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Preface
The plastic method has been used extensively by engineers for the
design of steel structures, including simple beams, continuous beams,
and simple portal frames. Traditionally, the analysis is based on the
rigid-plastic theory whereby the plastic collapse load is evaluated
through virtual work formulation in which elastic deflection is
ignored. For more complex frames, specialist computer packages for
elastoplastic analysis are usually employed. Current publications on
plastic design method provide means of analysis based on either vir-
tual work formulation or sophisticated plastic theory contained in
specialist computer packages. This book aims to bridge this gap.

The advent of computers has enabled practicing engineers to
perform linear and nonlinear elastic analysis on a daily basis using
computer programs widely available commercially. The results from
computer analysis are transferred routinely to tools with automated
calculation formats such as spreadsheets for design. The use of this
routine procedure is commonplace for design based on elastic, geo-
metrically nonlinear analysis. However, commercially available com-
puter programs for plastic analysis are still a rarity among the
engineering community.

This book emphasizes a plastic analysis method based on the
hinge by hinge concept. Frames of any degree of complexity can be
analyzed plastically using this method. This method is based on the
elastoplastic analysis procedure where a linear elastic analysis, per-
formed either manually or by computers, is used between the forma-
tion of consecutive plastic hinges. The results of the linear elastic
analysis are used in a proforma created in a spreadsheet environment
where the next plastic hinge formation can be predicted automatically
and the corresponding culmulative forces and deflections calculated.
In addition, a successive approximation method is described to take
account of the effect of force interaction on the evaluation of the col-
lapse load of a structure. This method can be performed using results
from analysis obtained from most commercially available computer
programs.

The successive approximation method is an indirect way to
obtain the collapse load of structures using iterative procedures. For
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direct calculation of the collapse load without using iterative proce-
dures, special formulations, possibly with ad-hoc computer program-
ming, according to the plastic theory must be used. Nowadays, the
stiffness method is the most popular and recognized method for struc-
tural analysis. This book provides a theoretical treatment for deriva-
tion of the stiffness matrices for different states of plasticity in an
element for the stiffness method of analysis. The theory is based on
the plastic flow rule and the concept of yield surface is introduced.

An introduction to the use of the linear programming technique
for plastic analysis is provided in a single chapter in this book. This
powerful and advanced method for plastic analysis is described in
detail using optimization procedures. Its use is important in an auto-
mated computational environment and is particularly important for
researchers working in the area of nonlinear structural plastic analysis.
This chapter was written by Professor Francis Tin-Loi, a prominent
researcher in the use of mathematical programming methods for
plastic analysis of structures.

In this book, new insights into various issues related to plastic
analysis and design are given, such as the effect of high temperature
on plastic collapse load and the use of plastic rotation capacity as a
limit state for plastic design. Based on the elastoplastic approach, an
interpolation procedure is introduced to calculate the design forces
and deflections at the design load level rather than at the collapse load
level.

In the final chapter of this book, a comparison among design
codes from Australia, Europe, and the United States for plastic design
method is given. This comparison enables practicing engineers to
understand the issues involved in the plastic design procedures and
the limitations imposed by this design method.

Bill Wong



CHAPTER 1

Structural Analysis—
Stiffness Method
1.1 Introduction

Computer programs for plastic analysis of framed structures have
been in existence for some time. Some programs, such as those devel-
oped earlier by, among others, Wang,1 Jennings and Majid,2 and
Davies,3 and later by Chen and Sohal,4 perform plastic analysis for
frames of considerable size. However, most of these computer pro-
grams were written as specialist programs specifically for linear or
nonlinear plastic analysis. Unlike linear elastic analysis computer
programs, which are commonly available commercially, computer
programs for plastic analysis are not as accessible. Indeed, very few,
if any, are being used for daily routine design in engineering offices.
This may be because of the perception by many engineers that the
plastic design method is used only for certain types of usually simple
structures, such as beams and portal frames. This perception dis-
courages commercial software developers from developing computer
programs for plastic analysis because of their limited applications.

