operator fails to 
shut down system 

Operator pushes wrong switch 
when alarm sounds 

Fig. 7.6: Example of inhibit gate 

Operator fails to 
shut down system 

Operator pushes wrong switch 
when alarm sounds 

Fig. 7.7: Equivalent logical form to Fig. 7.6 



124 7 Fault tree analysis 

I 

Fig. 7.8: Example of priority AND gate 

S1antiby 
irnii fails 

Fig. 7.9: Equivalent logical form to Fig. 7.8 
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Fig. 7.10: Equivalent logical form to Fig. 7.8 

I .................................... 

Fig. 7.1 1 : Example of exclusive OR gate and its equivalent logical expression 
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%mitor I Monitor I1 Monitc~r I11 
generares genc:raLc>s 
spurious sptirioiis spurious 

sigrial signal 

Fig. 7.12: Example of a 2-out-of-3 gate 

Fig. 7.13: Equivalent logical form to Fig 7.1 1 

Actual construction of fault trees is an art as well as a science and 
comes mainly through experience. Below some usehl guidelines are 
reported [6]. 
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Rule 1. State the fault event as a fault, including the description and 
timing of a fault condition at some particular time. Include: 
(a) what the fault state of that system or component is; 
(b) when that system or component is in the fault state. 
Test the fault event by asking: 
(a) Is it a fault? 
(b) Is the what-and-when portion included in the fault 

statement? 

Rule 2. There are two basic types of fault statements, state-of-system 
and state-of-component. To continue the tree: 
(a) if the fault statement is a state-of-system statement, use 

Rule 3; 
(b) if the fault statement is a state-of-component statement, use 

Rule 4. 

Rule 3. A state-of-system fault may use an AND, OR, or INHIBIT gate 
or no gate at all. To determine which gate to use, the faults must 
be the: 
(a) minimum necessary and sufficient fault events; 
(b) immediate fault events. To continue, state the fault events 

input into the appropriate gate. 

Rule 4. A state-of-component fault always uses an OR gate. To 
continue, look for the primary, secondary, and command failure 
fault events. Then state those fault events: 
(a) primary failure is failure of that component within the 

design envelope or environment; 
(b) secondary failures are failures of that component due to 

excessive environments exceeding the design environment; 
(c) command faults are inadvertent operation of the component 

because of a failure of a control element. 

Rule 5. No gate-to-gate relationships, i.e., put an event statement 
between any two gates. 

Rule 6. Expect no miracles; those things that would normally occur as 
the result of a fault will occur, and only those things. Also, 
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normal system operation may be expected to occur when faults 
occur. 

Rule 7. In an OR gate, the input does not cause output. If any input 
exists, the output exists. Fault events under the gate may be a 
restatement of the output events. 

An AND gate defines a causal relationship. If the input events 
coexist, the output is produced. 

Rule 9. An INHIBIT gate describes a causal relationship between one 
fault and another, but the indicated condition must be present. 
The fault is the direct and sole cause of the output when that 
specified condition is present. Inhibit conditions may be faults 
or situations, which is why AND and INHIBIT gates differ. 

Rule 8. 

7.3 Qualitative analysis: coherent structure functions and 
minimal cut sets 

7.3.1 Structure functions 

A fault tree can be described by a set of Boolean algebraic equations, one 
for each gate of the tree. For each gate, the input events are the 
independent variables and the output event is the dependent variable. 
Utilizing the rules of Boolean algebra it is then possible to solve these 
equations so that the top event is expressed in terms of sets of primary 
events only. 

When dealing with a Boolean event E j ,  we can introduce an 

indicator variable Xi which is equal to 1 if the event is true and 0 if it is 

false. If the system and components are considered from the point of 
view of reliability then X j = l  indicates success and Xj=O failure; 

viceversa from the point of view of safety. 
The top event of a fault tree can be represented by an indicator 

variable X ,  which is a Boolean function of the Boolean variables 
X ,  , X ,  ,..., X n  describing the states of the n events of the system: 
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Such function is called a switching or structure function and incorporates 
all the causal relations among the events which lead to the top event. It 
maps an n-dimensional vector X = (XI, X2 ,..., X n )  of 0’s and 1’s onto 

a binary variable equal to 0 or 1. For example, looking at a simple series 
system from the reliability viewpoint, we have that its success occurs 
when all its components are in a success state. From the rules of Boolean 
algebra, the corresponding structure function is: 

” x, =nxj 
j = l  

(7.2) 

For a parallel system, at least one of the components must be in the 
success state for the system to be successful. Correspondingly, we have: 

n 

X T  =1-(1-xl)(1-x2)...(l-x”)=~xj 
j = l  

(7.3) 

Obviously, for a given system there are various forms which can be used 
to write the structure function. The task that we wish to undergo is that of 
using the rules of Boolean algebra to reduce a structure function to its 
most simplified equivalent version. 

First of all, we introduce the concept of fundamental product which 
is a product containing all of the n input variables, complemented or 
not. For n variables there are 2” such products; for example, for y2 =3, 
we have: 

Clearly a fundamental product is 1 if and only if all its variables are I .  
An important theorem states that a structure function can be written 

uniquely as the union of the fundamental products which correspond to 
the combinations of the variables which render the function true (i.e., 
(D = 1). This is called the canonical expansion or disjunctive normal 
formof (D [2]. 
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Using the rules of Boolean algebra (see Table 7.3), the canonical 
expansion can be simplified further to obtain an irreducible expression of 
the structure function in terms of minimal cutsets. 

Table 7.3: Some rules of Boolean algebra for events 

1) Commutative Law: 
(a) XY = YX 
(b) x + Y = Y + x  

2) Associative Law 
(a) X(YZ)  = (XY)Z 
(b) x+(Y+z) = (x+Y)+z 

4) Absorption Law 
(a) X ( X  + Y )  = x 
(b) x + x Y = x  

5 )  Distributive Law 
(a) x(Y+z)= X Y + E  
(b) (x+ Y ) ( x  +z)= x+ Y z  

6 )  Complementation* 

(a) Xu = 0 
(b) x+F=fi 
(c) x= = x 

7) Unnamed relationships but frequently useful 

(a) x + ~ ~ . ' = x + Y  
(b) x ( x + Y ) = n  

*The universal event fi iss sometimes denoted by 1 ,  and the null event 0 is 
sometimes denoted by 0. 
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7.3.2 Coherent structure functions and minimal cut sets 

A physical system would be quite unusual (or perhaps poorly designed) 
if improving the performance of a component (that is, replacing a failed 
component by a functioning one) caused the system to change from the 
success to the failed state. Thus, we restrict consideration to structure 
functions that are monotonically increasing in each input variable. These 
structure functions do not contain complemented variables; they are 
called coherent and can always be expressed as the union of fundamental 
products. 

1. @(A) = 1 

2. 
3. 

The main properties of a coherent structure function are: 

if all the components are in their success state, the system is 
successful; 
@((I) = 0 if all the components are failed, the system is failed; 

@(g)> ~ ( x )  for x 2 

The last property accounts for the fact that considering two distinc 
system configurations, represented by the indicator variable X and 1 if 
@(I) = 1 and a failed component in is repaired in X , this cannot 
cause the system to fail (@(g) = 1); in other words if the system in x 
was failed (cD(x) = 0), in X it can either remain failed or be repaired 
(@@) = 1 ); otherwise, if the system in _Y was successful (@(I) = l), 
the additional repair can only make it maintain its successful status. 

Coherent structure functions can be expressed in reduced 
expressions in terms of minimal path or cut sets. A path set is a set X 
such that a(&) = 1; a cut set is a set X such that cD(g)= 0.  
Physically, a path (cut) set is a set of components whose functioning 
(failure) ensures the functioning (failure) of the system. 

A minimal path (cut) set is a path (cut) set that does not have 
another path (cut) set as a subset. Physically, a minimal path (cut) set is 
an irreducible path (cut) set: failing (repairing) one element of the set 
fails (repairs) the system. Therefore, removing one element from a path 
(cut) set makes the set thereby obtained no longer a path (cut) set. Once 
the path (cut) sets are identified, the system structure function can be 
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expressed as the union of the path (cut) sets: this constitutes a unique and 
irreducible form of the coherent structure fimction of the system. 

From this analysis we see that any fault tree can be equivalently 
written in a form with an OR gate in the first level below the top event 
combining all the minimal cut sets, each one in turn represented by an 
AND gate intersecting all the elements comprising the given minimal cut 
set. 

For trees of systems with relatively few components, the minimal 
cut sets can be identified by inspection. Most often, however, such an 
approach is very inefficient, if possible at all, since the number of 
minimal cut sets increases very rapidly as the complexity of the tree 
increases. Therefore, a more systematic approach should be undertaken 
by which after writing the Boolean equations for each gate, Boolean 
algebra is used to solve the top event structure finction in terms of the 
cut sets; using again Boolean algebra one can then eliminate all the 
redundancies in the events to obtain the minimal cut sets. Several 
computerized approaches exist to perform this task. 

After the minimal cut sets have been obtained, the qualitative 
analysis is complete and the failure modes contributing to the top event 
have been identified. The analysis provides us with some indications on 
the criticality of the various components: those appearing in minimal cut 
sets of low order (number of primary events constituting the cut set) and 
those most frequently appearing in the various cut sets are good 
candidate to be critical for the system safe operation. 

Two general rules of thumb for judging the importance of a 
minimal cut set are : 

1. the importance of a minimal cut set is inversely proportional to its order; 
2. any one-event minimal cut set should be avoided by re-design if 

possible. 

7.4 Quantitative analysis 

Quantitative analysis of the fault tree consists of transforming its logical 
structure into an equivalent probability form and numerically calculating 
the probability of occurrence of the top event from the probabilities of 
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occurrence of the basic events. The probability of the basic event is the 
failure probability of the component or subsystem during the mission 
time of interest. 

From the definition of the structure function @(x) as a function of 
the indicator variables of the basic events X = ( X ,  , X, , . . ., X, ), we see 

that the structure function is itself an indicator variable which is equal to 
1 when the top event is verified and 0 otherwise. Consequently we may 
write, for the probability of the top event: 

(7.5) P(@((X) = 1) = E[@] = 0 * P(@((x) = 0) + 1 * P(@(X)  = 1) 

where E[.] is the expectation operator. Given the expression of the 
structure function @ in terms of the indicator variables of the basic 
events, it is possible to write the probability (7.5) in terms of the 
probability values of the independent basic events, P(Xi  = 1) = E [ X i ] .  

Consistent with what previously said concerning the qualitative 
analysis of fault trees, there exist two approaches for calculating the 
probability of the top event from the probabilities of the basic events. If 
the fault tree is not solved for the minimal cut sets, then the probability 
of the top event can be calculated by hand, provided that the size and 
complexity of the tree are not too large. This is done proceeding in an 
orderly fashion from the bottom to the top of the tree and computing at 
each gate the probability of the output from the probabilities of the input 
events, using the laws of probability corresponding to that gate structure 
(AND, OR, etc.). This can be “automatically” done through Eq. (7.5). 
For example, the probability of the output Y of an AND gate with two 
independent input events X , , X , ,  with probability PI and P2 
respectively, is 

P(Y = 1 ) =  E[X,X,]=E[X,].E[X,]=P,P, (7.6) 

while for the output of an OR gate, 
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P(Y = 1) = E[(1- (1 - XI Xl - x,))] = 

=E[X, + X ,  +X,X2]=E[XI]+E[X2]+E[XIXZ]=f: +P2 -4, 
(7.7) 

where 42 is the probability of the intersection event X I  X ,  = 1, given 
by (7.6) in the case that X ,  and X ,  are independent. 

