




PREFACE 

This book is based on notes developed for a one-semester course offered at Berkeley. 

Typically, this serves graduate engineering students studying Mechanics, but also occasion- 

ally attracts interest on the part of students studying Mathematics and Physics. For this 

reason, and to suit my own predilections, the level of mathematical rigor is appropriate for 

readers possessing a relatively modest background. This has the pedagogical advantage of 

allowing time to make contact with physical phenomena, while providing context for such 
mathematical concepts as are needed to support their modeling and analysis. Advanced 

readers seeking more than this should consult the books by Antman (2005), Ciarlet (1998), 

and Silhavy (1997), for example. My expectation, and part of the motivation for this work, 

is that books and treatises of the latter kind may be more fully appreciated by students after 

reading an introductory course. 

Throughout the book, we focus on the purely mechanical theory. However, extensive 

reference will be made of the notions of work, energy, and, in the final chapter, dissipation. 

The emphasis here is on developing a framework for the phenomenological theory. 
Despite what contemporary students are often taught, such theories remain the best hope 

for the quantitative study of physical phenomena occurring on human (macroscopic) scales 

of length and time. This is perhaps best illustrated by our own subject, which developed 

rapidly after the introduction ofa clear and concise framework for phenomenological mod- 

eling. Thus, researchers began to exploit the predictive potential of the theory of nonlinear 

elasticity only after constitutive relations derived from statistical mechanics were largely 

abandoned in favor of those of phenomenological origin, which could be fitted to actual 

data. In turn, nonlinear elasticity, because of its secure logical, physical, and mathemat- 

ical foundations, has served as a template for the development of theories of inelasticity, 

continuum electrodynamics, structural mechanics, thermodynamics, diffusion, rheology, 

biophysics, growth mechanics, and so on. The final chapter, consisting of a brief introduc- 

tion to plasticity theory, illustrates how elasticity interacts with and informs other branches 

of solid mechanics. In short, the study of nonlinear elasticity is fundamental to the under- 

standing of those aspects of modern mechanics research that are of greatest interest and 

relevance. 

These notes are mainly about the conceptual foundations of nonlinear elasticity and the 

formulation of problems, occasionally including a worked-out solution. The latter are quite 

rare, due the nonlinearity of the equations to be solved, and so recourse must usually be 

made to numerical methods, which, however, lie outside the scope of this book. Explicit 

solutions are of great importance, however, because they offer a means of establishing a dir- 

ect correlation between theory and experiment, and thus extracting definitive information 

about the constitutive equations underpinning the theory for use in computations.
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Although elasticity theory is inherently nonlinear, courses on the purely linear theory, 

treating the equations obtained by formally linearizing the general theory, are quite preva- 

lent. This is due to the great utility of the linear theory in solving problems that arise in 

engineering and physics. To a large degree, and mainly for historical reasons, such courses 

are delivered independently of courses of the present kind. The explanation for this schism 

is that the nonlinear theory did not come into its own until the latter half of the last cen- 

tury and, by then, the linear theory had matured into a major discipline in its own right, 

on par with classical fluid dynamics, heat transfer, and other branches of the applied and 

engineering sciences. This fueled research on applications of the theory relying on and, 

in turn, advancing techniques for treating elliptic linear partial differential equations. The 

word Finite in the title refers to the possibly large deformations covered by the nonlin- 

ear theory, as distinct from the infinitesimal deformations to which the linear theory is 

limited. Elasticity theory is, nevertheless, nonlinear and the use of the linear approximation 

to it should always be justified, in the circumstances at hand, by checking its predictions 

against the assumptions made in the course of obtaining the equations. However, this is 

inconvenient and, thus, almost never done in practice. 

Unfortunately, all this is somewhat disquieting from the standpoint of contemporary stu- 

dents, who must grapple not only with the question of whether or not a problem may be 

modeled using elasticity theory, but may also feel obliged to categorize it as either linear or 

nonlinear at the outset. Those more interested in concepts and in the formulation of new 

theories of the kind mentioned above will derive much value from an understanding of non- 

linear elasticity, whereas my view is that linear elasticity has virtually nothing to offer in this 

regard, due to the severe restrictions underpinning its foundations. 

The book collects what I think students should know about the subject before embarking 

on research, including my interpretations of modern works that have aided me in refin- 

ing my own understanding. Those seeking to grasp how and why materials work the way 

they do may be disappointed. For them I recommend Gordon (1968, 1978) as an en- 

gaging source of knowledge that should ideally be acquired, but which rarely, if ever, is, 

before reading any textbook on the mechanics of materials. In particular, these may be read 

in lieu of an undergraduate course on Strength of Materials, which is to be avoided at all 
costs. If the present book comes to be regarded as a worthy supplement to, say, Ogden’s 

modern classic Nonlinear Elastic Deformations (1997), then I will regard the writing of it 

to have been worthwhile. Readers having a grasp of continuum mechanics, say at the level 

of Chadwick's pocketbook Continuum Mechanics: Concise Theory and Problems (1976), will 

have no trouble getting started. Reference should be made to that excellent text for any con- 

cept encountered here that may be unfamiliar. The reader is cautioned that current fashion 

in continuum mechanics is to rely largely on direct notation. Indeed, while this invariably 

serves the interests of clarity when discussing the conceptual foundations of the subject, 

there are circumstances that call for the use of Cartesian index notation, and we shall avail 

ourselves of it when doing so proves to be helpful. We adopt the usual summation con- 

vention for repeated subscripts together with the rule that subscripts preceded by commas 

always indicate partial differentiation with respect to the Cartesian coordinates. Direct no- 

tation is really only useful to the extent that it so closely resembles Cartesian index notation,
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while the latter, being operational in nature, is invariably the setting of choice for carrying 

out the more involved calculations. 

Some topics are given more attention than others, in accordance with my personal views 

about their relative importance and the extent to which they are adequately covered, or 

more often not, in the textbook and monograph literatures. My intention to use these notes 

in my future teaching of the material leads me to buck the current trend and not include 

answers to the exercises. The latter are sprinkled throughout the text, and an honest at- 

tempt to solve them constitutes an integral part of the course. The book is definitely not 

self-contained. Readers are presumed to have been exposed to a first course on continuum 

mechanics, and the standard results that are always taught in such a course are frequently in- 

voked without derivation. In particular, readers are expected to have a working knowledge 

of tensor analysis in Euclidean three-space and the reason why tensors are used in the for- 

mulation of physical theories—roughly, to ensure that the predictions of such theories are 

not dependent on the manner in which we coordinatize space for our own convenience. 

The contemporary books by Liu (2002), and by Gurtin, Fried and Anand (2010) can 
be heartily recommended as a point of departure for those wishing to understand the 

foundations for modern applications of continuum mechanics. A vast amount of important 

material is also contained in Truesdell and Noll’s Nonlinear Field Theories of Mechanics 

(1965) and Rivlin’s Collected Works (Barenblatt and Joseph, 1997), which should be read 
by anyone seeking a firm understanding of nonlinear elasticity and continuum theory in 

general. 

David Steigmann, Berkeley 2016 
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Concept of an elastic material 

One would think this would be the easiest chapter to write, but alas such is not the case. 

Thus, we will have to settle for the present, rather superficial substitute, which may be 

skipped over by anyone—and thus presumably everyone reading this book—who has some 

passing acquaintance with the concept of elasticity. When attempting to define the property 

we call elasticity, and how to recognize it when we see it, we encounter certain non-trivial 
obstacles, not least among these being the fact that elastic materials per se do not actually 
exist. That is, there are no known examples of materials whose responses to stimuli conform 

to conventional notions of elasticity in all circumstances. In fact, even the concept of ideal 

elastic response is open to a wide range of interpretations. Rather than delve into the under- 

lying philosophical questions, for which I am not qualified, I defer to the thought-provoking 

account contained in a contemporary article by Rajagopal (2011). 
For our purposes, the idea of elasticity may by abstracted from the simplest observations 

concerning the extension of a rubber band, say, to a certain length. Naturally, one finds that 

a force is required to do so and, if the band is left alone for a period of time, that this force 

typically settles to a more-or-less fixed value that depends on the length. This is not to say 

that the force remains at that value indefinitely, but often there is a substantial interval of 
time, encompassing the typical human attention span, during which it does. More often, 

one fixes the force, f say, by hanging a weight of known amount from one end; the length 

of the band adjusts accordingly, reaching a corresponding value that is sensibly fixed over 

some time interval. If one has a graph of force vs. length, then usually one can read off the 

force corresponding to a given length and vice versa. The situation for a typical rubber band 

is shown in Figure 1.1, where the abscissa is scaled by the original (unforced) length of the 

band. This scaling, denoted by A, is called the stretch. 

If one looks closely one may observe a slight hysteresis on this graph. This is due to small- 

scale defects or irregularities among the long-chain molecules of which the rubber is made. 

They have the effect of impeding attainment of the optimal or energy minimizing state of 

the material under load, and are usually reduced to the point of being negligible by sub- 

jecting the rubber to a cyclic strain, which effectively “works the kinks out.” This is known 
as the Mullins effect. Studies of it in the mechanics literature are confined mostly to its 

description and prediction, based on phenomenological theory (see Ogden’s paper, 2004), 

rather than its explanation. A notable exception is the book by Miiller and Strehlow (2010), 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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Figure 1.1 Uniaxial force-extension relation for rubber. Stiffening is due to straightening of long- 

chain molecules 

which offers an interesting explanation in terms of microstructural instabilities and associ- 

ated thermodynamics. For the most part these subjects will not be covered, although we will 

devote considerable attention later to the notion of stability and its connection to energy 

minimization. 

Ignoring hysteresis, then, we can expect to extract a relation of the form f = F(A) from 

a graph of the data. Here, F is a constitutive function; i-e., a function that codifies the nature 

of the material in terms of its response to deformation. We are justified in attributing the 

function to material properties—and not just the nature of the experiment—provided that 

the material is uniform and no other forces are acting, In this case, equilibrium consider- 

ations yield the conclusion that the forces acting at the ends of an arbitrary segment of the 

band are opposed in direction, but equal in magnitude, the common value of the latter be- 

ing given by the force f. If the stretch, which is really a function defined pointwise, is also 
uniform, then it can be correlated with the present value of the length of the band. That 

is, the stretch is really a local property of the deformation function describing the config- 

urations of the band, and may be correlated with the end-to-end length provided that it is 

uniformly distributed. 

Because the length of a segment is arbitrary in principle, we may pass to the limit and 

associate the response with a point of the material, defined as the limit of a sequence of 

intervals whose lengths tend to zero. In this way, we associate the global force-extension 
response with properties of the material per se, presumed to be operative on an arbitrarily 

small length scale. This is one of the premises of continuum theory; namely, that the prop- 

erties of the material are assigned to points of the continuum. These days, thanks to the rise 

of computing, it is often augmented by the notion of a hierarchy of continua that operate at 

length scales smaller than the unaided eye would associate with a point. In some cases, the 

smaller scale continua are replaced by discrete or finite-dimensional, systems. Some form of
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communication among the length scales is then required, furnishing material properties on 

the larger scales in terms of system response on the smaller scales. The basic idea is known 

collectively as the multi-scale method. While it is currently an active field producing inter- 

esting and sometimes useful work, it is not a panacea for the limitations of conventional 

continuum theory, but rather a way of exploiting computing power to avoid the empirical 

work that standard continuum theory requires to realize its full potential. Recalling the du- 

bious effectiveness of early formulations of rubber elasticity based on statistical mechanics, 

it is perhaps not surprising that multiscale methods are typically no more reliable than basic 
continuum theory, while often requiring the use of ever more models operating at ever finer 

length scales. All is well and good if this process converges in some sense, but whether or 

not it does depends as much on the problem being addressed as anything else, and in any 

case the issue is almost never explored carefully. This brings to mind Truesdell’s (1984) 

amusing observation to the effect that continuum theory is immunized by its very nature 

against the next great discovery in atomic physics, remaining indifferent to the parade of 

sub- and sub-sub-atomic particles that blink in and out of existence while we labor over our 

engineering calculations, oblivious to their comings and goings. We digress, however. 

If the material is non-uniform, little can be concluded from the simple rubber-band ex- 

periment about the nature of the material, in contrast to the situation for uniform materials 

that are uniformly stretched. This is due to the fact that the stretch will now be non-uniform, 

despite the uniformity of the force intensity (by virtue of equilibrium), due to the variations 

in the way the material responds locally to that force. In this case, we perform a sequence 

of experiments on ever shorter segments. If the force-deflection curves thus obtained con- 

verge, then the limit response may be said to characterize the material at the length scale 

associated with the last segment in the sequence. This generates the response f = F(A; x), 

where x is the location from one end, say, of the band to a point contained in the inter- 

section of the sequence of the segments prior to deformation. Here the stretch is now a 

function of x, and the force required to maintain it at the value A(x) will reflect the non- 

uniformity of the material; hence, the explicit dependence of F on x. Because the value of 

this function—the force—is uniform in the equilibrated band, it is the stretch that must ad- 

just to the non-uniformity of the material, producing a field .(x). If the sequence of tests 

does not converge, then we assign the response F(A; x) to the one point x that remains as the 

segment lengths diminish to zero. In principle, if not in practice, this is the sort of thing one 

does to test for material non-uniformity and to quantify the associated response function. 

The attendant difficulties may indeed give some impetus to multiscale methods, but it 
bears repeating that these entail the use of models in lieu of actual data. Such practices are 

fraught with their own difficulties, not least among them being the need for empirical testing 

of the models purportedly operating on the smaller scales. In any case, as for uniform bands, 

we have a relation for the force that depends on the present values of the stretch function, 
but not on the history of the deformation, or on how quickly or slowly it occurs. This is due 

to our restriction to time scales on which the force and stretch are sensibly constant, and is 

what most people mean by the word elasticity. 
Interestingly, a relation of much the same kind is found when the band is deformed very 

rapidly, as when a wave is caused to propagate through it. This is due to the fact that the 

deformation then occurs on a time scale that is too short for effects like viscosity to be
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effective in relaxing the force, whereas in the slow experiment in which data are recorded 
on long time scales, such effects have already run their course. Behavior on intermediate 

time scales, which is the province of viscoelasticity theory, is beyond the scope of this book. 

An up-to-date account, accessible to students of nonlinear elasticity, may be found in the 

article by Wineman (2009). 

A principal lesson of the rubber-band experiment is that material response appears to be 
local. That is, the force acting on a short segment of the band, and hence (by equilibrium) 

the force at any cross section within it, is determined by the deformation of that segment 

and not by the deformations of other segments comprising the original band. This idea has 
been codified by Noll in his principle of local action. Current pedagogy tends to discour- 
age the use of this kind of language, as it seems to confer special status on simple ideas. 
Nevertheless, this principle furnishes a logical point of departure for the abstraction of sim- 

ple experiments of the foregoing kind. It exemplifies the kind of fundamental reasoning that 

is needed to move from observations to a conception of how Nature works, and from there 

to the formulation of a predictive theory, which is surely among the noblest aspirations of 

Man. In our case, this takes the form of an assumption to the effect that the Cauchy stress 

at a material point, labelled p, say, is sensitive only to the deformation of material points in 

its vicinity (see Figure 1.2). 
More precisely, the Cauchy stress T(p, t) is determined by the deformation x (x, t) for 

those reference positions x satisfyingx € N,(p), a neighborhood of the material point p of 

the body occupying position x in reference configuration x. Here y = x (x, £) is the position 

in three-space at time ¢ associated with the same material point. In the older literature one 

often sees the word “particles” used in place of our “points.” However, the former connotes 

a collection of discrete objects, which is not what is intended when using continuum theory. 

  Figure 1.2. Neighborhood of a material point, p, in the reference configuration
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It is appropriate to append a subscript to the deformation function and write y = x,(x, 6), 

to acknowledge the choice of reference. The fact that current position is unrelated to the 

reference implies that the function taking x to y necessarily depends on this choice. This 

issue will be revisited later. The Cauchy stress is measurable without reference to «, both in 

principle and in practice, and so a subscript would not be appropriate. 

In summary, we suppose that T(p, t) is determined by x, (x,t) for x’ € N,(p), which 
contains the position x of p ink. 

If the deformation function is smooth in its first argument, and if the diameter of N, (p) 

is suitably small, then the deformations that determine T(p, t) may be approximated by 

Xe (x, t) = Xe (x, t) + E, (x, t)(x’ - x) + o( |x’ -x|), (1.1) 

where F,, called the deformation gradient, is the derivative of the function x,(x, ¢) with re- 

spect to its first argument. This should carry the subscript in principle, but in practice it is 

cumbersome to do so and for the most part we shall not. The small “oh” identifies terms 

that tend to zero faster than the argument does, as the latter tends to zero. For points suffi- 

ciently close to the place x occupied by p in the reference, the response is then determined 

primarily by x,(x,£) and F,(x,¢). If one is concerned with leading-order effects, then it 

would be sensible to retain only the first term in (eqn 1.1) and consider a model in which 

the stress at p is sensitive only to x, (x,t). However, we will see that such dependence is 

precluded by invariance arguments and so the actual leading term is the deformation gra- 

dient. Retention of this term alone leads to a famous model for materials named the simple 

material by Noll, who advanced the idea not only for elasticity, but for other theories in 

continuum mechanics as well. 

One can, of course, envisage applications in which retention of further terms is appro- 

priate, the next one being the gradient of F, (x, f). The model thus derived turns out to be 

rather useful for describing localized effects such as surface tension in solids. More recently, 

it has been used to model materials reinforced by a dense distribution of fibers in which the 

fibers are presumed to offer elastic resistance to flexure. Flexure is nothing more than the 

curvature induced by deformation, while curvature is determined by the second derivative 

of the position function on a fiber with respect to arc length; this in turn is determined by 

both the deformation gradient and its gradient. Having simpler applications in mind, we 

do not study this relatively complex model here. The interested reader will find excellent 

treatments of it in papers by Toupin (1962, 1964) and by Spencer and Soldatos (2007). 
The model we intend to study is thus of the form 

Tip, t) = Ge Xu (x, t), F, (x, t);x), (1.2) 

in which the last argument is intended to indicate a parametric dependence on the mater- 

ial point and, hence, on its position in «. This is needed if the properties of the material, 

codified in the constitutive function G, (-, -;x), vary from point to point; that is, if the mater- 

ial is non-uniform. In principle, this function is determined by experiments, but these are 

cumbersome and expensive, and so before going to the laboratory we should try to sim- 

plify it as far as possible. The manner of doing just that comprises much of the theoretical
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underpinnings of the subject. We might have included a dependence on time, but as we 
shall see presently this too is disallowed by invariance arguments. We note, however, that 

the subscript « on the constitutive function is required, because this function depends on 

variables associated with a reference placement whereas its values do not; the function itself 

must then depend on the reference. The reference is not prescribed for us, but instead is 

specified by us, subject to the requirement that positions within it be in one-to-one cor- 

respondence with points of the material. Almost always workers in the subject confine 

attention to references that are, or could be, occupied by the material in the course e of its 

motion, this carrying the mild restriction 

J >0, where J = detF,. (1.3) 

Changing the reference means changing the constitutive function in such a way as to 

leave the Cauchy stress invariant. After all, experiments designed to measure the Cauchy 

stress do not require knowledge of our idiosyncratic choice of reference. In this way, given 

the constitutive function based on a particular choice of reference, we can compute that 

which applies to any other admissible choice. The reader is cautioned that long-standing 

practice is to associate the reference with a stress-free configuration of the material. Not 
only does this promote the erroneous view that the reference needs to have some special 

physical status, it also demands that we accept the fiction that the existence of global stress- 

free states is the norm, rather than the exception. We will take up this issue in Chapter 13. 
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Observers and invariance 

The historical development of Physics has been guided by one overarching idea: that the 

laws of Nature have nothing to do with us and, hence, that the mathematical descrip- 

tion of these laws should satisfy invariance requirements representing such indifference 

in mathematical terms. This egalitarian, as distinct from egocentric philosophy marks the 

development of Physics just as surely as it characterizes the healthy psychological develop- 

ment of human beings. Alas, as with all that seems obvious, it must face certain challenges; in 

this instance that offered by the uncertainty principle of quantum mechanics, which teaches 
that the act of making an observation has a non-negligible effect on that which is observed. 
(See the book by Murdoch (2012) for an interesting discussion.) We shall not, however, de- 
velop elasticity theory from the quantum mechanical point of view here, despite promising 

developments emerging from current research. 

To understand the consequences of the idea of material indifference for elasticity the- 

ory, it is necessary to admit different points of view, or observers, into contention so that 

we may know what it is about them that should not influence a sound physical theory. For 

example, in Relativity Theory an observer is identified with a frame of reference. Observers 

have little in common except for their agreement on one thing—the speed of light in vac- 

uum. Accordingly, the speed of light in vacuum is said to be frame invariant. This seemingly 

innocuous constraint on the laws of physics has the most profound mathematical con- 

sequences, known collectively as the Theory of Relativity. Classical Mechanics, to which 

attention is confined here and in most treatments of continuum mechanics, is based on a 

similar idea, except that classical observers are presumed to agree on two things—the dis- 

tance between any pair of material points and the time lapse between events. A penetrating 

discussion may be found in a paper by Noll (1973). 

This is not all, however. Following an important paper by Murdoch (2003), we suppose 

that observers also agree on the nature of the material. In our case, that it is elastic, and 

hence on the list of variables (e.g., the Cauchy stress, the deformation, and the deformation 

gradient in the case of elasticity) that are related by the constitutive equations pertaining 
to any observer. After all, the manner in which a sample of material responds to stimuli is 
presumably unaffected by the observer of such response; and so, if a particular set of vari- 
ables is found by one observer conducting an experiment to be relevant then it should be so 

for all. We are belaboring this matter perhaps more than we should, because as reasonable 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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as the concept may appear to the uninitiated, it has been the cause of considerable confu- 

sion and suffering among the educated. My own not inconsiderable reading leads me to the 
view that the interpretation offered by Noll and Murdoch is superior to the alternatives as 
far as classical mechanics is concerned. To this day, workers are often divided over this issue 

along the party lines that have emerged during the modern development of our subject. 
The relationship between a pair of classical observers, O and O*, say, may be expressed 

in the form (see Figure 2.1) 

xi, 6) = Q(t)x,(%t)+e(t) and ff =tta, (2.1) 

wherein ¢ is the time on the watch, « is the reference configuration used, and x, (x, f) is 

the deformation, all pertaining to O; whereas the same variables, carrying the superscript 

*, pertain to O*. Here Q(t) is a time-dependent orthogonal tensor (Q'Q = QQ! = I, the 

identity tensor), c(t) is a vector-valued function, and a is a constant. The ideas under- 

pinning this relation are explained in Noll’s paper. We note that it is quite similar to the 

relation existing between a deformation as perceived by one observer and a second deform- 

ation, perceived by the same observer, obtained by superposing a rigid-body deformation 

on the first. However, in the latter the orthogonal transformation is required to be proper- 

orthogonal, whereas in eqn (2.1) it is not. We shall return to this point presently. Basically, 

eqn (2.1), part 1, ensures that the distance between material points p, and p, ata particular 

instant is the same for both observers, whereas eqn (2.1), part 2, ensures that the time lapse 

between successive events is likewise the same. Indeed, eqn (2.1) is necessary and suffi- 

cient for such agreement. We note that the two observers are free not only to wear different 

watches, but also to choose different references. Before Murdoch, the literature was marred 

by the frequent repetition of the unnatural view that these references may be assumed to 

coincide. 

In concert with eqn (2.1), we suppose, this time truly without loss of generality (see the 

Problems), that the configuration R,,, say, occupied by the body at time f), is chosen by 

xX, t) 

  
Oo 

Figure 2.1 Configuration of a body, as perceived by observers O and O*
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observer (© to serve as reference; in short, « = R,,. We further suppose that observer O* 

takes up the same suggestion and selects «* = Rie. Then, det F*, > 0, while (2.1) requires 

x’ = Kx+c, (2.2) 

wherein K = Q(t,), etc. The Chain Rule (see Supplemental Notes, Part 3) yields the chain 
of equalities: 

dy’ = Qdy = QF ,dx= QE, K'dx’, andthus Fi, =QEK’, (2.3) 

the latter implying that 

(det Q)(det K) = 1. (24) 

In view of our proposal regarding the two observers’ perceptions of material response, 

the relevant constitutive relation for O* is necessarily of the form (cf. eqn (1.2)) 

T*(p, f°) = Gx @, #), Fe (x*, #);x*). (2.5) 

In every course on continuum mechanics, and in Murdoch’s paper, it is explained that 

T*(p, f*) = Q(t)T(p, t) Q(t)‘; therefore, 

ee (Xe (x*, t*), Ft, (x, t*);x*) = Q(t)G. Gx t), F, (x, t);x)Q(t), (26) 

and this holds for all orthogonal Q(t), for all c(t) and for all a. 
To obtain necessary conditions, consider a situation in which x; and F*, are observed 

by O* to persist at fixed values during the interval [¢*, t{]. This observer perceives a static 

configuration of the body, while the other observer is flying past in an airplane, say, all the 

while observing the same body. Evaluating (2.6) at times t, = t* — a and ¢, = tf — a and 
eliminating G+, (x7, Ft.; x"), we derive 

Qc (y,, F,; x)Q, = Q,G (y,, F,; x)Q',, (2.7) 

where y, = xX. (x,t), Fi = F, (x,t), Q, = Q(t,), etc. This is a restriction on the constitu- 

tive function used by ©. Furthermore, 

Quy, te =Q.,y,+&, (2.8) 

where c, = c(#,), etc., and from (2.3), we have Q ,F,K' = Q.,F,K’, which furnishes 

F,=QF,, where Q=Q‘,Q). (29) 

Here, of course, F, and F, are the values of F, at different times and so (1.3) requires that: 

Qe Orth’, (2.10)
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the set of proper-orthogonal (rotation) tensors; i.e., the orthogonal tensors with determin- 

ant +1. Consequently eqn (2.7) may be re-written as 

G.(Qy +d, QF;x) = QG,(y,F;x)Q, where d=Qic with c=e~c. (211) 

This is precisely the requirement that the constitutive function G, pertaining to O be 

invariant under superposed rigid-body motions. 

The reader is cautioned that such invariance, rather than observer consensus regarding 

material response, is used by many workers as a basic premise regarding constitutive behav- 

ior. Murdoch was the first to show that the latter implies the former, and the demonstration 

of this implication given here closely follows his work. Indeed, it is difficult to under- 

stand why one would impose invariance under superposed rigid motions as a primitive 

hypothesis. For, the response of materials is constrained by the equations of motion 

dvT+pb=py and T=T', (2.12) 

where 9 is the spatial mass density, b is the body force per unit mass, superposed dots 

refer to material time derivatives (8/d¢ at fixed x) and div is the spatial divergence; that 

is, the divergence based on position y. These imply that an inertial force is imposed on 

the material when the body is subjected to a rigid-body motion superposed on any given 

motion; indeed, one would generally need to supply a rather strange distribution of body 

force to maintain rigidity of the superposed motion. While such might be produced at a 

given point of the body, it is extremely unlikely that it could be generated globally. Even 

if it could, there seems to be no reason to suppose a priori that the material responds to 

such forces in accordance with (2.11). In contrast, the alternative view, based on observer 

consensus, imposes no restrictions on material behavior apart from agreement on the kind 
of response (here, elastic) that is elicited. Beyond this conceptual advantage, this point of 

view is in harmony with ideas underlying Relativistic Physics, which in principle should 

subsume Classical Mechanics. 

As a further caution we point out that occasional critics of Murdoch’s reasoning object 

that eqn (2.6) yields the conclusion that the constitutive equation for O*, say, necessarily 

changes as his/her motion evolves relative to ©. In other words, if O is entitled to the use 

of some fixed constitutive function, then O* is not and must therefore be expected to keep 
close track of O. On the contrary, eqn (2.6) merely imposes a restriction on the constitutive 

equations used by the two observers so as to ensure their agreement, if indeed they are ever 

consulted, about the nature of material response. We return to this point below. 

Continuing, we have arrived at eqn (2.11) as a logical consequence of eqn (2.6). To 

explore the potential for further consequences, consider the special caseeQ, =Q, = +1. 
Then, Q = Iand (2.11) reduces to 

Gi. (y + d, F; x) = G, (y, F; x), (2.13) 

implying that the constitutive function is unaffected by arbitrary variations in its first argu- 

ment; i.e., that itis translation invariant. It is thus independent of that argument, and so we 

arrive at the major simplification
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G.(y, F; x) = G(x), (2.14) 

for some function G,, while (2.11) reduces to 

G,(QF;x) = QG,(F;x)Q’ forall Qe Orth’. (2.15) 

If we use the polar decomposition F = RU, where R is a rotation and U is the unique 

positive-definite symmetric tensor satisfying U* = F'F, and if we choose Q = Ry) it follows 

that 

G,(F;x) = RG, (R'E; x)R' = RG, (U;x)R' = FG, (U;x)F,, 

where G,(U;x) = U"G,(U;x)U". (2.16) 

This choice of Q yields a rotation that depends on £ alone, and is therefore admissible in 
(2.15). In practice, it is usually inconvenient to compute U from F, whereas it is trivial to 

evaluate the Cauchy-Green deformation tensor C = F'F. Using the fact that U is uniquely 

determined by C, we then have: 

G, (F; x) = FH,(C;x)F', (2.17) 

where H,(C;x) = G,(./C;x). Thus, we have reached the remarkable conclusion that 
observers agree on the nature of material response only if the constitutive equation per- 

taining to any one of them is determined entirely by the symmetric right Cauchy—Green 

deformation tensor. 

We have shown, by special choice of Q, that (2.17) follows from (2.15); ie., that (2.17) 
is necessary for (2.15). To show that it is sufficient, we use it to obtain 

G, (QE; x) = QFH, [(QF)'QF;x](QF)! = QFH, (FF; x)F'Q = QG,(F}x)Q,, (2.18) 

which is valid for any rotation Q. Therefore, eqns (2.15) and (2.17) are equivalent. Hence, 
we conclude that the Cauchy stress at material point p is given by a function of the form 

T(p,t) = FH, (C;x)F’. (2.19) 

Euler’s laws of motion require that T be symmetric, and H, therefore takes values 

in the set of symmetric tensors; the Cauchy stress is completely determined by a sym- 

metric tensor-valued function of a symmetric tensor. From the experimental point of 
view, this affords a major simplification over the original hypothesis embodied in (1.2). 
Indeed, reasoning of this kind is one of the hallmarks of modern continuum mechanics 

and should always be applied before attempting any laboratory assessment of material 

behavior. 

If desired, the constitutive equation used by O* may be determined in terms of that used 

by O. Combining (2.6), (2.14) and (2.17) furnishes 

Gi. = FYHY, (C*jx")(F*)', (2.20)
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where 

H?,(C*;x') = KH, (K'C'K; K'(x* — ¢))K' (2.21) 

in which K and cy are fixed parameters. This constitutive function is fixed once and for all, 

and depends on the same list of variables, as interpreted by ©*, as those involved in the 

relation used by O. 
Other stress measures are of use in the formulation of elasticity theory. They may be 

defined in terms of their connections to the Cauchy stress. For example, the popular Piola 

stress, P, is given by 

P=TF’, (2.22) 

where F* is the cofactor of F defined by 

F*(a x b) = Fa x Fb (223) 

for all three-vectors a and b; this may be used with eqn (1.3) to show that 

F* = JF", (2.24) 

provided that F is invertible, as we have assumed. Whether or not this is the case, it is 

possible to show that the Cartesian components satisfy 

1 
Fi, = 5 untascaFics (2.25) 

where ¢ is the permutation symbol (e,,, = +], etc.). See Part 1 of the Supplemental Notes. 

In addition, the second Piola—Kirchhoff stress, S, is defined by 

P = FS. (2.26) 

These stresses should carry the subscript « in principle, as is clear from their definitions, 

but to avoid cluttered notation we shall invoke our policy regarding F and, thus, usually 

refrain from doing so. Using the definitions, it is easy to show that the symmetry of T is 

equivalent to that of S. Using eqns (2.19), (2.22), and (2.26), we also have 

S=§,(C;x), where §,(C;x) = /detCH,(C;x), (2.27) 

and 

P =P,(F;x), where P,(F;x) = F§,(F'F;x). (228) 

The Piola stress is useful because the equation of motion may be expressed concisely in 

terms of it as
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DivP + p,b = px, (2.29) 

where Div is now the referential divergence (based on x) and p, = Jp is the referential mass 

density. Conservation of mass - the notion that the mass of a set of material points remains 

always invariant - is expressible concisely as 6, = 0. 

In the old days some workers were seemingly put off by the fact that the Piola stress, 

by virtue of eqns (2.22) and (2.26), is not symmetric. They tended to prefer the second 
Piola—Kirchhoff stress for this reason. Of course there is no free lunch and the equation of 

motion based on the second Piola~Kirchhoff stress, given by substituting eqns (2.26) into 

(2.29), is seen, unlike eqns (2.12) or (2.29), to involve the deformation explicitly. This is of 
no consequence whatsoever, either to the theory or to its implementation, and we shall not 

belabor it further. 

Problems 

1. Given the (Cauchy) stress-response function G, (F,; x,), anda differentiable map 

X, = A(x,) from reference configuration k, to reference configuration K,, derive 

the constitutive function G,(F,;x,). 

2. Repeat the argument about observer consensus, this time without requiring the 

observers to choose some initial configurations as reference, to derive the appro- 

priate restriction on G, (x, F;x). Clearly point out any changes in the argument, 

and whether or not the final result is different from eqn (2.19). Note that the ref- 
erences are only required to be in one-to-one correspondence with those adopted 

in the text. 

3. How does the argument change if an observer decides to switch to the use of a 

mirror to observe the body at some instant in a specified time interval? Of course, 

this happens every day in many branches of science. 

4, Write the balance law (2.12) in global form and use Nanson’s formula: 

an = F*N, (2.30) 

where N and n respectively are the unit normals to a material surface in the ref- 

erence and current configurations, and @ is the ratio of the area measures of 

the surface in the current placement to that in the reference, to derive a global 

form of the equation involving integration over the reference. Localize this to ob- 

tain eqn (2.29). (A proof of the so-called localization theorem, which is one of 

the main tools of continuum mechanics, may be found in the book by Gurtin, 

1981,). 
5. Prove the Piola identity DivF* = 0, Hint: use the result of the previous prob- 

lem together with the divergence and localization theorems. Alternatively, 

with reference to eqn (2.25), use the fact that FY = Wasa, where Yuss = 
1 
3 ec CaacXiXe,c = — Vina.
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Mechanical power and hyperelasticity 

3.1 Elasticity and energy 

The well-known mechanical power identity of conventional continuum mechanics follows 

on scalar-multiplying (2.12) by the velocity y, integrating over an arbitrary set S of material 

points, and applying the divergence theorem. Thus, 

d 
P(S,t) = S(S,t) + aes t), 31) 

where 

P(S,t) -| toda fb jae S(S,t) = [rts 3.2) 
op P P 

and 

1 . 
K(S,t) = - [os -ydv (3.3) 

2 Jp 

are respectively the power supplied to, the stress power in, and the kinetic energy of S, which 

occupies the volume P at time t. Here, P is a subset of the region of space R occupied by the 

entire body at time f, L = FF" is the spatial velocity gradient, and 

t= Tn, (3.4) 

where n is the exterior unit-normal field on the boundary @P, is the traction, or contact force 

per unit area, transmitted to S by the environment. The dot between vectors is, of course, 

the usual Euclidean inner product, while that between tensors is defined by A - B = tr(AB‘), 

where fr(-) is the usual trace operation. This extends the definition of the Euclidean inner 

product to (2nd order) tensors; in fact, it is seen to be identical to the usual vector definition 

when written out in terms of components on an orthonormal basis. 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.



16 | MECHANICAL POWER AND HYPERELASTICITY 

The balance (3.1) presumes conservation of mass; that is, 

d 
qs) =0, where M(S) = [oa- [eae (3.5) 

P n 

and 7 is the subset of the fixed region x associated with S. 

The balance given in eqn (3.1) differs in form from that associated with a discrete par- 

ticle. The latter is P = dK’/dt, where P and K are the power supplied to the particle, by the 
net force acting on it, and its kinetic energy, respectively; there being, of course, no analog 

of stress power. For example, if the particle is a mass tethered to an elastic spring and acted 

upon by an applied force, undergoing a one-dimensional motion y(t) while maintaining 

frictionless contact with a horizontal plane, then the energy balance takes the special form 

P = d€/dt, where € = K + U in which U is the spring energy, obtained by integrating the 
spring force F(y) = -U/‘(y), leaving unspecified an irrelevant constant of integration. Given 
F(y), such integration is always possible and yields, in the case of unforced motion, the con- 

servation law d€ /dt = 0, expressing the fact that the total mechanical energy remains fixed 

in the course of the motion. 