Contrary to the traditional thinking that plastic analysis is per-
formed either by simple manual methods for simple structures or by
sophisticated computer programs written for more general applica-
tions, this book intends to introduce general plastic analysis methods,
which take advantage of the availability of modern computational
tools, such as linear elastic analysis programs and spreadsheet applica-
tions. These computational tools are in routine use in most engi-
neering design offices nowadays. The powerful number-crunching
capability of these tools enables plastic analysis and design to be per-
formed for structures of virtually any size.

The amount of computation required for structural analysis is
largely dependent on the degree of statical indeterminacy of the
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structure. For determinate structures, use of equilibrium conditions
alone will enable the reactions and internal forces to be determined.
For indeterminate structures, internal forces are calculated by consid-
ering both equilibrium and compatibility conditions, through which
some methods of structural analysis suitable for computer applica-
tions have been developed. The use of these methods for analyzing
indeterminate structures is usually not simple, and computers are
often used for carrying out these analyses. Most structures in practice
are statically indeterminate.

Structural analysis, whether linear or nonlinear, is mostly based
on matrix formulations to handle the enormous amount of numerical
data and computations. Matrix formulations are suitable for computer
implementation and can be applied to two major methods of struc-
tural analysis: the flexibility (or force) method and the stiffness (or dis-
placement) method.

The flexibility method is used to solve equilibrium and compat-
ibility equations in which the reactions and member forces are
formulated as unknown variables. In this method, the degree of stat-
ical indeterminacy needs to be determined first and a number of
unknown forces are chosen and released so that the remaining struc-
ture, called the primary structure, becomes determinate. The pri-
mary structure under the externally applied loads is analyzed and
its displacement is calculated. A unit value for each of the chosen
released forces, called redundant forces, is then applied to the pri-
mary structure (without the externally applied loads) so that, from
the force-displacement relationship, displacements of the structure
are calculated. The structure with each of the redundant forces is
called the redundant structure. The compatibility conditions based
on the deformation between the primary structure and the redundant
structures are used to set up a matrix equation from which the
redundant forces can be solved.

The solution procedure for the force method requires selection of
the redundant forces in the original indeterminate structure and the
subsequent establishment of the matrix equation from the compati-
bility conditions. This procedure is not particularly suitable for com-
puter programming and the force method is therefore usually used
only for simple structures.

In contrast, formulation of the matrix equations for the stiffness
method is done routinely and the solution procedure is systematic.
Therefore, the stiffness method is adopted in most structural analysis
computer programs. The stiffness method is particularly useful for
structures with a high degree of statical indeterminacy, although
it can be used for both determinate and indeterminate structures.
The stiffness method is used in the elastoplastic analysis described
in this book and the basis of this method is given in this chapter.
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In particular, the direct stiffness method, a variant of the general stiff-
ness method, is described. For a brief history of the stiffness method,
refer to the review by Samuelsson and Zienkiewicz.5

1.2 Degrees of Freedom and Indeterminacy

Plastic analysis is used to obtain the behavior of a structure at collapse.
As the structure approaches its collapse state when the loads are increas-
ing, the structure becomes increasingly flexible in its stiffness. Its
flexibility at any stage of loading is related to the degree of statical inde-
terminacy, which keeps decreasing as plastic hinges occur with the
increasing loads. This section aims to describe a method to distinguish
between determinate and indeterminate structures by examining the
degrees of freedom of structural frames. The number of degrees of free-
dom of a structure denotes the independentmovements of the structural
members at the joints, including the supports. Hence, it is an indication
of the size of the structural problem. The degrees of freedom of a struc-
ture are counted in relation to a reference coordinate system.

External loads are applied to a structure causing movements at
various locations. For frames, these locations are usually defined
at the joints for calculation purposes. Thus, the maximum number
of independent displacements, including both rotational and transla-
tional movements at the joints, is equal to the number of degrees of
freedom of the structure. To identify the number of degrees of freedom
of a structure, each independent displacement is assigned a number,
called the freedom code, in ascending order in the global coordinate
system of the structure.

Figure 1.1 shows a frame with 7 degrees of freedom. Note that the
pinned joint at C allows the twomembers BC andCD to rotate indepen-
dently, thus giving rise to two freedoms in rotation at the joint.