On the contrary, if a qualitative analysis has been performed to 
determine the system minimal cut sets M ,  M ,  ).. .7 M,,, , by definition 

the probability of each of them is the probability of the intersection of 
the independent basic events comprising that minimal cut set, i.e., 

P(MJ  = P(x: )P(q ).. i = 1,2, ..., mcs (7.8) 

where the product is extended to all the events comprising M , .  By 
definition, the system structure function is the intersection of the mcs 
minimal cut sets: 

rncs 

@ ( X )  - = 1 - (1 - M J l -  M2).  ..(l - M,J= L - p j  (7.9) 
j=l 

and the probability of the top event is 

rncs j=l  1 mcs-l mcs 

- c C M i M j  +...+(-l),nrs+lnMj = 
;=I j=i+l  

mcs-l rncs 

mcs-l mcs 

= E P ( M , ) -  c CP(M;M, )+  
j=l i=l j=i+l 

(7.10) 

For two minimal cut sets, the formula gives the well-known result (7.7), 

P(@(X)= 1)= P(M])+ P(M,)-P(M,M,)  (7.11) 
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It can be shown that the following upper and lowcr bounds to eq. (7.10) 
hold (Eqs. (4.11) and (4.12) in Section 4.4.1): 

In reliability and risk calculations, basic events are typically rare (low 
probability events), so that the probability of their intersection in 
minimal cut sets , i.e. that some of them are verified simultaneously so 
as to verify a minimal cut set, is very small; therefore, one can 
approximate using the first of the eq. (7.12) (rare-event approximation, 
Section 4.4.1): 

(7.13) 
j=1 

7.5 Comments 

Although actual construction of fault trees is an art as well as a science 
and comes only through experience, fault tree analysis is a widely 
adopted tool for safety and risk analyses. Some of its recognized 
advantages are: 

1. Straightforward modelization via few, simple logic operators; 
2. Directing the analysis to ferret out failures; 
3. Focus on one top event of interest at a time; 
4. Pointing out the aspects of the system important to the failure of 

interest; 
5. Providing a graphical communication tool whose analysis is 

transparent; 
6. Providing an insight into system behaviour; 
7. Minimal cut sets are a synthetic result which identifies the critical 

components. 
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8 
Event Tree Analysis 

8.1 Introduction 

Event trees are inductive logic methods for identifying the various 
accident sequences which can generate from a single initiating event. 
The approach is based on the discretization of the real accident evolution 
in few macroscopic events. The accident sequences which derive are 
then quantified in terms of their probability of occurrence. 

The events delineating the accident sequences are usually 
characterized in terms of: i) the intervention (or not) of protection 
systems which are supposed to take action for the mitigation of the 
accident (system event tree); ii) the fklfillment (or not) of safety 
functions @nctionaI event tree); iii) the occurrence or not of physical 
phenomena (phenomenological event tree). 

Typically, the functional event trees are an intermediate step to the 
construction of system event trees: following the accident-initiating 
event, the safety functions which need to be fulfilled are identified; these 
will later be substituted by the corresponding safety and protection 
systems. 

The system event trees are used to identify the accident sequences 
developing within the plant and involving the protection and safety 
systems. 

The phenomenological event trees describe the accident 
phenomenological evolution outside the plant (fire, contaminant 
dispersion, etc.). 

In the following, we shall give only the basic principles of the 
technique. The interested reader is invited to look at the specialized 
literature for further details, e.g. [l], [2], [ 3 ] ,  [4], [ 5 ] ,  [6], [7] ,  [S], from 
which most of the material herein contained has been taken. 
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8.2 Event tree construction 

An event tree begins with a defined accident-initiating event which could 
be a component or an external failure. It follows that there is one event 
tree for each different accident-initiating event considered. This aspect 
obviously poses a limitation on the number of initiating events which Can 
be analyzed in details. For this reason, the analyst groups similar 
initiating events and only one representative initiating event for each 
class is investigated in details. Initiating events which are grouped in the 
same class are usually such to require the intervention of the same safety 
functions and to lead to similar accident evolutions and consequences. 

Once an initiating event is defined, all the safety functions that are 
required to mitigate the accident must be defined and organized 
according to their time of intervention. For example (Fig. 8.1) if the 
initiating event ( I  ) is the rupture of a tube with release of inflammable 
liquid and the sparking of jet-fire, the first function required would be 
that of interception of the released flow rate, followed by the cooling of 
adjacent tanks and finally the quenching of the jet. These functions are 
structured in the form of headings in the functional event tree. For each 
function, the set of possible success and failure states must be defined 
and enumerated. Each state gives rise to a branching of the tree 
(Fig. 8.1). For example, in the typical binary succesdfailure logic it is 
customary to associate to the top branch the success of the function and 
to the bottom branch its failure. 

Besides the time-order, also the logic order of the required functions 
must be accounted for. In other words, if the successful fulfillment of a 
given function is dependent on the fulfillment of another one, the tree 
needs to be re-ordered in such a way that the dependent functions follow 
those upon which they depend. This allows pruning of some sequences. 
Consider, for example, a dependent function S, whose fulfillment 

depends on the success of a function S, ; then, the branch following the 

failure of S, needs not be further decomposed in two branches for S, 
successful or not, because failure of S, implies no fulfillment of S, 
(Fig. 8.2). 
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I s, s2 s, 
Jet fire 
quenching Tanks 

cooling 
Flow 
interception 

Tube rupture with 
release of burnable 
liquid 

Fig. 8.1 : Example of functional event tree 

The hnctions in the tree are then substituted by the safety systems 
which must perform them: again respecting the logical dependencies 
may lead to additional pruning. System dependencies can be functional, 
if the failure of intervention of a system renders helpless the intervention 
of the successive one, or structural if the systems share some common 
parts or flow so that malfunctioning of that part makes them both fail. 

Once the system failure and success states have been properly 
defined, the states are combined through the tree branching logic to 
obtain the various accident sequences that are associated with the given 
initiating event. 

Fig. 8.3 shows a graphical example of a system event tree: the 
initiating event is depicted by the initial horizontal line and the system 
states are then connected in a stepwise, branching fashion: system 
success and failure states have been denoted by S and F , respectively. 
The accident sequences that result from the tree structure are shown in 
the last column. Each branch yields one particular accident sequence; for 
example, ISIF, denotes the accident sequence in which the initiating 

event ( I  ) occurs, system 1 is called upon and succeeds ( S, ), and system 
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2 is called upon but fails to perform its defined function (F2).  For larger 

event trees, this stepwise branching would simply be continued. Note 
that the system states on a given branch of the event tree are conditional 
on the previous system states having occurred. With reference to the 
previous example, the success and failure of system 1 must be defined 
under the condition that the initiating event has occurred; likewise, in the 
upper branch of the tree corresponding to system 1 success, the success 
and failure of system 2 must be defined under the conditions that the 
initiating event has occurred and system 1 has succeeded. 

I s, S2 

Seq. 1 

Seq. 2 

Seq. 3 

Seq. 4 

I 

Seq. 1 L Seq. 3 

Sequence 

Sequence 

IS$, 

Fig. 8.2: Functional dependences: the negated events $, i=1,2, denote failure of the 
corresponding function 
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Fig. 8.3: Illustration of event tree branching [8] 

8.3 Event tree evaluation 

Once the final event tree has been constructed, the final task is to 
compute the probabilities of system failure. Each event (branch) in the 
tree can be interpreted as the top event of a fault tree which allows the 
evaluation of the probability of the occurrence of such event. The value 
thus computed represents the conditional probability of the occurrence of 
the event, given that the events which precede on that sequence have 
occurred. Multiplication of the conditional probabilities for each branch 
in a sequence gives the probability of that sequence (Fig. 8.4). 

In the case of structural dependencies, two approaches to accident 
sequence modelling are available [ 5 ] .  One approach is called event tree 
with boundary conditions and consists in decomposing the system so as 
to identify the supporting parts or functions upon which some 
components and systems are simultaneously dependent. The supporting 
parts thereby identified appear explicitly as system event tree headings, 
preceding the dependent protection systems and components. Since 
dependent parts are extracted and explicitly treated as boundary 
conditions in the event tree, this approach leads to large fault trees and 
relatively small cvent trees. 
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Fig. 8.4: Schematics of the event tree shown with the fault trees used to evaluate the 
probabilities of different events 

For example, consider an initiating event which requires two systems, S, 
and S,, to intervene and suppose that S, needs the pumps of S, to 

operate. Then, one could extract the common part and consider three 
systems: S, , S; , which is the S, system without the pumps common to 

S, , and S, , which represents the pumps used by both S, and S, (Fig. 

8.5). Then, the dependencies are explicitly represented in the tree and the 
branching associated to S, and S; is eliminated when S3 is not 

functioning. Thus, all the conditional probabilities are independent and 
the probability of the accident sequences can be computed by simple 
multiplication. This way of proceeding simplifies considerably the 
computations but it requires a great deal of expertise by the analyst. In 
fact, since system interactions and dependencies are treated primarily 
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within the inductive logic of the event tree, those dependencies not 
recognized by the analyst may not be incorporated into the analysis. 

I ... I 

Fig. 8.5: Event tree with boundary conditions 

The second approach is called Fault-tree link [ 5 ] .  In this method, the 
dependencies from support systems or common parts are modeled in the 
fault trees, so that at the level of the event tree the systems are inserted 
without any care of their structural dependencies. For each sequence of 
the event tree, then, the fault trees of the composing events are linked in 
one large fault tree which follows the logic depicted in the event tree and 
the large fault tree is then solved with the usual techniques to compute 
the probability of occurrence of that sequence. 

Fig. 8.6 shows the previous example of Fig. 8.5. Only systems S, 
and S, are explicited on the event tree without particular care to their 

dependence. If we now want to evaluate the probability of the sequence 
IS,&, we build a fault tree whose top event occurs when the initiating 

event I and the failure of both systems S, and S, occur. In place of the 

events S, and S, we can substitute their corresponding system fault 

trees, thus obtaining a large fault tree which can be logically simplified 
(accounting for the existing dependencies) and evaluated so as to give 
the probability of the top event, i.e. the probability of the sequence of 
interest. With this method, the dependencies are properly treated even if 
the analyst was, a priori, unaware that they existed. On the other hand, 
the resulting fault tree for an accident sequence may be rather large. 
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Fig. 8.6: Fault tree linking for the sequence IF;& 

In summary, in the event trees with boundary conditions all the 
significant dependencies among systems are explicitly represented in the 
event tree; the fault trees for the individual events are then simple and 
independent but the analyst must take great care in identifying all the 
existing dependencies. In the fault tree-link approach, dependencies are 
included in the fault trees for the various systems and thus they are not 
dependent; the linked fault tree of a generic accident sequence of interest 
is rather large and complex but all dependencies are treated 
automatically. 

Finally, in Fig. 8.7 we report a simplified version of a functional 
event tree for the case of a large break of a pipe in the primary cooling 
circuit of a nuclear reactor. 



8.3 Event tree evaluation 145 

I I 

I 1 I: 

Seq. No. 

7 

9 

10 

RS COI 

f 

ECI 

f 

f 

NA 

NA 

COR 

f 

NA 

NA 

NA 

NA 

NA 

NA 

f 

f 

f == function failure; NA =: not applicable 

ECR 

f 

f 

NA 

f 

NA 

NA 

NA 

Remarks 

Core cooled 

Slow melt 

Core cooled 

Slow melt 

Melt 

Core cooled 

Slow melt 

Melt 

Melt 

Melt 

Fig. 8.7: Functional event tree for a large break LOCA (Loss of Coolant Accident) in a 
nuclear reactor 
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Estimation of Reliability Parameters from 
Experimental Data 

9.1 

To obtain information about the life distribution F,(t) of a component, 
it is necessary to carry out a ‘life test’ where n identical units of the 
component are activated and their lifetimes recorded. 