Proceeding by analogy we suppose that elastic bodies are like elastic springs and that a 

similar conservation law holds for them in the case of unforced motion. Thus we assume the 
existence of an energy U/ such that the stress power is expressible as S = di//dt, yielding 
the conservation law dE /dt = 0 with € = K +U; this time, of course, for the continuum 

instead of the particle. Forced motions are then such as to satisfy P = d&/dt. We assume U 
to be an absolutely continuous function; here, of volume, and thus suppose that 

U(S,t) = / Wd», (3.6) 

where W is the (referential) strain-energy density. 
We know, from eqn (3.2), that the stress power is expressible in terms of the stress and 

the rate of deformation. Using the connection eqn (2.22) between the Cauchy and Piola 

stresses, and the formula given in eqn (2.24), we derive 

S(S,t) = / JT. FF'dv = / tr(JTE“E' )dv = / P - Fdy, 37) 

and, therefore, according to the analogy, 

/ P. Fdy = / Wd». (38) 

Because 7 C « is arbitrary, we may localize and use eqn (2.28) to conclude that 

P,(F;x) -F = W, (39) 

pointwise in «. For this to make sense it must be possible to integrate along a path F(t), 

between specified limits, to obtain the difference of the function W determined by those
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limits and thus depending on the associated values of F. Fixing the lower limit and allowing 

the upper to be arbitrary, we thereby construct a function W(F; x), to within a function of 

x only, such that 

[P, (F; x) — W.(F;x)] - F = 0, (3.10) 

where W, is the tensor-valued derivative of the scalar W with respect to the tensor F (see 

Supplemental Notes, Part 2). 
The first factor in the inner product is an element of the set of second-order tensors. This 

isa linear space, just like the space of conventional vectors. We follow common practice and 

denote it by Lin. The second factor is the limit of a difference quotient involving elements 

of Lin*, the subset of Lin consisting of tensors with positive determinant (see eqn (1.3)). 

While this is not a linear space, the set of differences between its elements is and in fact is 

just Lin. Choosing an arbitrary path F(t) in Lin* containing the point F, we conclude from 

eqn (3.10) that the term in brackets is orthogonal to any, hence, every element of Lin and, 

therefore, that it vanishes. To see this explicitly we exploit the arbitrariness of F and, after 

an appropriate scaling of physical units, select F to be the square bracket itself, concluding 

that its norm, defined by |A| = /A- A, vanishes and hence that the bracket vanishes, at last 

yielding 

P,(F;x) = W,(F)x). (11) 

Thus, the stress is determined by a scalar-valued function of the deformation gradient, 

which, like the constitutive equation for the stress, codifies the properties of the particular 

material at hand. This, too, is therefore a constitutive function, furnishing that for the stress 

via eqn (3.11). This model is known as hyperelasticity. Its antecedent, given by eqn (1.2), 

is known as Cauchy elasticity or simply elasticity. Because we have obtained it as a special 

case, by restricting the theory such that the stress power is expressible as a time derivative, it 

would appear that hyperelasticity is special. However, we shall see that any elastic material 

is necessarily hyperelastic when a further condition is imposed that reflects a widespread 

view about how real materials behave. 

Before embarking on this demonstration we digress to consider restrictions on the strain- 

energy function W following from eqns (2.15), (2.22) and (2.27), which combine to yield 

P, (QF) = QP, (E) (3.12) 

for all rotations Q, Here, because we are concerned only with properties pertaining to a 

material point, we drop explicit reference to x, which plays only a passive role, to help lighten 

the notation. This will be done henceforth when discussing local properties. 

Following Gurtin (1983), consider a path Q(t) in the set of rotations such that Q(0) =I 
and let F(t) = Q(t)F be an associated path of deformation gradients in which F is fixed. 
We are confining attention to a particular material point; the fact that F is the gra- 

dient of a position field does not impose any restriction on its values thereat, and so 

our choice is not subject to any qualifications beyond det F > 0. In this case (3.12) 

yields
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P,(F) = QP, (B), (3.13) 

and (3.9) implies that 

W(F) = B,(F) - F = QP, (F) - QF = #[QPb, (DF Q] 
(3.14) 

where @' = Q'Qis skew and we have used the rule tr(AB) = tr(BA). But P, (E)F is just the 
value of JT associated with F. Because this is symmetric, the inner product with Q vanishes 

and it follows that W = 0. Integrating from ft = 0 to f = T, say, we find that 

W(QF) = W(F), (3.15) 

where Q = Q(r). Because the path in the set of rotations is arbitrary, so is Q and we con- 

clude that the strain—energy function is insensitive to arbitrary rotations superposed on the 

given deformation. This invariance is therefore a necessary condition for the symmetry of 

the Cauchy stress. We drop the tildes and, following on our earlier success, pick Q = R,,, 

obtaining 

W(F) = W(U) = W(C), (3.16) 

where W(C) = W(/C), and this, in turn, yields eqn (3.15) for any rotation; eqns (3.15) 
and (3.16) are, therefore, equivalent. Thus, eqn (3.16) follows from the symmetry of the 
Cauchy stress. 

Substituting eqns (3.11) and (3.16) into eqn (3.9) we find 

W;-F=(W) =We-C= SymWe -C, (3.17) 

where the prefix Sym identifies the symmetric part and C(t) = F(t)'F(t). This belongs 
to the set of positive-definite symmetric tensors, while C belongs to the linear space of 

symmetric tensors. The inner product thus involves only SymWe and our notation makes 

this explicit. Alternatively, we may follow common practice and simply define We to be 

symmetric. Using C = F'F + F'F with the rules A. BD = B‘A- D = DA’ - B’, which follow 

easily from the properties of the trace operator, we have 

SymWe .FF= SymWe FE = F(SymW) - F, (3.18) 

yielding 

[W, -2F(SymW,)]-F = 0. (3.19) 

Reasoning as before we conclude that 

W; = 2F(SymW,), (320)
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and eqns (3.11) and (2.27), part 2, combine to give 

§,(C) = 2SymWe. (321) 

This, of course, is symmetric and therefore so, too, is the Cauchy stress. Thus, we have 

shown that eqn (3.15) implies the symmetry of the Cauchy stress. Taken together with our 

previous result, it follows that such symmetry is equivalent to the invariance of the strain 

energy under superposed rotations. 

3.2 Work inequality 

Returning to the basis of hyperelasticity, while most of us may be content with the motiv- 

ation provided by the analogy with springs, we should not ignore objections raised by the 

skeptics. For them we recount an idea that has become folklore not only in elasticity theory, 

but in other branches of continuum mechanics as well. Thus, consider the work done on 

a collection S of material points during a time interval [t,, t, ]. According to eqns (3.1) and 

(3.7) this is given by 

W, = K(S,t) -K(S,t,) + / ( P- Par) dt. (3.22) 
tL 

Suppose the process is cyclic in the sense that the deformation and velocity fields are the 

same at the start and end of the time interval; that is, 

x(@t)=x(%b) and X¥@%t)=xX(%4), forall xex. (3.23) 

Taking gradients, we infer that 

F(x, t,) = F(x,t,) and F(x,t,) = F(x,t,). (3.24) 

Considering that all points of the body are involved, cyclic processes are no small feat from 

the experimental point of view, and so our skeptics may not be assuaged after all. We shall 
therefore resort to regarding such a process as a thought experiment. In general these should 

be taken with a rather large pinch of salt. 

Continuing, we evidently have K(S, t,) = KC(S, t;) ina cyclic process, leaving 

2 
Wy = / ( / Pp. eat) dv, (3.25) 

Fe ty 

where we have interchanged the order of integration, which may be done with impunity if 

the process is sufficiently smooth (see, for example, Fleming’s (1977) book). Intuitively, 

we expect that it should be necessary to perform non-negative work on a body to cause it 

to undergo such a process; that is, YW. > 0. This hypothesis is called the work inequality.
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Not accepting it means having to explain how it is that work can be extracted from a body 

undergoing a cyclic process. Experience suggests that this is futile, and so the hypothesis 

is widely regarded by the community as being sacrosanct, even though it is really just a 

thought experiment. In practice, one must contend with instabilities or oscillations that may 

intervene when one attempts to create a cyclic process from a sequence of homogeneous 

deformations, these typically causing the deformation to become non-uniform and thus 

unrelated to the boundary displacements that we detect or control in a typical experiment. 

From the experimental point of view, we do not know the local state of deformation in 

such circumstances and thus cannot be sure that the process is indeed cyclic. Of course, 

homogeneous deformations are directly related to boundary displacements, as discussed 

previously in the context of rubber bands. Again we digress. 

Localize and we obtain the pointwise restriction 

/ B,(F) - Fdt > 0 (326) 
f 

in the case of elasticity. 

To explore the consequences of this inequality, let F(t) be the deformation gradient at 

the material point considered, associated with a cyclic process, Consider another process 

with gradient F*(t) (not the cofactor), defined by F*(t) = F(t) with t = t, + t, —t. This 
is the simply the reversal of the original process; that is, F*(f,2) = F(t,:), F(t) = -F(r) 
and F’(t,,) = —F(t,,,). It is, therefore, a cyclic process, and, hence, subject to the work 

inequality: 

0< / ” BBY) «Hat = - / ” (R(t) « F(r)dr, (327) 
ty 4 

which is just eqn (3.26) with the inequality reversed. Therefore, for elasticity, 

t2 

/ P,(F) - Fdt = 0 (3.28) 
fh 

in a cyclic process. 

Now, as ¢ traverses the interval [t,, f,], the deformation gradient traces out a curve in 

the nine-dimensional space Lin’. Suppose C is such a curve, and suppose it is closed and 

smooth, so that it meets the conditions associated with a cyclic process. Then, eqn (3.28) 

is equivalent to 

§ B.(F) dF =0. (329) 
Cc 

Let Fy and F be distinct points on C, and let I’, and I, be the two disjoint parts of C 

connecting F, to F, Then, eqn (3.29) may be expressed as 

[ P,(F) - dE -| PB, (EF) - dF, (3.30) 
ry 2
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Figure 3.1 A cyclic process in deformation-gradient space 

implying that the path integral f_ P,(E) - dF, where I is any smooth curve connecting F, 

and F, is in fact the same for all paths having the same endpoints and is thus dependent only 

on the latter (see Figure 3.1). 
Fixing F, we thus have a function 

W(B) = [e@ . dE, (331) 
r 

modulo a constant. Let F(z) be a parametrization of I’, arranged such that Fy = F(0) and 
F = F(u). Then, by elementary calculus, 

W,-F(u) = W =P, (F)-F(u), (3.32) 

where the dash is an ordinary derivative with respect to u. This is the same as (3.10) and 

carries the same consequence; namely, the connection eqn (3.11). 

Conversely, if eqn (3.11) holds then P,(F) - dF = dW(B), ensuring that eqn (3.29) is 
satisfied. Thus, the work inequality for cyclic processes is satisfied by elastic materials ifand 

only if they are hyperelastic. 

Problems 

1. If one observer concludes that an elastic material is hyperelastic, does every 

observer conclude the same? If so, how are their strain-energy functions related? 

2. Prove the virtual-work theorem; i.e., show that a body is equilibrated if and only if 

iE - Vvdu = [ow -vdv+ / p-vda, (3.33) 
K K ap 

for all v that vanish on dK \ dk, 

3. We showed that if an elastic material is hyperelastic; ie. if Pp = W,, then the 

mechanical power theorem for the entire body may be expressed in the form 

d€/dt = P, where
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E(k, t) = U(k,t) + K(x, 2), (3.34) 

in which K is the kinetic energy, P is the power of the applied loads, and U is 
the strain energy. (Actually, we showed this for a sub-volume 7 C «; the present 
special case is recovered on choosing 7 = x.). Thus, the total mechanical energy 

€ is conserved; i.e,, it is independent of time, if there are no loads acting on the 

body. It is possible for non-zero applied forces to generate a conservation law of 

the same kind. These forces should be such such that P = d£/dt for some func- 
tion L. In this case, the motion satisfies the conservation law d&’/dt = 0, where 

€' = (U -L) +K. The term in parentheses is called the potential energy of the 

body and loads, in combination. Because of this conservation law, such forces are 
called conservative. 

(a) Show that dead loading, in which b and p respectively are assigned as func- 
tions of x in « and on d«,, furnishes an example of conservative loading. 
What is the load potential £? 

(b) State conditions under which a pressure load t = —pn is conservative, where 

t is the Cauchy traction, p is the pressure, and n is the exterior unit normal 

to the surface of the body after deformation. Give the corresponding load 
potentials. 
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Material symmetry 

4.1 Stress response 

Consider what happens if we surgically remove a small neighborhood of a material point in 

a reference configuration, subject it to some sort of transformation such as a deformation, 

and then re-insert it. If the material response to a given deformation, represented by the 

stress or the strain energy, should happen to be the same as it was before the operation, 

then the latter is mechanically undetectable and the two local neighborhoods—that before 
the operation and the one after—are effectively indistinguishable as far as the properties of 

the material are concerned. Such an operation is called a material symmetry transformation. 

Our purpose in this chapter is to outline the general theory of such transformations and to 

apply it to some practical examples. 

Before doing this, it is necessary to understand how a change of reference manifests it- 

self in the theory. This is the lesson of Problem 1 in Chapter 2. Thus, let « and ju be two 

reference configurations and suppose, as before, that R is the configuration occupied by the 

body at time t. Then, 

Xe(% t) = y = x, (2,6), (4.1) 

where x and z, respectively, are the positions of material point p in « and jz. Let A(-) be the 

fixed map that transforms « to 4; that is, z = A(x). Because the two references are in one- 

to-one correspondence with points of the body, they are in such correspondence with each 

other as well. This means that A is invertible. By the inverse function theorem, its gradient 
R = VA(x) is then an invertible tensor. Applying the chain rule to eqn (4.1) and reinstating 

the appropriate subscripts, we derive 

F,dx = dy = F,dz =F,Rdx, andhence F, =F,R (42) 

For the time being we confine attention to Cauchy elasticity, returning to hyperelasticity 

later. Since the change of reference is merely a change in the way we record information, it 
has nothing to do with the actual state of the material at time t, which is thus unaffected by 

the change. Accordingly, 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Pres
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T(p,£) = G.(F,;x) = G,(F,;2), where G,(F,;z) = G,(F,R(z);A7(z)). (43) 

This is how the constitutive function for the Cauchy stress is obtained when the reference 

configuration is changed. 

Let us focus attention on a particular material point po. Because the stress at this point 

is sensitive only to deformations in some neighborhood of it, we need only consider local 

changes of reference N,(po) > N,,(po), say, where N,, (po) is the image of N, (po) under 
the map A. This allows us to effectively marginalize the parametric dependence of the con- 

stitutive function on reference position, in the case of non-uniform materials, simply by 

arranging A such that A(x) = X, where x, is the reference position of po; thus, 

T (po, t) = G,(Fx3%o) = G,(F,j;%), where F, = F,R(x). (44) 

Consider now an experiment in which N, (po) is subjected to a deformation x (x, £), 

for x € N, (po); the response at po is G,(F,; Xo), where F, is the gradient of x (x,t) at x. 

Let N,,(po) be subjected to the same deformation; that is, to x (z,t), for z € N,,(po), in 

which x (-,£) is the same function. The response is G,,(F,,; X)), where F,, is the gradient of 

x (z, t) at xo. Note that F, = F,,(= F, say) in this case, because they are the gradients of the 

same function, evaluated at the same point. So, the responses elicited by the experiment 

on N, (po) and N, (po) are G, (F; %)) and G, (F; Xo), respectively. These need not have any 
relation to each other, except in the case when z = A(x) is a symmetry transformation, in 

which case they coincide. That is, symmetry transformations at po are such as to satisfy 

G, (F; %)) = G,(F; x). (45) 

For, no experiment involving measurement of the Cauchy stress can then distinguish 

between N, (p)) and N,,(po}. Combining this with eqn (4.4), part 2, we derive 

G, (F; X)) = G,(FR;%)), where R= VA(x%) (4.6) 

is the gradient at py of the symmetry transformation, in which F € Lin’ is arbitrary. Given 

the set of all such transformations, this amounts to a restriction on the function G,(-; Xo). 

Since it requires FR to be the pointwise value of a deformation gradient whenever F is, the 

restriction makes sense only if det R > 0. This, in turn, implies that symmetry transform- 

ations correspond to possible deformations of the material. We shall have reason to return 

to this point later. 

The following observation is fundamental: Let G,q,) be the set of all R such that 
eqn (4.6) is satisfied (not to be confused with the response function (1.2)); that is, 

Geo) = {Ri Ge (F}X0) = G, (FR; xo) } . (47)
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Then this set is a group, in the sense that 

(i) Ie Gaiyo)s 

(ii) If RyR,€ Gig then RR, € Gp), 

(ii) If Re Geto) then R’e€ Grip): (48) 

The first of these is obvious from the definition Of Geiyg) To prove the second, we observe 

(suppressing the passive argument x,) that G,(F(R\R,)) = G,((FR,)R,) = G,(FR,) = 
G, (F), and the third follows from G,(FR™) = G,((FR’)R) = G,(FR'R) = G,(F). 

Note that R € G,i.) implies that R' € G,;,.) for any integer n > 0. Thus, G,(F) = 
G,(FR"), where det(FR") = (det F)(detR") = (det F)(detR)". Let n — oo. Then, if 
det R > 1 we have det(FR") — 00, corresponding to unbounded dilation; whereas, if 

det R < 1 we have det(FR") — 0, corresponding to unbounded compaction. Material 

symmetry then requires that the stress remain unaffected by unlimited dilation or compac- 

tion of the material. This is plainly unphysical, and so we impose the requirement 

Gaiyo) CuUe= {R: det R = 1} . (49) 

U is called the unimodular group. 

Noll introduced the elegant idea of characterizing elastic materials as either fluid or solid, 

depending on the nature of the symmetry group. For example, in an inviscid compressible 

fluid the Cauchy stress is given by 

T = -p(p)1, (4.10) 

where p(p) is the pressure-density relation. In this case, we have G,(F}x) = 

-p(p,(x)/ det F)I, yielding G, (FR; x) = —p(p, (x)/ det(FR))I. It follows immediately that 
Gey) = U and, so in view of eqn (4.9), we are justified in saying that fluids have maximal 

symmetry. 

For solids we assume the existence of N, (p) such that 

Gey & Orth’. (4.11) 

Such N, (p) is called a local undistorted configuration. The idea is motivated by the structure 

of a unit cell of an undistorted crystal lattice; these are mapped to themselves by discrete 

rotations. Furthermore, we have in mind the fact that, for solids, a change in shape is detect- 

able by experiment. Accordingly, the map A is detectable if it generates a strain. Symmetry 

transformations should, therefore, be strain-free, and this, in turn, implies that R'R = I. The 

restriction eqn (4.9) then yields eqn (4.11), even for non-crystalline solids. Isotropic solids 

are those for which N, (p) exists such that 

Geip) = Orth’. (4.12) 

Note that we have not invoked frame invariance. For constitutive functions that are 

admissible from this standpoint we use eqn (2.19) to conclude that 

G,(FR) = F[RH,(R'CR)R']F', (4.13)
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so that ifR € Gi, then 

H,(C) = RH, (R'CR)R’, (4.14) 

and if Geip) Cc Orth’, 

H, (R‘CR) = R'H,(C)R. (4.18) 

Suppose, for example, that a particular crystal lattice is such that the 180° rotation 

R=2n@n-I (4.16) 

about the unit vector n belongs to G,.). Then, both R and -R satisfy eqn (4.15), imply- 
ing that the reflection through the plane with normal n is mechanically undetectable. In 

this way, the symmetry group may be extended to accommodate reflection symmetry with 

respect to crystallographic planes, despite the fact that such transformations cannot be 

associated with an actual deformation. 

We have indicated that the symmetry group depends not only on the material, but also 

on the reference. To see precisely how this occurs consider a general invertible map 7, with 
gradient P (not to be confused with the Piola stress) that takes reference k,, say, to K,. From 
eqn (4.3), part 2, we have the connection 

G,, (F) %) = Gy, (FP(%); 7" (m2), (4.17) 

where x, = 7 (x,), implying that 

G,, (Fj 7'(%))) = G,, (FP(%) 7; x). (4.18) 

Suppose now that R € G,,q). Then, 

G,, (Fj 07'(x,)) = G,, (FR; 77'(x))). (419) 

Eqn (4.18), however, implies that 

G,, (FR; 7” (x)) = G,, (FRPGn) 5%), (420) 

and therefore (4.18) and (4.19) give 

G,, (FRP(%))"'; 2) = Gy, (Fj 7") = Gy, (FP(m) 5%). (421) 

Defining F = FP", we recast this in the form 

G,, (F; X)) = G,,(FPRP"; x), (4.22)
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and conclude that 

Gey) = {PRP*: REG}. (423) 

This result is known as Noll’s Rule. 

It follows that if G,, 4) satisfies eqn (4.11), then in general G,,.,) does not. Therefore, the 

existence of a (local) reference configuration relative to which eqn (4.11) holds is an essen- 

tial aspect of the definition of a solid. However, eqn (4.9) is always satisfied. In particular, 

fluids have the property that G,) = U for all choices of x. This fact gives meaning to impre- 

cise, but often-heard remarks to the effect that “fluids have no reference configuration.” It 

would be better in this case to say that the structure of the constitutive function is insensitive 

to the reference configuration. 

4.2 Strain energy 

We have outlined the theory of material symmetry in terms of restrictions on the stress re- 

sponse. We may just as easily do so for the strain—-energy response. Repeating the foregoing 

essentially verbatim, we arrive at the definition 

&y) = {R: W,(FR;x) = W,(F;x)} (4.24) 

of the associated symmetry group, which as before, is restricted by 

&x(p) Cc U~. (4.25) 

The obvious question is: How are g,q) and G,) related? To explore this, suppose 

REG). Then, using eqns (2.22) and (4.6) and suppressing the passive variable x, it 
follows that 

P,(FR) = G,(FR)(ER)* = P,(F)R’, (426) 

where we have used the general rule (AB)* = A*B*. 

Problem 

Prove this rule. 

Thus, P,(F) = P, (FR)R‘, or 

W,(F) = W;(E)R' = W,(F), where F = ER, (427) 

in which the chain rule has been used to derive the second equality and the subscript « has 

been suppressed for clarity. Integration at fixed R then furnishes
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W,(F) = W,(FR) + C(R), (4.28) 

in which C is independent of F. Evaluating at F = I leads to the implication 

W,(F) = W,(FR) + W,(D) - W,(R): (429) 

Conversely, if this is satisfied then by reversing the steps, we see that R € G,q) and, thus, 

that the two statements are equivalent. 

Next, suppose R € g,(,), so that W, (I) = W,(R) in particular. Then eqn (4.29) is sat- 
isfied and so R € G,,,); that is, 9.4) © G,i). Recall that admissible strain-energy functions 

meet the invariance requirement, eqn (3.15); in particular, W,(Q) = W, (I) for all rota- 

tions Q. This means that for solids, i.e., for Gap) € Orth’, any R € Gy) satisfies W,(R) = 

W,(I), but such R also satisfies eqn (4.29), so that W,(F) = W,(FR) and R € g,q). We 

have thus shown, for solids, that Gq) © geq and, hence, that 

&«v) = Ge) . (4.30) 

The symmetry groups for stress and energy are thus one and the same. Beyond this, we 

may proceed exactly as in the case of the stress—response function to extend the symmetry 

group to include improper orthogonal transformations as needed to incorporate reflection 

symmetry, using the fact that admissible strain-energy functions are expressible as W,(F) = 

W,(C), and the consequent fact that W,(C) = W,(R'CR) for all R € Buiy» Of course, an 
explicit dependence on x is allowed, to cover non-homogeneous materials. 

4.3 Isotropy 

In view of the foregoing result, it is enough to characterize symmetry in terms of the strain- 

energy function. In the case of isotropy, then, there is presumed to exist «(p) such that 

Bey) = Orth"; that is, 

W,(C;x) = W,(R'CR;x) forall R€ Orth. (431) 

In virtually every text on continuum mechanics, it is established that this restriction is 

equivalent to the statement 

W,(C; x) = Uh, 1,4; x), (432) 

for some function U, where 

I,=trC, I,=tC*=—-[f -tr(C’)] and I, = detC (4.33) 
1 

2
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are the principal invariants of C. The proof is a model for extensions to other kinds of sym- 

metry, such as that described in the next chapter, and so, at the risk of being repetitive, we 

pause to outline it explicitly. 

Suppose, then, that A,B € Sym", the set of positive-definite symmetric tensors, and that 

these are such that their invariants coincide: I,(A) = I,(B). Then, because the invariants 
define the characteristic equation 

w-lhw+hu-t,=0 (4.34) 

for the eigenvalues 11, it follows that A and B also share the same (real-valued and positive) 

eigenvalues. From the spectral representation for symmetric tensors it is concluded that 

A= \ Ba; @a, and B= y Lb; ® b;, (4.35) 

where the sets {a,} and {b,} are orthonormal. The latter property means that the tensor Q, 

defined by Q = a; @ b,, is orthogonal. Thus, 

B= > HiQ'a, ® Va, = VY (o> La, ® a.) Q= VAQ, (4.36) 

and eqn (4.31) implies that W,(A;x) = W,(Q'AQ;x) = W,(B;x), meaning that every 
W.(5 x) satisfying eqn (4.31) is determined by the principal invariants of its argument 

and, hence, that eqn (4.32) is valid. Conversely, if the latter is true, then since I,(R'CR) = 

I,(C) for all orthogonal R, eqn (4.31) follows, and is thus necessary and sufficient for 
eqn (4.32). 

To obtain the stress we use the chain rule in the form 

3 3 

SymWe -C = (WY = D> Uk = D> USym(L)c- C, (437) 
k=] k=1 

where U, = dU/dI,. Using (Supplemental Notes, Part 4) 

Sym(jc =I, Sym(L)c=h1-C and Sym(I,)¢ =C* =,C", (4.38) 

together with eqns (2.22), (3.11), and (3.20), we thus derive 

JT = 2[(U, +1,U,)B - U,B’ + 1,U,1], (439) 

where J = ./I, and B = FF' is the left Cauchy—Green deformation tensor. 

In the next chapter, the foregoing argument is extended to obtain the general form 

of the response function for transversely isotropic materials. For these, there exists « 

such that
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W,(F;x) = W,(FR;x) forall Re Orth* withaxis m; (4.40) 

that is, for all rotations R such that Rm = m, the axis of transverse isotropy. 

However, it is time for some exercises. 

Problems 1 

1, Prove that U is, indeed, a group. 

2. Prove the second equality in eqn (4.27). 

3. Let W,(F;x) = w(J;x), where -dw/dJ = p(p), the pressure-density relation for 
fluids. Show that g,) = U and, hence, that eqn (4.30) is satisfied for fluids. 

4, We established, for solids, that the symmetry group for admissible stress— 

response functions may be extended to include elements of Orth, the set of 

orthogonal tensors. Show that the same conclusion applies to the symmetry 

group based on energy response. 

5. Given eqn (4.39) for some choice of reference, compute the stress—response 

function relative to any other choice. 

6. Show that, for an isotropic elastic material, the strain-energy function is express- 

ible as a function of the principal stretches, ie, U = @(A,, Aa, As; X), in which the 

stretches can be permuted arbitrarily (i.e., they can appear in this function in any 

order). Use W = 3S: C and the spectral representation C = )~A?u; @ u, (note 

that |u,| = 1, but u, ¥ 0!) to obtain the representation 

0 
P= > a Qu, (441) 

where v; = Ru, and R is the rotation in the polar decomposition of F. Thus, U = 

>> Aju; ® u,, R = v; @ u, and F = }- A,v, @ u,. Show that the cofactor of F may 

be represented in the form F* = )~ u,v, ® u, where 2, = J/A,. All sums range 

over {1, 2, 3}. 

7. Foran isotropic (relative to « ) material we have W(F(u)) = W(F) where F(u) = 
FQ (u), Fis fixed and Q(u) isa one-parameter family of rotations with Q(0) = L 

Thus, W’ = 0, where W’ = dW/du. Prove that F‘P must then be symmetric and 

that this, in turn, is equivalent to the statement TB = BT, granted the symmetry 

of the Cauchy stress. Reverse the argument and show that TB = BT implies isot- 

ropy. This condition is therefore necessary and sufficient for isotropy, granted 
the symmetry of the Cauchy stress. Show that the condition is equivalent to three 

universal relations that apply to all isotropic materials: 

Br(Tiu - Tx) = Tr2(By - By) + TsBys - Ty3By 

By3(T. — T33) = To3(Bry — B33) + T13Bay - T1Bi3 (442) 

Bs, (T33 - Ti) = Ts: (Bs3 - Bi) + Tu By - T:Bu, 

where the components are referred to {e; ® e;}.
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Consider a unit cube subjected to the homogeneous deformation 

Yi = ax + kayxy, Yo = Arh, Vy = Ags, (4.43) 

where 4), 4, a, and k are positive constants. Note that for homogeneous ma- 

terials this deformation is automatically in equilibrium in the absence of body 

forces. 

Show that the universal relations yield a single relation of the form 

Tu - Tx = Ty2F(a,,4),k). (4.44) 

Find expressions for the traction, t, acting on the material planes x, = const. and 

x, = const., and suppose n-t vanishes on these planes in the deformed con- 

figuration, so that only shear tractions are acting. Obtain the purely geometric 

relation 

ay = (1+k)aj. (4.45) 

This furnishes a simple necessary condition for isotropy that can be tested 
experimentally, Indicate the meaning of this equation on a figure. 

Before leaving this discussion we pause to develop a formulation of isotropic elasticity 

that has proved to be convenient in applications. To this end, we use the result of Problem 

no. 6 above, together with 

Le +aee, L=Warenevn and =A 
Verne 3 

(4.46) 

where the A, are the principal stretches. These, of course, are the principal invariants of C. 

The principal invariants of U, namely 

i, =trU, i, =trU* and i, =detU, (447) 

are 

ip =A, tAQtAs, & =A AZ +A A, +AIA, and i, = A,AZA;, (4.48) 

which may be used with (4.46) to verify that 

L={-2b, L=i-2ii, and =i. (4.49) 

It then follows from (4.32) that the strain-energy function, in the case of isotropy, is 

expressible in the form 

W,(C;x) = wits inyis3x), where w(i,, iz, i3;x) = U(G - 21, § - Qi, 25x). (4.50)
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Asa useful corollary, the strain—energy is a completely symmetric function w of the prin- 

cipal stretches in this case, remaining invariant with respect to interchange of any two of 

them, In fact, the nonlinear system eqn (4.49) is uniquely invertible. Its inverse may be 

expressed in the form eqn (4.48), in which (see Rivlin’s (2004) paper) 

Leo {1 2A 5 2 |} i= 1,2,3 (451) r= Fe yi + 4A cos) Tp - 2m j $= 1,2,3, 451 
J3 |" 3 

where 

1 
A=(-3h)'? and @=cos” pen ~ 911, + 271) . (452) 

A simple application of the chain rule yields 

Om/OA, = wy + (A, + Ag)w + AQAWy, (4.53) 

where w, = dw/di,, together with two similar relations obtained by permuting the principal 

stretches. Using these relations in the solution to Problem no. 6 above, we derive 

We =, Soy, @ u, + wy[(Az + As)vi @ uy + (Ay +A3)v. @ wy 

+ (A, + Az)v; @ uy] + w3(A,Asv, @ uy, + A,Asv, @ u, + A,A,V; @ u,). (454) 

The first sum on the right-hand side is recognizable as R, the rotation factor in the polar 

decomposition F = RU of F; the third is just RU*(= R*U* = F*); and the second is 

(Ar + As) Ou, += (Ay tarts) Dov, @u- > Av @uy=4R-F. (455) 

Thus, 

P=W,=Ro, (4.56) 

where 

o = (w, + iw,)I - w,U + w,U* (457) 

is the Biot stress tensor. 

We caution the reader that the factorization eqn (4.56) of the Piola stress into the rota- 

tion and the Biot stress is appropriate only in the case of isotropy, whereas a tensor usually 

referred to as the Biot stress, which yields eqns (4.56) and (4.57) in the case of isotropy, has 

a wider significance. We shall not need the general form here, however, and so suggest that 

reference be made to Ogden (1997) for further discussion.
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Problems 

1. Use the relations between the invariants J, of C (or B) and the invariants i, of U 

(or V) discussed previously to establish the three-dimensional formula 

WR =i,F*-FC+(i-i,)F, where i= iyi, - iy = (Ay +A.) (A, + Ag) (Ar +3). 
(4.58) 

In practice, one has direct access to the I, from, say, a finite-element analysis 

in which the deformation gradient is obtained from nodal displacement data. 

Discuss the problem of obtaining the i, in terms of the I, and, thus, obtaining R 

in terms of the deformation gradient directly. You should appreciate the conveni- 

ence afforded by this method because it means one does not have to go through 

all the steps needed to carry out a computationally intensive polar decomposition 

in applications calling for the evaluation of R. 

2. Establish the formulas 

(i). =R, (i,)p = i: R-F, (is)e =F* and (i,)e =R. (4.59) 

At this stage, it is instructive to revisit eqn (2.15). Recall that this is formally equivalent 

to the statement that the constitutive function adopted by observer () is insensitive to ar- 

bitrary rigid-body motions superposed on a given motion. In fact, it is widespread practice 

to impose this requirement in place of frame invariance. However, this interpretation of 

eqn (2.15) is flawed, if only because it is not possible to subject a deformable body to an ar- 

bitrary rigid-body motion. To see this, imagine a uniform, isotropic elastic body undergoing 

the rigid-body motion 

y = Q(t)x + c(t), (460) 

with Q € Orth*. Then, F = Q, yielding R = Qand U =I, and the Cauchy stress T, defined 

by P = TF” reduces, with the aid of eqn (4.39), to 

Te=dl, (4.61) 

where c is a constant. The divergence of the Cauchy stress vanishes. If no body forces are 

acting, the equation of motion (2.12) reduces to 

0 = A(t)y + d(é), (4.62) 

where A = QQ! and d = ¢ - Ac. Evaluating the gradient with respect to y at an arbitrary 

point of the body yields A = 0; thus, Q = 0, and é = 0. If we identify the reference config- 

uration with the initial configuration of the body and assume the initial velocity to vanish 

pointwise, then the initial value of Q is I, and the initial values of Q, cand éall vanish, yield- 

ing y = x forall t. The only rigid motion is then the trivial motion in which the body remains 

stationary.
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Fiber symmetry 

The term fiber symmetry refers to a symmetry group consisting of rotations about an axis. 

Typically, this axis is identified with the unit tangent to a fiber embedded in the material, as 

ina fiber-reinforced composite or a fibrous biological tissue (Figure 5.1). Such materials are 

said to be transversely isotropic; they are effectively isotropic in the plane orthogonal to the 

fiber direction. Our objective here is to solve the representation problem for transversely 

isotropic strain—energy functions, i.e., to find the maximal list of variables upon which these 

functions may depend. We have already solved the representation problem for isotropy, 

concluding, in that case, that the energy is a general function of the principal invariants 

Ti3 of C. 

Recall that the general restriction imposed by material symmetry is 

W(C) = W(R'CR) (5.1) 

for all positive definite, symmetric C, and for all R € g,q), the symmetry group relative to 

configuration « at the material point p. This (local) configuration is undistorted if g.q) C 

Orth, the group of orthogonal tensors. 

Transverse isotropy is associated with the symmetry group 

Spy ={Q: Qe Orth and Qm(x)=+m(x) with |m(x)| = 1} » (82) 

where m(x) is the fiber axis at the material point p. As all arguments presented here are 

purely local, henceforth, we suppress this material point in the notation. The strain energy 

is thus invariant under all rotations about the fiber axis, and under reflection through the 

plane—the isotropic plane—perpendicular to this axis. 

As a prelude to our main theorem, note that if Qm = +m, then, as Q € Orth, we have 

Q'm = +m; this follows simply on multiplying by Q'’. Thus, R' € g, if R € g (we drop the 
subscript on g,,)). Moreover, 

g={Q; Qe Orth and QMQ' =M}, (53) 

Finite Elasticity Theory. David J, Steigmann, 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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Figure 5.1 A material with a continuous distribution of embedded fibers 

where 

M=m®@m. (5.4) 

This is called the structural tensor for transverse isotropy. 

Proof First, we note that for either choice of sign, 

m @m = tm @ +m = Qm ®@ Qm = Q(m @ m)Q’, (5.5) 

and so M = QMQ‘. This shows that Qm = +m > QMQ! = M. To show the con- 

verse, suppose QMQ' = M with Q & Orth and M as defined in eqn (5.4). Then, 

QM = MQ, or Q(m @ m) = (mM @ m)Q, i.e. Qm @ m = m @ Q'‘m. Then, 

Qm = (Qm @ m)m = (m @ Qm)m = (m- Qm)m. (56) 

This, and the orthogonality of Q, imply thatm-m = Qm- Qm = (m: Qm)’m-m 
and, hence, that m - Qm = +1. Thus, QMQ' = M & Qm = +m. 

Our strategy is to replace the representation problem eqn (5.1), eqn (5.2) by an 

equivalent representation problem for isotropic functions. We make use of the following: 

Theorem W is invariant under g, i.e, W(C) = W(RCR’) for all R € g, if, and | only if, the 
function W, defined by W(C) = W(C,M), is invariant under Orth, ie, W(C,M) = 

W(QCQ;, QMQ‘) for all Q. € Orth; that is, ifand only if W i is a jointly isotropic function 

of its arguments.
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Proof of sufficiency: Suppose W(C, M) is invariant under Orth. Then, because g C 
Orth, it is also invariant under g. Pick Q € g. Then, 

W(QCQ) = W(QCQ,M) = W(QCA, QA(QAMQ)Q) 
= W(C,Q'MQ) (invariance under g) 

=W(C,M) (because Q' € @) (57) 

and thus W(QCQ’) = W(C), ie., W is invariant under g. 