In structural analysis, the degree of statical indeterminacy is
important, as its value may determine whether the structure
1

7

3

2

46

5

B C

DA

FIGURE 1.1. Degrees of freedom of a frame.
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is globally unstable or stable. If the structure is stable, the degree of
statical indeterminacy is, in general, proportional to the level of com-
plexity for solving the structural problem.

The method described here for determining the degree of statical
indeterminacy of a structure is based on that by Rangasami and
Mallick.6

Only plane frames will be dealt with here, although the method
can be extended to three-dimensional frames.

1.2.1 Degree of Statical Indeterminacy of Frames

For a free member in a plane frame, the number of possible displace-
ments is three: horizontal, vertical, and rotational. If there are n mem-
bers in the structure, the total number of possible displacements,
denoted by m, before any displacement restraints are considered, is

m ¼ 3n (1.1)

For two members connected at a joint, some or all of the displa-
cements at the joint are common to the two members and these com-
mon displacements are considered restraints. In this method for
determining the degree of statical indeterminacy, every joint is con-
sidered as imposing r number of restraints if the number of common
displacements between the members is r. The ground or foundation
is considered as a noncounting member and has no freedom. Figure 1.2
indicates the value of r for each type of joints or supports in a plane
frame.

For pinned joints with multiple members, the number of pinned
joints, p, is counted according to Figure 1.3. For example, for a four-
member pinned connection shown in Figure 1.3, a first joint is
counted by considering the connection of two members, a second
joint by the third member, and so on. The total number of pinned
joints for a four-member connection is therefore equal to three. In gen-
eral, the number of pinned joints connecting n members is p ¼ n – 1.
The same method applies to fixed joints.
r = 1 
(a) Roller 

r = 2
(b) Pin 

r = 3
(c) Fixed 

r = 2
(d) Pin 

r = 3
(e) Rigid (  fixed) 

FIGURE 1.2. Restraints of joints.



No. of pins, p = 1 No. of pins, p = 2 No. of pins, p = 3

FIGURE 1.3. Method for joint counting.

No. of pins, p = 2.5 

FIGURE 1.4. Joint counting of a pin with roller support.
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For a connection at a roller support, as in the example shown in
Figure 1.4, it can be calculated that p ¼ 2.5 pinned joints and that the
total number of restraints is r ¼ 5.

The degree of statical indeterminacy, fr, of a structure is deter-
mined by

fr ¼ m�
X

r (1.2)

a. If fr ¼ 0, the frame is stable and statically determinate.
b. If fr < 0, the frame is stable and statically indeterminate to the

degree fr.
c. If fr > 0, the frame is unstable.

Note that this method does not examine external instability or
partial collapse of the structure.

Example 1.1 Determine the degree of statical indeterminacy for the
pin-jointed truss shown in Figure 1.5.
(a) (b)

FIGURE 1.5. Determination of degree of statical indeterminacy in Example 1.1.
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Solution. For the truss in Figure 1.5a, number of members n ¼ 3; num-
ber of pinned joints p ¼ 4.5.

Hence, fr ¼ 3� 3� 2� 4:5 ¼ 0 and the truss is a determinate
structure. For the truss in Figure 1.5b, number of members n ¼ 2;
number of pinned joints p ¼ 3.

Hence, fr ¼ 3� 2� 2� 3 ¼ 0 and the truss is a determinate
structure.

Example 1.2 Determine the degree of statical indeterminacy for the
frame with mixed pin and rigid joints shown in Figure 1.6.
A

B

C

E

D

F

FIGURE 1.6. Determination of degree of statical indeterminacy in Example 1.2.
Solution. For this frame, a member is counted as one between two
adjacent joints. Number of members ¼ 6; number of rigid (or fixed)
joints ¼ 5. Note that the joint between DE and EF is a rigid one,
whereas the joint between BE and DEF is a pinned one. Number of
pinned joints ¼ 3.

Hence, fr ¼ 3� 6� 3� 5� 2� 3 ¼ �3 and the frame is an inde-
terminate structure to the degree 3.