The fhndamental assumptions that are made are that the lifetimes 
of the n components are statistically independent and identically 
distributed according to the continuous distribution function FT ( t )  . 

The assumption of identically distributed lifetimes corresponds to 
the assumption that the components are nominally identical, that is of 
same type and exposed to approximately the same environmental and 
operational stresses. 

The assumption of independence means that the components are not 
affected by the operation or failure of any other component in the set. 

Any censoring mechanism (see below) must also be ‘independent’, 
i.e. censorings occur independent of any information gained from 
previously failed components in the set. 

Estimation of equipment reliability from tests 

9.1.1 Complete data set 

If  the test is allowed to run until all the n components have failed and 
the lifetimes are recorded, the data set thereby obtained is said to be 
complete (Figure 9.1). 
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Unit 
4 
3 
2 
1 

A 
x 

X 
X 

X 

Fig. 9.1: Life timelines for a complete failure data set of n =4 test components. The 
symbol x indicates failure 

9.1.2 Censored data sets 

Often, it is impractical or too expensive to wait until all the components 
have failed. Hence, censoring is applied to cease the test before all 
components have failed. 

A right-censored data set is composed also of units that did not fail 
during the test (Fig. 9.2). 

time 

Fig. 9.2: Life timelines for a right-censored data set of n =4 test components. 
symbol x indicates failure; the symbol indicates success 

The 

An interval-censored data set reflects uncertainty as to when the 
units actually failed, due to the fact that units are inspected at fixed times 
so that their statuses are known only at the time of inspection. Thus, the 
failure of a unit is revealed upon inspection and it is known only that it 
occurred between inspections, but not the exact time of failure. 
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\ v  
/ " - 

e 
< 

time 

Fig. 9.3: Life timelines for a complete failure data set of n = 4 test components. The 
symbol x indicates failure; the symbols > < indicate the uncertainty interval due to the 
inspection scheduling 

A left-censored data set is a special case of interval censored data in 
which the time-to- failure for a particular unit is known to occur between 
time zero and some inspection time. 

'I n 

./ 
time 

Fig. 9.4: Life timelines for a complete failure data set of n =4 test components. The 
symbol x indicates failure; the symbols > < indicate the uncertainty interval due to the 
inspection scheduling 

9.1.3 Test plans 

Test plans are characterized by (Figs. 9.5 and 9.6): 
- the moment of termination of testing, at fixed time to (Type I) or at 

the r -th failure (Type 11); 
whether items are replaced upon failure (R) or not (W). 

In the former case (R), n items are under testing at all times: the 
units are continuously monitored and upon failure they are 

- 
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d( t )  

3 

2 

1 

immediately replaced. In the latter case (W), the items are not 
replaced upon failure, so that the number of items under testing 
decreases in time, as failures occur. 

A /// // // 

-- 
I 
8 
I 
I 
I 
I 
8 
I 
I 
I 

-- 
-- 

t0  t 

Fig. 9.5: Test I ( R or W). The variable d( t )  denotes the number of failures that occur 
before t . The information resulting from the test is: s I n observed lifetimes 

t ,  , t 2 r . .  ., t, ; n - s components survived up to to 

I / 

t r  t 

Fig. 9.6: Test I1 ( R or W). d( t )  denotes the number of failures that occur before t . The 

information resulting from the test is: r I n observed lifetimes tl ,t2,...,t, ; n - r  
components survived up to t ,  
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There exists also a type I11 censoring which is a combination of I 

Finally, if n identical units are activated at different points in time 
and 11: the test terminates at the time that occurs first, to or t, . 

and censored stochastically, the censoring is said to be of type IV. 

9.1.4 The method of maximum likelihood estimation applied to test 
components lifetimes 

Consider a data set of uncensored component lifetimes, t , ,  t,, ..., t ,  , 
realizations of the underlying failure time probability density function 
fT(t16) where 8 is the parameter of the distribution which we wish to 

estimate. The likelihood of the lifetime realisations observed is: 

For right-censored data with some components surviving the test, the 
likelihood function becomes: 

i i 
W U  

failures right-censored 

where R(t j  I 8) is the reliability of the component at time ti at which 
the test of the j -th unit, still functioning, has been interrupted. 

To compute an estimate 0 of the unknown distribution parameter 
6 ,  based on the available data set, generally one takes the log-likelihood 

,. 

(9.3) 

and maximises with respect to 6 : 
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As an example, let us consider the right-censored testing of n 
exponential units with f T ( t )  = ik-k. Let r be the number of failure 
observations. Then, the likelihood is given by 

and the log-likelihood is 

k=l 

Taking the derivative, 

(9.7) 

By setting (9.7) equal to zero, one obtains the estimate 
component failure rate, 

of the 

(9.8) r # of failures observed 
T total test time 
- - - r  A=---- 

2 t k  
k=l 

where T is here used to denote the total test time of the component. 

9.1.5 Statistics of exponential components with or without 
replacement 

Let us consider in further details the life test of a component 
characterized by exponentially distributed failure times. This is the most 
common assumption for reliability and risk calculations. We can use the 
failure data obtained in the test within a Maximum Likelihood 
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Estimation (MLE) procedure to estimate the parameter /z of the 
exponential distribution, i.e. the failure rate of the component. We 
consider two cases: 

W. Without replacement 

Given n components under test, one could wait for all of them to fail but 
that would take a long time for very reliable components. Therefore, one 
censors the test fixing an end time to (I) or stopping the test at the r-th 
failure (11). 

IW. TYPE I (test ends at to); without replacement. 

The sample of lifetime data is ( t l ,  t,, ..., t r ,  t o ) ,  where the first r times 

are the failure times of the r components which fail within the censoring 
time t o .  

Then, at to there are still n - r  components functioning. The 
likelihood function L(A)  for this case reads: 

r 

where the unit total time on test is T = xtj + ( n  - r)to . 
j=1 

Setting the derivative with respect to A equal to zero, 

-=o ,  aL r;i. r-1 e -AT -il'Te-aT = O  
an 

(9.9) 

(9.10) 

(9.1 1) 
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the maximum likelihood estimate of the component failure rate is 
obtained: 

(9.12) .. r #of  failures observed A=-= 
T total test time 

IIW. TYPE 11 (test ends at Y -th failure); without replacement. 

The sample of lifetime data is (tl , t,, ..., t , ) ,  where the first Y times are 
the failure times of the Y components which fail within the censoring 
time t, . 

Then, at t, there are still n - Y  components functioning. The 
likelihood function L(A) for this case reads: 

L(A) 0~ (,&-"I dt)(,&-"z dt). . .(,&-"r dt)e-'("-')'r (9.13) 

L(A) = Are [ j:l ] = Are-AT (9.14) 
-A Ct j+(n-r) t ,  

r 

where the unit total time on test is T = x t j  + ( n  - r)tr . 
j= l  

Setting the derivative with respect to A equal to zero, 

the maximum likelihood estimate of the component failure rate is 
obtained: 

A r #of failuresobsewed A=-= 
T total test time 

(9.16) 



9.1 Estimation of equipment reliability from tests 155 

R. With replacement 

When a test with replacement is considered, every time a component 
fails it is replaced by a new identical one. 

IR. TYPE I ( test ends at to) ;  with replacement. 

Let us consider again the testing of n identical units. At some time t, 
one fails and n - 1  are left under test. Since the components are 
exponential (no aging), the failed component can be replaced with a new 
identical one, so that at any time there are n units under test, whose 
failure times follow the same failure distribution (Figure 9.7). This is 
possible only for exponential components, which do not suffer aging. At 
the generic time t , the total test time is n t . 

Time 0 t * 
- Number of initial units n n - 1  
- Added units +1 
- Total units under test n n 

Figure 9.7: Testing with replacement 

The sample of lifetime data is (Il, t2 ,  ..., t,, to ) .  The likelihood function 
L(A) reads: 

L(A) (ae-AtldtX/le-a2dt). . . i l e - l t r  . c(a) (9.17) 

where C(A)  is a complicated expression related to the failure and 
survival of the replaced units. 

For example, for the case of n = 1 component that is replaced at 
each failure, the likelihood is: 
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where T = to is the total time on test of a unit of that kind. 
For y1 components, 

where T = n . to is the total time on test of a unit of that kind. Then, the 

maximum likelihood estimate is obtained by setting the derivative of 
L(A) equal to zero: 

(9.20) 

IIR. TYPE 11 (test ends at r -th failure); with replacement. 

The sample of lifetime data is (tl t, ...) tr ) .The likelihood function 
L(A) then reads: 

where the total time on test is T = nt, . Then, the failure rate is estimated 
by: 

(9.22) 

In general, then, the estimate of the failure rate is always given by the 
ratio between the number of failures Y and the total test time T, i.e. 
- r  A = - , independently of the test strategy, and what changes is the total 

T 
time on test T depending on the type of test. 
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9.1.6 Confidence limits for reliability parameters 

It is difficult to generalise about a given statistical population when only 
a point value characteristic (e.g. the mean) of a finite size sample is 
measured, since such sample may not be representative of the 
population. As the sample size increases, the characteristic values of the 
sample and those of the population will, of course, agree more closely. 

Example 9.1: Coin toss (binomial) 

Consider a simple experiment of coin tossing, giving the following 
results in two samples of size 10 and 1000 tosses, respectively: 

4 heads, 10 tosses 
400 heads, 1000 tosses 

In both cases the maximum likelihood estimate of the probability of 
heads can be shown to be: 

.. # of heads 
= 0.4 - 

‘,wLLE - # of tosses 

The point estimates are the same in the two cases but it is intuitive that 
there is more confidence in the experimental evidence given by the 
second sample. Evidently, the point estimates do not give a measure of 
the confidence in the result. 

Since one cannot be certain that a sample is representative of a 
population, it is important to associate a ‘degree of confidence’ to an 
estimated sample characteristic. In particular, we are interested in 
associating confidence limits to probabilistic parameters estimated from 
reliability tests, e.g. the failure rate and the reliability of a component. 
For example, one would like to be (1 - 2a) confident that the unknown 
true reliability of a component is at least (or at most) a certain value, 
where a , the level of confidence, must lie in [0,0.5]. Figure 9.8 shows a 
set of one-sided upper limits of the unknown reliability at a given 
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true 

confidence level, estimated form 5 different reliability test samples. 
Figure 9.9 shows two-sided confidence limits at a given confidence 
level, for 7 different reliability test samples. Note that the confidence 
interval varies according to the results of the different tests. 

true 

reliability 

Fig. 9.8: The circles represent the values of the one-sided upper limit at a given 
confidence level, for different reliability test samples [ 11 

unknown 
reliability 

1 

Fig. 9.9: The circles define the upper and the lower limits of the two-sided confidence 
interval at a given confidence level for different reliability test samples [ 11 

Consider a sample of realizations ( t l ,  t,, . ..., t,) drawn from the 
population distribution. Let 3 be the unknown characteristic of the 
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population, e.g. the mean p or the standard deviation o and 
S = g(tl , t2,  ..., t , )  the corresponding estimator. S is a function of the 

random sample ( t , ,  t,, . . . , t ,  ), with distribution F, (~19) dependent on 

9. The two-sided confidence interval of S at a level of confidence 
1 - 2a is obtained by determining the values ~ ~ ( 9 )  and s2(9) such that 
(Figure 9.10): 

S , ( $ )  W I f,(sl9)ds = a ; I f'(sl9)ds = a (9.23) 

These are equivalent to 

Pr[s,(S) 5 S ]  = 1 - a . Pr[S 5 s2 (9)] = 1 - a (9.24) 

which lead to (Figure 9.10) 

Pr[s , (8 )  I S I s2(8)] = 1 - 2a (9.25) 

s1( 8 )  s2( 9 ) S 

Fig. 9.10: Confidence interval at level 1 - 2a [ I ]  
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The above expressions can be rewritten to express explicit inequalities in 
terms of the unknown characteristic 9 [ 11. 