Proof of necessity: Before proceeding, we define a function 

W(C,P) = W(RCR’), (58) 

where R € Orth satisfies RPR’ = M, ie, P = R'MR. Note that ifR € g, then P=M 

and W(C,P) reduces to W(C) = W(C,M). Thus, W defines an extension of W 
from g to Orth. We now show that W is invariant under Orth. 

For any Q € Orth, by the definition of W, 

W(QCQ’, QPQ'’) = W(R(QCQ')R)), (59) 

where R € Orth satisfies RQP(RQ)' = M. Let R = RQ, Then RPR' = M, and the 

definition of W yields 

W(C,P) = W(RCR’). (5.10) 

Thus, W(QCQ', QPQ') = W(C, P), and so W is invariant under Orth. 

To summarize, we have shown that w(C) is invariant under g © W is an isotropic 

function. We turn now to our main result, the: 

Representation theorem for transverse isotropy: W(C) is a function of I,(C); k = 1,2,3, 

and of 

L,(C)=m-Cm=C-M and 1,(C)=m-C’m=C’-M, (5.11) 

Proof of sufficiency: We know that I.(QCQ‘) = I,(C);k = 1,2, 3, for all Q € Orth. 

Furthermore, 

trQCQ’(QMQ’)] = tr(QCMQ’) = tr(Q.QCM) = tr(CM), (s.12) 

and the same is true if C is replaced by C’; accordingly, I,(QCQ‘, QMQ’) = 
1,.(C,M); k = 4, S. It follows that if 

W(C,M) = U(h,...Js), (5.13) 

then W(C, M) = W(QCQ’, QMQ’).
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Proof of necessity: Suppose W(C, M) = W(QCQ’, QMQ’) for all Q € Orth, We want 
to show that W(C,M) = W(C,M) whenever I,(C,M) = I,(C,M); k = 1,...,5. 
For, W(C, M) is then determined by the list I,(C, M); k = 1,..., 5. 

Proceeding, consider any symmetric tensors A and A, and any unit vectors n 

and n. Let N = n @ nandN = n @ i, and suppose 

1,(A) =1,(A); k= 1,2,3, 
n-n=n-n (trN=¢rN), 

n-An=f-An_ (tr(AN) = tr(AN)), 

n-A’n=n-An (tr(A’N) = tr(A'N)). (5.14) 

From the first of these we conclude that A and A have the same eigenvalues; 

therefore, 

3 3 

A= y Au, @u, and A= y 4,u,; ® u, (5.15) 

isl ict 

where {u,} and {u,} are orthonormal triads. Thus, 

Q=4u, @ yu; € Orth, (5.16) 

and 

A= QAQ'. (5.17) 

From eqn (5.14).3,4 it follows that for any scalars @, B, y, 

n-(al+BA+yA )n=n-(al+ BA+YA’)n, (5.18) 

where I = QIQ! = Lice., 

n: (a+ BA+ yA’)n = Q'n- (al + BA+ yA’) Q'n, (5.19) 

We will prove the theorem under the restriction that the eigenvalues are distinct, 
leaving the general case to the interested reader. Before proceeding, we pause to 
verify a: 

Lemma: I, Aand A’ are linearly independent, and 

S = Span{I, A, A’}, where S = Span {u, ® uy, u, @ uy, u; @ us}. (5.20) 

The proof is standard and may be found, for example, in Gurtin (1981). We sketch 
it here. Assume that 

aol + 4A +a,A’ = 0, (521)
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with {ao, a1, 4} # {0, 0, 0}. This is equivalent to 

3 

IC + a,A, + a,A7)u; @ u, = 0, (5.22) 

i=l 

and hence to 

AataA,+a,rd*=0; i= 1,2,3. (5.23) 

This means that the three distinct A, all satisfy the same quadratic equation, which has 

at most two distinct roots. This contradiction leads to the conclusion that eqn (5.21) 

is true if and only if {a , a,,a,} = {0, 0,0}, and hence that the set {I, A, A’} is linearly 

independent. Furthermore, by the spectral representation (5.15), first part, we have 

I, A, A’ € S,athree-dimensional vector space. As any set of of n linearly-independent 

elements of an n-dimensional vector space constitutes a basis for that vector space, 

eqn (5.20) follows, and we conclude that every B € S satisfies 

B=al+BA+yA’ (5.24) 

for some (unique) a, B, 7. 

Returning to the theorem, we see that eqn (5.19) is equivalent to the statement 

n- Bn = Q‘n- B(Q‘n) (5.25) 

forall B € S. Let R € Orth be such that n = Rn. Then, N = RNR’ and eqn (5.25) reduces 
to 

D-N=0 forall N=n@®n, (5.26) 

where 

D = B- (Q‘R)'B(Q‘R) € Sym. (527) 

Let n, be the eigenvectors of an arbitrary symmetric tensor S, ie, S = an S;N,, where S; 

are the corresponding eigenvalues andN, = n, @ n;. From eqn (5.26) we conclude that D € 

Sym satisfies D - S = 0 for all S € Sym and, hence, that D vanishes, i.e., that 

(Q'R)'B(Q'R) =B, forall BES. (5.28) 

Now, every B € S is expressible in the form B = a Bu; ® u; for some scalars B,. 

Then, since eqn (5.28) holds for any B € S, it is necessary and sufficient that 

R'Q(u @ u) = (U@u)R'Q, (529) 

for all u@u€ {u, @u,,u, @u,,u, @u,}. Thus, (R'Qu) @u=u® (Q'Ru), which 

yields
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R'Qu = (u: R'Qu)u = (R‘Qu: u)u. (5.30) 

However, |R'Qu| = |u| because R'Q€ Orth. Thus, |u|’ = R'Qu- R'Qu = (R'Qu- 
u)? |u|’, so thatu - R‘Qu = +1. Then, R‘'Qu, = +u,, or Qu, = +Ru,; i = 1,2, 3. Finally, 

3 3 

RAR' = )°A,Ru, ® Ru, = )) A,Qu, ® Qu, = QAQ' =A. (531) 
i=l isl 

To summarize, we have shown that if eqn (5.14), parts 1-4, hold, then 

N=RNR' and A=RAR' (5.32) 

for some R € Orth. Then, 

W(A,N) = W(RAR', RNR’) = W(A,N), (533) 

and we conclude that W(A, N) is determined by I,(A); k = 1, 2,3, and by n- An, n- A’n 

and n - n, the last of these being redundant if n is a unit vector. 

Our outline of this representation theorem follows the proof given in the paper by 

Liu (1982). The papers by Boehler (1979) and Zheng (1994) should also be consulted. 

The method of the theorem may be extended to cover any type of symmetry that can be 

characterized by a set of structural tensors, i.e., by tensors § such that RSR' = § for all 

R € g. In fact, the latter restriction may be relaxed, as shown in the paper by Man and 

Goddard (2017). The general issue of material symmetry and attendant representation the- 

orems is discussed in a series of fundamental papers by Rivlin and associates (Barenblatt 

and Joseph (1997)). 
To use the present representation theorem in the context of the theory of elasticity for 

transversely isotropic materials, we impose 

AC) = U(N, Js), (534) 

and find, for any parametrized path of deformations, that 

5 5 

SymWe C= (WY = S> Uh, = D5 USym(I)e + C, (538) 
kel kel 

with U, = dU/dI,. Here, we have 

I,=M-C (5.36) 

and 

I, =M-(C’) = (CC+CC)-M=(MC+CM)-C, (537)
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and, therefore, 

Sym(Iy)e =M and Sym(Is)c = MC + CM. (5.38) 

Combining these results with eqns (3.11) and (3.20), we derive the constitutive represen- 
tations 

P = 2F[(U, + 1,U,)1- U,C + U,C* + Usm @m+U,(Cm@m+m@Cm))] (539) 

and 

JT =2[(U, + 1,U,)B - U,B’ + 1,U,1 + U,Fm @ Fm + U,(BFm @ Fm + Fm ® BFm)], 
(5.40) 

the second of which may be compared to eqn (4.39). 

The paper by Horgan and Murphy (2016) describes an interesting application of this 

model to a specific boundary-value problem, which highlights the unusual features of trans- 
verse isotropy. Transverse isotropy plays a large role in the study of bioelasticity. The 

collection edited by Dorfmann and Ogden (2015) provides a thorough account. 
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Stress response in the presence 

of local constraints 

on the deformation 

Quite often the conditions of the problem at hand and the nature of the material are such 

that the deformation conforms very nearly to one or more constraints on its gradient. Thus, 

for example, rubber-like solids are nearly incompressible and so deform isochorically pro- 

vided that, in doing so, no boundary data are violated. From the phenomenological point of 

view, such behavior is due to the significant energetic cost associated with deviations from 

a locally isochoric mode of deformation. Indeed, this cost is often so high that if position is 

assigned on the boundary in such a way as to require an overall volume change, the material 

will rupture locally, rather than maintain a smooth, and necessarily non-isochoric, deform- 

ation. Roughly, isochoric deformations are energetically optimal in rubber-like solids. One 

may imagine that the application of an arbitrary pressure to such a solid would not affect its 

deformation to any significant degree, and not at all in the limit of perfect incompressibility. 

Conversely, the pressure acting on the material is not determined by its deformation. In the 

same way, deformations of directionally reinforced solids, such as fiber composites, may 

be idealized as being inextensible along the local direction of reinforcement, the uniaxial 

stress along this direction being unrelated constitutively to deformations of the material 

that are consistent with the constraint. These are examples of useful constraints in which 

the deformation gradient is restricted a priori. Because they narrow the class of admissible 

deformations, they invariably aid in the analytical treatment of problems. This is illustrated 

in Chapter 7. 

For example, if the material is incompressible during a time interval Z then we have 

J(t) = const. for t € I. Differentiating and using J; = F* yields F* - F = 0. This imposes a 

restriction on F, and so the argument leading from eqn (3.10) to (3.11) no longer holds. 

Evidently, the manner in which the stress is related to the deformation is thus modified. 

Our purpose, here, is to determine how it is modified. The subject is not especially well 

treated in the text and monograph literatures, and so we present a systematic discussion of 

it here, based on the Lagrange-multiplier theorem. 

Finite Elasticity Theory. David J. Steigmann. 
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6.1 Local constraints 

We consider local constraints at material point p, as perceived by observer O, of the form 

¢« (F) = 0. (6.1) 

It is natural to assume that all observers, O* included, agree that a constraint is in force and 

thus to require that an expression of the kind 

Qe (F*) =0 (6.2) 

hold whenever eqn (6.1) does. Because constraints reflect the nature of the material under 

certain conditions, on which O and O* are presumed to agree, we may follow the example 

of the strain—-energy function in Problem 1 of Chapter 3 and assert that @*,(F*) = , (F). 
If you have worked through that simple exercise then you know that this implies $,(F) = 

(QE) for all rotations Q and that the latter is equivalent to 

¢.(F) = ¥.(C); (63) 

for some function y,. The symmetry of C implies that there can be no more than six inde- 

pendent constraints at any material point. For, otherwise the constraints would overspecify 
the components of C. 

Problem 

Show that there can be no non-trivial constraints of the form A - F = B with A and 

B fixed. 

For example, incompressibility requires that the value of J at a material point be the 

same in all configurations of the body. This is equivalent to the requirement that det C 

be independent of the deformation. Then, since C = I, when the body is undeformed, the 

constraint function is given by 

w,(C) = det C - 1. (64) 

In the case of inextensibility, |FE| is unaffected by deformation, where E is the unit- 

tangent vector to an inextensible material curve in «. Its value is unity in that configuration, 

and the constraint function is thus given by 

¥.(C) = VE@E-C-1. (65) 

6.2 Constraint manifolds and the Lagrange multiplier rule 

Evidently eqn (6.1) defines a manifold M in the nine-dimensional space Lin’, just as an 

equation of the form F(x) = 0 defines a surface in three-space. If there are n constraints
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OF 

  

M 

Figure 6.1 Local geometry of the constraint manifold 

@(F) then F € M, where M = '_,M, and M, = {F : 6(F) = 0}. M is called the 

constraint manifold. Since J(= det F) is non-zero in any deformation we require that 0 ¢ M. 

Therefore, M is nota linear space. 

On any curve F(u) € M, the stress and strain energy are related by 

(W(F)) =P-F, (66) 

as in eqn (3.9), where F’ € Ty, the vector space tangent to the constraint manifold at 

the point F(u). We assume that each point F on M is the center of an open ball B in 

Lin*. Further, for any possible process we have @’(u) = O and therefore ob. - F = 0 forall 

F’ € Ty, where the gradients are evaluated at the point F(u) and we have suppressed the 

subscript « for clarity. This implies that each of the gradients ¢? is orthogonal to T,y (see 

Figure 6.1). 
By definition, the constraints are independent if and only if the set {#{} is linearly 

independent; that is, ifand only if the linear equation 

da? = (67) 

holds with all a, = 0. In this case, {¢°} is a basis for the orthogonal complement to Ty. 

The tangent space and its orthogonal complement together comprise the nine-dimensional 

translation space of Lin*, the linear (vector) space consisting of all differences that can be 

formed from the elements of Lin*. We have already seen that this is just Lin, and so 

Lin = Ty ® Span{p}. (68) 

The notation @ identifies Lin as the direct sum of the vector subspaces Ty, and Span{o-’}, 

meaning that every element of Lin is expressible as the sum of elements of the two vector 

spaces comprising the direct sum. Of course, direct-sum decompositions are not unique. 

Two that come immediately to mind in the case of Lin are Sym ® Skw, the direct sum of
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the linear spaces of symmetric and skew tensors, and Sph @ Dey, in which the factors are, 

respectively, the linear spaces consisting of the spherical and deviatoric tensors. 

Thus, any A € Lin such that A- F’ = 0 forall F’ € T,y satisfies 

A= y 1,2 (69) 

for some scalars A;. Equation (6.6) and the chain rule imply that P — Wy furnishes an 

example of such tensors, and hence that 

P=W,t+ - 10°, (6.10) 
i=) 

where the Lagrange multipliers A, may depend on the material point p and the time t, which 

have played passive roles in course of the derivation. Because the domain of W is M, the 

derivative W,, defined by W’ = W, - F’,, is to be interpreted as an element of the dual space 

of T 44, which may be assumed to coincide with T,, itself. We do this all the time, for ex- 

ample, as when we ignore the distinction between three-dimensional Euclidean space and 

its dual. In contrast, the functions @(F) are defined on Lin* and their gradients belong 
to Lin. 

Typically, one wishes to compute the gradient W, explicitly via the chain rule, as in Part 

3 of the Supplement. When doing this, the fact that the associated F’ is not an arbitrary 

element of Lin may prove to be an inconvenience. We may effectively sidestep this issue 

by using a smooth extension W of W instead. The extended function has the ball B as its 

domain, is differentiable there, and by definition, agrees with W on M. Differentiating the 

consequent equation yields (W)’ = W’ at all points F(u) € M, so that 

(W, - We) -F =0, (6.11) 

and therefore We - Wp € Span{o.?}. The use of W in place of W in the formula (6.10) 

for the stress thus amounts to an adjustment to the (as yet unknown) Lagrange multipliers. 

Moreover, if W is another extension, then, because it agrees with W on M, it follows that 

eqn (6.11) remains valid with W substituted in place of W, and eqn (6.10) continues to 
hold with possibly different multipliers. Therefore, any smooth extension may be used 

without loss of generality. The obvious choice, and the one tacitly made in all treatments 

of constrained elasticity, is 

W(F)=W(F), for Fé Lin’. (6.12) 

That is, the extended function may be taken to be the original function, but now with 

domain Lin* rather than M.
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Since W is a constitutive function, it is subject to invariance requirements. Proceeding as 

before, we conclude that 

W(F) = G(C), andtherefore W(F) = G(C) (6.13) 

for some G defined on the image of M in Sym’*, with 

G(C) = G(C) forall Ce Sym’, (6.14) 

in accordance with eqn (6.12). We compute P = FS where 

1 uy 

5S = SymGe + So asymy? (6.15) 
i=l 

in which ¥(C) = 6(F). Here, we have used the formula eqn (5.4) of the Supplement. 
This is justified because the extended strain—-energy function is defined for F € Lin* and 

the induced F’ is an arbitrary element of Lin. Accordingly, 

P =2F smc. + \; asm . (6.16) 
irl 

In the example of incompressibility we find, from eqn (6.4), that 

Syme = (det C)C* (6.17) 

and for inextensibility we use |FE| = /E @ E- Cwith the chain rule to derive 

Symic = : |FE[E@E. (6.18) 

The gradients of the associated functions of F are obtained by using the formula 

dr = 2E(Symc), (6.19) 

which is derived just as eqn (3.20) was derived. Then, in the case of incompressibility, 

= 2(det C)F", (620) 

whereas, for inextensibility, 

dy = |FE|' FE@ E, (621) 

It is easy to verify that these are linearly independent elements of Lin and, thus, that the two 

constraints are independent.
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When using eqn (6.10) to compute the stress, all gradients are evaluated at F ¢ M. 

Accordingly, for incompressibility and inextensibility we have 

P=W,p-pF' and P=W,+Ae@E, (6.22) 

respectively, where p and A are the Lagrange multipliers and e = FE is the unit tangent to 

the inextensible curve after deformation. The associated Cauchy stresses are 

T=(W,)F'-pl and T=J'(W,)F'+Te@e, (623) 

where T = J”’A. This yields the interpretation of the Lagrange multipliers as a pure pressure 

in the first instance, and a uniaxial stress in the second. Recalling our earlier discussion, the 

fact that these are unrelated to the deformation is only to be expected. If both constraints 
are operative, then of course, the stress is obtained by simply adding the constraint terms in 

accordance with eqn (6.10). 
To evaluate the Lagrange multipliers, which at this stage are arbitrary scalar functions of 

x and tf, we append the n constraint equations to the system consisting of the equations of 

motion and the boundary and initial conditions. This yields a formally determinate problem 

consisting of 3 + 1 equations for the three components of the deformation function x (x, f) 

and the n Lagrange multipliers. In this way the multipliers are found to be influenced by 

material constitution only indirectly via the initial-boundary-value problem at hand. 

6.3 Material symmetry in the presence of constraints 

Recall that R € g,(), if and only if, W, (F; x) = W, (FR; x). For constrained materials, this 

statement makes sense only if F € M implies that FR € M. Then, 

Regu ={R: FRe M whenever F € M}, (6.24) 

and as the statement R € g,j) makes sense only ifR € gj, it follows that 

Sup) C 8m- (6.25) 

Following Podio-Guidugli (2000), we say that the material symmetry is compatible with 

the constraint. 

For example, in the case of inextensibility we have M = {F: |FE| = 1} in which E(x) 
is a field of unit vectors in x. Then, 

&Miinet) = (R:  |(FR)E| = 1 whenever |FE| = 1}. (6.26) 

For incompressibility, MM = {F: det F = 1} and 

SM(incomp) = {Ri det(FR) = 1 whenever det F = 1} = U. (627)
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In the case of isotropy, we have g, = Orth* and so R € g,(,.) implies det(FR) = det F; 
thus, R € gadcincomp) and isotropy is compatible with incompressibility. That is, an isotropic 

material could be incompressible, although, of course, not every incompressible material 

is isotropic. In fact, since g, C U is always true, it follows that any kind of symmetry is 

compatible with incompressibility. On the other hand, for arbitrary R € Orth* we have 

  

|(FR)E| = VE: (R'CR)E = /RE- C(RE) 4 VE- CE = |FE|, (6.28) 

and SO Be (ise. g ZM(wexi)} isotropy is not compatible with inextensibility and so an isotropic 

material cannot be inextensible in a fixed direction. 

In the case of transverse isotropy we have 

Bettas) = {Ri Re Orth’ and RE = E}. (6.29) 

Then, |(FR)E| = |FE| whenever R € (ras), implying that gy (iraus) C @a¢inet)} transverse 

isotropy is compatible with inextensibility. 

As an example, we cite the case of incompressibility and isotropy. In this case, the natural 

extension of the strain—energy function is 

U* (Li, hh; x) = Uh, L, 1;x), (6.30) 

in which [,, are the usual invariants of C, defined for all C € Sym* in accordance with 

eqn (6.14). The Cauchy stress is then given by (see eqns (4.39) and (6.23), part 1) 

T = 2(U* + 1,U3)B - 2U;B’ - pl, (631) 

where p is the Lagrange multiplier. Alternatively, using eqn (4.50) with the extension 

w" (i, 43x) = w(iy i, 1; x), (632) 

in which j,, are the invariants of U € Sym*, we have eqn (4.56) in which 

o = (wi +iwy)I-wiU - pu". (6.33) 

Problems 

1. Howis the argument leading from the work inequality to the existence ofa strain- 

energy function affected by a constraint of the form ¢(F) = 0? Are there any 

restrictions on the extended function W’(F) (the extension of W(F) from M 
to Lin*) arising from the requirement T = T‘? 

2. Find the form of the constitutively indeterminate Cauchy stress for the following 

local constraints:
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(a) A laminated material formed from sheets of stiff paper interspersed in a 

soft matrix material. Take the sheets to be continuously distributed paral- 

lel planes in some reference configuration. Let the planes of the sheets be 

spanned by an orthonormal set {E,,E,}. The constraints are then given 

by E, . CE, = 0 and E, - CE, = 1 = E, - CE,. Show that these imply there 

can be no extensional or shear strain in the plane of the sheets, but that 

transverse normal and shear strains are permitted. Show that a mater- 

ial constrained in this way cannot be isotropic. Could it be transversely 

isotropic? 

(b) The body is laminated as in (a) but the constraint is now that the planes 
experience no change in local surface area in any deformation of the body. 

Show that the projection of the Cauchy stress onto the tangent plane of the 

deformed image of a typical lamina is constitutively indeterminate. Can you 

describe this in physical terms? What kind of material symmetry is consistent 

with this constraint? 

. Consider an incompressible elastic material that is homogeneous and isotropic 
relative to the chosen reference configuration. Take this configuration to be a unit 

cube with edges parallel to E,, and let the deformation be homogeneous and iso- 

choric with gradient F = 1,e, @ E, + A,e, @ E, + (A,A,)'e; @ Es, where A, A, 

are positive constants and {e,} = {E,}. Let the tractions vanish on planes with 

normals -te, and ey, and let the forces on planes with normals te, be +fe,, 

respectively. 

(a) Find the constraint pressure in equilibrium in the absence of body force. 

Show that A, = 4;'” furnishes a solution, no matter what the strain-energy 

function may be. 

(b) Obtain f as a function of A, using the so-called neo-Hookean strain-energy 

function defined by W = 4 (I, ~ 3), where u is a positive constant (which 
can be shown to be the shear modulus in the case of small strains). This sim- 

ple function is quantitatively accurate for rubber if the principal stretches lie 

in the approximate range 1/2 < A, < 2. 

4. Generalize the result of Problem 6 in Chapter 4 to the case of incompressibility. 

5. Howis Problem 7 of Chapter 4 affected by the constraint of incompressibility? 

6. Show that all observers agree on the values of the Lagrange multipliers, i.e., that 

they are absolute scalars. 

. Consider an incompressible elastic solid that is homogeneous and isotropic rela- 

tive to the chosen reference configuration. Suppose that a material described by 
this relation is stressed in its undeformed state, i.e, T is non-zero when F =I. 
In this case, we say that the material is residually stressed. Suppose the residually 
stressed undeformed configuration of the body to be in equilibrium without body 

force. Also, suppose the traction acting on the undeformed body vanishes on a por- 

tion of the boundary. Show that the residual stress must then vanish identically 

everywhere in the body.
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Some boundary-value problems 
for uniform isotropic incompressible 

materials 

We have already made mention of the fact that analytical solutions to the equations and 

boundary/initial conditions of nonlinear elasticity theory are as rare as hen’s teeth. The 

youthful student might feel some justification in believing that they are, thus, unworthy 

of serious study and certainly unworthy, in the digital age, of the often substantial effort 

required to find them. While it is true that the quest for analytical solutions often requires 

the investigator to limit attention to rather contrived problems of limited relevance, it is 

also true that, once secured, they prove to be of the greatest benefit to those seeking to test 

constitutive equations (for the strain—energy function, say) against empirical data. This is 

our main justification for considering some simple equilibrium deformations that can be 

reproduced with relative ease in the laboratory. The best source for analyses of this kind is 

Ogden (1997), which goes well beyond the present treatment. 

7.1 Problems exhibiting radial symmetry 
with respect to a fixed axis 

7.1.1 Pressurized cylinder 

Take the reference configuration of the elastic material to be the right circular cylinder de- 

scribed in terms of cylindrical polar coordinates by A < R < Band 0 < @ < 2m. If the 

cylinder is subjected to uniform pressures at its cylindrical boundaries, and if the material 
constituting the cylinder is uniform and isotropic, then one has the intuition, based on the 

cylindrical symmetry of the problem, that cylindrically symmetric deformations should be 

possible in equilibrium. These are described by a map of the form y = x (x) (dropping the 

subscript « for convenience), where 

x= Re(0)+Zk and y=re,(@) + zk, (7.1) 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017, Published 2017 by Oxford University Press.
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with 

e,(@) =cosOe,+sinfe, and k=e,, (7.2) 

where {e;} is a fixed orthonormal basis, and 

r=r(R) and z=Z. (73) 

This deformation is completely specified by the single function r(R). To visualize it, we 

observe that it maps a circle R = C, say, to the circle r = c, where c = r(C) (see Figure 7.1). 

To set up the problem of determining r(R), we obtain the deformation gradient and 

substitute into the relevant constitutive equation. The result is then substituted into the 

equation of equilibrium and an attempt is made to integrate it. To this end, we use the chain 

rule dy = Fdx, where 

dx = dRe,(0) + Reg(@)d0 +dZk and dy =dre,(0)+re,(6)d0+dzk, (74) 

where 

eo(9) = e'(0) = —sinGe, + cosPe, =k x e,(0). (7.5) 

These expressions are entirely general. For the present rather simple class of deformations 

we use (7.3) to re-write the second of them as 

dy = r'(R)dRe,(0) + reg(0)d0 + dZk. (7.6) 

  Figure 7.1 Cross section of a cylinder
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We want to write this as a tensor operating on the vector dx; that tensor may then be identi- 

fied with the desired deformation gradient. To achieve this we note, from eqn (7.4) part 1, 

that 

dR=e,(0)-dx, RdO=e,(0)-dx and dZ=k- dx, (77) 

and, hence, that 

dy = r'(R)e,(0)[e,(0) - dx] + (r/R)eo() [eo (8) + dx] + k(k + dx), (78) 

from which we simply read off 

F=r(R)e,(0) @e,(0) + (r/R)eo(0) @e (0) +k@k. (79) 

The restriction given in eqn (1.3) reduces to 

J=r(R)(r/R) > 0, (7.10) 

which implies that r(R) is an increasing function and, hence, that concentric circles R = C,,, 

with C, > C,,are mapped to concentric circles r = c,2, respectively, with c, > c,. With this 

it is trivial to obtain the polar decomposition 

U=F, ReI. (7.11) 

At this stage it is apparent from eqn (7.10) that considerable simplification is achieved if 

the deformation is isochoric, as it must be if the material is incompressible. Accordingly, we 

consider incompressibility and integrate eqn (7.10), with J = 1, to obtain 

r -@ =R’-A’, where a=r(A), (7.12) 

which could have been guessed at the outset. Furthermore, eqn (7.9) furnishes 

F = (R/r)e,(6) @ e,(0) + (r/R)ee(8) @ e,(6) +k @k, 

and B=(R/r)’e,(0) @ e,(@) + (r/R)*e,(0) @e,(80) +k @k, (7.13) 

where B = FF‘ is the left Cauchy—Green deformation tensor. 

The representation given in eqn (6.31) for the Cauchy stress in an incompressible, 

isotropic material leads to 

T=T-pl, (7.14) 

where the constitutively determined part of the stress, T, is of the form 

T = T,(r;a)e,(8) ® e,(8) + Too(r; a)eo(8) ® e9(8) + T.(ra)k@k, (7.15)
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in which T,,(1; 4), etc, are obtained by inserting eqn (7.13) into eqn (6.31), while use 

has been made of eqn (7.12) to convert functions of R into functions of r, depending 

parametrically on the unknown constant a. 

In the absence of body forces, the equation to be solved is divT = 0, which is equiva- 

lent to 

gradp = divT. (7.16) 

Problem 

Prove the rule u- divA = div(A'u) - A: gradu, where grad is the gradient with 
respect to position y, and use it to work out the coefficients in the expression 

divA = (e, - divA)e, + (e, - divA)ep + (k- divA)k, where A= A,e, @e, + Ae, @ 

@g t.... 

Accordingly, we have 

~ d~ Il .~ ~~ 
divT = |<7. +-(T,, - iw)| e,(9), (7.17) 

dr r 

which, in conjunction with 

gradp = Op/dre,(@) + F'dp/dOe,(0) + dp/dzk, (7.18) 

leads us to conclude that 0p/00 = 0 = Op/dzand 

d d~ 1. « 
GP) = FT + (Tn — Too) = fri a); (7.19) 

and, therefore, that 

p(r) = p(a) + / f(x a)dx. (720) 

The boundary conditions at the cylindrical generating surfaces r = a, b, with exterior unit 

normals n = Fe,, respectively, are 

-Te,=P,e, at r=a, and Te,=-P,e, at r=b, (7.21) 

where P,, are the pressures acting there (not to be confused with the boundary values of p). 

From eqns (7.14) and (7.15), these are seen to be equivalent to the two relations 

P, =p(a)-T,(a;a) and P, = p(b) - T,.(b; a), (7.22) 

where 

ba = B- A’. (723)
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Combining these with eqn (7.20) finally delivers 

b 
AP = T,,(b; a) - T,,(a; a) - / f(y a)dr, (7.24) 

where AP = P, - P, is the net inflation pressure. For a given strain—energy function, this 

generates the inflation pressure corresponding to any given radius a. 

Problem 

Complete the analysis using the so-called neo-Hookean strain—energy function de- 

fined by U = > (I, - 3), where 4, a positive constant, is the shear modulus of the 
material. This is normalized so as to vanish in the absence of strain, at I, = 3. Show 

that the Cauchy stress in a neo-Hookean material is given simply by 

T = —pl + wB. (7.25) 

The neo-Hookean model has an interesting history. It actually has a basis in statistical 

mechanics (see Treloar (1975) and Weiner (2002)), and its relative simplicity makes it 
attractive to those interested in analytical work. In particular, it is completely specified by 
the single parameter ju. It is also rather well behaved from the mathematical point of view, 

as we shall see later in Chapter 9. However, while it furnishes a good quantitative model of 

rubber for moderate principal stretches lying in the approximate range (;, 2), its behavior 

deviates substantially from that of rubber outside this range. If you have done the preceding 

exercise about the response of cylinders, you will have observed that it yields a reasonable 

relationship between inflation pressure and deformed inner radius only when the latter is 

small-to-moderate. It is, therefore, predictive only for small to moderate strains. In fact, 

from the empirical point of view, it is no better than the purely phenomenological Varga 

strain—-energy function (see Varga, 1966) defined by 

w(is,i,) = 2u(i, - 3), (7.26) 

with the same A. 

To justify the interpretation of the parameter jz as the shear modulus, we digress to 

consider the simple-shear deformation defined by 

y=xt y(E,+x)e, (7.27) 

where y, the amount of shear, may be any real number, but is assumed here to be inde- 

pendent of x. The effect of this deformation on a unit block of material is illustrated in 
Figure 7.2. 

It is a special case of the deformation analyzed in Problem 7 of Chapter 4.
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  _
 

  

Figure 7.2. Simple shear of a block 

The deformation gradient and Cauchy—Green deformation tensor are easily seen to be 

given by 

F=I+ye,@E, and C=I+y(E, @E,+E,@E,)+y’E, @E,. (7.28) 

This is an example of a homogeneous deformation. Homogeneous deformations are char- 

acterized by the property that the deformation gradient is uniform, i.e., independent of x, 

Here, the invariants I,, are determined by the number y, whereas J = 1. In particular, 

I, = 3 + y’, and the neo-Hookean material yields the strain energy W = W(y), where 

A 1 

W(y) = shy". (729) 

This model thus behaves like a linear spring, with stiffness 4, in simple shear. The energy 

change associated with a change in the shear is 

(W) =P-F=(P-e, @E,)y = ty, (730) 

where T = e, - PE, is the shear stress, the projection of the (Piola) traction onto the plane 

with normal e,. Accordingly, t = zy and the ratio of shear stress to the amount of shear— 

the shear modulus—is just 4, as claimed. For a general isotropic material, this ratio depends 

on y, in the manner of a nonlinear spring. However, for the neo-Hookean material, the 

shear response is characterized by a constant modulus and is thus linear; hence, the name 

neo-Hookean. 

A strain—-energy function that is good over virtually the entire range of feasible deform- 

ations of rubber has been given by Ogden (1997). It is rather unwieldy for analytical work 

and, thus, not discussed in the present chapter, but has emerged as the formulation of choice 
for numerical simulations. The relevant details can be found in Ogden (1997).
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For general isotropic elasticity, including incompressibility, there is a relationship among 

the stress components in simple shear, which is universal in the sense that it does not in- 

volve the properties of the material at hand. This is given simply by specializing the result 

of Problem 7 of Chapter 4. It predicts that a non-zero normal stress difference always ac- 

companies simple shear. Furthermore, using it one can easily show that the normal stresses 

vanish faster than the shear stress as the amount of shear vanishes; the normal stress effect is 

thus inherently nonlinear, which is why one never hears about it in linear elasticity theory. 

This prediction conforms to empirical observation and is one of the major successes of non- 

linear elasticity theory. However, the reader is cautioned that true simple shear is practically 

unattainable in the laboratory and thus mainly of theoretical interest. Its important features 

may, however, be replicated in other deformations that are experimentally feasible. 

Problem 

Show that the Varga material has a nonlinear simple shear response, and that the 

parameter yZ is the slope of the t vs y curve at y = 0. Thus, it characterizes the 

linear part of the shear response of this material at the unstressed state. 

Simple shears, and homogeneous deformations in general, are simpler than the cylin- 

drical deformation considered thus far in that, for uniform materials (W is not explicitly de- 

pendent on x), they deliver uniform constitutively determined stresses whose divergences 

vanish identically. This yields divT = -gradp in the case of incompressibility; therefore, p 

is uniform if the body is in equilibrium without body forces. The complete stress is then 

uniform and, thus, determined entirely by boundary data, which must, of course, be such 

as to admit homogeneous deformations in the interior. Otherwise, the premise is false and 

the (non-homogeneous) deformation must be found by solving the nonlinear differential 

equations. 

Before leaving deformations of cylinders, we discuss a special case for which the deform- 
ation is homogeneous. Thus, consider the case ofa solid circular cross section described by 

A = Oand suppose the deformation is such that r(0) = 0. Then eqn (7.12) yields r = Rand 
eqn (7.13) part 1 reduces to F = e,(@) ® e,(@) + e9(9) ® e9(9) +k @k =I. There is no 
deformation, no matter what the external pressure may be. To make the problem a bit more 

interesting, we relax the assumption z = Z (cf. eqn (7.3) part 2) and replace it by 

z=AZ, (731) 

where A is a constant. An easy calculation yields 

F=r'(R)e,(0) @ e,(6) + (r/R)es(0) @ eo(0) +AK@k (732) 

and 

J =Ar'(R)(r/R) > 0 (7.33) 

in lieu of eqns (7.9) and (7.10). Incompressibility, taken together with the condition on 
r(0), now furnishes
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r(R) = R/VA, (7.34) 

provided that A > 0. This, in turn, ensures, as before, that r(R) is an increasing function. 

Furthermore, eqn (7.32) becomes 

F=Ak@k+A'“"(1-k @h), (735) 

which is independent of x. The deformation is, therefore, homogeneous and, hence so too, 

the constitutive part of the stress if the strain—-energy function is uniform. 
For the neo-Hookean material, the stress is (see eqn (7.25)) 

T = (ud? - p)k @k+ (UAT -p)(I-k@k). (736) 

To find p, which is uniform if the cylinder is in equilibrium with vanishing body force, we 

need a boundary condition. Suppose, for example, that the lateral surface R = A(r = a) is 

traction free. Then, Te, vanishes at r = a, and hence, in this case, everywhere in the body, 

yielding p = wA“ and 

T=uV -AYK@kK (737) 

The stress in the bar is uniform and uniaxial, and varies with the axial extension. 

Problems 

1. Obtain the uniaxial force-extension relationship for the neo-Hookean bar, and 

obtain an expression for Young’s modulus—the slope of this relationship at A = 

1—in terms of ju. 

2. Show that the foregoing solution is valid in all neo-Hookean cylinders, regardless 

of section connectedness or shape, if the lateral surface is traction-free. 

3. Biological tissues are characterized by a load-bearing microstructure consisting of 

collagen fibers that are “crimped” in the form of wavy curves in their relaxed state. 

As the tissue extends, the collagen fibers straighten, or “decrimp,” by unbending 

until they are more-or-less straight; the load required to achieve this is fairly small. 

Once the decrimp phase is complete, further extension of the tissue requires ac- 

tual stretching of the collagen fibers. This requires relatively large force compared 

to that required for decrimping. To model this behavior on the macroscale, we 

require a strain-energy function which is such that the uniaxial force-extension 
curve is nearly horizontal for small-to-moderate stretches, while growing rapidly 

for larger stretches. 