1.3 Statically Indeterminate Structures—Direct
Stiffness Method

The spring system shown in Figure 1.7 demonstrates the use of the
stiffness method in its simplest form. The single degree of freedom
structure consists of an object supported by a linear spring obeying
Hooke’s law. For structural analysis, the weight, F, of the object and
the spring constant (or stiffness), K, are usually known. The purpose



K

F

D

FIGURE 1.7. Load supported by linear spring.
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of the structural analysis is to find the vertical displacement, D, and
the internal force in the spring, P.

From Hooke’s law,

F ¼ KD (1.3)

Equation (1.3) is in fact the equilibrium equation of the system.
Hence, the displacement, D, of the object can be obtained by

D ¼ F=K (1.4)

The displacement, d, of the spring is obviously equal to D. That is,

d ¼ D (1.5)

The internal force in the spring, P, can be found by

P ¼ Kd (1.6)

In this simple example, the procedure for using the stiffness
method is demonstrated through Equations (1.3) to (1.6). For a struc-
ture composed of a number of structural members with n degrees of
freedom, the equilibrium of the structure can be described by a num-
ber of equations analogous to Equation (1.3). These equations can be
expressed in matrix form as

Ff gn�1 ¼ K½ �n�n Df gn�1 (1.7)

where Ff gn�1 is the load vector of size n� 1ð Þ containing the external
loads, K½ �n�n is the structure stiffness matrix of size n� nð Þ
corresponding to the spring constant K in a single degree system
shown in Figure 1.7, and Df gn�1 is the displacement vector of size
n� 1ð Þ containing the unknown displacements at designated loca-
tions, usually at the joints of the structure.
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The unknown displacement vector can be found by solving
Equation (1.7) as

Df g ¼ K½ ��1 Ff g (1.8)

Details of the formation of Ff g, K½ �, and Df g are given in the following
sections.

1.3.1 Local and Global Coordinate Systems

A framed structure consists of discrete members connected at joints,
which may be pinned or rigid. In a local coordinate system for a mem-
ber connecting two joints i and j, the member forces and the
corresponding displacements are shown in Figure 1.8, where the axial
forces are acting along the longitudinal axis of the member and the
shear forces are acting perpendicular to its longitudinal axis.

In Figure 1.8, Mi,j, yi,j ¼ bending moments and corresponding
rotations at ends i, j, respectively; Ni,j, ui,j are axial forces and
corresponding axial deformations at ends i, j, respectively; and Qi,j,
vi,j are shear forces and corresponding transverse displacements at
ends i, j, respectively. The directions of the actions and movements
shown in Figure 1.8 are positive when using the stiffness method.

As mentioned in Section 1.2, the freedom codes of a structure are
assigned in its global coordinate system. An example of a member
forming part of the structure with a set of freedom codes (1, 2, 3, 4,
5, 6) at its ends is shown in Figure 1.9. At either end of the member,
the direction in which the member is restrained from movement is
assigned a freedom code “zero,” otherwise a nonzero freedom code is
assigned. The relationship for forces and displacements between local
and global coordinate systems will be established in later sections.
i

j

Mj, j Nj, uj

Qj, vj

Mi, i Ni, ui

Qi, vi

FIGURE 1.8. Local coordinate system for member forces and displacements.



j

i 1

2

3

4

5

6

FIGURE 1.9. Freedom codes of a member in a global coordinate system.
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1.4 Member Stiffness Matrix

The structure stiffness matrix K½ � is assembled on the basis of the
equilibrium and compatibility conditions between the members. For
a general frame, the equilibrium matrix equation of a member is

Pf g ¼ Ke½ � df g (1.9)

where Pf g is the member force vector, Ke½ � is the member stiffness
matrix, and df g is the member displacement vector, all in the mem-
ber’s local coordinate system. The elements of the matrices in Equa-
tion (1.9) are given as

Pf g ¼

Ni

Qi

Mi

Nj

Qj

Mj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; Ke½ � ¼

K11 0 0 K14 0 0
0 K22 K23 0 K25 K26

0 K32 K33 0 K35 K36

K41 0 0 K44 0 0
0 K52 K53 0 K55 K56

0 K62 K63 0 K65 K66

2
6666664

3
7777775
; df g ¼

ui

vi
yi
uj

vj
yj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

where the elements of Pf g and df g are shown in Figure 1.8.