Two random variables 0, and 8, are introduced as the following 
functions of the estimator: 

e, = 

6, =s,’(s) 

From (9.24), it follows that 

P[$ I el] = 1 - a 
p[el I9]=1-a  

(9.26) 

(9.27) 

Thus, the introduced random variables el and 8, constitute upper and 
lower (1 - a)-confidence limits of the unknown parameter 9, so that 
the random interval [6,, 6,] becomes the lOO(1- 2a)% confidence 
interval, i.e. 

P[e, I 9 I e,] = 1 - 2d (9.28) 

In other words, with probability 1-2a the interval contains the true, 
unknown value of the parameter 9.  

Example 9.2 

Consider a normal distribution with known standard deviation o : 

The objective is to estimate the unknown mean p and its 90% confidence 
interval from a sample of n realizations (t , ,  t,, . . . ., t ,  ). This means 
that 1 - 2 a  = 0.9 or a = 0.05 and that we must find the 5 t h  and the 
95th percentiles of the distribution of the estimator. 
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Solution: 

The 90% confidence interval means that a = 0.9, from which 
1 - = 0.05. 

The estimate of p is the sample mean, i.e.: 

n 

- i 3 The random variable t z N  p, - . Then, passing to the standard 

normal variable 5 z N(0,l) 

r 1 

(Chapter 4), 

r - 1 

-1.645<- 

where and 

standard normal distribution N(0,l) tabuled in Appendix A. 
Notice that this probabilistic statement refers to the estimator t ,  

which is the random variable in question, not to p and 0 which are the 
distribution parameters. 

represent the 5 t h  and the 95th percentiles of the 

- 

Given that 0 is known and solving for p : 

& - I  < p < t + 1.645- = 0.9 

- 

& “I where the interval ; t  + 1.645- depends on t and 

is, thus, random itself. 
For a different random ( t l ,  t,, ..., t , ) ,  one obtains a different 

estimate of p and thus a different confidence interval (Figure 9.1 1). 
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Hence, the above 90%-probability statement concerning the confidence 
interval means that taking 1000 samples and evaluating each time the 
estimate and the corresponding confidence interval, 900 times out of 
1000 the interval will include p. In other words, the sample average t 
gives an estimate of p and the corresponding confidence interval 
contains the unknown p with a probability of 0.9. Notice that increasing 
the sample size n leads to tighter intervals, as the dependence goes with 

- 

. In other words, confidence increases with the sample size. 
1 - 
& 

Example 9.3 

Consider a sample of type 11-censored exponentially distributed data 
(fixed number of failures r , Section 9.1.5). The estimate of the failure 
rate is: 

f i r  A=- 
r 

T = ctj -t ( n  - r)tr 
T j=1 

Find the a -confidence limits of the Mean Time to Failure MTTF 
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Solution: 

What is the probability distribution of the estimator 

then, 

? 
Let Dj denote the time interval from the (j - I)-th to thej-th failure; 

TI = D, 
T2 =D, +D2 
..... 

......... T, =Dl  +D2 + + Dr 

and 

r 

C T j  =rD, +(‘r-l)D2 + ...... + Dr 
j=1 

(n - r)Tr = (TI - r)(D1 + D2 + ... + D r )  

Therefore, the total test time of the unit at time T, is: 

r r 

T = n D 1  +(n-1)D2 + . . , + [ n - ( r - l ) P , =  c [ n - ( j - l ) l D j  = c D ;  
j=1 j=1 

It can be proved that 2 A 0; . 2 il D; ..... 2 A 0: are independent and 

x2  - distributed random variables, each one with two degrees of freedom 

[ 1 3 ,  so that 2 A. T is also x2 -distributed with 2r degrees of freedom. This 
distribution is tabulated in Appendix B. 

Let x: (2r) be the 100 a percentile of the chi-square distribution, 
with 0 I a I 1. Then, from the definition of the percentiles: 

P[2AT I x:(2r)] = a 
or 
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A 

From percentiles, the confidence limits for the estimate of MTTF 9 = 

1 
- can be obtained, for both censoring of Type I and I1 : i 

I, fixed to 11, fixed r 

one-sided 
(lower) 

two-sided 
(lower and 

upper) 

2T 

xi p r y 1  1 #of degrees of freedom 

percentile 

2T 2T 

For example, the one-sided, lower a-confidence limit for the test of type - - 
I (fixed to), is such that P 

Example 9.4 

Estimate the 95th percentile for the MTTF of a nuclear reactor given a 
sample of 1 failure (Three Miles Island) in 2000 reactor-years. The value 
of ~ i ~ ~ ( 4 )  is 9.49. Then, 

= 42 1 reactor-years 
2 * 2000 

9.49 4 9 5  = 

Example 9.5 

Assume 30 identical components placed on Type I1 censoring with r = 

20. The 20th failure has a time to failure (TTF) of 39.89 min, i.e., t,. = 

39.89, and the other 19 times to failure are listed in Table 9.1 along with 
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times to failure which would occur if the test were to continue after the 
20th failure. Find the 95% two-sided confidence limits for the MTTF, i. 

Solution: 

Let N = 30, r = 20, t, = 39.89, a = 0.95. 

A (30 - 20) x 39.89 + 291.09 $ = S =  = 34.50 
20 

From the chi-square distribution, 

x,”_, (2r) = ~02.,,~~(40) = 59.3417 

xl”,, (2r) = ~&,~(40)  = 24.4331 

- 
2 

- 
2 

Then, 

= 23.26 34.50 
= 2X20X i 

= 2 r .  2T 
0, = x;+, ( 2 r )  x i 9 7 5  (2r) 59.3417 

L 

= 56.48 
34.50 

= 2 x 2 0 x  
i 

= 2r.  2T 
0, = 

x i 0 2 5  (2r) 24.433 1 

Then, 

23.36 I9 556.48 

Thus, we are 95% confident that the true, unknown mean time to failure 
(9) is in the interval [23.36, 56.481. As a matter of fact, TTFs in Table 
9.1 were generated from an exponential distribution with the MTTF, 9 = 

26.64. The obtained confidence interval includes this true MTTF. 
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TTFs Up to 20th Failure 
TTFs After 
20th Failure 

tl 0.26 
t2 1.49 
t3  3.65 
t4 4.25 
t5 5.43 
t6 6.97 
t 7  8.09 
t8 9.47 
t9  10.18 
t i 0  10.29 

t l l  11.04 
t12 12.07 
t13 13.61 
t14 15.07 
t15 19.28 
t16 24.04 
t l 7  26.16 
t l 8  31.15 
t l9  38.70 
t20 39.89 

t 2  1 (40.84) 
t22 (47.02) 
t23 (54.75) 
t24 (61.08) 
t25 (64.3 6) 
t26 (64.45) 
t27 (65.92) 
t28 (70.82) 
t29 (97.32) 
t30 (1 64.26) 

For the reliability of this kind of component, with exponential 
distribution (Chapter 4): 

R(t) = e-" = e-"' 

and the confidence intervals can be obtained by substituting 0, and 0, : 

Thus, for the data in Example 2, 

-1123.36 5 R ( ~ )  5 ,-t/56.48 e 

Similarly, the confidence interval for the true, unknown failure rate il is 
given by 

1 21 2- 
56.48 23.36 

1 
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9.2 Accelerated Life Testing 

9.2.1 Introduction 

Many of the devices produced today for complex technical systems have 
very high reliability under normal use conditions. The time involved in a 
life test such as those described in Section 9.1 would therefore be 
prohibitive. Furthermore, the device is likely to be obsolete by the time 
the test is completed. The questions then arise of how to make the 
optimal choice between several types or designs of a device and how to 
collect information about the corresponding life distributions under 
normal use conditions. 

A common way of tackling these problems is to expose the device 
to sufficient overstress to bring the mean time to failure down to an 
acceptable level. Thereafter, one tries to "extrapolate" from the 
information obtained under over stress to normal use conditions. This 
approach is called Accelerated Llfe Testing (ALT) or overstress testing 

Depending on the kind of device in question, the accelerated testing 
conditions may involve a higher level of temperature, pressure, voltage, 
load, vibration, and so on, than the corresponding levels occurring in 
normal use conditions. These variables are called stressors (stress 
variables or covariates). In a specific situation, there may be one or 
several (m) stressors sl, s2, ..., s, acting simultaneously. The vector s = 

(sl, s2, ..., sm) is called the stress vector. 
In simple situations, there is only one stressor s occurring on two 

levels s(') and d2), where s(l) < d2). Let do) _(s(') denote normal stress. The 
situation becomes somewhat complicated when rn stressors s1,s2, ..., s, are 
involved and stressor sj occurs on nj levels, 

[2-8, 111. 

(9.29) 

Let si'o/ (I ST') denote normal stress for stressorj, for j = 1, 2, ..., m. The 
situation becomes more complicated when the stressors are continuously 
increasing with time. The first two cases lead to Step-stress Accelerated 
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Life Tests (SALTS); the last one leads to Progressive-stress Accelerated 
Life Tests (PALT). 

9.2.2 Experimental designs for ALT 

Let us for the sake of simplicity suppose that there is only one stressor s. 
The testing experiment can be conducted according to different designs. 
We will discuss three such designs. 

Design I 

The experiment involves use of k stress levels s(I) < sf2., < ... < sF) (see 
Figure 9.12). Let do) < s(') denote normal stress. A (large) number of test 
units are assumed to be available for the experiment and nj of these are to 
be exposed to the stress so). Censoring of type I1 (test terminates at r-th 
failure, Section 9.1.3) is applied. The experiment is then carried out as 
follows: 

1. One stress level sfi) is chosen at random among sf'), sf2), ..., sF) and ni 
test units are chosen at random among the test units at hand. These 
ni units are then exposed to stress level sfi). The test is terminated 
when ri (I ni) failures have occurred. Let TI,T2, ...,qnj, denote the 

times to failure or censoring. 
Another stress level sQ) is chosen at random among the remaining 
levels, nj test units are chosen at random among the remaining units 
and exposed to stress level soi. The test is terminated when rj I nj 
failures have occurred. Let Tjl,Tj2,...,q.nj denote the times to 

failure or censoring. This procedure is continued until k stress levels 
have been selected. 

2. 
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Stress level 

Level k 

Level 2 
Level 1 

time 

Figure 9.12: Design I for accelerated tests 

k 

J=,  J 
If the number of test units at hand is large compared to n = c. y 1 .  , it 

seems reasonable to assume that To,, To2 ,..., Tbk are independent, which 

simplifies the analysis. 