Consider the candidate strain—energy function 

U= ;, lest ch -3)}-1], (738)
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where yt and y are positive material constants (with 4 having dimensions of 

force/area, while y is dimensionless). Obtain the force—extension response for an 

incompressible cylindrical bar subjected to zero traction on its lateral surface, and 

show that its qualitative properties match the foregoing description of bio-tissue. 

4. Consider a cylindrical body occupying the reference configuration defined by 

A<R<B,-L/2 < Z < L/2,0 <@ < 2m. Suppose the cylinder is turned in- 

side out (everted) so that, after deformation, it occupies a new cylindrical region. 

Thus, the deformation maps the material point with reference position 

x = Re,(@) + Zk (739) 

to its final position 

y =r(R)e,(0) + z(Z)k, (7.40) 

where a < r < band z(Z) = —Z (ie. the cross sectional plane Z = L/2 in the 
reference configuration is mapped to the plane z = -L/2 in the current configur- 

ation, etc.). Also, the inside of the reference cylinder is mapped to the outside of 

the deformed cylinder, and the outside is mapped to the inside. Thus, r(A) = b 
and r(B) = a. 

(a) Find the function r(R) meeting the stated boundary conditions if the de- 
formation is isochoric. 

(b) Compute C = F'F and obtain U by inspection. Using your result, compute 

the rotation factor R in the polar decomposition F = RU. 

(c) Can this deformation be maintained in equilibrium in an incompressible 

isotropic material with zero tractions on the lateral surfaces? 

7.1.2 Azimuthal shear 

Imagine a hollow cylinder welded to a rigid shaft at its inner radius, R = A, and a rigid cy- 

lindrical sleeve at its outer radius, R = B. Fix the sleeve and rotate the shaft about its axis k, 

through the angle ®. For uniform isotropic incompressible materials, in equilibrium with 

zero body force, one may feel justified in assuming that an interior circle R = C, say, merely 

rotates uniformly about the shaft without a change in radius and that different concentric 

circles rotate by different amounts. That is, the azimuth changes by an amount, @ say, that 

depends only on R. To test the hypothesis, we proceed as before to construct the rele- 

vant deformation and stress tensors, and then investigate the possibility of satisfying the 

equation of equilibrium. If © is the azimuthal angle prior to deformation we then have 

x= Re,(@)+Zk and y=Re(0)+Zk, where 0=©@+@(R). (7.41)
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Then 

dy = dRe,(0) + Re,(@)d0 +dZk, where d@? =d@+¢'(R)dR. (7.42) 

Using eqn (7.4) part 1 with the relevant azimuth yields 

dy = e,(0)[e,(O) - dx] + e6(O){[eo(O) + RP'(R)e,(O)] - dx} + k[k- dx], (743) 

and, hence, 

F=e,(0) @e,(O) + e6(0) @ e,(O) + rP'(res(P) @e(O) +k @k, (7.44) 

in which r = R. 

Notice that this may be factored as 

F=FQ, (745) 

where 

Q=e,(8) Be,() + eo(8) @ e(O) +k@k (7.46) 

is a rotation and 

F=1+y(r)e(0) @e,(0) (7.47) 

is a simple shear on the e,(@), e,(@) axes of amount y(r) = ré’(r) (compare eqn (7.28) 
part 1). This is an inhomogeneous simple shear. Furthermore, J = det F det Q = 1, imply- 

ing that the deformation is, indeed, isochoric. 

Proceeding with the neo-Hookean material for the sake of illustration, we use eqn (7.25) 

together with B = FF’ = EF’; ie., 

B =e,(9) @e,(@) + (1+ y7)es(9) @ eo(8) +k @k+ y[e,(4) @ eg(4) 

+e,(0) ®e,(9)], (748) 

yielding the stress 

T =(u-p)e,(0) @e,(@) + [u(1 + y*) -ples(9) @ eo(0) + (u-p)k@k 

+ py [e(8) @ eo(8) + e6(9) ® e,()]. (749) 

Among the three scalar equations of equilibrium, the projection e9(0) - divT = 0 proves 

to be immediately useful and yields 

d 2 id, 
0= al? + 78 = age Tie) (7.50)
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where T.)(r) = zy (r). Thus, 

urd’ (r) = t/r (751) 

with t = const. This gives 

'd Ae 2 

oiy=ose [ Suo+ 5 ( ), (7.52) 
BJ, © 

The constant t is determined by imposing the condition 6(B) = 0; thus, 

  

T A’B’ 

uBR A 

on 0 
The deformation is now completely determined. 

We have not used the remaining components of the equilibrium equation. We do so now, 

writing the latter in the form 

  (7.53) 

and 

  

d 1 d 2 
gradp = divB = w {| 52. + —(B,, - 2a )| e,(0) + (<2. + “By =(0)| » (755) 

dr r dr r 

where 

B,=1, B,-Bs =-y* and Be, =y. (7.56) 

Combing the last of these with eqn (7.51), we find that 

45 +28 -if(p y-.4 “\=0 () 
dr” pe ag ” Pdr bh 7 

Consequently, eqn (7.55) furnishes 0p/00 = 0 = dp/dzand 

d 
5) = -py?/r. (758) 

This determines the constraint pressure distribution apart from a constant. 

The solution may be used to generate the overall torque-twist relation of the annular 

cylinder. To see this we compute the traction transmitted by the material to the central 

shaft. This is 

Te,(9),,-. = ~p(A)e,(0) + wBe,(@) = [4 - p(A)]e,(@) + (t/A*)eo(9), (7.59)
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and so the torque, per unit axial length, transmitted by the shaft to the material is 

1 an 

m=- [ / y, x {Lu — plA)le,(8) + (t/A*)e9(8)}.Ad0dz, (760) 
0 0 

where 

y, = Ae,(O) + Zk (761) 

is position on the interface between shaft and material. Expanding the cross product, and 
using the periodicity of e,(@) and e, (0), we finally derive m = m(®)k, where 

A’B 
m(®) =-2NT = 4x u® (3) , (7.62) 

The linearity of this relationship, which is atypical, is an artifact of the linearity of the 
neo-Hookean response in simple shear. Importantly, this prediction is insensitive to the 

pressure field, which, as we have seen, is determined apart from a constant. That is, the 

boundary-value problem, as stated, determines the stress apart from a constant pressure 

field and, thus, yields a non-unique stress field. To obtain a unique stress, it is necessary to 

impose one additional scalar condition. One choice is the net axial force transmitted across 

a cross section. 

Problems 

1. Consider equilibrium without body force and assume a deformation of the form 

y=xtw(nk (7.63) 

where r € [a, b] is the radius from an axis of symmetry prior to deformation. 

(a) Show that the deformation gradient is 

F=l+w(nk@e,. (7.64) 

(b) Find w(r) for a neo-Hookean material, assuming the boundary conditions 

w(a) = W, w(b) = 0. 

(c) Compute the traction on the inner boundary and determine the allowable 

range of values of W, if the bond at r = a fails at a critical value of the shear 

stress. 

2. Consider the deformation 

y=x+w(@)k, (7.65)
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where @ is the azimuthal angle in a cylindrical polar coordinate system in the 

reference configuration. 

(a) Show that the deformation gradient is 

F=l+r'w(@)k@ eg. (7.66) 

(b) Show that the most general function w(@) for which the principal invariants 
1,33 of C are independent of @ is of the form 

w(9) = AO +B, (7.67) 

where A and B are constants. Can you interpret this deformation in physical 

terms? 

(c) Using the expression for the stress in an incompressible isotropic material, 

discuss the problem of maintaining this deformation in equilibrium without 

body force, using a reference configuration in the form of a right circular cy- 

linder with annular cross section ofinner and outer radii, a and b. Specifically, 

is this deformation possible if the tractions are zero at the inner and outer 

surfaces? Are there any restrictions on the strain—-energy function in this 

case? 

7.1.3 Torsion of a solid circular cylinder 

In this deformation an entire cross section Z = const. is rotated about the axis of the cylin- 

der, without expansion or contraction, by an amount that depends on the value of Z. We 

assume this dependence to be linear. Thus, 

y = Re,(@)+Zk, with 9=0+4TZ, (7.68) 

where T is the constant twist, i.e., the rate of rotation with respect to the axial coordinate. 

Using eqn (7.4), part 1, with the appropriate azimuth and proceeding as before, we derive 

F=e,(0) @e,(O) + e(0) @e,(@) +rte,(9) @k+k@k, (7.69) 

in which r = R., 

Once again, this may be factored, this time as 

F= FQ, (7.70) 

where Q is the rotation encountered earlier, and 

F=l+y(re(0) @k (771)
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is now an inhomogeneous simple shear on the e,(0), k axes of amount y(r) = rt. Again, 

we have J = det F det Q = 1 and the deformation is isochoric. We have 

B=e,(0) @e,(0) + (1+ y’)eo(P) @ eo(9) +k @k+ y[k® eo(A) + en(6) @ kl], 
(7:72) 

which we use together with the neo-Hookean model to complete the solution subject to the 

condition that the lateral surface of the cylinder be free of traction. 

Thus, we solve 

gradp = jdivB, (7.73) 

subject to 

Te,(0)=0 at r=A. (774) 

Notice that for eqn (7.73) to have a solution, it is necessary that the right-hand side 

have zero curl, i.e., curl(divB) = 0. For general incompressible materials, this condition is 

replaced by curl(divT) = 0, where T is the constitutive part of the stress. This, in turn, im- 

poses restrictions on the deformation without regard to the reactive constraint pressure 

field. The pressure field may then be determined post facto, in principle, by path integration. 

The zero curl condition ensures that the result obtained is independent of the path and, 

hence, a well-defined function of x. 

Returning to the problem at hand, we have 

d 1 
divB = Fe + -(B, - aw )| e,(9) = -rt’e,(@), (7.78) 

r r 

yielding <p = —rt’ and, hence, 

1 2.2 P(r) = po - SHUr’, (7:76) 

where py = p(0). We have succeeded here, as well as in the previous examples, in generat- 

ing the pressure field (apart from a constant) because the curl condition is automatically 

satisfied. The Cauchy stress is 

1 242 
T= set r — py, | 1+ uB, (7.77) 

yielding 

1 
Te,(0) = (Gurr - pot u) e,(@). (7.78) 

The constant py is obtained by imposing eqn (7.74), yielding the unique stress field 

1 
T=p seer -~A’)- 1 1+ uB. (7.79)



PROBLEMS | 65 

In linear elasticity, terms that are nonlinear in t are neglected. Doing so here, we find 

that T ~ T,,,, where 

Ti = Het [kK @ e9(9) + e6(0) @k], (7.80) 

which, of course, generates the classical linear shear stress distribution over a cross sec- 

tion. This distribution persists in the nonlinear case, but now normal stresses also arise in 

response to the twist. This, of course, is just the usual normal stress effect in disguise. 

The overall response of the cylinder may be determined by computing the net force on 

a cross section and the net twisting moment required to effect the twist. These, in turn, 

require the traction 

1 
Tk = geei(r —A’)k + prtes(6) (781) 

acting on a cross section. The resultant force is 

2n A 

f= [ / Tkrdrd@ = f(t)k, (7.82) 
0 0 

where 

1 
f(t) = tur’. (7.83) 

Evidently the force is a manifestation of the normal stress effect, vanishing in the linear 

theory. 

Finally, the twisting moment is 

an a 

m= / / y X Tkrdrd@ = m(t)k, (7.84) 
0 0 

where 

1 
m(t) = 5 fut. (7.85) 

This is precisely the same result predicted by linear elasticity, the coincidence again being 

due to the peculiar (i-e., linear) behavior of the neo-Hookean material in simple shear. 

Problems 

1. Verify the formulas for the net force and twisting moment. 

2. Show that a straight generator of the lateral surface of the cylinder is deformed 

into a helix. Find the ratio of its final length to its initial length.
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7.1.4 Combined extension and torsion 

The one surprising aspect of the torsion problem, at least for those not previously aware of 

the normal stress effect, is the prediction of a compressive axial force accompanying twist. 

This is to be regarded as the reaction force supplied by plates welded to the cross sections 

at the ends of the bar, arising in response to the restriction that the perpendicular distance 

between the plates (the end-to-end length of the bar) remains fixed. This suggests that if 

the reaction force is relaxed, then the end-to-end length should adjust accordingly. To in- 

vestigate this possibility, we propose a simple adjustment of the foregoing kinematics to 

accommodate axial extension. Thus, in place of eqn (7.68), we consider the deformation 

y=r(R)e(0)+zk, with @=O+p~z and z=AZ (7.86) 

where 7 is the constant twist. Here, the rate of rotation with respect to axial length on the 

deformed cylinder, and A is a positive constant. We allow r to be unequal to R to accommo- 

date incompressibility; the cross section must adjust to the axial stretch so as to preserve 

volume. 

The usual procedure generates 

F=r(R)e,(0) @e,(O) + (r/R)eg(O) @ eg(@) + rAyes(O) @k+AkK@k. (787) 

Incompressibility is not automatic this time; to enforce it, we compute the determinant of 

F in terms of the given parameters and set it to unity. The easiest way to proceed is to use 

the scalar triple product, or box product, definition of the determinant. Readers unfamiliar 

with this should consult the excellent discussion in Chadwick (1976). Thus, 

J = [Fe,(@), Fep(@), Fk] = [r’(R)e,(@), (r/R)es(@), rAwes(O) + Ak] = A(r/R)r'(R), 
(7.88) 

in which the square brackets are used to denote the box product. This is the same as 

eqn (7.33), and carries the same result; namely, eqn (7.34) in the case of an isochoric 
deformation and a solid section with r(0) = 0. Inserting the latter into eqn (7.87), we 
arrive at 

B=) 'e,(0) @e(O) + (A +r W?r*)es(O) ® e6 (0) 

+VKOk+ rWr[k @ e9(9) + e9(8) @k]. (7.89) 

For the neo-Hookean material we use eqn (7.73), obtaining 

nm 
gradp = — Br — Beo )e,(@), (790) 

implying once again that p depends only on r, with derivative 

d oP = ere. (791)
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We then have 

p(r) = pat Sve -r), where p,=p(a) and a= A/V). (7.92) 

Suppose, again, that the traction vanishes at the lateral surface. Then, Te,(@) vanishes at 

r= a,yielding p, = 4/2 and, hence, the unique pressure field 

ptr) =u t+ Syne —P)| (798 
and with this the stress field is completely specified. 

The traction ona cross section is now given by 

Tk = (A? - p)k + uryd7eo(8) (7.94) 

and generates the twisting moment m = mk, where (compare eqn (7.85)) 8 & pare eq 

1 4742 1 4 m= 3m a Yr = THA y (7.95) 

whereas the net force is f = fk, where 

2 2 -1 1 2452/2 f=mpa |r’ -2r ~qvha . (7.96) 

Relaxing the force has the effect of coupling the extension to the twist, resulting in 8 pang g 

1 
V-A = gue, (7.97) 

which, in turn, requires that A > 1 whenever y # 0. Thus, the bar extends as it is twisted. 

This is, again, just the normal stress effect, variously referred to as the Swift effect or the 

Poynting effect, depending on the context. The prediction that extension of a bar is induced 

by a twisting moment is corroborated by experiments. 

It bears mentioning that we have said nothing about the stability of these equilibria. 

In practice, torsional buckling ensues if the twist is large, yielding the possibility of an 

alternative deformation ofa slender bar into a helical shape. 

7.2 Problems exhibiting radial symmetry 
with respect to a fixed point 

In this class of problems, the distance of material points from a specified origin changes, but 

nothing else, while all points lying on a sphere centered at the origin move radially by the 

same amount. Thus, 

y=A(R)x, where R= |x| (7.98)
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is the distance from the origin prior to deformation. The distance after is simply the radius 

r(R) = RA(R), (799) 

yielding A as the ratio of the radii, also known as the hoop stretch. 

To obtain the deformation gradient, consider 

dy = A'(R)xdR + A(R)dkx. (7.100) 

As usual, we want this as a linear function of dx, so that we can read off the desired result. To 

this end, we differentiate R? = x - x, obtaining dR = u - dx, whereu = R''xis the normalized 

radius vector; hence, 

F= RX (R)x@x+A(R)I =r (Rou Q@ut+AaA(R\(1-u Quy), (7.101) 

where r’(R) = RA‘(R) + A(R). We then have 

Jaw (7.102) 

and thus require, as before, that r(R) be an increasing function; i.e., /(R) > 0. The polar 

decomposition is trivial in this case, yielding R = I, U = F, and the principal stretches 

{A} = {r, A, A}. (7.103) 

Suppose the material is incompressible and the deformation, therefore, isochoric. 

Putting J = 1 in eqn (7.102) yields a simple differential equation, having the unsurprising 

solution 

p-@=R-A’, (7.104) 

where a = r(A). Then, the hoop stretch distribution is 

e-wa\'3 

MR) = (14 @ ) , (7.105) 

and the radial stretch is A, = A™. 

For isotropic materials we combine eqns (4.41) and (6.23), with J = 1, obtaining 

  

T= > Tv, ® v; — pl, (7.106) 

in which 

T, =A,0@/dA,,__ etc., (7.107) 

and, for the present class of deformations, A, = A;(= A); consequently, t, = t;. Using v, = 

u thus yields
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T = Tu @u+t,(1-u@u) - pl, (7.108) 

which, in the present circumstances, may be written, for uniform materials, in the form 

T=h(r)y @y-[p-g(r) IL (7.109) 

with 

A(r)=r7f(r), f(r)=.-t% and g(r)=t. (7.110) 

Then, for equilibrium in the absence of body forces, 

0 = divT = div(hy @ y) - grad(p - g). (7.111) 

Of course, no one can remember the formula for the divergence in spherical coordinates, 

and so we will use Cartesians instead, i.e., divT = T,,e,, where T,, = 0T,/dy,, yielding 

(hyiy;),; — pi + Bi = 0. (7.112) 

Expanding this using y,; = 6, (the Kronecker delta), y,, = 3 and (-), = 17(-)’y, for any 
function of r alone, yields 

gradp = [4h + rh'(r) + r'e'(r) ly. (7.113) 

This is enough to conclude that p also depends on r alone, with derivative 

pr) =r[4h4 rh'(r) + r'e'(r)] (7.114) 

Integration and application of suitable boundary conditions thus determines the solution. 

Now that we know the constraint pressure depends only on radius, we may re-write 

eqn (7.109) in the form 

T=F(r)u@ut Gir)I = H(ry @y+ G(r)L (7.115) 

where 

F(r)=ti-ty G(r) =ty H(r) = r°F(r) (7.116) 

and 

h=t-p, bh=m-pl=h) (7.117) 

are the (principal) radial and hoop components of the Cauchy stress. Noting that 

eqn (7.115) resembles eqn (7.109), we proceed immediately to obtain the equilibrium 
equation
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4H +rH'(r) + 7'G'(r) = 0. (7.118) 

This is easily seen to be equivalent to 

(F + G)' +2r'F = 0, (7.119) 

which may be converted to the more recognizable form 

d 2 ~ 44+ —(t,-t) =0. (7.120) 
dr r 

There is just one non-trivial equilibrium equation to be solved for the single unknown 

function A(R). 

7.2.1 Integration of the equation 

Actually, it proves convenient to use stretch as the independent variable. First, we define 

@(A) = w(A7,A,A). (7.121) 

Using the chain rule, 

(A) = (8w/9A,)ddy/dd + (Be/IAq)dda/dd + (BW/9Ag)dA5/dd 
= 20w/dA, -2470@/8A,, (7.122) 

we find that 

ty — t, = A\Ow/BA, — A,9e/BA, 

1 
=27dw/9A, -2 500) + 1 80/8% 

1 Ar = -A-A'(A). (7.123) 
2 

Equation (7.120) then yields 

d A, A —t, = -@'(A) = R'O'(A), (7.124) 
dr r 

which may be reduced, using 

d 1d d 
—t=——t,=N—t, . dr’ A, dR’ aR" 5) 

to 

d 
RM ahh =@ (A). (7.126)
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To convert the derivative on the left, we use eqn (7.105), reaching 

  , (A? ~ 1) 
RA‘(R) = - a (7.127) 

We then use this with (7.126) to obtain 

d w'(r ah = 2) 7 (7.128) 

and, thus, reduce the problem to a quadrature. 

7.2.2 Pressurized shells, cavitation 

Consider, for example, a spherical shell A < R < B, traction-free at the inner radius, and 

subject to a negative pressure or suction at the outer radius. This simulates a triaxial state of 

stress in a region of material surrounding a spherical hole. The boundary conditions are of 

the form 

thu = Tu = Pu, (7.129) 

in which —P is the assigned pressure, and therefore, 

t;=P at A=A, and t,=0 at A=A,, (7.130) 

where A, = a/A and i, = b/B, with b? — a’ = B’ — A’, are the hoop stretches at the inner 

and outer radii. Taken together with eqn (7.128), this furnishes 

* (A) 
p- | DL haa (7.131) 

b 

  

yielding P vs a (or b) once the strain-energy function is specified. 

This seemingly innocuous result may be used to furnish a graphic illustration of the 

power of nonlinear elasticity to predict dramatic phenomena. Consider the case of a solid 

sphere, A = 0, and suppose the sphere remains solid, no matter the suction, (a = 0). Then 

A(R) = 1,A,, = 1, F = Land T is of the form T = —pl, in which p is uniform in equilibrium 

without body force. Then, unsurprisingly, P(= —p) is indeterminate; the rubber remains 

undeformed no matter the suction. This state, therefore, furnishes a solution for all values 

of suction. 
Experimental evidence (see Gent and Lindley, 1958) suggests that a hole forms spon- 

taneously at the center of the sphere when the suction is sufficiently strong. This cavitation 

solution corresponds to a > 0, where a = r(0). In this case A, is unbounded and the critical 

suction for its sudden onset is 

  
co Ar x 

Pat -| ult in (7.132)
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The lower limit is explained by observing that 

A, = b/B = (1 + @°/B’)"”?, (7.133) 

and thus that A, — 1 as a > 0. Of course, all this is sensible only if P.,, is finite, or in 

other words, if the integral in eqn (7.132) exists. This may or may not be the case, depend- 

ing on the strain—energy function at hand. In the latter case, we conclude that cavitation 

is not feasible and, hence, that the trivial solution is the only one available in the class of 

deformations considered. Ironically, strain—energy functions are deduced, traditionally, on 

the basis of experiments involving finite stretches, and so the theoretical study of cavitation 
using the present solution requires knowledge of material response over a far wider range 

of deformation than is normally encountered in experiments designed to quantify material 

response. Indeed, a rubber band breaks at a fairly moderate value of uniform overall stretch. 

However, having said this it must also be noted that rupture is invariably accompanied 

by strongly inhomogeneous deformations that may include cavitation on the micro-scale! 

All of this is food for thought as one contemplates theory and supporting experiments for 

failure mechanisms in rubber. 

The post-cavitation response is given simply by 

P(a) -| o) dd, (7.134) 
»o 

  
B-1 

where A, is given by eqn (7.133). This bifurcates off the trivial solution at P = P.,,. 

Problems 

1. Repeat the foregoing for the simpler case of plane strain, ie. for the two- 

dimensional radial expansion of a cylinder. 

In problems 2-5 assume the material to be incompressible, isotropic, and neo- 

Hookean. 

2. Consider the eversion of an incompressible hemispherical shell. Assume the de- 

formation is such that the final radius depends only on the initial radius, and that 

the elevation angle above the equator is mapped to its opposite value, below the 

equator. Show that equilibrium cannot be maintained with vanishing tractions 

at the inner and outer constant-radius surfaces. The actual deformation entails a 

flaring of the shell as required to meet the zero-traction conditions. 

3. Find the critical negative pressure P,,, for the onset of cavitation of a solid sphere 

(A = 0). What is the relation between the negative pressure and the cavity radius 

a=r(0)? 

4. A solid circular bar has initial radius A and length L. Suppose the bar has density 

p and let it spin about its own axis at the constant rate w. This spin causes a con- 

traction of the bar along its axis. Let u(x) = cos xe, + sin xe,. The corresponding



PROBLEMS | 73 

deformation is described by x = Ru(@) + Zk and y = r(R)u(@) + zk, where @ = 
© + wt, z = AZ, and J is the constant stretch along the axis. Suppose the traction 

is zero on the lateral surface of the cylinder. 

(a) Calculate the resultant forces -Efk on the two ends of the cylinder. Find the 

value of 4. corresponding tof = 0. 

(b) Obtain a relation between the deformed length of the cylinder and . 

. The kinematics of pure flexure of a block are described by 

x=x,E,, y=re,(@) + zk. (7.135) 

Here,r = f(x) and@ = g(x,), for some functions f and g to be determined. Thus, 

straight lines x, = const. and x, = const. are mapped to concentric circular arcs 

and rays through the origin, respectively (drawa figure). Furthermore, k = e; and 

Z = x, so the deformation is a plane strain (take {e,} = {E,}). 
The reference configuration is the region defined by A, < x, < A,,-B < x, < 

B,-H < x, < H. Suppose there are no tractions applied to the edges x, = Ay, Ay. 

The neutral axis is defined to be the vertical line x, = x’ that neither lengthens 
nor shortens in the course of deformation. Find r, = f(x), the radius of curvature 

of the neutral axis in the deformed configuration. Let a, = f(A,), a. = f(A) and 

find a relationship involving a,, a, and r,. 

Show that the resultant forces on the edges x, = +B vanish. Calculate the re- 

sultant moments of the traction distributions on the edges. What is the relation 

between the moment and the curvature x, = 1/r, of the neutral axis? 

. Consider the homogeneously deforming unit cube of Problem 3 in Chapter 6, 

but now suppose that it is subjected to equi-biaxial loading. Thus, the traction 

vanishes on the faces with unit normals +e, while the forces on the faces with 

unit normals te, and te, are tfe, and +fe,, respectively, where f > 0. 

(a) Show thata solution with A, = A, exists for all such f. 

(b) Using the so-called Mooney-Rivlin strain-energy function defined by W = 

C\(, - 3) + C,(h - 3), where C, and C, are given material constants, show 

that another branch of solutions, with A, 4 A,, becomes possible when f 
reaches a critical value. Thus, there is a bifurcation of equilibria at this value, 

at which the solution with equi-biaxial stretch bifurcates to one with unequal 

stretches. This behavior has been observed experimentally and has come to 

be known as the Treloar—Kearsely instability. We will study the stability of 
these solutions later in the course. 

(c) Our block is isotropic, by assumption, with respect to its initial configuration 

(the unit cube), which we have chosen as reference. Consider a deformation 
characterized by unequal biaxial stretch (i.e., 4, 4 Az, A3 = 1/A,A,). What is 

the symmetry group relative to this deformed configuration? Is the material 

isotropic relative to this configuration?
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Some examples involving uniform, 

compressible isotropic materials 

We study some examples of deformation in unconstrained isotropic materials. As the sim- 

plification afforded by an a priori constraint on the deformation is not available, we confine 

attention to strain-energy functions that facilitate analytical treatment. 

8.1 Spherical symmetry, revisited 

Recall the kinematical development in eqns (7.98)-(7.102) for deformations having a cen- 

ter of symmetry, but this time do not impose incompressibility. We adopt the constitutive 

formulation developed in eqns (4.56) and (4.57), which yields 

P = (w, + iw,)I — w,F + w,F* (8.1) 

in the present circumstances, and hence, 

DivP = V(w, + iw.) + F*(Vw;) — Div(w,F), (8.2) 

where use has been made of the Piola identity DivF* = 0. 

Using egn (7.101), we find that 

FY =Vu@utAr(1-u@u) (3.3) 

and, for uniform materials, 

F*(Vw;) = (w3)'F*u = A’(w)'u, (84) 

where we have made use of VR = u. Furthermore, 

Vim, + iw.) = (Ww, + nw2)‘u. (8.5) 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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Consider a strain-energy function having w, = 0. In this case the equilibrium equation 

reduces to 

[(wi)’ + A*(ws)'Ju = 0, (86) 

yielding the ordinary differential equation: 

(w,) + A?(w3)’ = 0. (87) 

As an example, consider the class of compressible Varga-type materials defined by 

w(iy, is, 3) = Qui, + F(is)], (88) 

where {4 is a positive material constant. This is simply the linear shear modulus, as in 

the case of conventional Varga materials. We then have w, = 244, a constant, and, w; = 

2uF'(i;). The differential eqn (8.7) simplifies to F’(i,)i,(R) = 0. Assuming F’(i,) # 0, 
recalling that i, = J and using eqn (7.102), we obtain 

rr (R) =JR’, with J = const. (89) 

Integrating and imposing r(A) = 4A, where A, is an assigned positive constant, we finally 

obtain the deformation 

(RP =JR +03 -JA’. (8.10) 

Here A can be identified with the initial radius of a sphere, and A, and the ratio of final to 

initial sphere radii. 

It remains to determine the constant J. For example, in the case of a solid sphere, it would 

be natural to require that r(0) = 0, corresponding to another solid sphere. In this case, we 

find J = A3 and r(R) = A,R. The deformation gradient is F = A,I, a uniform equi-triaxial 
stretch. We refer to this as the trivial solution. 

To explore conditions under which cavitation is possible, we consider the case r(0) = 

a > 0, for some constant a. Evidently, this requires J < A}. Furthermore, if the newly- 

created hole is traction free, then we must impose Tu = Oat r = a, where 

Tu =A’ dw/dA,u. (8.11) 

Accordingly, we impose 

A? +F(J) =0 (8.12) 

at r = a. Because 1 > oo asr —> a(R — 0) in this case, we require J to be such that 

FG) =0. (8.13)
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Figure 8.1 Constitutive response of a Varga-type material capable of supporting cavitation 

Accordingly, if a solution exhibiting cavitation is to exist, the function F must have at least 

one stationary point, J), say. Such a function, adjusted to ensure that the strain energy 

and Cauchy stress vanish when the material is undeformed, is sketched in Figure 8.1. The 

cavitated solution is then given by 

(RP =foR? + (VV -Ja)A’, (8.14) 

and is available provided that the boundary displacement is such that A, > J)’. 
In this solution and in the trivial solution, the deformation is controlled entirely by A,. 

To choose between them, we compare the total energies required to maintain the two 

solutions. In the case of any spherically symmetric deformation this is given by 

A 

E(A,) = 40 [ wR’ dR, (8.15) 
0 

where 

w/2p = i, + FY) 

= r(R) +2r/R+F() 

= R?(R’ry + FC). (8.16) 

We have 

A 

/ R?(R’r)'R'dR = A’r(A) = A,4', (8.17) 
0 

which is fixed by the data, and hence the energy comparison 

E(A4) — Exw(Aa) = 430 | , R’[F(J) - F(o) JAR, (8.18) 
0
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Figure 8.2 Cavitated solution bifurcates off trivial solution at A4 = IV 3 

where E,,, is the energy of the cavitated equilibrium solution. Of course, this is meaningful 

only ifA, > Jj’. For the kind of material sketched in Figure 8.1, Jy furnishes the minimum 

of the function F, ensuring that E,.,(A,) < E(A,); the cavitated equilibrium deformation 

thus requires less energy than any alternative spherically symmetric deformation, includ- 

ing the trivial equilibrium deformation. However, we have not proved that it minimizes 

the energy relative to any kinematically possible (non-spherically symmetric) deformation. 

Nevertheless, the analysis provides support for the conclusion that cavitation emerges when 

the boundary radius exceeds the critical value J}’*, The cavity radius isa = (A - Jo)'A (see 
Figure 8.2). 

8.2 Plane strain 

The term plane strain is used in reference to the two-dimensional situation: 

x=x,+zk, y=y,+zk with y, = x,(x)), (8.19) 

where k is a unit normal to a fixed plane &2 in which the deformation occurs, containing x, 

and y,. The associated deformation gradient is of the form 

F=F,+k@k, (8.20) 

wherein F, maps {2 to itself. This may be written 

2 

F, = > AaVo ®@ Uns (821) 

a=] 

where the A, are the principal stretches (A, = 1) and {v,}, {u,} are orthonormal princi- 
pal strain axes in Q (u, = v; = k). The former are the roots of the quadratic characteristic 

equation
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V-IA+] =0, (8.22) 

where 

I= At + Ax = trU,, J = AyA2 = det U,, (8.23) 

and U, is the right stretch factor in the polar decomposition of F, i.e, Uj = Ye Aate ® 

u,. The rotation factor is Ry = Ve @u, and the cofactor is F) = 4.4, @u, tA, 

V, ® Uy. 

The stretches are determined by J and J, implying that the strain energy for isotropic 

materials in a plane~strain deformation is 

@(A,,A, 1) = w(L)), (8.24) 

for some function w. This furnishes 

00/0), = w, + Aw, O@/0A, = wy, + Aywy (8.25) 

whereas 0w/0A3, evaluated at A, = 1, is a function of the A, and, hence, a function of x;,. 

The Piola stress reduces to 

P =P, + 0w/dA,;k Ok, (8.26) 

where 

P, = wi(v, @ wy + Vv. @ u,) + w,(A.v, ® u; + Arv, @ up) 

For general applications, it is useful to observe that 

Fy + Fy = (A, + A.)(v1 @ u, + v. @ wu) = IR (8.28) 

and, hence, that 

P, = I'w,(F, + F}) + wyF; (8.29) 

in any plane-strain deformation. 

Problems 

1, (a) In three dimensions, establish the polar decomposition 

F=RU (8.30)
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in which R € Orth* and 

U= > Au, @ u; 

= (AI)(su, ® u, + su, @ wy + u; @ u)(t'?(u, @ u, + u, @ w,) 

+ tu, @ u,|, (831) 

where A,(> 0) are the principal stretches, {u,} are the orthonormal principal 

axes of U and the factors correspond to a pure equi-triaxial stretch ofamount 
(> 0), a pure shear of amount s(> 0), and an isochoric uniaxial extension 

of amount ¢t(> 0) with accompanying lateral contraction. These are coaxial 

and so may be composed in any order. [Hint: the problem is solved if you 
can establish an invertible relation between the {A,} and {A, s, t}. This would 

imply that the two expressions above for U are equivalent. ] Show that the 

pure shear factor may be identified as the spectral decomposition ofa simple- 

shear deformation on a fixed set of axes. 

(b) In two dimensions, show that F may, without loss of generality, be decom- 

posed in the form (8.30), where 

U = (AI)(su, @ u, + su, @ u,) (832) 

is the composition of an areal dilation of amount A and a pure shear of 

amount s(> 0). 

2. In two dimensions, use the spectral decomposition of U to derive 

U=TIr'GI+C), where C=FF=U’, (8.33) 

and, thus, obtain I directly in terms of the invariants of C. Use this to obtain an 

explicit formula for U"', and use it to confirm that IR = F + F*. 

8.3 Radial expansion/compaction 

Henceforth, we drop the subscript (-), and consider deformations of the form 

x=Re,(@), y=r(R)e,(@). (8.34) 

We derive 

F=re,@e,+(r/R)ep Qe, F* =(r/R)e, We, + res @ ey (8.35) 

and 

F+F*=11, where I=R'(Rr)’. (8.36)
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Furthermore, 

J = (r/R)r (837) 

and the requirement J > O implies that r(R) is an increasing function: r > 0. Accordingly, 

in this case we have 

P= w+ w F*. (8.38) 

Problem 

Show that equilibrium without body force for is equivalent to the ordinary differen- 

tial equation (compare with eqn (8.7)) 

(wi)' + (r/R)(wy)' = 0. (8.39) 

For uniform materials the trivial solution is 

r(R) = AgR, (8.40) 

where A, = r(A)/A and r(A) is the (assigned) radius after deformation of the disc of initial 

radius A. To find a more interesting, yet tractable, alternative, consider again the special 

class of Varga-type materials 

w = 2u[1+ F(U)]. (841) 

Before proceeding, consider the response of such a material to a uniform equi-biaxial 

stretch, in which A, = A, = J’, as exemplified by the trivial solution. In this mode of 

deformation the strain energy reduces to 

w = 2u[2J'? + F()]. (8.42) 

The Piola stress components are w/0A, = Ow/0A, = 24P(J), where 

PU) =14+)'?F(). (8.43) 

We would expect, on physical grounds, that P > -Loo as J — 00,0, respectively, and 

hence that F'(J) + -00 as J > O and F(J) > Oat large values of J. If, in addition, the 
energy and stress vanish in the undeformed state, then F(1) = -2 and F’(1) = -1. A func- 

tion with all these properties, similar to that sketched in Figure 8.1, is depicted in Figure 8.3. 

This has an isolated minimum at some J, > 1.
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Figure 8.3 Constitutive response of a Varga-type material capable of supporting plane-strain 
cavitation 

(a) 

(b) 

(c) 

Problem 

Use this material to derive the general solution 

r(R) = J(R?- A’) +A’. (8.4) 

Thus, J = 42 for the trivial solution. Show that a cavity forms if J = Jo and A, > 

Ji, with radius a = A(A2 - Jo)”. Plot this as a function of A, and show that it 

branches off the trivial solution at A, = J)”. 

Carry out an energy comparison and show that the cavitated equilibrium deform- 

ation minimizes the energy in the class of purely radial deformations, provided 

thatA, > Ji”. 

Plot the Piola traction at the outer edge of the disc as a function of A, and show 

that it increases without bound for the trivial solution, but saturates at a fixed value 

in the cavitated solution ifA, > J}. 