1.4.1 Derivation of Elements of Member Stiffness Matrix

A member under axial forces Ni and Nj acting at its ends produces
axial displacements ui and uj as shown in Figure 1.10. From the
stress-strain relation, it can be shown that

Ni ¼ EA

L
ui�uj

� �
(1.10a)

Nj ¼ EA

L
uj�ui

� �
(1.10b)



i

j

Ni
 ui

 uj Nj
Original position 

Displaced position 

FIGURE 1.10. Member under axial forces.
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where E is Young’s modulus, A is cross-sectional area, and L is length

of the member. Hence, K11 ¼ �K14 ¼ �K41 ¼ K44 ¼ EA

L
.

For a member with shear forces Qi, Qj and bending moments
Mi, Mj acting at its ends as shown in Figure 1.11, the end displace-
ments and rotations are related to the bending moments by the
slope-deflection equations as

Mi ¼ 2EI

L
2yiþyj �

3 vj�vi
� �

L

� �
(1.11a)

Mj ¼ 2EI

L
2yjþyi �

3 vj�vi
� �

L

� �
(1.11b)

Hence, K62 ¼ �K65 ¼ 6EI

L2
, K63 ¼ 2EI

L
, and K66 ¼ 4EI

L
.

By taking the moment about end j of the member in Figure 1.11,
we obtain

Qi ¼ MiþMj

L
¼ 2EI

L2
3yiþ3yj �

6 vj�vi
� �

L

� �
(1.12a)
i

 vi

 vj

Qj

Original position 

Displaced position 

j

Qi
Mi

Mj

i

j

FIGURE 1.11. Member under shear forces and bending moments.
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Also, by taking the moment about end i of the member, we obtain

Qj ¼ � MiþMj

L

� �
¼ �Qi (1.12b)

Hence,

K22¼ K55¼ �K25¼ �K52 ¼ 12EI

L3
and K23¼ K26¼ �K53¼ �K66 ¼ 6EI

L2
.

In summary, the resulting member stiffness matrix is symmetric
about the diagonal:

Ke½ � ¼

EA

L
0 0 �EA

L
0 0

0
12EI

L3

6EI

L2
0 � 12EI

L3

6EI

L2

0
6EI

L2

4EI

L
0 � 6EI

L2

2EI

L

�EA

L
0 0

EA

L
0 0

0 � 12EI

L3
� 6EI

L2
0

12EI

L3
� 6EI

L2

0
6EI

L2

2EI

L
0 � 6EI

L2

4EI

L

2
66666666666666666666664

3
77777777777777777777775

(1.13)

1.5 Coordinates Transformation

In order to establish the equilibrium conditions between the member
forces in the local coordinate system and the externally applied loads
in the global coordinate system, the member forces are transformed
into the global coordinate system by force resolution. Figure 1.12
shows a member inclined at an angle a to the horizontal.

1.5.1 Load Transformation

The forces in the global coordinate system shown with superscript “g”
in Figure 1.12 are related to those in the local coordinate system by

Hg
i ¼ Ni cos a�Qi sin a (1.14a)

Vg
i ¼ Ni sin aþQi cos a (1.14b)

Mg
i ¼ Mi (1.14c)



i

Mi
Ni

Qi

   Mj
Nj

Qj

M g
i

V g
i

H g
i

j

M g
j

V g
j

H g
j

FIGURE 1.12. Forces in the local and global coordinate systems.
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Similarly,

Hg
j ¼ Nj cos a�Qj sin a (1.14d)

Vg
j ¼ Nj sin aþQj cos a (1.14e)

Mg
j ¼ Mj (1.14f)

In matrix form, Equations (1.14a) to (1.14f) can be expressed as

Fg
e

� 	 ¼ T½ � Pf g (1.15)

where Fg
ef g is the member force vector in the global coordinate system

and T½ � is the transformation matrix, both given as

Fg
e

� 	 ¼

Hg
i

Vg
i

Mg
i

Hg
j

Vg
j

Mg
j

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

and T½ � ¼

cos a �sin a 0 0 0 0

sin a cos a 0 0 0 0

0 0 1 0 0 0

0 0 0 cos a �sin a 0

0 0 0 sin a cos a 0

0 0 0 0 0 1

2
666666664

3
777777775
:

1.5.2 Displacement Transformation

The displacements in the global coordinate system can be related to
those in the local coordinate system by following the procedure simi-
lar to the force transformation. The displacements in both coordinate
systems are shown in Figure 1.13.