Design I1 

Fix k points of time 0 < tl < t2 < ... < tk < t. Put n randomly chosen test 
units on test at time 0. In the time interval (0, t,] the units are subject to 
stress d'); in the interval (t l ,  t ~ ]  the units that have not failed by time t1 

are kept in operation under stress sf2). In the next interval (t2, t3] the units 
that still have not failed by time t2 are kept in operation under stress d3), 
and so on (see Figure 9.13). In the time interval ( t k ,  001 the units that have 
not failed by time tk  are kept in operation under stress s@+') until they 
have all failed (hence, no censoring). The lifetimes of the n test units are 
denoted q,  ..., Tn. 
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Stress level 

Figure 9.13: Design 11 for accelerated tests 

Design I11 

A number n of test units are chosen at random among the test units 
at hand and exposed to a stress s(t), which is increasing with time until 
the units have all failed. The stress function s(t) is assumed known 
(Figure 9.14). The lifetimes of the n test units observed are denoted 

If n is small compared to the number of units at hand and if the n 
units are operating independently, it seems reasonable to assume that 
q,  ..., Tn are independent, in both design I1 and design 111. 

q 7 7 * * *,Tn * 
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Stress level 

I b 
time 

Figure 9.14: Design 111 for accelerated tests 

9.2.3 

The data obtained in the test is supposed to give information about: 

- the lifetime distribution function 

Parametric models used in step-stress accelerated tests 

FT (t;.) = P(T I t ; g )  

- the survival function R, ( t ; ~ )  = 1 - FT (t; 5) 

- the failure rate 

For the sake of simplicity, let us suppose that we succeed in establishing 
an a priori, parametric life distribution under normal use conditions, e.g. 
exponential or Weibull etc. What will be the effect of overstress on this 
baseline distribution? 

There are two alternatives: 

1. 

2.  

Different stress levels only lead to different parameters values but 
leave unchanged the form of the distribution 
Different stress levels modify also the type of distribution. 
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We consider the simplest Case 1 and ask ourselves in which way does 
the parameter vector of this family depend on the stress vector 2. 

9.2.4 Exponential distribution under design I 

Suppose that the experiment is carried out as described in design I where 
only one stressor s has been used and the family of life distributions is 

the exponential with mean 9 (s), and hence failure rate A(s) = - 1 

w 
We need to specify the function A(s) describing the relation 

between the stress and the failure rate. Three of the most commonly used 
relations are: 

power rule model (dielectric breakdown of 
capacitors and fatigue testing of materials) 

Arrhenius model (thermal aging and 

9( s) = c .  S - O  (9.30) 

/z(s) = c e-K semiconductor materials) (9.3 1) 

= c'e's-' simple Eyring model (constant thermal stress) (9.32) 

The constants a, b, c have to be estimated on the basis of the recorded 
life lengths under overstress. Inserting the expression for A(s) in the 

underlying (exponential) lifetime distribution, FT (t; s' ) is now known 
for any stress level sQ), j = 1, 2,. . ., k, except for the values of the 
constants a, b, c which could be estimated from data by applying, for 
example, the maximum likelihood estimation (MLE) or least squares 
(LS) methods. The estimate i?,6,2 can then be inserted, together with 

the normal stress level do) in the lifetime distribution kT (t ;s( ')) .  

test under design I is: 
The total information that is obtained through the accelerated life 
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sfi) = stress level 

nj = number of units tested at stress level so) 

rj = number of units failed under 8) 
q., , q2,. . .,qnj = lifetimes of the nj tested units which can be combined in 

j =  1, 2, ..., k 

‘I 

T~ = C T ~ ~  + (n j  - r j )  T ~ ,  = total time on test. 
i=l 

Then, we know that for type 11-censored, exponentially-distributed data, 
the variable Z j  = 2A(sW)Tj is $-distributed with 2rj degrees of 

fieedom,j= 1,2, ..., k 

Accordingly, f z j  ( z j )dz ,  = 2A(sfi’)fTj ( t j  ) d t j  and 

- 1 )rJ t j r l - l  . ,-4sO’) tl t j  > 0 , j  = 1,2 ,..., k -r(yi) 
(9.34) 

Hence, the joint distribution of the set (TI,  T2, ..., Tk) would be: 

k 1 ) r l  rl-l - ~ ( s ‘ ~ ’ ) t ~  
f T ,  ,T*,,,.,Tk (4  t 2  , . . . , t k  ) = JJ - t j  .e ti > o  

j=l ‘ ( r j )  

(9.35) 
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As an example, let us consider the case where the relation between the 
stressors and the mean time S(s) is described by the power rule model 
for fatigue testing materials (9.30): 

j =  1,2, ..., k (9.36) 

Then, 

If we change the power rule slightly, without changing its basic 
character, to 

(9.38) @)= 
C 

k , = I  

= nsO, (weighted geometric mean of the sj’ s) (9.39) 

it turns out that the MLE, 6 and 2 ,  of a and c, become asymptotically 
independent. 

Inserting (9.38) into (9.39, we can write the likelihood function, 
dependent on the unknown parameters a, c for a given sample data 
( t , ,  t’2, . -..) t k ) :  

and the log-likelihood function: 

/(a, c: t l ,  t2, ..., tk) = -hT(  r j  ) - 5 Inc + ar, In( $) + (r, - l)htj - f (:I ti 1 
j = l  

(9.41) 
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The estimates i? and 2 are obtained by solving the two derivative 
equations, with respect to a and c: 

From (9.39) we have, 

i=l 

Thus, 

k z rj (In s ( j )  - In F) = o 
j=l 

(9.43) 

(9.44) 

(9.45) 

and (9.42) becomes t j  = 0 from which & can be 
j=1 

obtained. 
Then, from (9.43), we can determine 2 : 

i=l 

(9.46) 

It can then be shown that the asymptotic variances of 6 and 2 are 
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(9.47) 

(9.48) 

cov,(G, t )  = 0 (independence) (9.49) 

Finally, the estimate of the failure rate under normal stress sf') can be 
computed as, 

fi, 
C 

(9.50) 

9.2.5 Inverse gaussian fatigue failure time distribution under 
design I11 

Let us consider n independent units put on test at time 0. In [0, t ] ,  the 
units are subject to normal stress sf'); in [0, a] the units that have not 
failed by time t are kept in operation under stress sf') > sf') until they all 
fail. 

We suppose that the accumulated fatigue in the material is modeled 
as a Wiener process W,(y), y 2 0 ,  with drift 7 > 0 and diffusion 

parameter S 2  > 0. The Wiener process W,(y) is defined to be an 

independent increment Gaussian process with Wo(0) = 0 and mean 
E[ W,(y) ]= vy, in which each increment Wo(y2) - Wo(yl) has 

variance S2 Cyz - y,). Failure occurs when the Wiener process W,(y) 
crosses a critical boundary u. 
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Defining the fatigue time Y as the first time that the fatigue process 
W,(y) crosses the critical boundary w and setting p = dA, A = d/d, 
then Y has an inverse Gaussian distribution 

We now assume that at time t ,  the stress is changed from do) to 
s") and correspondingly the Wiener process changes from W, ( y )  to 

W,(y)=W,[t+a(y- t )] ,  (Fig. 9.15). 

Figure 9.15: The changing Wiener process 

It can be shown that in this situation the distribution FT(t) of the stress 
failure time T is 

where F o b )  is the cumulative distribution of the inverse Gaussian density 
(9.40). 
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Suppose now that at t, do) is changed to c.s(O), with c > 1 being a 
known constant. In this situation it might be reasonable to model the 
fatigue process W ( y )  as having drift 7 in [0, t )  and c .7  in (t, m). This 
means that a = c, known. 

Let y l ,  y2,. . . , yn be the observed failure times: 

for y j  I t  

t + a ( y j  - t ) )  for y ,  > t 
Y j  (a )  = 

In this case of a known, the likelihood function is: 

j=l 

(9.53) 

(9.54) 

m = 2 I ( y  > t )  = number of y' s > t 
j = l  

The likelihood is thus proportional to the inverse Gaussian (9.5 1) and the 
MLE estimates are: 

(9.55) 

(9.56) 

which can be inserted in (9.51) to give an estimate of the life distribution 
of the failure fatigue time under normal stress sfo'. 
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9.3 Empirical determination of distribution models 

Sometimes, the properties of the physical stochastic process under 
analysis suggest the form of the underlying probability distribution. For 
example, if a process is composed of the sum of many individual effects, 
the gaussian distribution may be appropriate on the basis of the central 
limit theorem. Nevertheless, there are occasions when the required 
probability distribution has to be determined empirically, that is based 
solely on the available data. 

In practice, the functional form of the probability distribution 
underpinning a given process is often not easy to derive. Furthermore, an 
assumed probability distribution (developed theoretically or determined 
empirically) may be confirmed, or disapproved, in the light of available 
data using certain statistical tests, known as ‘goodness-of-fit’ tests. 

9.3.1 Probability paper 

The simplest and longest used method for parameter estimation is that of 
probability plotting. This methodology involves plotting the failure times 
on a specifically-constructed plotting paper to determine the fit of the 
data to a given distribution and, if applicable, estimates of the 
distribution parameters. 

Graph papers for plotting observed experimental data and their 
corresponding cumulative frequencies are called ‘probability papers’. 
Probability papers are constructed such that a given probability paper is 
associated with a specific probability distribution. 

Preferably, a probability paper should be constructed using a 
transformed probability scale in such a manner as to obtain a linear graph 
between the cumulative probabilities of the underlying distribution and 
the corresponding values of the variate. Then, the linearity, or lack of 
linearity, of a set of sample data plotted on a particular probability paper 
can be used as a basis for determining whether the distribution of the 
underlying population is the same as that of the probability paper. 

Experimental data may be plotted on any probabilistic paper; the 
‘plotting position’ of each data point can be determined as follows: 
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1. arrange the N observations xI, x2, ... , xN in increasing order 

2. plot x,,- ( GI) 

9.3.2 The normal probability paper 

Let us report on the ordinate axis of a graph the values of the variate Xin 
arithmetic scale and on the abscissa axis two parallel scales: one 
represents the values of the standard normal variate s whereas the other 
shows the cumulative probabilities @&), as shown in Fig. 9.16. 

0.50 0.84 0.98 
I I I I I 

-2l -1 ‘ 0’ I I  2’ + 

Fig. 9.16: Normal probability paper [9] 

A normal value X - (p, a) would then be represented on this paper by a 
straight line passing through (@‘s(s) = 0.50, X = p) with a slope 
x p  - P  - = 0, where x, is the value of the variate at probability p. In 

S 

particular, a tp  = 0.84, s = 1 and the slope is then x.84 - p. 
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If for a given set of data points the resulting graph shows a lack of 
linearity, this would suggest that the underlying population is not a 
gaussian, and vice versa. 

The mean value and the standard deviation of the underlying 
population may also be determined graphically from this straight line: 

,UX = the value ofXcorresponding to @&) = 0.50 
ox = slope of the line E x,,, - ,u . 

9.3.3 The log-normal probability paper 

The log-normal probability paper can be obtained from the normal 
probability paper by simply changing the arithmetic scale for values of 
the variate X (on the normal probability paper) to a logarithmic scale 
(Figure 9.17). In this case, the standard normal variate becomes 

S =  x, = median of X (9.57) 
5 

Accordingly, the median x, is simply the value of the variate on this line 
corresponding to (s) = 0.50 whereas the parameter 5 is given by the 
slope of the line, i.e. 

(9.58) 
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Fig. 9.17: Log-normal probability paper [9] 

9.3.4 Construction of a probability plotting paper 

As we have seen a probability plotting paper is constructed by linearizing 
the cumulative density function of the distribution. As an example we 
will use the well-known Weibull distribution. The cdf of the two- 
parameter Weibull distribution is. 

We need to linearize this function into the form y = rnx + b : 

(9.59) 
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(9.60) 

Fig. 9.18: Weibull probability distribution paper [9] 
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The estimate of p is simply the slope of the linearized line on the 

To determine the estimate of z, we have: 
Weibull probability plot. 