Also of interest are the so-called harmonic materials defined by 

w(I,J) = 2u[FU) - J] (845) 

for some function F. These have the remarkable property that they yield explicit solutions to 

the general plane~strain equilibrium problem in terms of analytic functions of the complex 

variable x, + ix,. However, they yield somewhat unrealistic predictions in deformations that 

induce severe compression. This is borne out by eqn (8.45), which furnishes the question- 

able prediction that a degenerate deformation with J — 0 can be attained at a finite value 

of the energy. For this reason, the harmonic material is useful mainly in problems involving 
small-to-moderate strains with possibly finite rotations.
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Problems 

1. Show that all purely radial equilibrium deformations of harmonic materials are of 

the form 

r(R) = IR/2 + C/R, (8.46) 

where I and C are constants. Show that cavitation is not possible in a harmonic 

material. 

2. Consider a spherical shell of uniform, isotropic material, occupying the annu- 

lar region A < R < B. Solve the equilibrium problem (no body force) in the 

class of radial deformations x > y = A(R)x, where A(R) = r(R)/Rand R = |x|. 
Consider the following cases: 

(a) The material is compressible with strain energy given by w/2u = f(i,) — iy, 
where j(> 0) is a material constant. Assume f”(i,) > 0. State restrictions 
onf ensuring that the energy and stress vanish in the reference configuration. 

Assume the surface R = B to be traction free and the surface R = A to be 

subjected to pressure P. 

(b) The material is compressible with strain energy given by w/2 = i, + g(ia). 
Assume g’(i;) > 0. State restrictions on g ensuring that the energy and stress 

vanish in the reference configuration. Same loading conditions as in (a). 

(c) Show how the addition of a term linear in i, to the strain—-energy function 

affects the analyses of problems (a) and (b). 

3. Recall that for plane strain of compressible isotropic materials the Piola stress may 

be written in the convenient form 

P=I'w(F+F*)+wF; [=A tay, J=Aiay, (8.47) 

wherein all tensors are two-dimensional. Consider two-dimensional deform- 

ations x — y defined by 

x=Ru(®), y=r(R)u(d), (8.48) 

where u =e, and 6 = © + ['(R). This combines radial expansion/contraction 

with azimuthal shear. It simplifies matters to write 

y = u(R)u(O) + v(R)v(O), (8.49) 

where v(x) = k x u(x) and 

u(R) =r(R)cosP(R), v(R) =r(R)sinT(R). (8.50)
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Find a pair of coupled ODEs for u(R) and v(R). Solve them for the special case 
of harmonic materials with strain energies of the form w/2 = F(I) - J. Assume 

F'(I) > 0. This furnishes a good model if the strains are moderate while the 
rotations are large. Consider the BCs 

r(B)=B, r(A)=AA; TB) =0, T(A)=t. (851) 

Is there a limit, according to this model, on the amount of rotation t for 

prescribed A > 0? Explain. 
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Material stability, strong ellipticity 
and smoothness of equilibria 

9.1 Small motions superposed on finitely 
deformed equilibrium states 

Consider a small amplitude wave propagating through the elastic material. Suppose the ma- 

terial has been predeformed to some equilibrium state, with position field y,(x), prior to 

the passage of the wave. The wave causes the material point x to undergo a further dis- 

placement to position x (x,t), say. Supposing the material to be incompressible and using 

obvious notation, the Piola stresses in these configurations are 

P, = W,(F,;x) -p.FT and P= W,(F;x)-pF. (9.1) 

Here, we suppose the displacement from x, to x to be small in the sense that 

X (xt €) = Xe(x) + €x’(u £) + of€), (92) 

with |e| < 1, uniformly in x and ¢. We assume a concomitant change in the constraint 

pressure; i.e., 

p(x tj €) = p.(x) + ep’(% t) + of), (9.3) 

and we seek a system valid to linear order in € for the perturbation fields x’ and p’. We 

have made excessive use of the notation (-)’, relying on the context to convey the intended 

meaning; here, derivatives with respect to €, evaluated at € = 0. 

We may use eqns (9.1)-(9.3) to deduce that 

P(x, t; €) = P.(x) + €P’(x, £) + o(e), (94) 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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where 

P= M[F]-p'F - p.Fi[F'], (9.5) 

wherein the derivatives 

M = Wer (9.6) 

and F¥ are evaluated at F,. In terms of components, 

Mauys = PW/dF 40 5. (9.7) 

Problem 

Show that M possesses major symmetry, ie, M = M', where, for 4th order 
tensors, the transpose is defined by A- M'[B] = B- M[A]. Thus, Miyy = Myaia- 

Assuming zero body force for simplicity, we now substitute eqn (9.4) into the equation of 
motion 

DivP = p,X", (98) 

divide the result by €, and let € — 0 to arrive at the linear differential equation 

DivP’ = 1,1, (99) 

where 

u= x’ (9.10) 

is the linear approximation to the small displacement, and 

F’ = Vu. (9.11) 

The constraint of incompressibility imposes a restriction on Vu. To see this, we write 

J=}.+6J +0(€), (9.12) 

with J = J, = 1, divide by €, and let € — 0 to obtain J’ = 0. However, J' = J; F, yielding 

the restriction 

FY. Vu =0. (9.13)
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This and eqn (9.9) provide the system to determine u and p’, subject to appropriate 

boundary and initial conditions. 

If the underlying equilibrium deformation x,(x) is homogeneous and if the material is 
uniform—this situation being the simplest—then E, and p, are uniform. In particular, M 

is then uniform and equation (9.9) simplifies to 

Pei; = (Miss — p.OF*,/OF 5) u;ps - Ps (9.14) 

Problem 

Show that JOF/,/F, = Fi,F, — FF, and, hence, that (OF*,/OF.g)tj,n4 = 0. The 

latter is the linearized form of the Piola identity Fi, = 0. 

Thus, 

Px ii; = Masjpuna - Fi ply with Feuias = 0. (9.15) 

The compressible case is recovered by omitting the Lagrange multiplier p’ and suppressing 

the second equation. 

Consider a plane harmonic wave of the form 

u(x,t) = aexp[i(k-x-—qt)], p’(x,t) = qexp[i(k-x-t)], (9.16) 

wherein the constant vectors a and k are the polarization and wave vectors, respectively. 

The constant q is the amplitude of the perturbed constraint pressure; the constant w is 

the frequency, and i is the complex unit (i = —1). We show that this furnishes a solution 

to eqn (9.15). Naturally, these simple functions are not able to satisfy initial or bound- 

ary conditions, and so we suppose that the wave has been propagating for some time in 

an unbounded medium. Equivalently, attention is confined to an interval of time prior to 

impingement of the wave on the boundaries of the body. 

A convenient alternative representation of the waveform is obtained by introducing the 

wave number k = |k| and wavespeed c = w/k. Then, 

u(x, f) = aexp[ik(N-x-ct)] and p’(x,t) = qexp[ik(N-x-ct)], (9.17) 

where N = kk. These make clear the fact that the wave form is preserved on the plane 

defined by 

N-x=ct+d, (9.18) 

with unit normal N. Here, d is the perpendicular distance from the plane to the origin at 

time zero. Thus, the distance from the plane to the origin changes with velocity c.
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Evidently, this perturbation of the underlying equilibrium solution remains bounded in 

amplitude provided that c or w is a real number. This case is referred to as material stability, 

to highlight the fact that no boundary or initial conditions are involved and, hence, that 

the stability or otherwise of the underlying solution depends entirely on the properties of 

the material per se. Of course, it remains to verify that eqn (9.17) furnishes a solution to 

eqn (9.15). Simple calculations give 

tia = ijk, Ujan = —Uykaks, uj =-w@°u, and p’, = ip’ky (9.19) 

and eqn (9.13) yields the restriction 

u- Fik = 0, (920) 

which, by virtue of Nanson’s formula, requires that the displacement be polarized in the im- 

age of the plane defining the plane wave in the deformed equilibrium configuration. Using 

these results, eqn (9.15), is reduced to the algebraic equation 

A(E,, k)u + ip’F*k = p,@°u, (921) 

where A(F, k) is the so-called acoustic tensor, having components 

Ay = Mias(E)kaks. (922) 

Problem 

Use the major symmetry of M to demonstrate that A is symmetric. 

From egn (9.21) it follows that 

u- A(E,,k)u = 9,” |u|” ; (923) 

and the remaining content of eqn (9.21) is 

F*k- A(F,, k)u + ip’ |F*k|’ = 0, (924) 

which determines p’ in terms of u. Our procedure can yield complex values because of the 

assumption eqn (9.16). To rectify this, we can qualify the latter by taking real or imaginary 

parts a priori. We conclude that p’ is bounded if, and only if, u is bounded. The first result 

implies that w* > 0; hence, w € R and material stability, whenever A is positive definite. 

Whether or not this is the case evidently depends only on F, and the strain-energy function. 

In the case of a compressible material the constraint eqn (9.13) is not relevant and the 

foregoing results remain valid with the Lagrange multiplier suppressed. Equation (9.21) is 

replaced by the eigen-problem 

A(E,, ku = 9,@7u. (925)
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Because A is symmetric, it has three real eigenvalues w’ and three mutually orthog- 

onal eigenvectors—the polarization vectors. Material stability obtains if, and only if, all 

eigenvalues are positive and, hence, if and only if A is positive definite. 

Problems 

1. According to the foregoing analysis the equilibrium state is stable with respect to 

perturbations of the form 

u(x,t) = aexp[i(k- x - wt) ] (9.26) 

if the associated acoustic tensor is positive definite. Show that an unstable solution 

exists if the acoustic tensor has a negative eigenvalue. Furthermore, show that an 

unstable solution of the form 

u(x, t) = af exp(ik - x) (9.27) 

exists when the acoustic tensor is positive semi-definite. Conclude that strict 

positive definiteness of the acoustic tensor is a necessary condition for stability. 

2. Consider the propagation of infinitesimal waves superposed on a static finite de- 

formation (in equilibrium without body force) of a homogeneous incompressible 

elastic solid. Suppose the underlying finite deformation is a homogeneous tri- 

axial stretch with deformation gradient F = A,e, @ E, + A,e, @ E, + A3e, @ E;, 

where A, are positive constants and {e,} = {E,}. Consider plane harmonic waves 
superposed on the static solution. Obtain an expression for the acoustic tensor us- 

ing the neo-Hookean strain-energy function and analyze the associated eigenvalue 

problem for the wavespeeds. Are there conditions under which the wavespeeds 

can be imaginary numbers? 

9.2 Smoothness of equilibria 

Suppose a given equilibrium deformation x (x) is C’, i.e., twice differentiable in the sense 

that x,, F,, and F,,, are continuous functions of x. It satisfies 

Pia t+ 0b; = 0 (928) 

everywhere in the body, with 

P= OW/dF,. (9.29) 

We consider only the unconstrained case for now.
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The chain rule furnishes 

Pisa = Mision, + Ri, (930) 

where 

R, = 0 W/dx,0F 4, (9.31) 

and eqn (9.28) reduces to 

MiasFaa + Pxb, + R, = 0. (9.32) 

Suppose, instead, that x(x) is C’ and piecewise C’, ie. x, and F,, are continuous, but 

F,,3 May jump across one or more surfaces in the body. We want to derive conditions that 

allow for this possibility, but first we need some preliminary discussion. 

Consider a patch of surface, described in parametric form by the position field &(1,, u2), 

and let N(u,, 4) be a unit-normal field on this patch. The surface divides the reference 

configuration into two parts, denoted by + and -. A point off the surface may be located by 

specifying the value of ¢ in the normal-coordinate parametrization (Figure 9.1) 

(uy, ta, ¢) = k(u4, uy) + CN( m4, up) (9.33) 

of the surrounding 3-space. It is easy to demonstrate that the relationship between the 

coordinates {t,, #, ¢ } and x is invertible in any sufficiently small three-dimensional neigh- 

borhood of a point on the surface. In particular, there is a one-to-one relationship among 

the Cartesian coordinates x, and {u,,¢} in this neighborhood; we use Greek subscripts, 

ranging over {1,2}, to identify surface coordinates. 
Furthermore, we assume these relations to be as smooth as required by the analysis. 

Confining attention to such a neighborhood, we are then justified in writing 

do = Voc -dx, (934) 

where 

dx = du, + Ndg + cdN. (9.35) 

Because &,, and dN are tangential to the surface, it then follows that 

dg =N- dx, (9.36) 

and comparison with eqn (9.34) yields 

N=Vco. (9.37)
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Figure 9.1 Normal-coordinate parametrization of three-space in the vicinity of a surface 

For any function f of position, and hence of the coordinates, we define the upper and 

lower surface limits 

flu, u) = jim flu, ua,¢) and f(a, u,) = lim flu, Ur, 6), (9.38) 

and the associated discontinuity 

if] = f(y, uy) -fi(u, uy). (9.39) 

If the deformation x(x) is continuous across the surface, i.e., if the material does 

not fracture, then the x, are continuous, ie., X,"(4, 42) = X/ (ui, u). Assuming sufficient 

smoothness of these limits on the surface, we can differentiate and conclude that 

[Xie] = [Xian] = 0, ete. (940) 

However, there is no reason to conclude that there is any relationship between the limits 

Xiu, 2) = lim (8x,/85) and X,.(m,%) = lim (8x:/85). (941) 

Ina small neighborhood of the surface, we may apply the chain rule to derive 

Fp = Xjatlas + XicSip- (9.42) 

The jump across the surface is then found to be 

[Fis] =a,Nz, where a; = [X,<]. (9.43)
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The discontinuity in the deformation gradient is thus necessarily of the form 

[F]=a@N (94) 

for some vector a. Tensors of this type are said to be rank-1. Here, as in the theory 

of matrices, the rank of a tensor A, say, is equal to the dimension of its image space: 

RankA = dim{Av}, where v is any vector. In the present example the image space is the 
one-dimensional space spanned by a. 

Suppose now that x (x) is C’. Then [F] vanishes and so a vanishes: [x;, ] = 0. We have 
Xi (a1, 2) = X(t, v2), and assuming these surfacial limits to be smooth, it follows that 

[Xica] = 0. Proceeding from eqn (9.42), we compute 

Fipa = Xjatlapa + Xic San + Xjap Mappa 

+Xjca Ua ASB + Kis 4a, SA + Xiss CaS B (9.45) 

Taking jumps then yields 

[Fn,] = a)NgNa, where a, = [Xj cc]. (9.46) 

Next, we take limits of eqn (9.32) as the surface is approached from above and below, 

obtaining 

tk Musk 5 a ten = 0, (947) 

wherein the missing terms are continuous across the surface. Subtracting the two equations 

and invoking eqn (9.46), we find that 

MausyaNaNoa; =0, (9.48) 

or 

A(F, N)a = 0, (9.49) 

where A(F, N) is the acoustic tensor based on N. It follows that a discontinuity is possible, 

ie., a # 0, if and only if det A(F, N) = 0. This is an equation for the local orientation N 
of the discontinuity surface. On the other hand, if the strain-energy function is such that 

A(F, N) is non-singular for any deformation, i.e., if the equations of equilibrium are always 

of elliptic type, then eqn (9.49) requires that the discontinuity vanish and the underlying 

deformation is C’. It is possible to continue in a recursive manner to show that if an equilib- 

rium deformation is piecewise C”, then it is, in fact, C" for any n, provided that the acoustic 

tensor is non-singular, granted sufficient regularity of the function W(F).
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Problem 

Verify this claim. Hint: the ¢ —derivatives of the deformation are the only ones 

having potential discontinuities. 

Note that material stability, which is tantamount to the positive definiteness of the 

acoustic tensor and which confers its nonsingular character, is enough to ensure that the 

smoothness conditions to which we have referred are fulfilled. However, this falls short of 

proving that equilibria are arbitrarily smooth in the presence of strong ellipticity. For, there 

is no known proof of the piecewise C* continuity that was presumed at the outset, although 

partial results of this kind are known for a restricted class of boundary data (see the paper 

by Healey and Rosakis, 1997). 

9.3 Incompressibility 

We have seen that if the material is incompressible then the stress is given by 

Pis = OW/OF,4 — pF’. (9.50) 

Suppose that F,, and p are continuous functions of x, but that their gradients may be 

discontinuous across some surface. Then, as before, 

[Fix] =a)NgN, and [py] = qNa, (9.51) 

for some a, and q. The second of these is derived as eqn (9.44) was derived, on replacing x, 

by p. On either side of the discontinuity surface, eqn (9.28) applies and yields 

MayjEpa - Papa t= 9, (9.52) 

wherein the missing terms are continuous. Taking limits from above and below this surface, 

and subtracting the resulting equations, as before, we arrive at 

A(F, N)a = qF*N. (9.53) 

Here, however, a is subject to the restriction J(F(x)) = 1, identically, at all points removed 
from the discontinuity surface. This implies that VJ vanishes identically in the body, minus 

the surface. Using the chain rule, this is found to be equivalent to 

PF’ Fa = 0. (9.54) 

Taking the jump, we arrive at 

a: F*N = 0. (9.55)
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Accordingly, eqn (9.53) requires that a- A(F, N)a vanishes if a discontinuity is to exist. 
It follows that if the strong ellipticity—or material stability—condition is satisfied, then 

the only resolution is a = 0; then, eqn (9.53) yields q = 0, and there is no discontinuity. 

Proceeding by recursion, it is possible to show that both the deformation and pressure fields 

are arbitrarily smooth, granted the degree of continuity assumed at the outset. 

Problem 

Prove this. 
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Membrane theory 

A membrane is a thin sheet of thickness h, which is much smaller than any spanwise dimen- 
sion of the sheet, such as its overall diameter or the diameter of an interior hole. Membranes 

provide a particularly useful setting for the empirical testing of formulations for the strain- 

energy function. Their relatively easy deformability affords empirical access to large regions 

of strain space. In this respect they are similar to rubber bands in furnishing archetypal ex- 

amples through which elasticity can be understood, both qualitatively and quantitatively. 

Indeed, the empirical work of Treloar (1975) on rubber elasticity—arguably the most 

important collection of work of its kind—was conducted on thin membranes. 

10.1 General theory 

Our intention, here, is to exploit the thinness of the membrane to derive an approximate 

two-dimensional theory that captures the most important aspects of the behavior of thin 

sheets. We concentrate on equilibria, although extensions to accommodate dynamics are 

straightforward. To this end, let / be the next smallest length scale in the problem at hand, 

such as a spanwise dimension or the length scale for the spatial variation ofa distribution of 

load. We suppose that h/1 < 1, and proceed to derive the leading-order two-dimensional 

approximation to the three-dimensional equations. This leading-order approximate model 

is what we mean by membrane theory. To highlight its important features, we consider 

the simplest case in which the reference configuration « is a thin prismatic plate-like re- 

gion of three-space. In this simplest case, we can decompose the reference configuration 

into the Cartesian product of a midplane Q and a through-thickness fiber C: « = Q* C 

(Figure 10.1). Correspondingly, we write position in « as 

x=x(u,¢), where k(u,¢)=ut+ck. (10.1) 

Here, u is (two-dimensional) position on Q, ¢ € C isa linear through-thickness coord- 

inate and k is the (fixed) unit normal to . Thus, C may be identified with the interval 

[-h/2, h/2] containing ¢. We suppose that all length scales have been non-dimensionalized 

by J; equivalently, we adopt! as the unit of length (J = 1) and assume thath < 1. 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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Figure 10.1 Reference configuration ofa thin sheet 

In a deformation x (x) of the body, the plane Q is carried to a surface w, described 

parametrically by 

r(u) = x (x(u, 0). (102) 

As we shall see, the determination of this function is the main objective of membrane 

theory. As usual, the problem to be solved is 

DivP = 0 (103) 

in K, subject to some set of boundary conditions. We exclude body forces for the sake of 

brevity and convenience; their inclusion presents little difficulty. Equivalently, 

O= Piss = Pre + P., (10.4) 

where Greek indices range over {1,2} and the prime stands for d(-)/@¢. In other words, 

we have identified ¢ with x;. We thus identify x, with u,, the Cartesian coordinates of u; 

and E, with k. 

This suggests the decomposition 

P=P1+Pk@k, (10.5) 

where 

1=I1-k@k (10.6) 

is the projection onto the plane &2. Here, we have used this to expand the identity P = PI. 
Furthermore, 1 = E, ® E, and so
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P1 = P,e, @ E,. (10.7) 

Equation (10.4) is then seen to be the component form of 

Div|(P1) + P’k = 0, (108) 

where Div,(-) is the two-dimensional divergence with respect to position u. This is just 

another way of writing eqn (10.3); accordingly, it holds at all points of « and, hence, on the 

plane &2 in particular, ie., at ¢ = 0, where it reduces to 

Div(Pol) + Pik = 0. (109) 

The subscript (-)» refers to function values on the plane, and (-)) refers to a ¢ - derivative, 
evaluated at ¢ = 0. 

We will focus attention on uniform incompressible materials, for which 

Py = W,(F) - qoF}- (10.10) 

We use q instead of p to denote the constraint pressure, for reasons that will become clear 

as we proceed. Let ¥(u,¢) = x (x(u,¢)). Then, 

Fdx = dx =(VxX)dut x'dc, (10.11) 

where, for the purposes of this chapter, V is the (two-dimensional) gradient with respect to 

u, whereas, from eqn (10.1), 

dx = du+kdc. (10.12) 

As du = 1du, we have 

Fdx = Fldu + Fkdg, (10.13) 

and comparison with (10.11), together with F = Fl + Fk @ k, yields 

F=Vx+x' Ok (10.14) 

Evaluating this at the midplane, we obtain 

F, = Vr(u) + d(u) @k, (10.15) 

for use in eqn (10.10), where d = Xj. Observe that r(u) and d(u) are independent vector 
fields on (2. In the literature, d is often referred to as the director field. It represents the tan- 

gent to a material curve after deformation, evaluated at ¢ = 0, and oriented perpendicular 

to Q in«. The first term on the right in eqn (10.15) has the representation
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Figure 10.2 Position and director fields on the deformed surface 

Vr=ry @E, (10.16) 

in obvious notation. Because the r, lie tangential to the deformed midsurface wv, this tensor 

maps 2 to the tangent plane to w at the material point associated with u (see Figure 10.2). 

The areal stretch w and orientation n of the material surface w may be inferred from 

Nanson’s formula. Thus, 

an = F*k = FE, x FyE; 
= (Vr)E, x (Wr)E, = 4) X 1, (10.17) 

implying that 

o = |r, X rp]. (10.18) 

Furthermore, 

Jo = det Fy = [F,E,, FoE,, FoE; | 

= F,E, x FE, - Fok =r, Xr, +d, (10.19) 

and so 

Jo=an-d. (10.20) 

Accordingly, if the deformation is isochoric, as it must be for incompressible materials, 

then 

an-d=1. (10.21)
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This yields the conclusion that 

d=ar'n+(Vrje, (1022) 

where e is a two-vector lying in &2. 

Thus far, we have merely recast the equations without invoking any approximations. We 

do so now, by estimating the lateral-traction boundary conditions. For example, if p* are 

the tractions acting at the major surfaces ¢ = +h/2 with unit normals N = +k, then p* = 

+P*k. Accordingly, for small h, we have p* = 4Pok + (h/2)P)k + o(h). The net-force 
density and the force-difference density on these surfaces are thus approximated by 

p’+p =hPik+o(h) and p*-—p =2P,k+o(h). (10.23) 

It may be noted that the degree of differentiability required by these estimates is consist- 

ent with our earlier discussion about smoothness of equilibria in the presence of strong 
ellipticity. 

Substituting the first estimate into the exact equation eqn (10.9), we derive 

Div, (Pol) + h'(p* + p’) + ’o(h) = 0. (10.24) 

An attempt to balance the terms reveals that p* + p” can be of order h, at most (including 

the possibility that it vanishes) and, hence, that 

p’ +p =hp+o(h), (10.25) 

where p is a vector field of order unity. In the same way, eqn (10.23), part 2, indicates that 

p’-p =2q+0(1), (10.26) 

where q is likewise of order unity. Inserting these into eqns (10.24) and (10.23), part 2, and 

passing to the limit h — 0, furnishes the leading-order differential-algebraic problem 

Div, (Pol) +p=0, Pok=q (10.27) 

for the determination of the fields r(u) and d(u). In the case of incompressibility we have a 

system for the determination of {r(u), e(u), qo(u)}. 

10.2 Pressurized membranes 

An important example is furnished by lateral pressure loading. Suppose the upper surface 

¢ = h/2is traction free, while the lower surface ¢ = —h/2is loaded bya pressure of intensity 

p- Then, of course, p* = 0.
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Problem 

Show that p’ = p(F*)"k. 

Thus, p- = p[F*k + O(h)], yielding 

plFsk + O(h)] =hp+o(h) and -p[F*k + O(h)] = 2q+ o(1). (10.28) 

These are reconciled by taking 

p = hP + o(h), 

with P of order unity. It follows that p = PF3k and q = 0, and the equations to be solved are 

Div(Pol)+a@Pn=0 and P,k=0. (10.29) 

The pressure is seen to contribute a force that is distributed over the membrane surface, 

in the same way that a conventional body force is distributed over a body’s volume. The sec- 

ond equation implies that the membrane is in a state of plane stress, at leading order. In the 

older literature, conditions of the latter type were typically imposed, rather than derived, as 

we have done. This is unnatural, however, and obscures the logical structure of the theory. 

10.3 Uniqueness of the director 

Observe that the plane-stress condition, or alternatively eqn (10.27), part 2, amounts, 

via eqns (10.15), (10.22), and (10.10), to an algebraic relationship among the entries of 

{r(u), e(u), qo(u)}- In the next subsection—on isotropic materials—we will use it to evalu- 
ate e and qp in terms of the midplane deformation r(u). Before doing so, we would like to 

know whether or not such solutions are unique. We proceed to answer this question in the 

affirmative, with the proviso that the strong-ellipticity condition is satisfied. 

First, observe that eqn (10.29), part 2, is equivalent to the statement F‘(W;)k = qk; here 

and, henceforth, we drop the subscript (-), for convenience. This, in turn, is equivalent to 

0 = 1F'(W,)k = (Vr)'(W,)k and q=k-F(W,)k=d-(W,)k. (1030) 

Next, let us fix r(u) in the function W(F), where F is given by (10.15) and (10.22). This 
results in a function of e, which we denote by G(e). Consider a path e(u) in the space of 

two-vectors, and let o(u) = G(e(u)). This has the derivative 

& = We-d@k= W,- (Vr)e @k = (Vr)é- (W,)k = é- (Vr)'(We)k, (1031) 

from which it follows that 

G, = (Vr)'(W.)k. (10.32)
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We see, from eqn (10.30), part 1, that G is stationary at any solution to our problem, i.e., 

G, =0. 
The second derivative is 

o=G,-é+(G,) -¢, (1033) 

where 

(G.) = (Vr)'(Wap[(Vr)é ® k])k. (1034) 

Problem 

Reduce this tod = G,-@ + (Vr)e - {A(F, k)}(Vr)e, where A(F, k) is the acoustic 
tensor based on the unit vector k. 

The linear space of two-vectors is a convex set. As such, it contains the straight-line path 

e(u) = (1 - u)e, + ue,, with u € [0,1], for any pair e, and e, of distinct two-vectors. That 

is, every vector can be expressed a convex combination of two given vectors. On this path 

we have é = 0 and 

ao =(Vrje- {A(F,k)}(Vre, (1035) 

withe = e, - e,(7 0). 
Recall that strong ellipticity or material stability is the requirement, for incompressible 

materials, that a - A(F, b)a > 0 forall non-zero a and any unit vector b, such that a - F*b = 

0. Picking a = (Vr)é and b = k, and invoking eqn (10.17), we find that a- F*b = (Vr)e- 

(an), which vanishes identically. Accordingly, strong ellipticity implies that ¢ > 0 for all 

u € [0,1]. Integration then yields 

é(u) =6(0) + / " &(x)dx > 6(0) (1036) 

if u > Oand, hence, 

o(t)=a(0)+ [ a(u)du > o (0) + a(0), (10.37) 

G(e,) - G(e,) > (e.-e1) - G,(e:). (10.38) 

This means that G(e) is a convex function. Of course, we can interchange e, and e,, and 

repeat the foregoing argument, obtaining 

G(e,) - Ge.) > (e, - e2) - G.(e2). (10.39)
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Adding these inequalities, we conclude that 

[G,(e.) - G.(e,)]+(e,-e,) > 0, forall e, #e,. (10.40) 

Suppose now that there are two solutions, e, and e,, say, to the stationarity problem. 

Then G,(e,) - G.(e,) is manifestly zero, and the only possibility consistent with (10.40) 
is e, = e,; the solution e is unique. Equation (10.30), part 2, then furnishes a unique 

constraint pressure. 

Beyond this, if e,, say, is the solution, then eqn (10.38) yields G(e,) > G(e,) for any e, 

not equal to e,. We conclude that the solution to eqn (10.30), part 1, minimizes the energy 

relative to any alternative value of e. 

10.4 Isotropic materials 

By far the majority of applications of membrane theory concern isotropic, incompressible 

materials, and so we confine our further attention to this important case. With reference to 

eqn (4.41) and Chapter 6, we may write P = FS, with 

3 

S = J A/(80/82, - g/d,)u, ® w, (1041) 
i=l 

where @(A,, A», A3) is the (extended) strain-energy function, written in terms of the princi- 

pal stretches, and u, are the associated (orthonormal) principal axes. As F is invertible, the 

plane stress condition eqn (10.29), part 2, is equivalent to the statement 

Sk =0. (10.42) 

This implies that k is an eigenvector of S, with eigenvalue zero. We may, therefore, identify 

k with us, say, and conclude that 

g = 38/93 = (A,A,)18w/AAy, (1043) 

which is seen to be equivalent to eqn (10.30), part 2, and where isochoricity has been im- 

posed in the form A,,A3 = 1. Because the u, are orthogonal, the u, lie in the plane (2; 

accordingly, from eqn (10.15), 

Ay, =(Vr)u, and A,v, = (Vr)u, (10.44) 

implying that the principal vectors v, are tangential to w. This is enough to conclude that v, 

is perpendicular to the deformed surface and, thus, aligned with its unit normal n. Here, of 

course, v, are the eigenvectors of the left stretch tensor V. We suppose, without loss of gen- 

erality, that {u,} and {v;} are right-handed triads. The positivity of the scalar triple product 
J = [Fu,, Fu,, Fu,] then furnishes v, = n. Finally, eqn (10.15) delivers
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d =A,n, (10.45) 

implying that w = A;' ande = 0 in eqn (10.22); this is the unique director field. 

Let 

@(Any Az) = @(Ai, Ad, (Ara) "). (10.46) 

Then, 

d@/0A, = Ow/dA, + (8w/8A;)9A3/9A, 

= 0w/8A, —Aj'A39w/9A, 

= dw/dA, -Aj'q. (10.47) 

Likewise, 

80/9A, = 8w/dA, - A5'q. (10.48) 

It follows that 

2 

S= )°A,180/8A,u, ® uy, (1049) 
a=) 

and 

2 

P= y- 8@/0A,Vq ® Uy. (10.50) 

a=l 

Note that P = P1 because we have already solved Pk = 0. Also, we have used the trac- 

tion conditions at the major surfaces to evaluate the constraint pressure a priori, and so 
the membrane problem does not involve a Lagrange multiplier. 

Often the h-multiplied version of the membrane problem is preferred. This is 

Div, (hP) + apn = 0, (10.51) 

where p is the actual pressure, apart from an error of order o(h), @ = 4,A, and 

2 

hP = ) > U/9A4V @ Va, (1052) 
a=] 

where 

U(Ay Az) = h@(A,, An) (10.53) 

is the strain energy per unit area of Q2.
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Before proceeding to an example, we pause to re-write the equations in yet another, 

arguably more convenient, form. To this end, note that 

hP = hP1 = h(PE,) @E, =p, ® Eu, (10.54) 

where 

Pp, = APE, = hPixe;. (1085) 

Accordingly, 

Div, (hP) = hPiaa@s = Paes (10.56) 

and the equation to be solved is 

Pi + pan = 0. (10.57) 

Physically, the stress vectors p, are the force resultants (forces per unit length) transmitted 

across the material lines on which the u, are constant. 

10.5 Axially symmetric deformations 
of a cylindrical membrane 

Consider a reference configuration of a membrane in the shape of a right circular cylinder. 

We can regard this configuration as a mapping from an initial plane, as in the previous sub- 

section, by writing u = u,E, with u, = zand u, = RO, where z is the axial coordinate along 

the axis of the tube, @ € [0,277) is the azimuthal angle, assuming constant values on the 

generators of the tube, and R is the (constant) tube radius. As before, we identify E, with k, 

the unit normal to the plane (Figures 10.3a—d). 
We suppose the deformed membrane to be a surface of revolution, parametrized in the 

form 

r(u) = r(z)e,(6) + &(z)e,, (10.58) 

where e,(@) = cose, + sin@e, (note carefully that the subscript labels do not conform 

to the common convention). The axis of symmetry is directed along e,, and we impose 

f{e;} = {E,}. Here, r(z) and &(z) are the radius and axial coordinate, after deformation, of 
the material circle defined by z = const. on the reference cylinder. The latter is recovered by 

putting r(z) = Rand &(z) = z (Figure 10.3). 
To construct the membrane deformation gradient, we use 

(Vr)du = dr = [r'(z)e,(0) + E'(z)e, ]dz + r(z)e,(0)d0, (10.59)
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Figure 10.3 Geometry of reference and deformed surface. (a) Plane isometric to reference cy- 
linder. (b) Geometry of reference cylinder. (c) Section of deformed surface of revolution. (d) 
Meridian of deformed surface. 

where e,(9) = e'(9) =e, x e,(@). Noting that dz = du, = E,-du and dO = R"du, = 
R”E, - du, we conclude, in accordance with eqn (10.16), that 

Vr = (re, + £'e,) @ E, + (r/R)es ® E,, 

which immediately delivers 

Vr= hw ® uy, 

a=) 

with u, = E,, u, = E,, and 

Aiv, =re,+&'e,, Av, = (r/R)es. 

Hence, the principal stretches: 

A, = V(r)? +(&’)? and A, =r/R, 

We also have the stress vectors: 

2 

Py, = (» OU/OA pv, (ce) ») E,, 

Bel 

(10.60) 

(1061) 

(1062) 

(10.63) 

(10.64)
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so that 

p, = 9U/dA,v, and p, = 0U/0A,%, (1065) 

yielding 

a 0 
Paa = ay atm) + Rag rive): (10.66) 

where 

f, =A;'0U/8A, and tf, =A;'dU/dA,. (1067) 

Problem 

Show that the ¢, are the principal Cauchy stress resultants, i.e., the eigenvalues of 

h*T, where T is the value of the Cauchy stress at the midsurface and h* is the 

thickness of the membrane in its deformed configuration. 

Using eqns (10.62) and (10.65) we derive 

a 
py atin) = (A2A7")'Arvs + dA; (r"e, +&e,) and 

a i 
5g Aitave) = d,t,e,(0) = -A, he, (1068) 

and eqn (10.57) reduces to 

— R'Ayhe, + (A,Aj"f)/Ayy, + 2A (re, + Ee.) + pA Aon = 0. (1069) 

Due to of our unorthodox labelling of axes, the exterior unit normal to the deformed mem- 

brane is obtained using A,A,n = —A,v, X A,v,. Projecting eqn (10.69) onto e,, we then 

find that 

(A,A7't&')' — pr’(r/R) = 0, (10.70) 

which may be integrated, in the case of a uniform inflation pressure, to yield 

A7'0U/0A,8' = spriR+ C, (1071) 

where C is a constant. 

Problem 

Prove that this constant is proportional to the axial force acting on a cross section 

of the cylinder. The result is, therefore, an elementary consequence of axial force 

equilibrium.
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Projection of eqn (10.69) onto the tangent, v,, to the meridian of the deformed mem- 

brane yields 

~ (7 /R)t + (AATH)AL + AAT HAT (r'r” + &E") = 0. (10.72) 

The second term is the same as (A,¢,)! - A2Aj't,A; and the final term in parentheses is 1.,A'. 

The equation thus reduces to (A,£,)' = jt, or 

(rt,)’ = tr’. (10.73) 

Together with eqn (10.71), this provides a system for the determination of r(z) and &(z). 

Problem 

Consider the problem of an unpressurized membrane of length 2L mounted on par- 

allel rings of radius R at z = +L. An axial force F is applied to these rings. The 

membrane is composed ofa neo-Hookean material (In Problem no, 2 of Section 9.1 

you proved that this material satisfies strong ellipticity). Compute the relation 
between this force and the axial half-length, |, of the membrane, i.e., ! = E(L). 

To proceed, use symmetry to justify the assumption that £ (z) is an odd function; 

ie., €(-z) = -€(z). Then, (0) = 0. Next, observe that eqn (10.63), part 1, implies 
the existence of an angle @(z) such that 

r=A,sing, §& =A, cos¢. (1074) 

Thus, tan d = dr/d&, implying that @ is the angle made by the tangent to the me- 

ridian with the symmetry axis. From Figure 10.4, we infer that the tangent to the 

meridian vanishes at the throat of the membrane and, hence, that (0) = 0. 

From eqn (10.71) we have A;'0U/0A,&' = F/27R, or 

F/2nR = 0U/8d, cos @, (10.75) 

whereas eqn (10.73) furnishes (8U/0A,)’ = 4,A;'0U/A,. Expanding the deriva- 
tive on the left and solving for 4), we derive 

a ie 

ze-LO”S”””C SL z=0 

(a) (b) 

Figure 10.4 Reference and deformed configurations of the membrane
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M = (0°U/ANY'R™ sin $(AU/IA, — A,0°U/9A,9A2), (10.76) 

where use has been made of eqn (10.74), part 1, in the form 

A, = RTA sing. (1077) 

Equations eqns (10.75)-(10.77) provide a differential-algebraic system to be solved 
for the functions A, (z), A,(z) and $(z), subject to the boundary conditions (0) =0 
andA,(L) = 1. 

To solve this system use a shooting scheme, with Euler backward differ- 

encing commencing at z/L=1. This entails guessing the missing boundary 

value ¢, = $(L) and adjusting it until a solution having (0) = 0 is achieved. 
Nondimensionalize the problem using the length L and the shear modulus of the 

material. Finally, compute 

L 

i= | A, cos bdz (1078) 
0 

to obtain the value of I corresponding to the assigned value of the force. Can you 

plot the shape of the deformed membrane, i.e., rvs. &? 

Re-analyze this problem for the bio-elastic material defined by eqn (7.38). Does 

this material satisfy strong ellipticity? Consider various (positive) values of y. 

A useful result follows from eqn (10.73), which we write in the form 

M9U/OA, = A4(9U/9A,)’ = (AyOU/9Ag) - NOUBA. (1079) 

Noting that 4{0U/@A, + A,0U/dA, = U'(A,,A,) for uniform materials, we find (see 

Pipkin, 1968) that this integrates to H = const., where 

H(Ay,A2) = U(Ay, A) — A,OU/4A,. (10.80) 

This furnishes a simple check on the accuracy of solutions. 

Problem 

Using the results of the previous exercise, plot H as a function of z and confirm that 

it is indeed constant. 

10.6 Bulging of a cylinder 

A party balloon may be idealized as a long cylindrical tube. This is sealed at its ends and pres- 

surized, but we assume the tube to be long enough that the details of the deformation near 

these ends can be safely ignored. One typically observes that the cylinder deforms, roughly,
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Figure 10.5 Bulging of a cylinder 

  

  

into another cylinder, with radius depending on the pressure, until a certain threshold 

pressure is reached, at which point a bulge starts to form at one end. This bulge propa- 

gates down the length of the cylinder at a more-or-less fixed value of the pressure p’, say, 

until it consumes the entire balloon. Thereafter, an increase in pressure again produces a 

roughly cylindrical membrane, with radius again depending on the pressure. During the 

bulge-propagation phase at pressure p*, the membrane is deformed into two coexistent 

cylinders, separated by a transition region in which the radius varies with the axial coord- 

inate (Figure 10.5). We use membrane theory to derive a simple model of this interesting 

phenomenon. 

With reference to the figure, we seek a solution in which the membrane has deformed 

radii r* on either side of a transition region. We refer to these uniform states as phases. In 
either of the phases we have r’ = Oand, therefore, A, = &’, assuming & (z) to be an increasing 

function. An elementary balance of axial forces yields 27 ROU/0A, = prr’, or 

1 
aU/IA, = abr /R, (1081) 

and comparison with eqn (10.71) indicates that C = 0. We recast the latter equation, which 

holds throughout the membrane (including the transition region) in the form 

8U/0A,&' = SPRAM, (10.82) 

In any deformation that maps the cylinder to a cylinder (r’ = 0) this reduces to 

dU/dA, = SRP) (1083) 

which is just eqn (10.81). In this case elementary statics also provides t, = pr, or 

0U/dA, = SR(phi A). (10.84) 

The total strain energy stored in a purely cylindrical deformation of a membrane of ini- 

tial length L is 27 RLU. As the initial volume is 2 R’L, the strain energy per unit of initial 

volume is 

E = (2/R)U. (10.85) 

The volume contained by the deformed cylinder, per unit of initial volume, is v = 

WrA,L/1R'L, or
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vaa,Qi. (10.86) 

Consider a uniform equilibrium deformation carrying the membrane from a cylinder of 

radius r to a cylinder of radius r*. The induced change of strain energy is 

E’-E = ze | dU = 2 OU/dA\dA, + OU/OAdA,, (10.87) 

where the integration limits refer to the two states, Using eqns (10.83) and (10.84), we 
reduce this to 

E’-E = / 2priArdA, + parda,. (10.88) 

Thus, from eqn (10.86), 

+ 

E' -E -/ p(v)dv. (10.89) 

To determine p(v) for a given membrane, we select the function U(A,, A.) and solve 
eqns (10.83) and (10.84) for A,, say. We then solve the same system for p in terms of A, 
and plot p against v = A,A2. Alternatively, fix p and solve eqns (10.83) and (10.84) for A, 

and A,, and then plot p against v. 

Problem 

Carry out the details in the case of Ogden’s (1997) strain-energy function 

3 

U(Ay, a2) = So mila, dai a), (1090) 
isd 

where 

(Ay, A232) = oc [AT + AS + (Aya) - 3], (1091) 

with 

@,=13, a@,=5.0, a, = -2.0 (10.92) 

and 

by/p, = 2.01 x 10%, s/f, = -1.89 x 10°. (1093) 

Plot Rp(v)/,, against v.
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Note: Ball (1977) has shown that this strain-energy function satisfies a condition 

known as polyconvexity, which we shall discuss later. Furthermore, polyconvex- 

ity is sufficient for strong ellipticity, and so Ogden’s (1997) function satisfies the 
conditions we have assumed in the course of deriving membrane theory. 

Returning to the coexistent phase problem, recall that eqn (10.82) holds throughout the 

membrane. If p* is the pressure associated with the two-phase solution (Figure 10.6), then 
in the uniform phases we have 

(A,8U/9A,)* = (R/2)p*v*, (10.94) 

whereas eqn (10.80) furnishes 

(2/R)(A,0U/4A, - U)* = (2/R)(A,9U/9A, - UY. (10.95) 

These combine to give 

E'-E =p*(v'-v). (10.96) 

Comparison with eqn (10.89) then furnishes the means to calculate p*. Thus, 

piv-v)= / plv)dv. (1097) 

This is the famous Maxwell equal-area rule for phase coexistence: The left-hand side 

is the area of a rectangle of base v* -v and height p* and, of course, the right-hand 

side is the area under the graph of p(v) between v and v*. One simply adjusts the 

value of p* accordingly. In practice, one finds a unique pair (v*,v”) for which this con- 

struction is possible, and simply reads off the associated value of p* from the graph 

(Figure 10.6). 

py) 

  

        
Uv U, 

Figure 10.6 Pressure-volume characteristic for purely cylindrical deformations. Shaded lobes 
have equal areas
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Problem 

Complete the detailed analysis using results obtained in the previous exercise. 

Further discussion of this problem, and other interesting examples of phase coexistence 

in membranes, may be found in the references cited. We will take up Maxwell’s rule again, 

in another context, in the next chapter. 
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Stability and the energy criterion 

In this chapter we elaborate on the notion of stability of equilibria with particular emphasis 

on the energy criterion for conservative problems, i.e., problems in which the loading may 

be associated with a potential energy, as in Problem no. 2 of Section 3.2. We show that for 

an equilibrium state of a conservative system to be stable, it is necessary that it furnish a 

minimum of the potential energy consisting of the strain energy and load potential. This 

subject has a foundation in thermodynamics (see the paper by Ericksen (1966)). However, 

in keeping with the theme of this book, we rely on a purely mechanical argument. 

11.1 The energy norm 

An immediate issue we must face is the matter of how to quantify stability and instability. 

Intuitively we imagine that a state of equilibrium, say, is stable or unstable according as the 

size of any disturbance to this state remains bounded, or otherwise, as time evolves. This 

notion of size indicates that we must incorporate an appropriate norm into the definition of 

stability/instability. In this respect, the study of stability for continuous systems is far more 

intricate than it is for discrete or finite-dimensional systems. For, in the latter case all norms 

are equivalent, whereas in the former there is no such equivalence. One can construct ex- 

amples where a given state can be stable as measured by a given norm, but unstable in terms 

of another. See the book by Como and Grimaldi (1995) and the treatise by Knops and 

Wilkes (1973). Thus, it is immediately clear that no state can be stable without qualifica- 

tion, ie., the judgment as to stability or otherwise is inherently norm dependent. Therefore, 

it becomes necessary to choose a norm judiciously, to ensure the greatest degree of contact 

with the phenomena at hand. 
A choice of norm that presents itself almost immediately is the so-called energy norm 

advocated by Mikhlin (1965) and subsequently studied by Como and Grimaldi (1995). 
This meets the formal definition ofa norm while conferring a meaning that is intrinsic to the 

problems considered. We develop its description in stages, starting with some elementary 

observations. First, recall the definition eqn (9.6) of the tensor of elastic moduli; namely, 

M = Wee, (1.1) 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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from which it follows that M = P,. In other words, on any path F(), we have P = M[F]. 

In the same way we can define the strain-dependent moduli 

C = Wer, (112) 

where E is the Lagrange strain, i.e., 

l it E= 5 (FF-D, (113) 

and W(E) = W(2E +I) is the strain-energy function expressed as a function of strain. 

Accordingly, C = S,, the derivative of the 2nd Piola-Kirchhoff stress § = W, with respect 

to E. Here we adopt the convention that the derivative W, is an element of Sym. Like M, the 

tensor of strain-dependent moduli possesses the major symmetry C' = C. Unlike M,, it also 

possesses the minor symmetries A’ -C[B] = A- C[B] and A-C[B‘] = A- C[B]. Further, 

S = C[E]. Applying the chain rule to the relation P = FS thus furnishes 

. . 1 . . 
M{E] = FS + SFCIFF + FF]. (114) 

Due to the minor symmetry of C and because F is arbitrary, we then have 

M([A] = AS + FC[F'A] (11.5) 

for all A. 

Consider a deformation path with F(0) = I. Then for small yz, 

. 1 . . 
W(F()) = W(D) + Po: Fy + 5h Mol Fo] “Fy + o(’), (11.6) 

where Py, Mg, and F,, respectively, are the values of P, M, and F at F = I. Without loss of 

generality we can impose W(I) = 0, as the value of W(I) may be adjusted arbitrarily at any 

material point without affecting the values of measurable quantities. Suppose that Py(= S,) 

vanishes. Then, 

1 . . 

W(F(u)) = 5 4°Co[Fo] «Fo + o(u"), (117) 

where C, is the value of C at E = 0. 

Let x (2) be the deformation associated with gradient F(z), and let v(x) be the value of 
X at w = 0. Then, F, = Vvand 

1 

W(F(u)) = 5h Cole] -€+o(u’), (118) 

where 

é = Sym(Vv) (119)
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is the infinitesimal strain tensor. This is the strain measure used in linear elasticity theory. 

We have invoked the minor symmetries of Cy to replace Vv by its symmetric part. It is 

customary in that theory to take C, to be positive definite; that is, 

C,[A]-A> 0 (11.10) 

for all A with non-zero symmetric part (SymA # 0). We observe in passing that M,[A] - 
A=C,[A] - Aunder our hypotheses, and so our assumption implies material stability of the 

reference configuration, i.e., strong ellipticity at F = I. 

Problem 

Prove this claim; that is, show that ifA = a @ b 7 0, then SymA # 0. 

Crucially, eqn (11.10) implies that C, is bounded below in the sense that 

Clel-e >A lel’, (ul) 

where A(x) is a positively valued scalar field. To see this we use the spectral theorem for 

symmetric matrices. Let § be a 6-vector consisting of the components of € on any ortho- 

normal basis. Let S be the symmetric 6 x 6 matrix consisting of the components of Cy on 

the same basis. Then, from the spectral theorem, 

BSE = SO ACE's)? > AD O(E's)? = AE, (11.12) 

where s; are the (orthonormal) eigenvectors of S, A; are the associated eigenvalues and A. = 

min{A,}. The latter is strictly positive because S is positive definite, and of course this is just 

(11.11), 
We define ||v|| by 

IIvl? = [ostel -edv with e = Sym(Vv). (11.13) 

This is called the energy norm. It is clearly intrinsic to the material at hand. To verify that it 

is in fact a norm, we first use eqn (11.11) to infer that 

IIvil? = i [lel ay, (11.14) 

where A = min, <, A(x). This exists, and is strictly positive, because A(x) is positive and 

continuous—assuming that Co(x) is likewise continuous, and because « is compact (i.e., 

closed and bounded) in three-space (see Palis and deMelo, 1982).
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Korn’s inequality asserts the existence of a positive constant, k say, such that 

k | lel av > [iveta, (11.15) 

provided that v(x) vanishes on some non-empty subset of the boundary 8x. Poincaré’s 

inequality is the assertion that 

2 2 
[iv dv > cf dv (11.16) 

for some positive constant c, under the same restriction on v(x). Accordingly, there is a 

positive constant a such that 

IIv|l* > a [ we dv. (11.17) 
« 

Proofs of the Korn and Poincaré inequalities are sketched in Parts 7 and 8 of the 

Supplement. 

From this it follows that ||v|| vanishes only if the integral of Iv|? vanishes and hence only if 

v vanishes, provided that v(x) is continuous. Conversely, it is immediate from the definition 
of ||v|| that it vanishes if v(x) vanishes. It follows that ||v|{ is a positive-definite function 
of v(x). 

Problem 

Show that ||-|| satisfies the triangle inequality. 

Thus, ||-|| satisfies all the conditions required to qualify as a norm 

11.2 Instability 

Consider a motion x (x,t) and let x,(x) be an equilibrium deformation. Let u(x,t) = 
x (x,t) - x-(x) be the displacement from equilibrium, and consider the associated function 

G(t) = / p(x) ux, t)[ dv, Cus) 

Suppose u(x, f) vanishes on some non-empty subset of the boundary x. Assuming p, (x) 

to be continuous, we have, by the compactness of x, 

G(t) < (maxp,) f JuCs t)| dy, (11.19)
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which implies, by eqn (11.17), that there is a positive constant, c, say, such that 

G(t) < ¢ |lull’. (11.20) 

This simple result suggests a strategy whereby we seek sufficient conditions for the un- 

bounded growth of G(t). These would then ensure unbounded growth of ||ul| and, hence, 

instability of the state x,(x) as judged by the energy norm. The negation of this result would 

then yield necessary conditions for stability of equilibrium. Our procedure has an heuristic 

aspect, on which we comment later. We begin by evaluating the derivatives 

G= 2 f pou id (1121) 

and 

G = 4K(t) + 2 f ou - udy, (11.22) 
K 

where A(t) is the kinetic energy of the body. Ignoring body forces, which play a secondary 

role in the argument, and assuming for simplicity that there are no local constraints, we have 

fp, ii = DivP(F;x) = Div(AP), (1123) 

where 

AP = P(F;x) — P,(x) (11.24) 

in which P,(x) = P(V x,(x);x) is the equilibrium stress. Accordingly, 

G =4K(t) + 2 fu - Div(AP)dv. (11.25) 

At this stage, we simplify matters by confining attention to mixed displacement/dead-load 

problems in which u vanishes on a part of the boundary and the Piola traction is fixed, ie., 

(AP)N vanishes, on the complementary part. We integrate the second term on the right- 

hand side by parts using the divergence theorem, obtaining 

G=4K(t)-2 / AP - AFdy, (11.26) 
K 

where AF = Vu. 

Next, assume there exists u(x, ¢) such that F(x,t) € B(F,(x)), where B(F,) is the open 
ball of radius 6 centered at F, defined by 

B(E,) ={F: |Vu] < 5}. (1127)
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We note that B(F,) is a convex set; that is, if F, and F, are in B(F,), then all points on the 

line F(u) = uF, + (1 - u)F,, with u € [0,1], are also in B(F,). To see this we use 

F(u) - F, = u(F, - F,) + (1 - u)(F, - F,) (11.28) 

and conclude, from the triangle inequality, that 

|F(u) - F,| < u|F, -F.|+ (1-4) |F,-F,| < ud + (1-u)d = 6. (11.29) 

Thus, F(u) € B(F,) and so B(F,) is convex by definition. Note, however, that the domain 
of the constitutive function P, namely, the set of F’s with det F positive, is not convex. 

Therefore, our assumption on u(x, t) is restrictive. 

Problem 

Prove the nonconvexity of the set Lint = {F: det F > 0}. Hint: Consider 

F,=-3i1@itj@j-k@k, F, =i@i-3j@j-k@k, (11.30) 

where {i,j,k} is an orthonormal set; both have positive determinant. Show that 

F(2) = -1. 
2 

If the strain-energy function is twice continuously differentiable, then Taylor’s theorem 

with remainder (see Fleming, 1977), which is valid in any convex region and, hence, in 

B(F,), furnishes 

P(F) = P(F,) + M*[AF], (1131) 

where M* = M(F, + @* AF) with 0 < a* < 1. The same theorem yields 

W(E) = W(E,) + P(E.) AF + 5M" AF] . AF, (1132) 

where M*™* = M(E, + a** AF) withO < a** < 1. Then, 

AW =P,- AF+ ~AP » AF + “£{AF] - AF, (11.33) 

where £ = M*™ — M’*, and substituting into eqn (11.26) yields 

G = 4K(t) -4 raw —P,- AF)dv- 2 f clarl - AFdv. (11.34) 

Recalling Problem no. 2 of Section 3.2, the potential energy of a dead-loaded body is 

e= | wav- [ p- Xda, (11.35) 
x a. ”



PROBLEM | 119 

where p(x) is the fixed Piola traction on the part 9x, of the boundary. This part is com- 

plementary to the part on which u vanishes. Conservation of energy (Problem no. 2, 

Section 3.2) yields 

<¢ +K)=0. (11.36) 

The change of potential energy accompanying the displacement u is 

aé= [ awér- | p-uda, (1137) 
axp 

where 

/ p:uda = / Plu - Nda = [rceman = pe. - AFdv, (11.38) 
oKp OK K kK 

and we have used the fact that DivP, vanishes. We have 

G = 8K(t) - 4H(t) - 2 f clar) - AFdv, (11.39) 

where 

H(t) = K(t) + AE(E) (11.40) 

is the total change in mechanical energy induced by the displacement. This is fixed in time, 

ie, H(t) = 71(0), by virtue of eqn (11.36). 
Consider a motion with vanishing initial velocity: u(x,0) = 0. Then, 7((0) = A&,, 

the potential energy difference induced by the initial displacement u)(x) = u(x, 0). 
Combining, we obtain 

G = 8K(t) - 4A, - 2 f cive) - Vudv. (141) 
K 

We have 

[ive - Vudv < max (x, ) fiver dv, (11.42) 

where {4(x, t) is the largest absolute value of the members of the set of eigenvalues of £. This 

is a real number because £ possesses major symmetry and can, therefore, be associated with 

a9 x 9 symmetric matrix. To see this we use an argument like that used in eqn (11.12). This 
time let S be the symmetric 9 x 9 matrix consisting of the components of C, and let s, and 

i, be its eigenvectors and eigenvalues. Let & be the 9-vector consisting of the components 

of Vu. With = max{|A,|} we have
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ESE = DAEs) < Sola E's)? sm E's = HEP, (a) 

and, hence, eqn (11.42). Our assumption that £ is continuous, together with F € B(F,), 
implies that 2 is bounded (see Proposition 2.18 in the book by Palis and deMelo, 1982). 

Accordingly, the Korn inequality yields the existence ofa non-negative constant c,, say, such 

that 

[cove] -Vudv < ¢ |lull’. (11.44) 

Because KC(t) > 0, we conclude that 

G>-4A&+R, with R= O(|lull’). (11.45) 

Weare finally ready to establish our main result. Suppose the equilibrium state is stable in 

the sense that |lul| < € for some assigned e, for all t > 0. Let up(x) be such that AE, < 0, 

ie, ELx, + uo] < E(x, ], and suppose that x,(x) + uo(x) is not equilibrated, i.e., G(0) 7 0 
(cf. eqn (11.22)). Then, we can choose € small enough to ensure that 

-4A&,+R> A, (11.46) 

a positive constant. It follows that G(t) > A and, hence, from eqns (11.20) and (11.45), 
that 

1 
IJul|? > zor + C4 (11.47) 

for some positive constant c, and some constant c,. We have used the fact that G(0) =0 

(cf. eqn (11.21)). Thus there is a time, t, say, such that || u(x, t,)| > &, contrary to the 
stability hypothesis. We have thus shown that if xo(x) = x(x) + u(x) isanon-equilibrium, 
kinematically admissible displacement field (uy = 0 on the complement of dx,), then for 

the equilibrium configuration x,(x) to be unstable with respect to the energy norm, it is 
sufficient that up(x) be such as to furnish AE, < 0. 

The negation of this statement furnishes a necessary condition for stability: If x,(x) is 

stable with respect to the energy norm, then it is necessary that 

E[x.] < Elxo] (11.48) 

for all non-equilibrium deformations x (x) that meet assigned position data on the com- 

plement of dx,. This is the famous energy criterion of elastic stability theory. It effectively 

reduces the equilibrium problem to the central problem of the Calculus of Variations: 

Find a vector-valued function that minimizes a scalar-valued functional. Here, of course, 

the potential energy. Needless to say, the criterion is meaningful only for conservative 

problems.
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The energy criterion furnishes the point of departure for a vast amount of modern re- 

search on finite elasticity. Indeed, the question of the existence of energy minimizers was 

settled in the landmark paper by J. Ball (1977). This constitutes a major milestone in 20th 
century research on Finite Elasticity and the Calculus of Variations more broadly. 

Of course, we have made a number of questionable assumptions in the course of deriving 

the energy criterion, not least among these being the existence of a motion having gradient 

in the ball B(F,(x)) at each x € x. Beyond this, we have assumed this motion to be suffi- 

ciently smooth in space and time as to justify our various formal manipulations. To this day, 

conditions ensuring such global regularity are not known. Nevertheless, our development 

offers a formal justification of the energy criterion and thus provides a degree of confidence 

in its validity. The work of Koiter (1966), in particular, offers arguments in support of this 

criterion as being both necessary and sufficient for stability. 

Problem 

Consider the problem of the extension of a unit cube of Mooney-Rivlin material 

under equibiaxial force f (cf. Problem no. 6(b) in Section 7.2). (a) Show that the 
potential energy of the deformed material is 

E(A,,A2) = w(A, A.) -fhy - fas, (11.49) 

where w(A,, A) is the three-dimensional strain energy obtained by imposing the 

incompressibility condition A,A.A3 = 1. (b) Show that equilibrium corresponds to 

stationarity of the energy; i.e., JE/dA, = 0 for a = 1,2. (c) Let A* be the critical 

value of equibiaxial stretch at which bifurcation from equibiaxial to unequal biaxial 

stretch is possible. Show that the solution with equibiaxial stretch (A, =A, =A, 

say) is stable if A < A* and unstable if 1 > A*. Show that the solution with un- 

equal biaxial stretch is stable. Thus, in practice the cube undergoes a transition from 

equibiaxial to unequal biaxial stretch at A > A*. 

Hint: The energy is minimized at an equilibrium state if and only if the matrix 

0°E/0A, 8A, is positive definite. Thus, failure of positive definiteness marks the 

transition from stability to instability. 

Remark By restricting attention to deformations that are homogeneous, we have 

provided only a partial analysis of stability, because we have not allowed non- 

homogeneous deformations into the competition for the minimum of the 

energy. In other words, it is conceivable that a non-homogeneous deform- 

ation might be able to produce a lower-energy state than the equilibrium states 

considered here. 

11.3, Quasiconvexity 

We inquire into some implications of the energy criterion eqn (11.48). Staying with mixed 

displacement/dead-load problems for illustrative purposes, this criterion may be written in 
the form
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[we + AF) - weld | p: Axda > 0, (11.50) 
K Oxp 

for all Ax that vanish on the complement of dx,. Among these, we consider 

Ax (x) = e@(z);_ z= 8" (x-%) (1151) 

with € a positive constant, Xo an interior point of « and @ #0 only in some region D 

contained in the interior of «. Note that the the nature of the boundary load potential is 

irrelevant for this choice of Ax and hence that our further considerations are valid in more 

general cases of (conservative) loading. 
We have AF = V@(z) in this case, where the gradient is taken with respect to z. 

Accordingly, eqn (11.50) reduces to 

[twee + VO@sx) - W(EG);x) Ja) = 0 (159 

where x’ is the image of D under the inverse of the map eqn (11.51),. Note that the map 

defined by eqn (11.51). has gradient eI, with determinant e°. Then, dv(z) = e*dv(x) 

and, after division by €°, we derive 

[wet + €2z) + Vb(z)j Xo + €z) — W(F, (Xp + €z)} Xp + Ez) |dv(z) > 0. (11.53) 

We now let € — 0 and use the dominated convergence theorem (see Fleming, 1977) to 

conclude that 

/ [W(F.(x) + Vb(2); x0) ~ W(F.(%); x) Jdv(z) > 0 (uss) 

for all x9 and for any @ with @ = 0 on OD. This is the quasiconvexity condition. It was 

discovered by Morrey, and plays a major role in Ball’s existence theorem for energy 

minimizers. A particularly good account may be found in Ciarlet (1988). 

We have derived quasiconvexity as a necessary condition for energy minimization. It 

has an interesting physical interpretation: Consider a uniform material with strain energy 

W*(E) = W(E; x). Then, quasiconvexity means that the energy 

F[@] = | wees + V0)de, with @=0 on OD and F,=F,(x%), (1155) 
D 

is minimized absolutely by @ = 0, i.e., by the homogeneous deformation Fyz. This is pre- 

cisely the potential energy for a pure displacement boundary-value problem in which 

perturbations of the deformation vanish on the entire boundary. 

Note that the quasiconvexity condition imposes a restriction on the deformation F,(x)), 

for each x) € «; if there are any points where it is violated, for some ¢, then x,(x) cannot



ORDINARY CONVEXITY | 123 

be an energy minimizing deformation. However, the quasiconvexity condition is manifestly 

non-local and this poses an obstacle to its direct verification. This fact has given impetus to 

the search for purely local conditions that imply quasiconvexity. 

11.4 Ordinary convexity 

One of these local conditions is ordinary convexity, ie., 

W(F, + Vj X%) - W(Fo; %) = We(Fo; %) - VO. (11.56) 

We confine attention to unconstrained materials. Then, 

/ [W(E + V0; x0) — W(Eoj x0) dv > BCP; x) / Vo(2)dv 

= P(F,; My) - [ od © Nda, (11.87) 

and this vanishes if @ vanishes on 0D. Accordingly, convexity is sufficient for quasicon- 

vexity. However, this condition suffers from major drawbacks and, therefore, cannot be 

regarded as realistic. We elaborate on two of these here. 

11.4.1 Objections to ordinary convexity 

(a) Consistency with the symmetry of the Cauchy stress implies that compressive states of 

stress are impossible. 

To see this we write eqn (11.56) in the form 

W(E) - W(E) > B(F) - (F- F), (11.58) 

which purports to hold for all F and F with positive determinant. Therefore, it holds if 

F = QF with Qa rotation. We have seen that W(F) = W(EF) in this case if and only if the 
Cauchy stress T is symmetric. Thus, 

0 > P(F) - [((Q-DF] = tr{P[(Q-1F]} 
= [PF'(Q-1)'] =JT-(Q-D), (11.59) 

where T is the Cauchy stress associated with F. Consider a one-parameter family of ro- 

tations Q(e) with € € (-&,&)) and Q(0) =I, and define f(e) = T - [(Q{e) - 1]. Then, 
f(0) = 0,f'(e) = T- Q(e) andf’(e) = T - Q’(e). Note that 2(e) = Q'(e)Q(e)' is skew 
symmetric. We have Q’(e) = Q(e)Q(e) and 

Q"(e) = M(e)Qle) + Q(€)’QE), (11.60)
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where &'(€) is also skew symmetric, as are w = Q(0) and a = 2'(0). Accordingly, 

Q‘(0) = w and Q’(0) = a + w’. These imply that f’(0) = 0 and f’(0) = T - w’, by virtue 
of the symmetry of T. 

Inequality eqn (11.59) then implies, for small ¢, that 

1 
0>f(e) = 5° Yf"(0) + o(e’)/e"]. (11.61) 

Dividing by € and passing to the limit, we conclude that f”(0) < 0, ile, 

T-@ <0, (11.62) 

for all skew w. 

Problems 

1. Show that eqn (11.62) is equivalent to 

w(t, +h) + @i,(f +) + @,(b +b) = 0, (11.63) 

where t, are the principal Cauchy stresses and w, are the components of w on the 

principal stress axes. Therefore, convexity and the symmetry of the Cauchy stress 

together imply that the state of stress is tensile in the sense that 

{+t >0, t+f>0 and 4A+f,>0 (11.64) 

pointwise, at all deformations. This is an unrealistically severe restriction to 

impose on a general boundary-value problem. 

2. Consider a homogeneous, compressible elastic material (W not explicitly de- 

pendent on x) subjected to a prescribed dead-load traction distribution p(x) on 

its entire boundary. 

(i) Show that, in the absence of body forces, a necessary condition for the 

existence of an equilibrium deformation x (x) is that f,, pda = 0. 

(ii) Suppose the equilibrium deformation x is uniform in the sense that its gradi- 

ent F is independent of x. As we have shown, the change in potential energy 

associated with a kinematically admissible deformation x — x is 

AE = [owen _W(E)-B(F)-(Vx-F)]dv. (1165) 

Show that AE > 0 for arbitrary kinematically admissible x if, and only if, the 
integrand is non-negative at every point of the body. Thus, conclude that in 

this case, contrary to the situation in mixed position/traction problems, F 

must satisfy the condition of ordinary convexity.
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(iii) Use this result to prove that a homogeneously deformed bar in equilibrium un- 

der equal and opposite compressive tractions at its ends (and zero tractions 

on the remainder of its boundary) is unstable. 

(b) Strict convexity precludes buckling in the mixed dead-load problem. 

Using p = PN on dx, and Ax = 0 on the complement of 0«,, we can write 

[owe + AF) - W(F,) ]dv- / p:- Axda 
P 

= [twee.+ aR) -wee)lav- [ P'Ay + Nda 
ax 

= [owe + AF) - W(E.) - P(F,) - AF]dy, (11.66) 

where we have invoked DivP, = 0 in the course of integrating by parts. From this is it ob- 

vious that strict convexity; ie., strict inequality in eqn (11.56), implies that AE > 0 for 

any non-zero Ax that vanishes on the complement of d«,. Therefore, strict convexity is 

sufficient for an equilibrium state to furnish a strict minimum of the potential energy. 

Let F, = F, and F, = F, + AF be the gradients of two equilibrium deformations x, and 

X2, respectively, and suppose x, is a strict minimizer. Then, 

/ [W(E,) -W(E,) -B(F,) - ( -F,)]dv > 0, (1167) 

provided that F, 7 F,. In the same way, if x, is a strict minimizer, then 

/ [w(P,) - W(F,) - B(F,) - (F, - F,)]dv > 0, (1168) 
K 

again, provided that F, 7 F,. We re-write this as 

- ftw0e,)- we) - 2) - (B,-B)av > 0 (16) 

and add it to (11.67), concluding that 

[ee - B(F,)- (F,-F,)]dv > 0, providedthat F, 7 F,. (11.70) 
K 

However, since Div(AP) = Oin« and (AP)N = 0on 6x,, where AP = P(F,) - P(F,); 
and, since Ax (= x2 ~ X:) vanishes on the complement of 3x,, we have
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o= f (apyar Nda= f AP. APay (11.71) 
OK K 

that is, 

[ee - P(F,) - (F, - F,)]dv = 0, (11.72) 
K 

which is reconciled with eqn (11.70) if and only if F, = F,. Then, x. - x1 =¢, a rigid 

translation of the entire body. If the complement of dx, is non-empty, c vanishes and 

the equilibrium deformations coincide. We conclude that if an equilibrium deformation 

minimizes the energy strictly, then it is unique. In particular, then, strict convexity of 

the energy implies unqualified uniqueness of equilibria in the mixed position/dead-load 
problem. Thus, strict convexity precludes buckling—the phenomenon of bifurcation of 

equilibrium—under all dead loads, and is, therefore, unrealistic. 

Nevertheless, the negation of this result furnishes the well known Euler criterion for po- 

tential instability: Non-uniqueness of equilibria (e.g., buckling) implies that they are not 

strict minimizers of the energy, i.e. that AE < 0 relative to the considered equilibrium 

deformation, for some Ax that vanishes on the complement of 0x,. Accordingly, such equi- 

libria fail to satisfy the strict form of the necessary condition eqn (11.48) for stability and 
might, therefore, be unstable. Said differently, the onset of non-uniqueness of equilibria 

signals a potential instability. We cannot assert definitively that non-uniqueness implies in- 

stability of equilibrium because the strict form of eqn (11.48) is not known to be necessary 

for stability. The Euler criterion is studied in more detail in Chapter 12. 

11.5 Polyconvexity 

This is the statement that there exists a function P(F, F*, det F), jointly convex in its 

arguments, such that W(F) = ®(F, F*, det F), ie, 

W(F) - W(Fo) > ACE) - (F - Fy) + B(F,) - (F* — F*) + C(Fy)(det F - det Fy), (11.73) 

with 

A(F)=®,, B(F)=@, and C(F) = gap. (11,74) 

Consider a deformation with gradient F = F, + V@, where F, is uniform. Then, 

[wees + 90) - we) 
D 

> A(F,) : / Vodv + B(F,) - fe - F})dv + C(F) [(ooce -detF,)dv. (11.75) 
D D D 

We assign @ = 0 on dD. We show that the right-hand side vanishes, and thus that polycon- 

vexity is sufficient for quasiconvexity. To this end we derive three identities:
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(a) to Vodv = Sop ¢ ® Nav. This of course is a variant of the divergence theorem. 

Obviously, the integral vanishes because # vanishes on the boundary. 

(b) Recall that Ft, = Wisgs with Wiss = 5 ¢je€ascX;Xu,c = —Wasa, where e is the permuta- 

tion symbol (e,.; = +1, etc.). Thus, by the divergence theorem, 

[ (FY - Fi)dv =, @E, | (thas - W°,)Noda. (1176) 
D aD 

Let v(x) bea scalar field and consider the vector ésac¥,cN = (N x Vv),.Wehave 
N x Vv =N x P(Vv) on 2D, where P = I- N @ Nis the projection onto the 

local tangent plane of 0D. Thus, N x Vv involves only the tangential derivatives 

of v in the surface, which in turn are determined by the values of v on the sur- 

face. Choosing v = Xziap = Xiiaps we find that WissNs = W,Nzs on OD because 

vanishes there. Thus, f, (F* — F)dv vanishes. 

(c) It is elementary to show that det F = eesscFiaFiaFec = 5 FiaFi, = SCGFR) a» a 

divergence. We have, of course, invoked the Piola identity. Then, 

1 1 
[ sccear = ;/ x -F*Nda = >| x nda, (1177) 

D 3 Jap 3 J x(a) 

where x (D) is the image of 0D under the deformation map and we have used 

Nanson’s formula. Because @ = 0 on 0D the same result follows on replacing F 

by F,. Accordingly, J, (det F — det F,)dv vanishes. 

We have shown that polyconvexity implies quasiconvexity. Indeed, polyconvexity is cen- 

tral to the hypotheses underpinning Ball’s existence theorem. It does not suffer from the 

drawbacks of ordinary convexity. For example, Ball (1977) has shown that Ogden’s strain- 

energy function satisfies polyconvexity. Further examples of polyconvex strain energies are 

discussed in the papers by Steigmann (2003a,b). 

Thus far, we have shown that both ordinary convexity and polyconvexity imply quasicon- 

vexity. However, polyconvexity does not imply convexity, as shown by the following 

counter-example. In general, we have 

W(E + AF) - W(B) - P(F)- AF = 5 M(F)LAF] . AF + o(|AF|’). (11.78) 

Set AF = OAwith A fixed. Then if W(F) is convex, 

SP(M@PIAl -A+0(6°)/6} > 0. (1179) 

Dividing by 0? and passing to the limit, we conclude that W(F) is convex only if 

M(F)[A]-A>0 (11.80)
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for all A; in other words, only if the function G(@) = +6°M(F)[A] - A satisfies G"(@) > 0. 
Consider the deformation gradient 

F(O) = O(21@it+j@j+rk@k)+(1-A)G@ir+2j@j+k@k) (11.81) 

with 6 € [0,1]. This has det F(@) = (1+0)(2-6) > 0, and is, therefore, an admissible 
deformation gradient. 

Consider W(F) = det F, which is trivially polyconvex. Picking 9A = F(@) — F(0), we 
find that G(@) = -36?. Then, G’(@) = -1, proving that det F is not a convex function of F. 

11.6 Rank-one convexity 

Consider the region D C x in the definition of quasiconvexity. We follow a construction 

due to Graves (1939), but confine attention to two dimensions for the sake of simplicity. 

Graves’ treatment is valid in » dimensions. Let the origin of z be located at x, and attach 

an orthonormal basis {M, N} there. Consider a lens-shaped region R C D as shown in 

Figure 11.1, and letx = M:zandy =N-z. 
Then, 

R= {(x,y): |x] <h, O<y <Bix)}=R, UR, (11.82) 

where 

R,={(xyy): |x] <h, O<y <OB(x)}, R,=R\R,. (11.83) 

with 0 < @ < land B(x) = h? — x’. Consider the function 

  

(1-@)y in R, 

F(z) = -6[y- B(x)] in R, (11.84) 
0, outside R. 

y 

| y = B(x) =h? - x? 

he y = OB(x) 

Bd 

-h h 

Figure 11.1 Lens-shaped region
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Note thal 

6(1-@)B at y=6B 
F(z) = -6B(0-1) at =6B’ (11.85) 

so that F is continuous. 