Hence, z is the abscissa of the point on the straight line corresponding to 
Fdt) = 0.632. 

Figure 9.19 reports the exponential distribution probability paper. 

Fig. 9.19: Exponential distribution probability paper [9] 
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9.3.5 Testing the validity of an assumed distribution 

When a theoretical distribution has been assumed, e.g. on the basis of the 
data plotted on the corresponding probability paper, the validity of the 
assumed distribution may be verified or disproved statistically by 
goodness-of-fit tests. 

9.3.5.1 Chi-square test 

Consider a sample of n observed values of a random variable. The chi- 
square goodness-of-fit test compares the observed frequencies 
n,, n2, ... , nK of k values of the variate with the corresponding 
frequencies e,, e2, . . . , ek from the assumed theoretical distribution. 
More precisely, we consider the distribution of the quantity: 

(9.61) 

which approaches the chi-square distribution with k - 1 degrees of 
freedom as n + 0 0 .  However, if the parameters of the theoretical model 
are unknown and must be estimated from the data, the above statement 
remains valid if the degree of freedom is reduced by one for every 
unknown parameter that must be estimated. 

Let qa, f be the random variable value corresponding to the 
cumulative probability value (1-60 of the appropriate x; distribution 

with f degrees of freedom (Figure 9.20). Then, an assumed theoretical 
distribution is acceptable at the ‘significance level a’ if 

(9.62) 
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(TIi -q)" The basis for this is that if is a random variable 

approximately distributed as x;, its value has a probability a of being 

less than c~.~, , - .  

j z l  ei 

C1-a.f C 

Figure 9.20: Chi-square distribution 

In general, the x2 - test for goodness of fit gives satisfactory results for 
k 2 5 ,  ei 2 5 .  Because of the arbitrariness in the choice of the significance 
level a, the x2 -test may not provide absolute information on the 
validity of a specific distribution; a distribution may be acceptable at one 
significance level al but unacceptable at another one, a2. 

9.3.5.2 Kolmogorov-Smirnov test 

The basic procedure for this test involves the comparison between the 
experimental cumulative frequency and an assumed theoretical 
distribution function. 

If the discrepancy is large with respect to what is normally expected 
from a given sample size, the theoretical model is rejected. 
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For a sample of size n, we rearrange the set of observed data in 
increasing order and construct the empirical cumulative distribution 
function (Fig. 9.21): 

x < x, 

Xk I x < Xk+l  

x 2 x, 

0 
X I  x2 x3 x4 xn-1 x n  

Fig. 9.2 1 : Empirical cumulative frequency vs. theoretical distribution function 

In the Kolmogorov-Smimov test, the maximum difference 
D, = mmIF(x)- S, (x)I between Sn(x) and F(x) over the entire range 

of X, is taken as the measure of discrepancy between the theoretical 
X 
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model and the observed data. Theoretically, D, is a random variable 
whose distribution depends on n. We can define a critical value 0," as: 

P[D, I D , ] = l - a  (9.63) 

Critical values 0," at various significance levels a are tabulated in Table 

9.2 for various values of n [9]. 
If D, < 0," , the proposed distribution is acceptable at the specified 

significance level a. 
The advantage of the Kolmogorov-Smimov test over the chi-square 

test is that it is not necessary to divide the data into intervals; hence 
the problems associated with the chi-square approximation for small 
ei andor small number of intervals k would not appear with the 
Kolmogorov-Smirnov test. 

Table 9.2: Critical Values of 0: in the Kolmogorov-Smirnov Test [9] 

0.20 0.10 0.05 0.01 

5 0.45 0.5 1 0.56 0.67 

10 0.32 0.37 0.41 0.49 

15 0.27 0.30 0.34 0.40 

20 0.23 0.26 0.29 0.36 

25 0.21 0.24 0.27 0.32 

30 0.19 0.22 0.24 0.29 

35 0.18 0.20 0.23 0.27 

40 0.17 0.19 0.21 0.25 

45 0.16 0.18 0.20 0.24 

50 0.15 0.17 0.19 0.23 

1.07 1.22 1.36 1.63 
>so - - - - 

& & & J;; 
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9.4 Kaplan-Meier estimator of the survivor function 

Let FT(t)denote the life distribution for a certain type of units. We 
know the distribution to be continuous, but make no further assumption 
about FT (t) , i.e. a non parametric model. 

Let t, denote the observed lifetime of unit j .  On the basis of the 
observed lifetimes of n units, j = I ,  2, ..., n we want to estimate the 
survival function, 

R(t) = 1 - FT (t) 

Then, the empirical cumulative distribution function is (Figure 9.22) 

number of lifetimes I t 
n 

Fn(t)  = (9.64) 

and the empirical reliability survival function (Figure 9.23) 

number of lifetimes > t 
n 

Rn (t) = 1 - Pn (t) = (9.65) 

which is a step function decreasing by I/n at each observed failure time. 

t 

Figure 9.22: Empirical cumulative distribution function 
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-l 

Figure 9.23: Empirical survival function 

The Kaplan-Meier estimator is regarded as the most direct non- 
parametric estimator of the survival function. It is the only coherent 
estimator of the survival hnction for censored tests [ 1 11. 

The basic principle of the estimator is that being in good working 
condition after t means i )  being so already before t and ii) not failing 
at t .  

Let the time period [0, co] be divided into small intervals (uj, uj+,] 
fo r j  = 1, 2, . . . , n, with uo = 0 and the intervals short enough that we can 

disregard the possibility that two or more units fail or are censored in the 
same interval. Now let t E (uj, u,+,]. Then, 

R(t) = P(T > t )  
(9.66) 

= P(T > uo) .  P(T > u, IT > uo)  ...: P(T > tlT > u,) 

Since FT ( t )  is a continuous life distribution for all t L 0 , P(T > uo ) = 

P(T > 0) = 1 .  Hence, 

m 

R(t) = P(T > u, IT > u,) .P(T > u, IT > u,) ...... .P(T > t p  > 24,) = n p j  
j=O 

(9.67) 
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where p = P(T > u j+l IT > u ) j = 0, I ,  2 ,..., m-I 

p ,  = P(T > tlT > urn) (9.68) 

Kaplan-Meier’s idea is then that of estimating each single factor on the 
right-hand side of (9.51) and thereafter use the product of these 
estimators as an estimator of R(t)  . 

The estimation procedure follows the steps reported below [ 1 11: 

1. If neither failure nor censoring occurs in (u j ,  u j + r ]  , then the same 

number of units will be active at the start and at the end of this 
interval. Then, 

2. Suppose that censoring of one unit occurs in (u j ,u j+ , ] .  Then, due 

to the assumption of short intervals, we may ignore the possibility 
that another censoring or failure occurs in the same interval. 
Accordingly, we record no failures in the intervals and 

I ; .  = I  
J 

3. Suppose that failures occur in (uj, uj+,]. Due to the assumption of 
short intervals we may ignore the possibility of more than one 
failure occurring in this interval. Let nj denote the number of units at 
risk (i.e. which are functioning and in observation) at the beginning 
of the interval. The number of units at risk at the end is n j  -1. 

Then, 

,. n j  -1 
p .  =- 

J 
‘i 

Thus, the only intervals where the estimator jj # 1 are those in 

which failure occurs. By increasing the number of intervals such 
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that their length approaches zero (except for the last one which goes 
to a), we see that the estimator f 1 only at the failure times, just 

as in the empirical R . 
From the above, it follows that we may disregard the intervals 

where no failures occur. We then redefine (to simplify the notation): 

n j  = number of units at risk (functioning and in observation) 

immediately before time 4 , j  = I ,  2, ..., n. 

The probability pi may now be estimated for infinitesimal intervals 
around the ti's: 

if a censoring occured at t l1 
& =  n . - 1  

if a failure occured at time t \$- 
j = I ,  2, ..., n 

I;, =1  

Then, we have the Kaplan-Meier estimator 

n n j  -1 
R(t) = njj = n- r = {t ,  of failure, ti < t ]  (9.69) 

j=O j c r  ' j  

The following properties of the Kaplan-Meier estimator are of relevance: 

1. 
2. 

It can be derived as a non parametric maximum likelihood estimator 
It may account for data sets with ties, i.e. 4 units failing at the same 
time ti, i = 1, 2, . .., n: 

n j  - d j  
R(t) = n 

j c r  nj 

3 .  It is a consistent estimator of R(t) under quite general conditions, 
with estimated asymptotic variance 
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,&t)]= [ R ( t ) ] ' ~ &  j s r  n j  n .  - d 

4. It has an asymptotic normal distribution, since it is a maximum 
likelihood estimator. Hence, confidence limits for R(t) can be 
determined using the normal approximation. 

Example 9.6 [ll] 

Suppose that a test has been carried out as described above, with n = 16, 
and the observed lifetimes are (given in months): 

31.7 39.2 57.5 65.0 65.8 70.0 75.0 75.2 
87.7 88.3 94.2 101.7 105.8 109.2 110.0 130.0 

The empirical distribution function f n ( $  is illustrated in Fig. 9.24. The 

empirical survivor function R(t )  = 1 - f in ( t )  is illustrated in Fig. 9.25. 

1.0 -j I__ 

I r--- 

i 
I 

0.2 j 
rr- - 

Time t (months) 

Fig. 9.24: Empirical distribution function E(t )  
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Fig. 9.25: Empirical survival functionk(t) = 1 -R(t) 

Next, let us show how to estimate R(t) from an incomplete data set with 
censoring of type IV (Section 9.1.3). A set of n numbered units are 
activated at time t = 0 ,  and the censoring time for unit i ,  S j  is 
stochastic. Associated with unit i for i = 1, 2,  . . ., n are two nonnegative 
random variables, namely the lifetime T, which would be observed if 
unit i where not exposed to censoring, called the potential lifetime, and 
the time Si when the unit is possibly censored. We will assume that the 

vectors ( q, Si) for i = 1, 2, . . ., n , are i.i.d. with a continuous 

distributions. Further we assume that and S j  for i = 1, 2, . . ., n are 
independent with continuous marginal distribution. In this situation it is 
only possible to record the smaller of Ti and Si for component i for i = 

1, 2, . . ., n , though at the same time we know whether we are observing 
a failure or a censoring. 