We define 

$(z) = aF(z), (11.86) 

with a fixed. Its gradient is 

Vo =a® VE, (11.87) 

where 

VF = F,Vx+F,Vy =F.M+5E,N 
_  (1-@)N in R, (1-9@)N in R, 
= _9N-6(2x)M in R, -ON in R, ’ (11.88) 

ash — 0. Wealso have F > Oash — 0. Thus, 

(1-8@)a@N in R, 
$2) > 0 VO>" gv@N in R (11.89) 

Let 

h 

V = measR = / B(x) dx, 
ah 

h 

V, = measR, = / OB(x)dx = OV, 
-h 

V, = measR, = (1-0)V. (11.90) 

Then, the quasiconvexity condition yields 

o<v" [we +V¢) -W(R,) dv 

8 - — W(F, + V¢)dv + 
V, Ri 

1 
  

-@ 1 = [ W(Ro+ VO)de— = | w(E.)av (1191) 

Using the mean-value theorem in each integral, letting h —> 0 and dividing by 0, we obtain 

the pointwise condition 

1-0 1 
W[EF, + (1-@)a@N] + pW (Fo - 6a @ N) - 9 WF) >0; O<6@ <1. (1192)
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For small 0, 

W(Fy - 9a @ N) = W(F,) - O9P(F,) -a@N + 0(8), (1193) 

and, therefore, 

1-0 a 0 
Wl - 6a @N) = wr) - (1-6)P(F,)-a@N+(1- a) ) (11.94) 

It follows from eqn (11.92) that 

WI[F) + (1 -@)a @N] —- W(F,) - (1 -6)P(F,) « sen (1-0) oo, (11.95) 

and passage to the limit yields 

W(F, +a@N) - W(F)) - P(E) -a@N>0 (11:96) 

in which a @ N is arbitrary. 

This is the condition of rank-one convexity, so named because it requires the convexity 

of W with respect to rank-one perturbations of the deformation gradient. We have derived 

it as a consequence of quasiconvexity. Accordingly, it is necessary for quasiconvexity, and 

therefore necessary for minimum energy. In principle, it constitutes a restriction on the 

value of the deformation gradient F, = F,(x9), at each x» € «. If there is any a@ N such 

that inequality eqn (11.96) is violated at some Xq, then the field x,(x) cannot be an energy 
minimizer and, hence, cannot be stable. In particular, eqn (11.96) does not constitute a 

restriction on the function W. That is, it could be violated at some deformation gradients in 

the domain of the strain-energy function. Such gradients must then be relegated to sets of 

measure zero in « if the deformation is to minimize the potential energy. 

In the case of incompressibility eqn (11.96) remains valid with the restriction a - F7N =0. 

The derivation in this case may be found in the paper by Fosdick and MacSithigh (1986). 

Problem 

Show that det(F + a @ N) = detF+a-F'N. 

As N is a unit vector we have 

a 1 
W(F, + a@N) - W(E,) - P(E.) -a@N = 5M(Fo)[a @ NI -a@N+o((al ). 

(11.97) 

Dividing eqn (11.96) through by lal” and passing to the limit yields the Legendre- 

Hadamard inequality 

a: A(Fy, N)a > 0, (11.98) 

where A(F,; N) is the acoustic tensor defined by eqn (9.22). If the deformation is such that 
Legendre-Hadamard condition is violated at any point in the body, then it is not an energy



EQUILIBRIA WITH DISCONTINUOUS DEFORMATION GRADIENTS | 131 

minimizer. The strict form of this inequality coincides with the material stability condition 

of Chapter 9. 

11.7 Equilibria with discontinuous deformation gradients 

Phase transformations in so-called shape-memory alloys are characterized by deformations 

with discontinuous gradients. The characterization of such deformations and the condi- 

tions under which they arise constitute a major branch of research in nonlinear elasticity. 

The paper by Ball and James (1987) is essential reading in this area. 

We know from our earlier discussion that if a deformation x (x) is continuous with 

a gradient F(x) that jumps across one or more surfaces in the body, then discontinu- 

ities in the deformation gradient have the structure [F] = a ® N (cf. eqn (9.44)), where 
N is a unit normal to such a surface. If the deformation is equilibrated, then it is ne- 

cessary that Sos pda = 0, where S is any region in the configuration «. We omit body 

forces, but they may easily be included without affecting our conclusions. We apply this 

to a pill-box of thickness h containing a surface of discontinuity with normal N (see 

Figure 11.2). 
Because of the linearity of p with respect to the normal, the limit of p from the side of the 

surface with normal -N is p_(-N) = -p_(N). Letting h tend to zero, we then find that 

/ [p]da = 0, (11.99) 

where 

[p] = p,(N) - p.(N) (11.100) 

is the jump in traction and where z is an arbitrary subsurface of the discontinuity surface. 

The localization theorem yields the conclusion that 

Figure 11.2 Pill-box surrounding a surface of discontinuity
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[p] =0 (11.101) 

at all points of the discontinuity surface. In the case of an unconstrained elastic material 

this is 

P(F,)N = P(F_)N. (11,102) 

We seek conditions on the strain-energy function ensuring that this equality can be satisfied 

with [F] 40. 
Fix a point on the surface of discontinuity and define 

F(u) = uF, + (1-u)F. =F. +uaQ@N (11.103) 

with u € [0,1]. Let 

f(u) = det F(u) = det F_ det(I + uF"'a @ N) 

= det F_(1 + uF 'a-N). (11.104) 

Observe that f(0) = det F. > O and f(1) = det F, > 0. Then, because the graph of f(u) is 
a straight line between these endpoints, we have f(u) > 0; therefore, F(u) belongs to the 

domain of W. 
Next, define 

g(u) =aQ@N- P(E. +ua@N) =a- P(F. + ua@N)N. (11.105) 

Then, 

g(0) = a: P(F_)N =a- P(F,)N = g(1). (11.106) 

Because g(x) is differentiable, by Rolle’s theorem there is 4) € [0,1] such that g’(u,) = 0, 

ie., 

0 = M(F(u))[a@ N] -a@N=a- A(F(m%), Na, (11.107) 

and so there is a deformation gradient in the domain of W where the strong ellipticity condi- 

tion is violated. Thus, ifsuch a discontinuity is to exist, the strain energy cannot bea strongly 

elliptic function, i.e., it cannot be strongly elliptic at all points in its domain. Because strong 

ellipticity is necessary for the strict form of the rank-one convexity condition, it also cannot 

be a strictly rank-one convex function. 

11.8 The Maxwell-Eshelby relation 

Any deformation gradient occurring in an energy-minimizing deformation field must be 

such as to satisfy the rank-one convexity condition pointwise. Deformation gradients at
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which this condition is violated are relegated to sets of zero volume measure, suchas discon- 

tinuity surfaces, where they can make no contribution to the overall energy. In particular, 

the limiting values F, on either side of a discontinuity surface must satisfy rank-one con- 
vexity if the deformation field is such as to furnish a global minimum of the energy. For 

example, 

W(F_+a@N)-W(E.) >a-P(F_.)N (11.108) 

for all a @ N. Choosing a @ N = [F], we infer that 

W(F,) - W(F_) > a- P(E)N. (11.109) 

In the same way, 

W(F, -a@N) - W(F,) > -a- B(F,)N, (11.110) 

or 

W(E,) - W(E_) < a- P(F,)N. (ith) 

Invoking eqn (11.102), we arrive at the Maxwell—Eshelby relation 

W(F,) - W(E_) = P(F,) - (F, -F.). (11.112) 

11.8.1 Example: alternating simple shear 

Consider a deformation with piecewise uniform gradient 

F, =1+ Yi @j (11.113) 

with y. = -y,. These are simple shears of alternating sign. Here, j is the normal to the 

plane of shear and i is the direction of shear. We can imagine a laminate consisting of such 

alternating shears, extending over a volume of the body (Figure 11.3). 

  

Ys 

  

Y- 

  

Ve 

  

Figure 11.3 Alternating simple shear
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We have 

[F] = [y]i @j, (11.114) 

and so N =j and a = [y ]i, whereas the traction-continuity condition eqn (11.102) fur- 
nishes [Pj] = 0 and, hence 

[rt] =0, (11.115) 

where T = i- Pj is the shear stress on the plane of shearing. 

The strain energy in simple shear is w(y) = W(I + yi @ j). Thus, 

tT=P-i@j=W,-F(y) =w(y), (11.116) 

and eqn (11.115) furnishes 

t(y.) = t(y.). (1L117) 

The Maxwell-Eshelby relation reduces to 

w(y.) -w(y.) = Ps - [F] = [y]i- Pj. (11.118) 

This is Maxwell’s equal area rule, in the form 

V+ 

/ t(y)dy = t*(%- ¥-), (11.119) 
y- 

with t* = t(y,), requiring that the area under the shear stress vs amount-of-shear curve 
equal that of the rectangle with base y, — y_ and height t*. If the material properties possess 

reflection symmetry with respect to the discontinuity surface, then w(y ) is an even function 

and t(y) is odd. 

The rank-one convexity condition implies that in each separate phase of uniform shear, 

WI + (vy + Ay)i@®j]-W(I+ yi@j) = Ayi- BU + yi@j)j, (11.120) 

for all Ay, or 

wy + Ay)-w(y) = Ayw'(y), (11.121) 

so that any value of y appearing in an energy-minimizing state belongs to a domain of 

convexity of the function w(-). The situation is then as depicted in Figure 11.4, 

Shears y € (y., y,) are unstable and are thus excluded from the deformation field per se. 

Note that the response of the material in this case cannot distinguish between w(-) and its 

convexification, the lower convex envelope of w(-). A fuller discussion of this and similar 

problems may be found in Ericksen (1991).
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Figure 11.4 (a) Stress and (b) energy as functions of amount of shear. 

Problem 

We have seen that a compressible inviscid fluid is an elastic material with a strain— 

energy function of the form W(F) = w(J), with J = det F. Suppose the fluid is 
uniform in the sense that the same function pertains to every material point. The 

fluid fills a rigid container completely and no body forces are acting. Then, the 

potential energy of any configuration x (x) of the fluid is 

E[x]= [wea (11.122) 

where « is the region enclosed by the rigid container. 

(a) Prove that an equilibrium deformation x (x) is a minimizer of the potential 
energy if, and only if, ](x) = det[V x (x)] satisfies w(J) - wJ) > (J -J)w’(J) 

for any J > Oand forallx € x. 

(b) Let v = 1/p be the specific volume (volume per unit mass). Suppose that at 

a certain fixed temperature the constitutive function for the pressure, p(v), is 

as depicted in Figure 11.5, wherein the shaded lobes have equal areas. Give a 

complete analysis of the stable equilibrium states of the fluid at the pressures 

Pw Pv, and p,. Identify those aspects of the state of the fluid that are uniquely 

determined in each case. 

Py 

P, 

  

      
—_—_ uo v 

liquid vapor 

Figure 11.5 Non-monotone pressure-volume characteristic
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Linearized theory, the second variation 
and bifurcation of equilibria 

We have already studied the linearized theory in some detail in Chapter 9. Here we elab- 

orate on this theory in the case of equilibrium. That is, we study the linear theory of small 

equilibrium deformations superposed ona (finitely deformed) equilibrium state. This topic 

is often referred to as the theory of small deformations superposed on large. Ogden (1997) 
is the main source for this theory and should be consulted for further developments. Our 

purpose in discussing it is to outline a practical implementation of Euler’s non-uniqueness 

criterion for potential instability, also known as buckling. This criterion is a cornerstone of 

engineering analysis. 

In Chapter 9 we outlined the theory for incompressible materials. Here, we generalize by 

imposing a constraint of the form $(F) = 0 onall admissible deformations. Let y,(x) be an 

equilibrium deformation, and consider the static perturbation 

1 
x (x €) = y,(x) + eu(x) + 56 vex) + o(’) (12.1) 

with € € (-€, €9) and |é)| « 1. Here,u = 2y;..,v = EF Keos etc. Then, 

1 
F(x; €) = Fy(x) + € Vu(x) + 56 Vv(x) + o(e’), (12.2) 

and this must be such that @(F(x; €)) = 0 forall € € (—€p, €,). Accordingly, 

0= Pie-0 = br(Fo) -Vu, O= Pico = Grr (Fo) [Vu] »~Vut+ dr(Fo) - Vv, ete. (12.3) 

which constitute constraints on Vu and Vv. Note that there is no solution if x (x; €) is 

linear in €, i.e., if v(x) vanishes. For, frame-invariant constraints are inherently nonlinear 

(i.e; Par 7% O—see the Problem in Section 6.1) and a purely linear perturbation Vu is thus 

overdetermined by eqn (12.3). 

The stress is 

P = P(E) + A¢;(F), (124) 

Finite Elasticity Theory. David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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where P = W, is the constitutive contribution and A is a Lagrange multiplier. From 

eqn (12.2), 

P(F) = P(F,) + eM(F,)[Vu] + o(€) (12.5) 

and 

be(F) = be(Fo) + €dre(Fy)[Vu] + o(€). (126) 

We assume that 

AsAg ter + sen + o(€’), (12.7) 

and conclude that 

P =P, +€P’ + o(€), (12.8) 

where 

Py = P(Fy) + AoPe(Fo), (129) 

and 

P’ = H(Foj A) [Vu] + Abe (Fo), (12.10) 

with 

H(Foj Ag) = M(Fy) + AoGer(Fo) = (W + dob) erizg: (12.11) 

Equilibrium without body force requires, of course, that DivP = 0. Dividing by € and 

passing to the limit, we derive 

DivP’ = 0, (12.12) 

subject to 

br (Fo) - Vu = 0. (12.13) 

This is a linear system for the fields u(x) and A’(x). In a mixed position/traction boundary- 

value problem, we assign p’ = P’N on 0x, and u on its complement. 

Problems 

1. Suppose ax, is loaded by a pressure of fixed intensity p. Show that 

p’ = -p[(divu)I - (gradu)']F5N, (12.14)
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where grad and div are the gradient and divergence operators based on pos- 

ition y,. 

2. Complete the differential equation -gradq’ = ... for the incremental constraint 

pressure q’ in an incompressible material. 

Consider the potential energy of the deformation x (x; €). We again confine attention 

to the mixed dead-load problem for the sake of illustration. The potential energy is the 
function of € defined by 

Fle) = [wear | p- x(x €)da, (12.15) 

where p is fixed, independent of €. We assume that x(x;¢) is likewise fixed on the 

complement of dx,, and hence that u and v vanish there. Then, 

F(e) = [™ . F(a [ P.N: x'(e)da. (1216) 
K aKxp 

Recalling that @(F(€)) =0, we have 0 = $'(e) = ¢; - F’(e). Evaluating at € = 0 then 

yields 

F(0) = / [We (Fs) + g¢e(Fo)] « Vado — [ P.N - uda, (1217) 
ax 

for any scalar field g(x). Identifying this with the equilibrium Lagrange-multiplier field 

Ao(x) and integrating by parts then furnishes 

F(0) = [> - Vudy - [ rivceynrar, (12.18) 

which reduces to 

F'(0) = fo - DivPydv. (12.19) 

Because P, is an equilibrium stress field, it nullifies the first variation F’ (0) and hence renders 

the potential energy stationary (cf. Problem no. 3 in Chapter 3). 

Problem 

Clearly, the first variation vanishes at an equilibrium state for all variations u. In par- 
ticular, the latter need not satisfy any equilibrium equations or boundary conditions 

beyond u = 0 on the complement of d«,. Prove the converse, i.e, that if the first 

variation vanishes for ail such variations, then the underlying state is in equilibrium.
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Accordingly, the energy comparison reduces to 

ELe(as €)] ~Elyg(2)] = Se°LF"(0) + o(€*)/e*) (120) 
Dividing by e€? and passing to the limit, we conclude that y, is a stable deformation only if 

the second variation F’(0) is non-negative; i.e., 

F’(0) > 0. (1221) 

To make this explicit, we differentiate eqn (12.16), reaching 

F(e) = [nF -F(e)+W,- FO} [ P.N - x" (€)da, (12.22) 

and 

F'(0) = [omentva - Vu + P(E,) « Vv}dv -| P,N - vda. (12.23) 
ax 

Using 

/ 6(B,) - Vvdv = / {Div(B(F,)'v) ~ v - DivB(F,) }dy, (1224) 

together with DivP(F,) = -Div{Ag@p(F,)} (from DivP, = 0), integrating the first term by 
parts, and invoking v = 0 on the complement of d«,, we deduce that 

F’(0) = | {M(F))[Vu] » Vu — Aobe(Eo) » Vv }du. (1228) 

Finally, we use eqns (12.3), part 2, and (12.11) to reduce this to 

F’(0) = [Hes do)) [Vu] - Vudv. (1226) 

Using this expression it is possible to show that the Legendre-Hadamard inequality is a 

pointwise necessary condition for eqn (12.21). A simple proof may be found in the book by 

Fraejis de Veubeke (1979). 

Problem 

An elastic body is in frictionless contact with a rigid body on a part of its boundary. 

Give a direct proof (not relying on the 2nd variation) that a deformation minim- 

izes the energy only if it exerts a pointwise compressive pressure distribution on 

the rigid body. Hint: To ensure that the elastic body and the rigid body do not 

inter-penetrate, variations u should be such that u - n > 0 on the contacting surface, 

where n is the exterior unit normal field to the boundary of the rigid body.
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Consider the linearized equilibrium problem with null incremental data, i.e, 

DivP’=0 and (Fy): Vu=0 in x, P'N=0 on 9Ok,, 

u=0 on dK\dk,. (12.27) 

Clearly, this admits u = Oand A’ = 0asa solution no matter the values of the underlying de- 

formation y, and Lagrange multiplier Ag. A bifurcation is a non-trivial solution {u, A’} to the 

same problem. Its existence or otherwise depends on the underlying state. It corresponds 

to non-uniqueness of equilibrium in the linear approximation. For any bifurcation we have 

O= fo - DivP'do = fours —P’- Vu)dv 

= [ P’N - uda- fr - Vud. (12.28) 
ax K 

Accordingly, 

[Hes Ay)) [Vu] - Vudv = 0, (12.29) 

and so bifurcations nullify the second variation of the energy. Taken together with 

eqn (12.21), this motivates the Euler—Hill_Trefftz criterion. Given {y,, Ao}, if there is a non- 

zero {u, A’} that furnishes a minimum value, namely zero, to the second variation of the 

energy, then the underlying state {y,, Ao} is potentially unstable. This may be cast as a 

variational problem subject only to eqn (12.27), part 2, and the requirement that u = 0 

on d«\dk,. Equations (12.27), parts 1 and 3, emerge as the Euler equation and natural 

boundary condition in this approach. This problem is of course linear, and thus far more 

tractable than the actual (nonlinear) problem. Ogden (1997) discusses a number of explicit 
applications of this criterion. 

Note that the case of several simultaneous constraints is covered, rather obviously, by 

using eqn (6.10) in place of eqn (12.4) and repeating the argument leading to eqn (12.26), 
for all constraints acting simultaneously. The unconstrained case is recovered by suppress- 

ing eqn (12.13) and ignoring the Lagrange multipliers. 
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Elements of plasticity theory 

Plasticity theory furnishes a foremost example of the utility of the concept of Elasticity in the 

formulation of more general models of material behavior. Roughly, plasticity theory seeks 

to describe the response of materials in which a strain persists after removal of load. This 

can occur when the load has reached a certain threshold. Various materials, such as metals, 

snow, plasticine, polymers, and paint come to mind. Existing theory pertains mainly to 

metals, for which the underlying mechanisms are reasonably well understood. If the metal 

is crystalline, with rows of lattice cells stacked one upon the other, and if a shear stress is 

applied in the axes of the lattice, then one typically observes a shear strain on these axes 

developing in response to the stress, If the shear stress meets or exceeds a critical value, 

then relative slipping of the stack ensues, producing a permanent macroscopic shear de- 

formation. This is essentially a frictional effect, and hence invariably dissipative in nature, 
in contrast to pure elasticity. To describe it a suitable notion of energy dissipation will prove 
necessary. 

The picture is similar in the case of simple tension of a bar (Figure 13.1). If we plot the 

mean cross-sectional axial stress (the axial force divided by the current cross-sectional area) 

against the current length of the bar, we typically see a response like that depicted in the fig- 
ure. Upon initial loading, the length of the bar increases roughly in proportion to the stress. 
Their ratio is denoted by E. Further load or extension results in the onset of a nonlinear 
response, with the slope changing sharply and dropping significantly below E. If the load 

is reduced after the onset of this nonlinear regime, then the resulting deformation is quite 

different from that achieved by initial loading to the same stress level; the unloading typ- 
ically is again linear, but somewhat offset relative to the initial loading curve. Reasoning as 
in Chapter 1, we are justified in attributing these observations to the material per se if the 
deformation and stress fields are uniform. In this case, the constant E is a material property, 

the famous Young’s modulus. The mean stress is then equal to the local stress, and its value 

at the upper end of the linear part of the loading regime is the axial yield stress. All the while, 

the bar may shear or twist, while being extended or compressed, but here we focus attention 

on the relationship between uniaxial stress and length, /. As in the case of pure elasticity, the 

latter is normalized by initial length, /), yielding the usual stretch A(= 1/1). 

Finite Elasticity Theory, David J. Steigmann. 
© David J. Steigmann, 2017. Published 2017 by Oxford University Press.
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Figure 13.1 Idealized uniaxial response of an elastic-plastic material 

13.1 Elastic and plastic deformations 

If the load is removed after the onset of yield, then the length of the bar will recover, linearly, 

to a value |, as shown in the figure, in which the subscript is used to identify an intermediate 

configuration. This generates a so-called permanent stretch, or plastic stretch, given by A, = 
[,/ly, corresponding to a vanishing axial stress. The stretch A just prior to the unloading is 

then given by 

A= Ay (13.1) 

where A, = I/l;. This is called the elastic stretch, because it is that part of the total stretch 

required to restore the bar to length / under the application of the stress existing prior to 

the unloading. Thus, A, = 1 and A = A, when the stress vanishes. One thing worth noting is 

that the elasticity of the material—here characterized by the modulus E—is insensitive to 

the plastic deformation. Indeed, this conclusion extends to various other aspects of elastic 
response, as observed in famous experiments conducted by G.L Taylor. We shall elaborate 
in due course. Attention is confined to the rate-independent theory, in which the response, 

as depicted in Figure 13.1, is either insensitive to the rate of deformation or the deformation 

proceeds so slowly that any rate dependence is not relevant. 
One slightly unsatisfying aspect of this picture is that it mixes notions of stress and 

deformation together in describing the different types of stretch. In modern continuum 

mechanics we are accustomed to separating these notions for as long as possible so as to 

better understand the distinctions between kinematics and kinetics, deferring their inter- 

mingling to a separate class of constitutive relations, of which elasticity is, of course, a primary 

example. This issue has in fact been the source of much confusion over the course of the his- 
torical development of the subject of plasticity theory. Nevertheless, the different notions 

of stretch embodied in eqn (13.1) furnish a useful description of the underlying phenom- 
ena and, therefore, remain central to the subject. Our purpose in this chapter is to extend 

these ideas to general deformations and states of stress. We aim for a formulation of this 
important subject that is as clear and unambiguous as the modern theory of finite elasticity. 

Indeed, the motivation for this chapter stems from the conviction that such a development 

remains elusive to the present day.
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Figure 13.2 Elastic and plastic deformations 

To begin, we introduce an intermediate configuration, «;, in which the material is pre- 

sumed to be free of stress (see Figure 13.2). Let x, be a reference configuration, selected for 

convenience as per usual practice, and let x, be the configuration at the present time, t. The 

deformation from the reference configuration to the current has gradient F at time t and 

material point x, as usual. Let H stand for the corresponding variable based on the use of K; 

as reference, and let K be that obtained when «; is used as reference and x, is replaced by x,. 

Then, 

H = FK, (13.2) 

in which F = Vx and x (x, ¢) is the usual deformation. Because H is the value of F in the 

absence of plastic deformation (K = I), we assume that J, > 0 and hence conclude that 

Jx > 0. Throughout this chapter we use the notation J, to denote the determinant of a 

generic tensor A. Comparing with eqn (13.1), we see that H corresponds to A, and K to A. 

In much of the literature eqn (13.2) is written as F = F,F,, in which F,(= H) and F,(= K"') 
respectively are the elastic and plastic parts of the deformation. Here we use 

G=KkK' (133) 

to denote the latter. It is important to note that while the factors in eqn (13.1) may be 

interchanged without loss of generality, this is not the case in eqn (13.2) for the simple 

reason that tensor multiplication does not commute. 

In the course of extrapolating eqns (13.1) to (13.2) we have, of course assumed that x; 
is stress free. In the one-dimensional situation, the associated length J, is achieved simply 

by removing the load. This corresponds to the removal of the stress pointwise in the case 

of uniform stress. However, pointwise removal of the stress is generally not feasible in the 

three-dimensional context. That is, it is not generally possible to have T(x, t) = 0 for all x 

in «,. In reality, there is a distribution of residual stress due to the presence of various defects 

in the body. These induce local lattice distortions in the case of crystalline metals, for ex- 

ample, which in turn manifest themselves as elastic strain and a consequent distribution of 

stress. This is typically the case even when the body is entirely unloaded, i.e., when no body 

forces are applied and the boundary tractions vanish.
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Nevertheless, it is possible, in principle, to remove the mean stress via an equilib- 

rium unloading process. In particular, in equilibrium the mean stress, T, is given by (see 

Chadwick, 1976) 

- 1 1 
vol(x,)T = sf (t@ysy@ddas = [ p(b@®yt+ty@b)dy, (13.4) 

any Kt 

where t and b, respectively, are the boundary traction and body force. Accordingly, T =Oif 

the entire body is unloaded. 

In view of the Mean-Value Theorem for continuous functions (see Fleming, 1977), there 

exists y € , such that T(y, f) = T. Therefore, T(y,t) = 0 for some y € x, if the body is 
unloaded and in equilibrium. Let 

d(k,) = sup ly -z]. (13.5) 
yiZEXt 

This is the diameter of x, Then, for every y € K, we have T(y,t) — T(y,#) as d(x,) > 0. 
Accordingly, the local value of the stress can be made arbitrarily small as the diameter of the 

body is made to shrink to zero. 

Of course, it is not possible to reduce the diameter of a given body to zero. However, 

we may regard any body as the union of an arbitrary number of arbitrarily small disjoint 

sub-bodies Pp, ie, Ky = Ue Pm, with d(P™) —> 0. Imagine separating these sub-bodies 

and unloading them individually. We then have T(y, t) > 0 for every y € P“, for every n. 
Because every y in k, belongs to some P™, this process results in a state in which the material 

is pointwise unstressed. Of course, each piece P has in general experienced some (elastic) 

distortion in this process, and so the unstressed sub-bodies cannot be made congruent to 

fit together into a connected region of 3-space. Thus, there is no global stress-free configur- 

ation of the body and, hence, no position field x;, say, such that dy, = Gdx (or H''dy); that 

is, there is no neighborhood in the vanishingly small unloaded sub-bodies that can be used 

to define a gradient of a position field. Accordingly, unlike F, neither G nor H has the prop- 

erty of being a gradient. It follows that for any closed curve C x,, with image y = x (I’,¢) 

in x, under the deformation map, the vector 

B= [sax= [ wiay (136) 
r Y 

does not vanish. This is called the Burgers vector associated with the specified curve, induced 

by the plastic deformation. 
In view of the foregoing, we regard x; as being associated with a material point x, rather 

than as a configuration per se. It has the properties of a vector space. In fact it may be re- 

garded as the tangent space to a certain body manifold, but this manifold is not Euclidean as 

it does not support a position field. This interpretation is the basis of an elegant differential- 

geometric theory of plastically deformed bodies (see the paper by Noll, 1967, and the book 
by Epstein and Elzanowski, 2007), which, however, is not emphasized here as it is largely 

superfluous as far as the formulation of problems is concerned.
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13.2 Constitutive response 

We have mentioned that the elastic properties of the material are essentially independent 

of the plastic deformation. This idea is codified in the expression 

U(P,) = / W(H)dv, (137) 

where wp is the strain energy per unit volume of «,. This is determined entirely by the elastic 

deformation, in accordance with our hypothesis. In particular, this function is entirely un- 

affected by the relative slipping between adjacent lattice planes in a crystalline metal due to 

plastic deformation. This reflects the observation (see Batchelor, 1958) that relative slip- 
ping achieved without stress does not alter the structure of the lattice cells and so leaves the 

elastic constitutive response unchanged. In reality, slip is accomplished in steps, much as 

the overall displacement of a carpet is achieved by bunching it up locally and displacing the 

resulting bulges from one end of the carpet to the other. These stepwise displacements are 

called dislocations. They invariably generate localized lattice distortions and hence stresses. 

These are relieved, in principle, but cutting the body into small pieces, yielding the disjoint 

local intermediate configurations that we have identified with «,; accordingly, the latter are 

not realized in practice, but rather serve as a conceptual aid. 

Here and henceforth, we shall confine attention to uniform materials for which the func- 

tion ¥ is not explicitly dependent on the material point; the strain-energy density is then 

given by one and the same function at all points of the body. This is the notion underlying 

Noll’s theory of materially uniform simple bodies, which has had the most profound influence 
on the development of modern plasticity. 

It proves convenient to base the theory on the strain energy “per unit volume” of x;. This 

may be defined unambiguously despite the fact that there is no global intermediate config- 
uration and hence no associated volume per se; we simply multiply w by the local volume 

ratio induced by the deformation from «; to «,. This ratio is of course just J}, which is well 

defined. The desired function is 

W(H) = Juw(H). (138) 

The use of this function, rather than w, affords a simple extension of what we have already 

learned in the case of pure elasticity. This follows from the fact that in the absence of plas- 

tic deformation—a situation we intend to encompass in the theory to be developed—H 
reduces to F and the energy W is then just the conventional strain energy per unit refer- 

ence volume. In this specialization we have seen that the symmetry of the Cauchy stress—a 

restriction we impose a priori—is equivalent to the invariance of the energy under super- 

posed rotations, ie., W(F) = W(QEF) forall rotations Q, Because W is independent of K 
by construction, it follows that 

W(H) = W(QH) (139)
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for all rotations Q, This carries the same implications as in the case of pure elasticity, 

namely, 

W(H) = W(Cy), (13.10) 

where Cy = H'H is the right Cauchy-Green tensor derived from H. Equivalently, we 

may use 

W(H) = W(Ex), (13.11) 

where Ey = >(Cy ~ I) is the elastic Lagrange strain and W(Ey) = W(2E, +1). As before, 
the Piola stress based on x; as reference is Wy, and this is related to the 2nd Piola—Kirchhoff 

stress §,—also based on k,—by Wy, = HS,, with 

S, = Wz, (13.12) 

The usual Cauchy stress T is given by 

Wy = TH’. (13.13) 

Normally metals can undergo only small elastic strains before yielding, at least if the rate 

of strain is sufficiently small. We simplify the model accordingly by supposing that |E,| is 
always small enough that the use of the quadratic-order approximation 

(Ey) = WO) + Ey « Wey (0) + By  CLBq] + o(Eaf) (1314) 

is justified, where 

C = Weys,,(0) (13.18) 

is the 4th-order tensor of elastic moduli, evaluated at zero strain. This possesses the ma- 

jor and minor symmetries discussed in Chapter 11. Because x; is associated with vanishing 

stress by assumption, the coefficient We,, (0) of the linear part of the expansion eqn (13.14) 
vanishes. Accordingly, the leading-order strain energy is purely quadratic: 

W(Eu) ~ sn - C(Ex]. (13.16) 

This, of course, is just the usual elastic energy for small strains, yielding 

S, = C[Ey]. (13.17) 

Relying on an observation made in Chapter 11, we take C to be positive definite (A- 

C[A] > 0 for all A with non-zero symmetric part), and conclude that W is a convex 

function, i.e.,
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W(E,) - W(E,) > W,(E,) - (E, - E:) (13.18) 

for all E, # E,, in which the subscript ;, has been suppressed for the sake of clarity. 

Because ; is free from elastic distortion, in the case of a crystalline metal the lattice is 

perfect and undistorted in x,. This has the consequence that 

W(H) = W(HR), (13.19) 

for all rotations characterizing the symmetry of the lattice and, hence, that 

W(E,) = W(R‘E,R). (1320) 

We have seen that the collection of all such rotations is a group, the symmetry group of the 

lattice. For crystalline solids this group is always discrete, whereas for isotropic or trans- 

versely isotropic solids it is connected. In particular, isotropic materials satisfy eqn (13.20) 

for all rotations. 

In the purely quadratic case, this has the well-known consequence that W(En) is of the 

form 

~ 1 
W(Ex) = 5M HEn)’ + LE, + Eq, (1321) 

in which A and ware the classical Lamé moduli. These are subject to the restrictions 4 > 0 

and 3A + 242 > 0, which are necessary and sufficient for the positive definiteness of C in the 

present context. Using eqn (13.12), this in turn generates the classical stress-strain relation 

S, = Atr(Ey)I + 2uEy (13.22) 

for isotropic materials. 

13.3 Energy and dissipation 

It is convenient to adopt a referential description of the strain energy. Proceeding from 

eqns (13.7) and (13.8) we have 

ur) = f wonar= f jevar= f sagen (13.23) 

Thus, 

uP.) = [ WOR, Kar (1304) 
Py
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where, from eqn (13.2), 

W(F, K) = J; W(FK). (13.25) 

The total mechanical energy in P, C x, is then given by 

1 
E(P,) = / Ddy, where ®=W+ 5h lvl, (13.26) 

Pr 

where , is the mass density in x,. 

Problem 

For fixed K, prove that W is strongly elliptic at F if and only if W is strongly elliptic 

at H. 

The power of the forces acting on P, is 

P(P,) = / p-ydat+ / p,b + ydv. (13.27) 
oPr Py 

Using the equation of motion eqn (2.28) we derive 

. 1 .n\ fate . 
Peb- y= 5h ly| } - [Div(P'y) - P- Vy]. (13.28) 

Substituting into eqn (13.27), applying the divergence theorem and using p - y = P'y - N, 
where N is the exterior unit normal to OP,, we arrive at the Mechanical Energy Balance (cf. 

eqn (3.1)) 

P(P,) = “KP, +S(P,), (13.29) 

where 

K(P,) = of De ly|’ dv (13.30) 

is the kinetic energy and 

S(P,) = [ P-Fdv (1331) 
Pr 

is the stress power. 

Next, we define the dissipation D to be the difference between the power supplied and 

the rate of change of the total energy; thus, 

D(P,) = P(P,) - SEP). (1330)
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Using eqn (13.26) in the form €& = K’ +’ and combining with eqn (13.32), it follows 
immediately that 

D(P,) = / Dd», (13.33) 
Pr 

where 

D=P.F-W, (1334) 

In the purely elastic context we see from eqn (3.9) that D vanishes identically. Here, 

we impose the requirement D(P,) > 0 for all P, C «, and conclude, from the localization 
theorem, that 

D>0 (13.38) 

pointwise. This assumption serves as a surrogate for the 2nd law of thermodynamics in the 

present, purely mechanical, setting. 

Problem 

Suppose the state {x,.(x), K,,(x)} is asymptotically stable relative to the static state 
{Xo(x), Ko(x)} in the sense that any dynamical trajectory {x (x, t), K(x, t)} initiating 
at the latter tends to the former, pointwise, as f > 00. Show, for conservative prob- 

lems, that the potential energy of the asymptotically stable state is no larger than that 

of the initial state. 

To obtain a useful expression for the dissipation we proceed from eqn (13.25), obtaining 

W = Je (W - (ie/Ix) WI. (1336) 

Here, we use the identity Jx/Jx =K'-K together with 

W = Wy: H= W,K'- F+FW,-K. (1337) 

Recalling that Wy, = T(FK)* = PK* and hence that WyK' = J,P and F'Wy = J,xF'PK", 

eqn (13.36) is reduced to 

W=P.F-E-RK"', (13.38) 

where 

E=WI-F'P (13.39) 

is Eshelby’s Energy-Momentum Tensor. Accordingly, the local dissipation may be written in 
the form
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D=E- KK". (13.40) 

This result, due in the present context to Epstein and Maugin (1995), highlights the role of 
the Eshelby tensor as the driving force for dissipation. We use it here, in conjunction with 

eqn (13.35), to derive restrictions on constitutive equations for the plastic evolution K. We 

note in passing, relying on eqn (13.38) and the chain rule, that 

P=W,(F,K) and E=-,(F,K)K’. (13.41) 

The expression eqn (13.40) for D makes clear the fact that the dissipation vanishes in 

the absence of plastic evolution, i.e, D = 0 if K = 0. On the basis of empirical observation, 

we introduce the hypothesis that plastic evolution is inherently dissipative; thus, we sup- 

pose that D # 0 if, and only if, K # 0. In view of our previous assumption eqn (13.35), this 
means that 

K 0 ifandonlyif D> 0. (13.42) 

It may be observed from the definition eqn (13.39) that the Eshelby tensor is purely 

referential in nature, mapping the translation space of x, to itself. For reasons that will be 

explained later, it proves convenient to introduce a version of the Eshelby tensor, E,, that 

maps K; to itself. This is defined by the relation 

E=)/K‘EK'. (13.43) 

Problems 

1. Use eqn (13.39) to show that if E’ is the Eshelby tensor derived by taking the 

current configuration as reference; i.e, E’ = wl — T, then E = J-F'E’F". Thus, E 

is the pullback of EF’ from x, to x,. Show that E is the pullback of E; from x; to x,, 

and that E; is the pullback of E’ from x, to K;. 

2. Prove that 

E, = WI- H'Wy. (13.44) 

This implies that E, is determined entirely by H and, hence, purely elastic in ori- 

gin. Show that E, = WI - C,,S, and, hence, that E, is insensitive to superposed 

rigid-body motions. 

3. Prove, in the case of small elastic strain, that 

E, = -S, + o(|Eu|), (13.45)
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where §; is given by eqn (13.17) and, hence, that the Eshelby tensor based on the 

intermediate configuration is given, to leading order and apart from sign, by the 

2nd Piola—Kirchhoff stress referred to the same configuration. 

4. Prove that 

J.D =E,.- K'K (13.46) 

and hence that the assumption of inherent dissipativity is equivalent to the 

statement: 

K #0 ifandonlyif E,-K’K> 0. (13.47) 

It is interesting to observe that if E, = 0, then W = 0, S, = 0 and, hence, D = 0; then, 

eqn (13.47) implies that there can be no plastic evolution. That is, without stress, there 

can be no change in the plastic deformation. This is in accord with common observation. 

13.4 Invariance 

We have observed that the symmetry of the Cauchy stress is equivalent to the statement 

W(H) = W(QH) for all rotations Q, Because the argument leading to this conclusion 
is purely local, the rotation Q can conceivably vary from one material point to another. 

This stands in contrast to the rotation Q(f) associated with a superposed rigid-body mo- 
tion, which must be spatially uniform and, hence, the same at all material points; here, we 

distinguish these cases explicitly in the notation. 

Ina superposed rigid-body motion, the deformation x (x, f) is changed to 

x* (ut) = Q(t)x (x £) + c(t) (13.48) 

for some spatially uniform vector function c. It follows immediately—as we have seen— 

that F(= Vx) goes into F*(= Vx*), with F* = QF. The argument cannot be adapted to 

H, however, because it is not the gradient of any position field. 

Nevertheless, it follows that H* = QFK, whereas H* = F*K* = QFK’. Consequently, 

QFK = QFK’. (13.49) 

We would like to use this to arrive at some conclusion about the relationship between K* 

and K, but this requires a further hypothesis. A natural one is that the dissipation is in- 
sensitive to superposed rotations. To explore the implications we define Z = K'K'' and 

note, from (13.49), that Jz = 1. Suppose Z(t.) =I, so that the superposed rigid motion 

commences at time fy. Using eqn (13.46) we find that the dissipation transforms to 

JxD* = Et - (K*)'K" = E, - (K'Z"'ZK + K'R) = J,D+E,-K'Z"'ZK, (13.50)
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wherein we have invoked the invariance of the Eshelby tensor E,. Accordingly, if D* = Das 

assumed, then 

E, -K'Z'ZK = 0, (1351) 

and this purports to hold for K with J, > 0. It, therefore, holds for K = I, yielding Z = K*. 

This amounts to selecting x; as the reference configuration for the superposed rigid motion, 

this entailing no loss of generality as the argument is purely local. This Z is a bona fide plastic 

flow, and therefore subject to our strong dissipation hypothesis (13.47). This requires that 

7, vanish, and hence, given the initial condition, that K* = K; thus, G* = G. From (13.49) 

it then follows that Q = Q(t). Altogether, then, 

F*=QF, H’=QH and K'=K. (13.82) 

13.5 Yielding, the work inequality and plastic flow 

The situation depicted in Figure 13.1 suggests that the onset of yield may be characterized 

by the statement |T| = Ty, where Ty is the yield stress in uniaxial tension, a material prop- 

erty that may evolve with continued plastic flow. The inequality |T| < Ty is associated with 

elastic response, whereas |T| > Ty is impossible. Because of the one-one relation between 

stress and elastic stretch existing under our hypotheses, we could equally well describe yield 

using a relation of the form f(A,) = 0. 

In the three-dimensional setting, we assume that the onset of yield may be described us- 

ing a relation of the form G(E,) = 0, where G is an appropriate yield function pertaining to 

the material at hand. Of course, we may derive this from the more basic assumption that the 

yield function is dependent on H, and that yield is insensitive to superposed rigid motions. 
Thus yield occurs when the elastic distortion lies on a certain manifold in 6-dimensional 

space. Again, because of the one-to-one relation between E,, and S, under our hypoth- 

eses, we could equally well characterize yield in terms of the statement F(S;) = 0, where 

F(S,) = G(C"'[S, ]) is the yield function, expressed in terms of the stress. We suppose elas- 
tic response to be operative when the stress satisfies F(S,) < 0, in which case the stress is 

said to belong to the elastic range, and that no state of stress existing in the material can 

be such that F(S,) > 0. We further suppose that F(0) < 0 and, hence, that the stress-free 
state belongs to the elastic range. In this way we partition 6-dimensional stress space into 

the regions defined by positive, negative, and null values of F, with the first of these being in- 

accessible in any physically possible situation. This appears to disallow behavior of the kind 

associated with the Bauschinger effect, in which yield can occur upon load reversal before 

the unloaded state is attained. However, empirical facts support the view that this effect is 

accompanied by the emergence of dislocations, causing nonuniform distributions of stress 

and elastic strain in the material, which cannot be directly correlated with the overall global 

response represented in the test data. From this point of view, the Bauschinger effect is thus 

an artifact of the test being performed, not directly connected with constitutive properties 

per se.
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F>0 

Figure 13.3 A cyclic process 

Consider now a cyclic process, as described in Section 3.2 of Chapter 3. Reasoning as we 
did there, we have 

2 

/ P - Fdt > 0, (13.53) 
4 

where f,,, respectively, are the times when the cycle begins and ends. Suppose these times 

are such that the associated stresses satisfy F < 0; the cycle begins and ends in the elastic 

range (Figure 13.3). 
Suppose the cycle is such that there exists a sub-interval of time [t,, t,] C [t1,t] dur- 

ing which F = 0, and that F < 0 outside this sub-interval. Then, we may have plastic flow, 

ie. K ¥ 0, during this sub-interval, while K = 0 outside it, implying that K(t,) = K(t,) and 
K(t,) = K(¢,). Substituting eqn (13.34) and noting that the process is cyclic in the sense 

that F(t,) = F(t,), we arrive at the statement 

YERCE) KC) = WORG). KC) + ff ” Dat > 0. (1354) 

Equivalently, 

| ” Duq(FC4,), K(t)) R(t) + D(A)]de > 0. (1355) 

Dividing by #, — t,(> 0) and passing to the limit, it follows from the mean value theorem 

that 

Wy(F(t,), K(t,)) K(f.) + D(ta) > 0, (1356)
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which may be written, using eqns (13.40) and (13.41), part 2, as 

(E(F(t,), K(t,)) - E(F(t,),K(t,))] - K(t,)K(t,)7 > 0. (1357) 

Problem 

Prove that this is equivalent to the inequality 

[E,(Bu(t.)) - E,(En(t))] - K(t.)"K(f.) > 0, (1358) 

where E,(E,,) is the function of elastic strain obtained by recasting eqn (13.44). This 

means that the dissipation is maximized by states E,, (equivalently, S,) that lie on the 

yield surface. 

In the case of small elastic strain, we substitute eqn (13.45) together with K'K = -GG", 

which follows by differentiating GK = I, divide by |Ey|, and pass to the limit in eqn (13.58) 
to derive the restriction 

[S;(t,) - S,(t,)] - SymG(t,)G(t,)"' > 0, (13.59) 

in which we have inserted the qualifier Sym to reflect the fact that the term in the square 

brackets is symmetric; the inner product then picks up only the symmetric part of GG". 

We summarize this result in the statement: 

(S-—S*)-SymGG"' > 0; F(S*) <0, F(S) =0, (13.60) 

where the subscript ; has been suppressed to promote clarity. 

This inequality has a simple geometric interpretation having important implications for 

the structure of constitutive equations specifying the evolution of G (Figure 13.4). First, 

SymGG" must be perpendicular to the tangent plane T; to the yield surface at S. Secondly, 

the entire elastic range, defined by F < 0, must lie to one side of T; at S. Thus, the elastic 

range is a convex set; that is, if S,, belong to the elastic range, then so does every point 

u € [0, 1] on the straight line S(u) = uS, + (1 - u)S,. 
If F(S) is a differentiable function, then T; depends continuously on S and the sur- 

face F(S) = 0 has exterior normal in the direction of the derivative F, at point S. We 

conclude that 

SymGG" = AFs, (13.61) 

for some scalar Lagrange multiplier field A(x, t) > 0, to be determined from the particular 

initial-boundary-value problem at hand. Precisely the same result is implied by the Kuhn- 

Tucker necessary conditions of optimization theory (see Zangwill, 1969). In the present 

setting, this pertains to the optimization problem: 

max($-GG"!)  subjectto S=S' and F(S) <0. (13.62)
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Sym GG"! 

Sym GG"! 

Ts) 

(a) (b) 

Figure 13.4 (a) Sym GG"! is perpendicular to Tp at S. (b) The elastic range, F < 0, lies to one 
side of Tp at S 

Plastic evolution is, therefore, such as to satisfy 

GG" =AB, +2 (13.63) 

for some skew tensor §2(x, t), called the plastic spin. 

The foregoing considerations about yield and flow are quite general, and apply to both 

crystalline and non-crystalline materials. Modern theory for crystalline media is still in a 

state of active development (see Gurtin, Fried and Anand, 2010), particularly with re- 

spect to issues such as strain hardening—the evolution of the yield function with plastic 

flow—and plastic spin. In contrast, the classical theory, which purports to apply to isotropic 

materials, is well established and much simpler. However, although the associated literature 

is vast, it is seriously marred by the lack of any clear exposition of the explicit role played by 

(isotropic) material symmetry in the logical development of the subject. One of our main 

objectives here is to provide this missing link and, thus, to firmly establish the classical the- 

ory on the basis of the modern theory for finite elastic-plastic deformations. For all these 

reasons, attention is hereafter confined to the case of isotropy. 

13.6 Isotropy 

As we have seen, for isotropy the constitutive functions—exemplified above by the strain- 

energy function—must be insensitive to the replacement of H by HQ, where Q is any 

rotation. We have seen that such invariance implies, in particular, that 

W(E,) = W(Ey), where Ey = Q'E,Q (13.64) 

is the rotated strain. In general, this yields 

S = Q'SQ, (13.65)
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where § = Win» which can easily be confirmed in the special case eqn (13.22) on replacing 

Ey by Ey. 

Problem 

Prove that this holds for isotropy in general. 

With this result in hand, we are justified in requiring that the yield function, being a 

reflection of material properties, should satisfy the material symmetry restriction 

F(S) = F(S) (13.66) 

with S given by eqn (13.65), for any rotation Q, Accordingly, as in the preceding Problem, 

Fy = Q'F,Q, (13.67) 

Because of eqn (13.2), invariance statements of this kind are equivalent to the statement 

that scalar-valued constitutive functions should remain invariant if K is replaced by K = 

KQ - equivalently, if G is replaced by G = Q'G, with F remaining fixed. To see how this 

replacement affects plastic flow, we compute 

(G)G" = QA'GG'Q+QQ, (13.68) 

where we have allowed for the possibility that Q may be time-dependent. Substituting 

eqns (13.63) and (13.67) we conclude that 

(G)G" = AF + Q(2Q + QQIQ (13.69) 

Now, for any skew @ we can always find a rotation Q(t) to nullify the parenthetical term 

in eqn (13.69). To see this, suppose B(t) satisfies the initial-value problem 

B=WB with B(0) = By, (13.70) 

where W is skew and B, is a rotation, Let Z = BB’. Then, 

Z=WZ-ZW, with Z(0)=1 (1371) 

Clearly, a solution is furnished by Z(t) =I. A theorem on ordinary differential equa- 

tions ensures that this is the only solution and, therefore, that B is necessarily orthogonal. 

Furthermore, 

J, = BY -B = J,tr(BB"), (13.72)
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and this vanishes because W is skew. Accordingly, Jaa) = Jao) = 1, and B is a rotation. 

Because the rotation in eqn (13.69) is arbitrary, we are free to pick Q = B (with W = Q, 
of course), to conclude that 

(G)G' =AF, with AH=A. (13.73) 

Thus, by exploiting the degree of freedom afforded by the material symmetry group in the 

case of isotropy, we can effectively suppress plastic spin in the flow rule and use 

GG" = AE. (13.74) 

This is a major simplification that is not available in the case of crystalline materials. 

Problem 

Why not? 

Before proceeding we pause to take note of an important empirical fact that applies with 

a high degree of accuracy to metals; namely, that yield is almost entirely insensitive to 

pressure. This is true in essentially all metals for pressures over a very large range that en- 

compasses most applications. Thus, yield is insensitive to the value of trT, where T is the 

Cauchy stress. 

Problem 

Show that in the case of small elastic strain, trT = érS, + o(|Eu|). 

Thus, as the model we are pursuing purports to be valid to leading order in elastic strain, it 

follows that the yield function should be insensitive to trS;. It should, therefore, depend on 

S, entirely through its deviatoric part, DevS,, Again, omitting the subscript, we write 

F(S) = F(DevS). (13.75) 

Problem 

Show that DevS = Q'(DevS)Q and, hence, that 

F(DevS) = F(Q'(DevS)Q). (13.76) 

Recall that in the theory for small elastic strains, we agreed to expand the strain—energy 

function up to quadratic order in the elastic strain. Moreover, the stress is approximated 

by an invertible, linear function of elastic strain. Accordingly, the strain energy may be 

regarded as a quadratic function of the stress S$. For consistency we also approximate the
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yield function by a quadratic function of the same stress. Because DevS is a linear function 

of S, this means that F should be approximated by a quadratic function. The most gen- 

eral such function in the case of isotropy is a linear combination of tr(DevS), (trDevS)” 
and tr(DevS)? = |DevS|’, of which the first two vanish identically. The most general yield 
function of the required kind such that the yield surface F = 0 separates regions defined by 

F < Qand F > Oin stress space is then of the form 

~ 1 
F(DevS) = 5 |DevS|’ - k. (13.77) 

This is the famous yield function proposed by von Mises. The present derivation, based on 

material symmetry arguments in respect ofan intermediate configuration, together with the 

assumption of differentiability of the yield function, promotes understanding ofits position 
in the overall theory. 

Because the set of symmetric tensors can be regarded as the direct sum of the S- 

dimensional linear space of deviatoric tensors and the one-dimensional space of spherical 

tensors, it follows that the yield surface defined by F = Ois a cylinder in 6-dimensional stress 

space of radius J 2k. Here, k is the yield stress in shear. That is, ifthe state of stress is a pure 

shear of the form 

S = S(i@j+j@i), (13.78) 

with i and j orthonormal, then |DevS|” = 2S? and the onset of yield occurs when || = k. 
Here, k may be a fixed constant, corresponding to perfect plasticity, or may depend on ap- 

propriate variables that characterize the manner in which the state of the material evolves 
with plastic flow. The latter case refers to so-called strain hardening, the understanding of 

which is the central open problem of the phenomenological theory of plasticity. 

The reader is likely aware that alternative yield functions, such as that associated with 

the name Tresca, are frequently used in the theory of plasticity for isotropic materials. This 

function, which we do not record here, is in fact nondifferentiable and, hence, inaccessible 

by the present line of reasoning. However, experiments conducted by Taylor and Quinney 

indicate that it is less accurate from the empirical point of view that the von Mises function, 

despite the seeming generality gained by relaxing the assumption of differentiability (see 

the paper by Taylor and Quinney in Taylor's Collected Works, 1958). 

The theory is completed by substituting eqn (13.77) into eqn (13.74), to generate the 
flow rule for the plastic deformation. To this end we use eqns (13.75) and (13.77) with the 
chain rule, obtaining 

F,-S=F=(F) = 5 (Devs - DevS)’ 

= DevS - (DevS) = DevS - DevS = DevS - S, (13.79) 

and, hence, Fs = DevS. Finally, eqn (13.74) provides von Mises’ flow rule 

GG" = ADevS,. (13.80) 

This implies that J, is fixed, and hence that no volume change is induced by plastic flow.
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13.7 Rigid-plastic materials 

The elastic strain is invariably small in metals under low strain-rate conditions because it 

is bounded by the diameter of the elastic range. If the overall strain is nevertheless large, 

then the main contribution to the strain comes from plastic deformation. In this case, it 

is appropriate to consider the idealization of zero elastic strain, which entails the restric- 

tion H'H = I. The elastic deformation is, therefore, a rotation field, which we denote by R. 

Because the elastic strain vanishes identically, the strain energy is fixed in value and the 

stress is arbitrary, i.e., 

O=W=S,-E,, with E,=0. (13.81) 

Accordingly, at this level of the discussion S; is an arbitrary symmetric tensor, constitutively 

unrelated to the deformation as in a rigid body, granted that it satisfies the yield criterion. 

Furthermore, J,; = 1 and the relation between the Cauchy stress and S, reduces to 

S, = R'TR, (1382) 

and so 

DevS, = Dev(R'TR) = R'(DevT)R. (13.83) 

The yield function reduces to 

F(DevS) = F(R'(DevT)R) = F(DevT), er) 

the second equality being a consequence of isotropy, and is, therefore, expressible in terms 

of the Cauchy stress alone, as in the more conventional expositions of the classical theory. 

Using eqn (13.83), we may cast the flow rule eqn (13.80) in the form 

R(GG")R' = ADevT. (13.85) 

We can express this in a more convenient and conventional form by using the well-known 

decomposition 

L=D+W (13.86) 

of the spatial velocity gradient L into the sum of the straining tensor D = SymL and the 

vorticity tensor W = SkwL. Using L = FF together with eqn (13.2), we find in the present 
specialization to H = R that
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L = RR'+R(GG")R' (13.87) 

in which the first term is skew while the second, according to eqn (13.85), is symmetric. 

The uniqueness of the decomposition then yields D = R(GG"')R' and, hence, the classical 
flow rule 

D =ADevT, (13.88) 

due to St. Venant. The Cauchy stress is 

T = DevT - pl, (13.89) 

where the pressure p is constitutively indeterminate. Equation (13.88) is the central 

equation of the classical theory and predates the modern theory for finite elastic-plastic 

deformations by at least a century. Its straightforward derivation via the modern theory, 

relying on simple ideas about material symmetry, brings unity and perspective to this most 

important branch of solid mechanics. 

Problem 

Show that the dissipation is D = 2A? and is, therefore, positive ifand only ifA > 0. 

13.8 Plane strain of rigid-perfectly plastic materials: 

slip-line theory 

We consider deformations in the y,, y,—plane and, thus, confine attention to velocity fields 

of the form v = v,.(y,, y2)e,- Then eqn (13.88) furnishes DevT = T = T,ge, ® e,, implying 

that p = —-T33. The pressure field is equal to the confining stress required to maintain the 

plane-strain condition. Using 3p = -trT we conclude that p = -} Twa 

13.8.1 State of stress, equilibrium 

The yield criterion eqn (13.77), with eqn (13.84), reduces to 

2k = Tap lap = (Tap + pdap) (Tap + pba) 

= Tag Tag + 2pToa + p'Saa 

1 
= Tap Tap 7 2p’ = Tap Top 7 5 (Toa) (13,90) 

or 

(Ty - Tr)? + 4Ty, = 4k’. (13.91)
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Problem 

Show that the principal stresses are 

T,=-ptk, T,=-p-k and T,=-p. (1392) 

We conclude that the stress state is 

T = -pl + k(u, Qu, -u, @u,), (13.93) 

where {u;}, with u; = es, are the principal stress axes. Let t and s be orthonormal vector 

fields, such that 

2 V2 
u, = Z's +t), Wea z's —t). (13.94) 

Then, 

T=-pl+k(t@st+s@t), (13.95) 

which implies that k is the shear stress on the s, t axes. 

Problem 

Show that div(a ® b) = (grada)b + (divb)a, where grad and div are the gradient and 
divergence operators based on position y. 

Accordingly, in a perfectly plastic material (k = const.), equilibrium without body force 

requires that 

grad(p/k) = (gradt)s + (divs)t + (grads)t + (divt)s. (1396) 

We define a field 6 (x) such that 

t=cos@e,+sinde,, s=-sin@e, + cos@e,. (13.97) 

Then, 

dt=sd@ and ds = -tdé, (13.98) 

yielding 

gradt=s@®grad0, grads = -t ® gradO (13.99)
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and, therefore, 

divt=s-grad0, divs = -t - grad@. (13.100) 

Substituting into eqn (13.96), we derive 

grad(p/2k) = (s- gradO)s - (t - grad )t, (13.101) 

which is equivalent to the two equations 

t- grad(p/2k+6@)=0 and s-grad(p/2k-6) =0, (13.102) 

due to Prandtl and Hencky. These require that p/2k + @ take constant values on the trajec- 

tories defined by dy,/dy, = tan 0, - cot @, respectively. The latter are the characteristic curves 

of the hyperbolic system of PDEs for the fields p and 9. Remarkably, the stress is statically 

determinate, i.e., granted suitable boundary conditions, it can be determined without know- 

ledge of the deformation. These striking features of the theory of perfectly plastic materials 
contrast sharply with the mathematical setting of the theory of elasticity. 

13.8.2 Velocity field 

It proves advantageous to decompose the velocity field in the (variable) basis {s, t}. Thus, 

v=vttus. (13.103) 

To compute the velocity gradient, we combine the chain rule with eqn (13.98) to obtain 

dv = dv,t + v,sd@ + dv,s — v,td 

= (gradv, - dy)t + v.s(grad@ - dy) + (gradu, - dy)s - v,t(grad0 - dy) 

= Lady, (13.104) 

and conclude that 

L =t © grady, + v,s @ gradO + s @ gradv, — vt @ grado. (13.105) 

Then, 

2D = ¢ @ grady, + gradv, @ t +s ® gradv, + gradv,@s 

v,(s ® gradO + grad@ @ s) — v,(t @ gradO + grad @ t). (13.106) 

Using eqns (13.88) and (13.95) leads to 

t-Dt=0 and s-Ds=0O, (13.107)
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which together imply that the deformation is isochoric and the extension rates vanish along 

the directions t ands. 

Problem 

Show that eqn (13.107) are equivalent to the pair 

t+ (gradv, —v.grad@) =0 and s- (gradv, + v,grad@) = 0. (13.108) 

These are the celebrated Geiringer equations. They are linear PDEs for the components 

v, and v, if the stress field is known. 

Suppose the normal velocity v, (resp., v,) is continuous across the trajectory with unit- 

tangent field t (respectively, s). This means that fissures do not form in the material. Taking 

jumps, the first (resp. second) equation implies that t - grad[v,] (respectively, s - grad[v,]) 
vanishes on this trajectory, so that the slip [v,] (respectively, [v,]), if non-zero, is uniform 

along it. Hence, the name slip-line fields given to this subject. 
The literature on this topic is vast. The books by Hill (1950), Kachanov (1974), and 

Johnson, Sowerby and Haddow (1970) and the article by Geiringer (1973) describe further 

theory and many worked-out solutions. Numerical solutions are discussed in the article by 

Collins (1982). 
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SUPPLEMENTAL NOTES 

1. The cofactor 

Consider a vector-valued map that takes a x b into Aa x Ab. If we can construct a linear 

map of this kind, then there is a tensor A* such that A*(a x b) = Aa x Ab. A‘ is called 

the cofactor of A. This would qualify as a working definition of the cofactor, provided it 

could be shown that such a linear map exists. An elegant proof is given in the appendix of 

Chadwick (1976). 
Our approach will be to simply assume linearity, construct a representation Ave, ® e; for 

A*, and use it to confirm linearity after the fact. We have 

Aa X Ab = ey AvAjn@ Dn €xs (1.1) 

where e,, is the permutation symbol. Write A*(a x b) = A*(€,a:b,e) = Ai etm AD @- 

Using the fact that {e,} is a basis, we find that the original equation is equivalent to 

Ay, ei 1B = Cp Ap Andi Dy,. (1.2) 

However, the a; and b,, are arbitrary real numbers, so this must be satisfied no matter how 

we choose them. Pick b,, = 81s Sans 53, in succession, where 4,, is the Kronecker delta. We 

get Area) = ey AyA;,a). Now pick a; = 5), 53), 53, in succession. This yields Aj gg = e,AigAj- 

Note that the left-hand side is skew in the subscripts q, r. For our result to make sense, the 

right-hand side had better be also (check: eA;Ajq = eyAjAiq = CyiAigAj = —ryAigAj,). Now 

multiply through by e,,, and sum on q, r. Use the fact that €jq€q = 26, to get: 

Ay 
1 

ip = 5 Hvar Aig. (1.3) 

This formula was derived by making convenient choices of the vector components 4), b,, 

ie. we have shown that it is a necessary condition for the definition to be true. To show that 

it is also sufficient, we must substitute into the left-hand side of eqn (1.2) and show that we 

get the right-hand side, for any a,b,,. 

Problem 

Do so. 

We have constructed A* = Aje, @ e; such that A*(a x b) = Aa x Ab for all a,b and A* 

does not depend on a,b. The function f(v) = A*v is linear and vector valued, and so the 

cofactor is a tensor.
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2. Gradients of scalar-valued functions of tensors 

The gradient of a scalar-valued function of tensors is defined in exactly the same way as for 

functions of vectors or positions. Let g(A) be such a function and suppose it is differentiable 

at A,. This means that for each A, in an open set in Lin containing Aj, there is a linear 

function f(B), depending parametrically on the fixed tensor Aj, such that 

g(A.) = g(A,) + f(A, — Aj) + 0([A, — Aj]). (2.1) 

Because f(B) is linear, it is expressible as the inner product of a unique tensor with B; we 

call this tensor Vg(A,). Often the notation g, (A,) is used to make the independent variable 

explicit. Thus, 

g(A,) = g(A) + Ve(A,) : (A, - Aj) + o(|A, - A,|). (2.2) 

Using a mixed basis for illustrative purposes, let A= Aje;@E 3. Then Aj, = 

Ao e, @ Ep. Let g(A,c) = g(Age; ® Eg); then, eqn (2.2) may be written 

(AD) = (A?) + (AR - AP )e: @ Ey» Vg(Ai) + 0(|A2 - Ail). (23) 

This must hold for all A,,. Imposing it for A, - A, = Ae, @ E,, for example (A? - A = 

A6b,,55)), yields 

B(Aj? + Ad: dea) - B(Ai?) = Aer @ E, - Vg(A) + 0A). (24) 

Dividing by A and passing to the limit, we get 

93 

e,- [Vg(A.) JE, = ~ lay (2.5) 
2 

wherein we hold fixed all components other than Ay. In general we then have 

95 
Va(A) = Se, @ Es (26) 

iB 

provided that all the derivatives are independent. This would not be the case if there were 

any a priori relation among the components, as is the case for symmetric or skew tensors, 

for example.
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3. Chain rule 

Consider a curve in Lin described by a differentiable function A(t) where ¢ is a parameter in 

some open interval (a, b). Let g(t) = g(A(t)). Suppose that g is differentiable with respect 
to A and that A is differentiable with respect to ¢. Furthermore, let A, = A(t,,). Then g(t) 
is differentiable and, from eqn (2.2) above, 

a(b) = (tf) + Vg(A,) - (A, — Ai) + o([A, - A,|). G1) 

Wealso have 

A, - A, = (t,-,)A(h) + 0(f - 4), (32) 

and, therefore, 

|A. - A,| = O(#, — ty). (33) 

Thus, 

a(t) - (t) = (fh -))Vg(A,) - A(t.) + 0(f, - 4). (34) 

Dividing by £, — t, and passing to the limit, we obtain the chain rule: 

g = Vg(A)-A (35) 

In the text we use the notation 

dg = Vg(A) - dA. (3.6) 

4. Gradients of the principal invariants of a symmetric tensor 

We need formulas for the gradients of the invariants I,(A) with respect to A. We assume 

the tensor A to be symmetric so that its off-diagonal components are not independent. 

This means that a formula like eqn (2.6) above is not applicable; we resort to an alternative 

method based on the chain rule. 

Let A(t) describe a curve in Sym, and consider 

(A) = trA=1-A. (4.1) 

Then, 

VI,(A)-A=1,=1-A (42)
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The symmetry of A(t) implies that Ais symmetric too (the proof is immediate). If we de- 

compose the tensor VJ,(A) into the sum of symmetric and skew parts, and then form the 

inner product with A, we find that 

VI,(A) -A = (SymVI,(A)) - A, (43) 

where 

2SymT = T+T' (44) 

for any tensor T. Then eqn (4.2) yields 

[(SymV1,(A)) -I]-A=0 (45) 

for all symmetric A. Now the term in brackets is a symmetric tensor, and the condition 

says that it is orthogonal to every element in the set of symmetric tensors. That this set is a 

linear space follows from the fact that an arbitrary linear combination of symmetric tensors 

is symmetric and the set also contains the zero tensor. Therefore, the term in brackets must 

be the zero tensor, yielding 

SymV1,(A) = 1. (46) 

Note that the derivation yields no information about the skew part of VI, (A), which may 

be arbitrary. It is very common to simply set the skew part to zero, and to equate VI, (A) 

to SymVI, (A). In particular, it is impossible to determine the skew part from the analysis; 

however, it is quite unnecessary to do so. This convention extends to any scalar field defined 

on the linear space of symmetric tensors. 

Next, consider 

L(A) = tra’. (47) 

Problem 

Prove that trA* = 11 (tra)? - tr(A?)]. 

Then, 

1,(A) = Cn _1-A%), (48) 

and 

- og de, , 
VI(A) A= h =i, ~51- (AA + AA). (49)
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Using the trace definition of the inner product we can show that 

I. (AA) =I. (AA) =A-A. (4.10) 

Thus, 

[SymV1I,(A) ~ (,1- A)]-A=0 (4.11) 

for all symmetric A, yielding 

SymVI(A) =L1-A. (4.12) 

Finally, recall the standard result 

J = F*. Ff, (4.13) 

where F* is the cofactor of F and J = det F. By the same reasoning, with 

1,(A) = detA (4.14) 

we get 

[SymVI,(A) - A*] -A=0, (4.15) 

and so 

SymVI,(A) = A’, (4.16) 

where 

A*=1,A" (4.17) 

if Ais invertible. 

5. Relations among gradients 

In Elasticity we encounter the need to relate the gradients of the two sides of the equality 

W(E) = G(C) where C = F'F and F € Lin* and C € Sym’. A path F(t) in the former set 
induces a path C(t) in the latter and the equality may be differentiated to obtain 

W,-F=Gc-C=Gec- (FF + FE). (3.1)
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Using the symmetries of the inner product operation we write 

Gc: FF =F(G,.)'-F and Gc-F'F = F(G) - F, (52) 

so that 

{Wr -F[Gc + (Gc)']} - F = 0. (53) 

Since the path is arbitrary, F is an arbitrary element of Lin. The collection of terms in braces 

also belongs to Lin, therefore, 

Wy = E[Gc + (Gc)'] = 2F(SymGe). (54) 

The symmetry of C means that only the symmetric part of Ge is determinate and it is only 

this part which appears in the result. Indeed, we may use the fact that C is symmetric to 

replace Ge by SymGg in eqn (5.1) at the outset. 

If G is an isotropic function of C then it depends on the principal invariants I,(C) and 

the chain rule provides 

3 

(SymGe) - > G,[Sym(i)c] -C= 0, (5.5) 

kel 

where G, = 0G/dI,. The term in braces, an element of Sym, is thus orthogonal to every 

other element of Sym. Therefore, it vanishes, yielding 

SymGc = (G, + 1,G,)I1 - G,C + G;C*. (5.6) 

6. Extensions 

In the literature one often encounters component formulas like 

OW/dF.4 = 'a(9G/ACa, + 9G/dCaa) (6.1) 

in place of eqn (5.4) above. However, we have seen that the representation of the gradient 

in terms of partial derivatives is possible only if the components of the tensor argument are 

all independent. This is not the case here because C4; = Cy, and so eqn (6.1) cannot be 

valid as it stands. 

In practice, the issue is moot because the scalar-valued function G is usually given and a 

procedure like that demonstrated in the previous section may be used to compute the gra- 

dient. Nevertheless, eqn (6.1) arises frequently in theoretical studies and the question of its
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validity is thus of independent interest. First, we note that this formula follows immediately 

from the chain rule 

OW/OFx = (8G/OCgc)OCgc/OFia, with Cac = FaFicy (6.2) 

provided that the partial derivatives dG/0Czgc are interpreted in the usual sense of holding 

fixed all components other than the one with respect to which the derivative is taken. This 

suggests that we introduce an extension H of G from Sym* to Lin. Thus, H(C) is defined 

for C in Lin and satisfies H(C) = G(C) for C in Sym* C Lin. We assume the extension to 
be differentiable in Lin and conclude, for any path C(¢) in Sym’, that 

(He - Ge) -C = 0 (63) 

for any C in Sym. Because the first factor belongs to Lin = Sym ® Skw it follows that 

Ge = He + W, (64) 

where W € Skw. Furthermore, since He = (@H/@C,3)E, ® Ez it follows that eqn (6.1) 

holds with G replaced by H. 

Given G, an obvious choice for H, which automatically satisfies the requirements of a 

smooth extension, is 

H(C) = G(SymC), C € Lin. (65) 

Normally, this is the only extension discussed, either implicitly or explicitly. An exception 

is the paper by Cohen and Wang (1984), where the general issue is treated in detail. An 

obvious question arises as to whether or not any generality is lost if eqn (6.5) is adopted. To 

examine this, let H’ be another extension of G to Lin; then, for C € Sym*, H’(C) = H(C) 
identically and 

(Hi, -H-)-C=0 (66) 

for any C in Sym. As before, we conclude that 

Ho =He +W, (67) 

for some skew W,, and it follows that any smooth extension of G may be used in eqn (6.1) 

without affecting the result. It follows that no generality is lost by adopting the obvious 

extension given by eqn (6.5). 
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7. Korn’s inequality 

An easy calculation yields 2u;45)4(4,8) = “apap + Uaptaa, Where round braces are used 

to denote symmetrization, i.e., 24(4.3) = Uap + Ug. Write the second term as (tp), - 

U,sUp, integrate over K, and use the divergence theorem to obtain 

2 f urneaasdr [iver avs f N- [(Vu)alda- fw: V(Divu)dv. = (7.1) 
K K OK x 

Write the third integrand on the right as Div(uDivu) - (Divu)? and apply the divergence 

theorem again. For the special case in which u = 0 on Ox, all the boundary integrals vanish 

and we get 

2 fas mand = [iver dv + [ona (72) 

This furnishes an example of Korn’s inequality 

kf antaard > [iver a, (73) 

where k is a positive constant depending only on the shape of the region «. In the present 

example (u = 0 on 0x) we have k = 2 forall regions, and this is the optimum value because 

eqn (7.2) implies that eqn (7.3) is satisfied as an equality when u(x) has zero divergence, 

whereas strict inequality obtains in the general case. Furthermore, in this case the optimum 

Korn constant happens to be the same for all «. Ifu vanishes on a portion of 8x, eqn (7.3) 

remains valid, but the constant k then depends on the region. The optimal constant is an 

eigenvalue of a variational problem associated with eqn (7.3). 

Horgan’s paper (1995) contains an accessible account of various applications of Korn’s 
inequality to Mechanics. 
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8. Poincaré’s inequality 

Poincaré’s inequality is the assertion that there is a positive constant c such that 

fiver dy > cf Ist dv. (8.1)
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As in the case of Korn’s inequality this is most easily proved for the case in which u = 0 

on dx. Let f(x,) be a single component of the vector field u(x). Then, f vanishes on the 
boundary. 

Consider a cross section of x defined by x, = z(x,, x,), and let z,,(x,, x.) be the minimum 

value of this function on 8x for a given point (x, x) of the cross section. Then, z,, is the 

x3-coordinate of a point on the boundary (draw a figure). For the fixed values of («,, #,) in 

question we have f(x, *2,2,,) = 0, and, therefore, 

Ff (%, 2,2) =f hoax = [oe Vf)dx; < fis dx, (8.2) 
zm zm zm 

<([[4)" (es) "-vee( ft) 
Z—Z, ( / . |vé|’ ins) _ 

where Z4(, x,) is the maximum value of the function z over « at the same values of (x, x,) 

and we have made use of the Cauchy-Schwartz inequality in the 2nd line. We square and 

integrate with respect to x, to obtain 

IA
 

fidx; < 5 hm) / | Vf] das < 5H | [Vf] des, (8.3) 
zm zm 2m 

where h(x), #2) = Zw — Z,, and H is the maximum of h (the maximum thickness of « in the 

x3-direction). We now integrate eqn (8.3) over the x,, «,-plane to get 

1 
[re < sit f ivsl av (8.4) 

Recalling that f is a component of u, we apply eqn (8.4) three times to find that 

K 

3 

¥ ftv dv > cf usuady, (8.5) 

Az1 

where c is a positive constant and Vu, = ua,E3. However, >> |Vual’ = >0(Vua+ Vua) = 

Hasta = |Vul’. Thus, eqn (8.5) is just eqn (8.1). 
Poincaré’s inequality is a special case of the Sobolev inequalities. One can find a deriv- 

ation for general u(x) in any book about Sobolev spaces (e.g. Sobolev 1963). The same 
inequality remains valid (with a different c, naturally) for functions u(x) that vanish on 
a part of 0x. See, for example, the book by Morrey (1966), which has had an enormous 

influence on the mathematical development of nonlinear elasticity theory.
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