Let us introduce 

= min(q, Si )  

and the indicators 

(9.70) 
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(9.71) 

After the life test is terminated, we are left with the data set 

The following Kaplan-Meier estimation procedure can be applied. Fix 
t > 0 and let tf,) < t ,  < . . . < tfn) denote the recorded hnctioning times, 

either until failure or to censoring, ordered according to size. Let J ,  
denote the set of all indicesj where t(,) I t and t ( j )  represents a failure 

time. Let nj denote the number of units, functioning and in observation 
immediately before time t f j ) ,  j = 1, 2, . .., n. Then, the Kaplan-Meier 

estimator of R(t) is defined as 

n j  -1 
(9.73) 

Example 9.7 (111 

We change the situation given in Example 9.6 so that only the recorded 
lifetimes which are not starred (*) in Table 9.3 represent times to failure. 
In Table 9.4, the Kaplan-Meier estimate is determined as a function of 
time. In the time interval (0, 31.7) until the first failure, it is reasonable 
to set k(t) = 1. The estimate is displayed graphically by a Kaplan-Meier 
plot in Fig. 9.26. 
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O S t <  31.7 

31.7 I t q39.2 

Table 9.3: Computation of the Kaplan-Meier Estimate [ l  11 

=1 
15/16=0.938 

Note: Censoring times are starred(*) 

Table 9.4: Kaplan-Meier Estimate as a Function of Time [ 1 11 

39.2 I t i 57.5 

57.5 5 t < 65.8 
15/16.14/15=0.875 

15/16.14/15.13/14=0.8 13 
65.8 I t < 70.0 

70.0 I t < 105.8 

105.8 I t < 110.0 

110.0 I t 

15/16~14/15~13/14~11/12=0.745 

1511 6.14/15~13/14~11/12.10/11=0.677 

1 5/ 1 6.14/ 1 5.1 3/14.11/ 12.1 O/ 1 1.3/4=0.508 
15/16.14/15~13/14~11/12~ 10/11.3/4.1/2=0.254 
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We see from the equation (9.73) for the Kaplan-Meier estimator and also 
from Figure 9.26 that k(t) is a step function, continuous from the right, 

that equals 1 at t=O. k(t) drops by a factor of (nj - I)/n, at each failure 

time 4. The estimator R(t) does not change at the censoring times. The 
effect of the censoring is, however, influencing the values of nj and hence 

the size of the steps in &t) . 
A slightly problematic point is that R(t) never reduces to zero 

when the last time t(,) recorded is a censored time. For this reason k(t) 
is usually taken to be undefined for t > t(,,). 

A 

A 

1 .oo -, 
J 

I - - 0.75 -/ .- 

._ - 
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'1 
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t ime 

Fig. 9.26: Kaplan-Meier plot of the estimated survival probability k(t) [ 1 11 

9.5 Reliability growth 

It is common practice, during the development of a system, to make 
engineering changes as the program develops. These changes are 
generally made in order to correct design deficiencies and thereby to 
increase reliability. This elimination of design weakness is known as the 
reliability growth. 
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Reliability growth can be characterized by [ 121: 

Expressing the cumulative number of failures as a function of 
operating time. 
Expressing failure rate as a function of operating time 
Expressing mean time between failures as a function of time. 

1. 

2. 
3 .  

A commonly used reliability growth model is the Duane model [lo]. 
Using data from the development programs of several different and 
complex equipments, Duane observed that the logarithms of observed 

, was a linear function of time: cumulative MTBFs, - 
1 

9(t> 

In g(t)  = a + b In t (9.74) 

where 9(t)  reciprocal of the cumulative MTBF over the observation 
period of operation [0, t ] ,  can be estimated as 

Total number of failures H ( t )  
Total operating period t 

-- 9(t) = - 

We can then also write In H ( t )  = -p In a + p In t , from which, 

P 

H ( 4  = (6) (9.75) 

which describes a Non-Homogeneous Poisson-Process (NHPP) with 
Weibull intensity 

ptfl-' 
h(t) = H ' ( t )  = ~ 

a P  
(9.76) 

The function h(t) has the same functional form of the instantaneous 
hazard rate of the Weibull distribution. However, while the instantaneous 
hazard rate is the conditional probability of failure at t + At given that 
there was no failure prior to t (Section 4.5.3), the present intensity 
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function h(t) represents the unconditional probability of failure at time 
t + At .  

We then have: 

1 ap 
- = current MTBF at time t = - 
h(t)  p t 

(9.77) 

t u p  
tP-1 $(t) = Ho = cumulative MTBF for the observation period [O,t] = - 

(9.78) 

Znb(t) = pZn a - (p - 1)lnt (9.79) 

When the cumulative MTBF is plotted against the operating time on a 
log-log paper, it falls on a straight line In $ ( t )  = m In t + q with: 

m = Slope = I  - p , growth factor 
q = Intercept = Blna 

The two cases which may occur are: 

P < 1  s, reliability growth 

B’1 s, reliability degradation 

The parameters of the Duane growth model, a and ,8, can be determined 
either by estimation methods such as the maximum likelihood or by 
graphical methods. Implicit in the model is the assumption that after 
breakdown the system is returned to a state identical to that immediately 
prior to failure. 

9.5.1 Maximum likelihood estimation 

Direct application of the maximum likelihood estimation on the failure 
observation data leads to the following estimates of the parameters a 
and p of the Duane Model: 
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(9.80) 

(9.81) 

n = total number of failures 

ti = failure time, i = 1 ,  2, . . ., n 

T = to if the test terminates at time to 
time t,, 

t,,; t,, if the test terminates at 

9.5.2 Least Square estimation 

For the generic linear relation y = mx + q , the Least-Square estimation 
method applied to the n observation pairs ( x i , y i ) ,  i=1,2, ..., n, leads to 
the following estimates: 

(9.82) 
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Example 9.8 [12] 

Consider the data given in Table 9.5. 

Table 9.5: Reliability performance data. 

(1) 
Month of 
Operation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(2) 
Hours of 
Operation 

541 
1171 
1939 
2403 
1718 
2206 
1366 
1529 
1449 
1451 

(3) 
Cumulative 

Hours 
t 

54 1 
1712 
365 1 
6054 
7772 
9978 
11244 
12873 
14322 
15773 

(4) 
No. of 
failures 

3 
5 
4 
1 
2 
2 
3 
0 
2 
2 

(5) 
Cumulative 
Number of 
failures H(t) 

3 
8 
12 
13 
15 
17 
20 
20 
22 
24 

Cumulative 
MTBF 
t /H( t )  

180.3 
214.0 
304.3 
465.7 
518.1 
586.9 
562.2 
643.7 
651.0 
657.2 

To cany out a Duane analysis, the failure data can be arranged as in 
columns 3 and 5 of Table 9.5. The cumulative MTBF in column 6 is 
obtained by dividing the total number of failures by the total hours of 
operation. Using the data from columns 3 and 6, Table 9.6 can be 
constructed for the Least Square estimation of the slope and intercept 
parameters of the Duane model (Eqs. 9.82). 
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Table 9.6: Reliability data for Least-Square estimation 

Month 
No. 

1 

2 
3 
4 
5 
6 
7 
8 

9 
10 

c 

I In cum. MTBF rn cum. Hours 

X 

6.29 
7.45 
8.20 

8.71 
8.96 
9.2 1 
9.33 
9.46 
9.57 
9.67 

86.85 

V 
5.20 
5.37 
5.72 

6.14 
6.25 
6.38 
6.33 
6.47 
6.48 
6.49 

60.83 

XY 
32.71 
40.00 
46.90 
53.48 
56.00 

58.76 
59.06 
61 .21 
62.01 
62.76 

532.89 

X2 

39.56 
55.50 
67.24 
75.86 
80.28 
84.82 
87.05 
89.49 
91.59 
93.51 

764.90 

Then, 

n T x ;  - [ 2 x i l 2  =10-764.90-86.852 =7649-7543 =lo6 
i=l i=l 

= 0.432 10 * 532.98 - 86.85 * 60.83 45.8 - m =  - 
106 106 

= 2.33 764.90 -60.83 - 532.89.86.85 - 247.37 - 
106 106 4 =  

The Least-Square estimates of a and p can be calculated as: 



The growth factor 1 - 
given by: 

is then 0.432. The current MTBF at time t is 

1 aa -=- 
h(t) ptP1 

and the current failure rate at time t is given by 

p tP-' 

a p  
h(t) = ~. 

For example, the current failure rate at the end of 1 month of operation 
(541 hours) is: 

failures 
60.47°.568 l O3 hours 

= 0.05526 * 54S-0'432 = 3.645 0.568 * 54S-0.432 
h(54S) = 

and the current failure rate at the end of 10 months of operation 
(i-e., 15773 hours) is: 

failures 
1 O3 hours 

h(l5773) = 0.05526*15773-0.432 = 0.849 

Thus, there is an improvement of 3'645-0'849 .loo = 76.7%. 
3.645 

The Duane plot with estimated current MTBF and cumulative 
MTBF lines are given in Fig. 9.27 [9]. 
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Month of Operation 

1 
2 

3 
4 
5 
6 
7 

A RELIABILITY DATA (LEAST SQUARE 
ESTIMATION)  

- EXP(7.07) a 1176.15 
7- CURRENT FAILURE RATE = 1 1  1176.15 

LL 
P 
I 6- 
1 
2 
V 

(3 
0 
-I 

5 
6 7 8 9 10 

LOG CUM. OPERATING TIME - HOURS 

Observed Number of Failures 

0 
1 
2 
5 
7 
12 
16 

Fig. 9.27: Duane plot for the least square estimation [9] 

Example 9.9 [12] 

The observed number of failures in a certain steam injection system on 
an oil production platform are given in Table 9.7. Failure of this system 
causes production stoppage, whose cost is estimated at E l  0,000 on 
average (this includes cost of lost production and labour). The cost of 
complete overhaul including lost production, replacement and labour is 
estimated to be &50,000. What is the optimum overhaul policy? 

Table 9.7: Observed failure for steam injection system 
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XY 

0 
0 

-0.96 

-1.78 

-2.70 

-3.53 

-8.97 

Solution: 

Table 9.8 and Table 9.9 report the data for the Duane model parameters 
estimation by Least-Square. The number n is equal to 6 since there are 
only 6 intervals with failures. 

X2 

0.48 

0.21 

1.93 

2.56 

3.20 

3.80 

13.18 

Table 9.8: Optimum overhaul policy for steam injection system 

Month of 
Operation 

No. 
1 

2 

3 

4 

5 

6 

7 

Observed 
Number of 

Failures 

0 
1 

L 

5 

7 

12 

16 

Cumulative 
Number of 

Failures 

0 
1 

3 

8 

15 

27 

43 

Table 9.9: Least Square estimation data 

X 

0.69 

1.10 

1.39 

1.60 

1.79 

1.95 

8.52 c 

Y 

0 
0 

-0.69 

-1.11 

-1.51 

-1.81 

-5.12 

Cumulative 
MTBF 

(months) 

0.05 

1 .oo 
0.50 

0.33 

0.22 

0.163 

The parameters estimates are (Eqs. 9.82): 
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6.(-8.97) - 8 . 5 2 p . 1 2 )  -53.82 + 43.62 -10.2 -- - -1 - - - Slope = m = - 
6 * 13.18 - 8.522 10.2 10.2 

13.8 (-5.12) - (-8.97). 8.52 -70.66 + 76.42 5.76 
10.2 10.2 10.2 

-- - 0.565 - - - Intercept = q = - 

from which, 

B = 1 - rn = 1 - (- 1) = 2 
r i  

&=exp - =1.33. El 
The cumulative number of failures is given by H ( t  ) = - = - (3 (I.$ 

Let CI be the cost associated with the breakdown and Cr be the cost 
associated with overhaul. Then, the total cost of operation for a time 
period t is given by: 

c(t) = C,H(t) + c, 

and the cost per unit operating time is given by: 

where y( t )  is the cos th i t  operating time, 
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In order to minimize y ( t ) ,  one has to solve the following equation 

- = o  dY 
dt 

C,(p-l) P2 c2 - L o  3 =- 
c,(p-1) tP-2  

a p  t2 a p  t2  

or 

For the given data: 

and the optimal overhaul time is: 

t* = 1.33[:]x = 2.97 months 

The equipment should be overhauled approximately once in every three 
months. The corresponding cos th i t  operating time is given by 

Since it is not always practicable to schedule the overhaul at the exact 
optimum, it is useful to examine the sensitivity of the cost curve with 
respect to the time between overhauls (Table 9.10 and Fig. 9.28). 
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Table 9.10: Cost Curve 

No. of Failures 

Raswlnilng cost 

CI Bbo + G 

55.7 

72.6 
100.9 
140.5 
191.0 
253.5 

327.0 

cost per 

--@!EQ.-.-.-. 
Umit Time 

55.7 

36.3 
33.6 
35.1 
38.2 
42.3 

46.7 

0 2 4 6 8 10 

Overhaul Schedule ( ~ ~ ~ % ~ ~ )  

Fig. 9.28: Optimum overhaul policy for the steam injection system 

The prediction of reliability from failure statistics does not concern itself 
with what happens inside the unit, although it is intuitive that a unit fails 

9.6 Reliability prediction from stress-strength models

9.6.1 Introduction
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when the stress imposed exceeds the strength. To properly describe such 
failure mechanism quantitatively, stress-strength models need to be 
introduced [ 131. 

The stress on a unit is the total sum of internal (created by the 
operational use) and external stresses (imposed by the environmental 
conditions of use). 

Obviously, the stress and strength operating on identical units are 
not fixed quantities and vary from unit to unit even if the best quality 
control procedures are used. Therefore, stress and strength should be 
considered as random variables. In the following, an outline is given of 
the basis for computing the component reliability from the knowledge of 
the distributions associated with these random variables. 

In the past, the concept of safety factors has been widely used in the 
design of engineering systems: 

safety factor = 
ultimate strength 
working stress 

where the ultimate strength and the working stress are considered as 
fixed known values, with no consideration given to their variability. 

To illustrate this concept, let us assume that the stress or load L 
applied to a component is normally distributed with density hc t ionh( l>  
characterized by a mean pL and a standard deviation aL (Fig. 9.29). The 
strength of the unit has been determined to be S,: thus, the unit may fail 
only when the stress acting upon it is greater than S,. The probability of 
failure is then given by [13]: 

m 

F = P[L > S,] = I f,(l)dl 
S, 

(9.83) 
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h(l) 

C 

Reliability Y 
P L  

Probability of failure 

b 

Fig. 9.29: Reliability from Stress-Strength Model 

Equation (9.83) gives the unreliability of a unit whose strength is a 
known, invariant value SI. When the variability of both stress and 
strength is taken into considerations, the probability of failure of a unit 
depends on the area of overlap between the distributions of the stress and 
strength random variables (Fig. 9.30). 

Stress Strc 

I P L  

Interference Area 

Fig. 9.30: Probability of Failure from Stress-Strength Distributions 
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To enhance the reliability of a unit, one can then (Figs. 9.3 1) 

a) 
b) 

c) 

Shift apart the stress and strength distributions 
Reduce the variability of stress by a better regulation of stress and 
control of the environmental conditions 
Reduce the variability of strength by stricter quality control during 
the production phase. 

Higher derating - Higher safety factor - 

Fig. 9.3 1 a: Improving Reliability of a Unit using derating and safety factors 

I PL 

Fig. 9.3 1 b: Improving Reliability of a Unit using stress regulation 
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I ps 
L, s- 

Fig. 9.3 Ic: Improving Reliability of a Unit using better quality control 

In quantitative terms, the definition of the safety factors is given by: 

(9.84) 
S S.F. = 1 
PL 

where no account is given to the variability of stress since no 
consideration is given to p L ,  However, contrary to the general belief, a 
high safety factor does not necessarily lead to a reliable design. It 
becomes, therefore, necessary to study how the reliability of a unit can be 
computed when both stress and strength are considered as random 
variables with given density functions. This approach leads to economic 
and reliable designs of engineering systems, eliminating the risk of over- 
designing. 

Another reason to base reliability predictions on stress-strength 
models is the dependence on time. Whereas the stress remains more or 
less the same, except for its spread, the strength of a unit varies with 
time. Usually strength decreases in time due to wear and tear, corrosion, 
metal fatigue and many other causes. The effect of all this is to reduce 
the mean of the strength and the spread of its distribution (Fig. 9.32). 
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0 tl t 2  t 

0 < t ,  < t ,  

Fig. 9.32: Degradation of Strength of a Unit Over Time 

9.6.2 Internal and external causes of stress 

The increase of the stress in a unit can be due to either internal or 
external causes. One of the major unreliability causes is the poor thermal 
transfer. In the majority of cases, the fault does not lie in the design but 
in not having given adequate attention to the heat generated within the 
components. If adequate cooling of the components inside the equipment 
has not been planned, the component might experience a building up of 
hot spots leading to higher localized stresses. This may even be due to 
maintenance personnel’s failing to replace clocked air filters. In any case, 
whatever the cause, poor heat transfer may lead to physical damage or 
accelerated chemical reactions, which affect the material’s properties. 
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Similarly, a sudden change in temperature or rapidly changing 
temperature cycles produce additional stresses on components. Effects of 
thermal shocks induce stresses, which may lead to loosening of solder 
joints, cracking, delamination, etc. 

Furthermore, the natural frequency of components must not be 
overlooked since resonance may occur if the natural frequency is within 
the vibration frequency range. Once the resonance occurs it can cause 
deflection and may increase stresses beyond acceptable limits. 

Excessive vibrations themselves, due to worn out bearings or 
misalignments, can deteriorate mechanical strength and cause fatigue or 
overstress in components. 

Electromagnetic radiations and electrostatic discharges can also 
cause excessive electrical stresses on components and subsystems. 

In nuclear technology applications, radiation also affects the 
properties of materials by altering their atomic or molecular structure. 

Besides these internal factors, a system or equipment is also 
subjected to many external environmental factors, which may greatly 
impair its proper functioning. These factors depend on climatic 
conditions such as daily maximum and minimum temperatures and their 
variations, on altitude, on rain, on humidity, on sand or dust, on 
atmospheric salinity, etc. All these factors increase the stress in the 
components. Temperature and humidity are major factors. 

9.6.3 Physics of failures 

As mentioned before, the strength S of a component is a random variable 
and varies not only from batch to batch of the production line of a given 
unit but also decreases with time. Thus, the failure occurs when overtime 
the strength becomes less than the applied load. To derive the reliability 
model we must then know the law of decrease in time of the strength, 
S(t), and its initial value, SO. 
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9.6.4 Reliability from stress-strength distributions 

The reliability of a unit is the probability that the strength S is greater 
than the stress or load L for all possible values of the load L [ 131: 

Probability of the 
strength S > 1 =I-Fs(Z) 

or 

W r s  1 

Probability of the load 
L < s = F&) 

Ifwe express A = S  - L ,  thenS = A +Land 

W 

R = P [ A  2 01 = 5 fA(S)d6  
0 

(9.85) 

(9.86) 

(9.87) 
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5 
0.00 
0.01 
0.02 
0.03 

Appendix A: Table of Standard Normal Cumulative 
Distribution 

F ( 5 )  
0.500000 
0.503989 
0.507978 
0.511966 

0. 705401 

ppq 
0.07 0.527904 

0.846136 

0. 719043 
0.535857 0. 722405 0.862143 

0.5831 66 

0.549835 

0.606420 
0. 610262 
0.614092 

0.65 0.742154 
0.66 0. 745374 
0.67 0.748572 
0.68 0.751 748 
0.69 0.754903 

0.764238 

1 I 1.05 I 0.853141 1 Wl 
1.07 0.857690 

~pJmzEq 
0.866500 

1.12 0.868643 
1.13 0.870762 
1.14 0.872857 

1.15 0.874928 
1.16 0.876976 Vl 
1.19 0.882977 

1.20 0.884930 
1.21 0.886860 
1.22 0.888767 
1.23 0.890651 
1.24 0.892512 

I 0.75 I 0.773373 I I 1.25 I 0.894350 I 

0. 782305 0.899727 

I I I 
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0.80 
0.81 
0.82 
0.83 
0.84 

0.621 720 
0. 788145 
0. 791030 
0. 793892 
0. 796731 
0. 799546 0.633072 

1.46 
1.47 
1.48 
1.49 pi 

0.936992 

0.927855 
0.929219 
0.930563 
0.931888 

I 1.54 I 0.938220 I 

1.55 
1.56 
1.57 
1.58 

0.939429 
0.940620 
0.941792 
0.942947 

1.59 I 0.944083 
I 

0.94 6301 Wl 
0.948449 

F l  
0.86 0.805105 Vl 
0.89 0.813267 

0.93 0.823815 
0.826391 

0.833977 
0.98 0.836457 
0.99 0.838913 

0.9 78822 
0.979325 

0.980774 
0.981237 
0.981 691 

I 2.14 I 0.983823 I 

0.9221 96 

1.45 I 0.926471 

-1 
2.61 0.995473 

I 1.64 I 0.949497 I I 2.64 I 0.995855 I 
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I 5 I m) I 

0.954486 

0.9581 85 

0.961 636 
0.962426 
0.9632 73 

l*l 
0.984614 Wl 
0.9853 71 

2.19 I 0.985738 
I 

0.987126 

0.988396 

Wl 
0.96711 6 

-1 
1.86 0.968557 

0.969946 
0.970621 

0.973197 
0.973810 

0.975002 
0.975581 

0.992240 
0.992451 
0.992656 

0.993431 

Wl 
0.996093 

I 2.67 I 0.996207 I 

0.996427 

0.996736 
0.996833 

0.997197 
0.997282 
0.997365 

0.997523 
0.997599 

2.83 0.997673 
2.84 0.997744 

-1 
2.86 0.997882 

0.998250 

0.998359 

0.99851 1 
0.998559 
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p - p l  
3 . 0 0  0 .998630 

3 . 0 2  0 .998736 
3 . 0 3  0 .998777 
3 . 0 4  0 .99881 7 

0 .999336 
3 . 2 2  0 . 9 9 9 3 5 9  Vl 

0 . 9 9 9 4 0 2  I 3.  74 I 0.999908 I 

3 . 7 5  I 0 . 9 9 9 9 1 2  

4 . 2 5  0.106883E-04 
4 . 3 0  0.853906E-05 t 4 .35  0.6806883-05  

6 . 2 0  0 .28231 6E-09 + 6 . 3 0  0.148823E-09 
I 6 . 4 0  I 0 . 7 7 6 8 8  E-10 I 
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pX-pCET1 
3 . 4 6  0 . 9 9 9 7 3 0  

0 .999758 

pJTT3Ml 
0.999946 

Wl 
3 . 9 2  0 .999956 Yl 

0.999959 

1 

7 . 0 0  I 0 . 1 2 8  E - l l  1 ili! 1 0.624 E-12  1 
0 . 3 0 1  E-12 
0 . 1 4 4  E - 1 2  

7 . 4 0  0 . 6 8  E-13 

0.15 E - 1 4  
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8 

9 

Aaaendix B 

1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955 
1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589 

Appendix B: Table of Chi-square Cumulative Distribution 
x: (f 1 

10 

I 7 I 0.989 I 1.239 I 1.690 I 2.167 I 2.833 I 12.017 I 14.067 I 16.013 I 18.475 I 20.278 I 

2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 
11 
12 
13 

2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757 
3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 
3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 

50 

60 
70 
80 

I I 1 

29 I 13.121 I 14.2561 16.047 I 17.708 I 19.768 I 39.087 I 42.557 I 45.722 I 49.588 I 52.336 

27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 
35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 
43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 
51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 

30 113.7871 14.9531 16.7911 18.4931 20.5991 40.256 I 43.773 I 46.979 
40 120.7071 22.1641 24.4331 26.5091 29.0511 51.805 I 55.758 I 59.342 

90 I 59.1961 61.754 I 65.647 I 69.1261 73.291 I 107.565 I 113.145 I 118.136 
100 167.3281 70.0651 74.2221 77.929) 82.3581 118.498 I 124.342 1129.561 

50.892 53.672 
T s % i - L J  

135.807 I 140.169 I 
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