From Figure 1.13,

ui ¼ ug
i cos aþ vg

i sin a (1.16a)



uj

vj

v g
i

ug
i

i

j

ui

vi

vg
j

ug
j

FIGURE 1.13. Displacements in the local and global coordinate systems.
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vi ¼ �ug
i sin aþ vg

i cos a (1.16b)

yi ¼ ygi (1.16c)

uj ¼ ug
j cos aþ vg

j sin a (1.16d)

vj ¼ �ug
j sin aþ vg

j cos a (1.16e)

yj ¼ ygj (1.16f)

In matrix form, Equations (1.16a) to (1.16f) can be expressed as

df g ¼ T½ �t Dg
e

� 	
(1.17)

where Dg
ef g is the member displacement vector in the global coordi-

nate system corresponding to the directions in which the freedom
codes are specified and is given as

Dg
e

� 	 ¼

ug
i

vg
i

ygi
ug
j

vg
j

ygj

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

and T½ �t is the transpose of T½ �.

1.6 Member Stiffness Matrix in Global Coordinate System

From Equation (1.15),

Fg
e

� 	 ¼ T½ � Pf g
¼ T½ � Ke½ � df g from Equation ð1:9Þ
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¼ T½ � Ke½ � T½ �t Dg
e

� 	
from Equation ð1:17Þ

¼ Kg
e


 �
Dg

e

� 	
(1.18)

where Kg
e� ¼ T½ � Ke½ � T½ �t
 ¼ member stiffness matrix in the global coor-

dinate system.
An explicit expression for Kg

e½ � is

Kg
e


 �
¼

C2 EA

L
þ S2

12EI

L3
SC

EA

L
� 12EI

L3

0
@

1
A �S

6EI

L2
� C2 EA

L
þ S2

12EI

L3

0
@

1
A �SC

EA

L
� 12EI

L3

0
@

1
A �S

6EI

L2

S2
EA

L
þC2 12EI

L3
C
6EI

L2
�SC

EA

L
� 12EI

L3

0
@

1
A � S2

EA

L
þC2 12EI

L3

0
@

1
A C

6EI

L2

4EI

L
S
6EI

L2
�C

6EI

L2

2EI

L

C2 EA

L
þ S2

12EI

L3
SC

EA

L
� 12EI

L3

0
@

1
A S

6EI

L2

Symmetric S2
EA

L
þC2 12EI

L3
�C

6EI

L2

4EI

L

2
66666666666666666666666666664

3
77777777777777777777777777775

(1.19)

where C = cos a; S = sin a.

1.7 Assembly of Structure Stiffness Matrix

Consider part of a structure with four externally applied forces, F1, F2,
F4, and F5, and two applied moments, M3 and M6, acting at the
two joints p and q connecting three members A, B, and C as shown in
Figure 1.14. The freedom codes at joint p are {1, 2, 3} and at joint q are
{4, 5, 6}. The structure stiffness matrix [K] is assembled on the basis of
two conditions: compatibility and equilibrium conditions at the joints.

1.7.1 Compatibility Condition

At joint p, the global displacements are D1 (horizontal), D2 (vertical),
and D3 (rotational). Similarly, at joint q, the global displacements are
D4 (horizontal), D5 (vertical), and D6 (rotational). The compatibility
condition is that the displacements (D1, D2, and D3) at end p of mem-
ber A are the same as those at end p of member B. Thus,

ðug
j ÞA ¼ ug

i

� �
B
¼ D1, ðvg

j ÞA ¼ vg
i

� �
B
¼ D2, and ðygj ÞA ¼ ðygi ÞB ¼ D3. The

same condition applies to displacements (D4, D5, and D6) at end q
of both members B and C.



2

1

3
4

5

6

p

q

F1 

F2

F4

F5

A

B C

M3

M6

FIGURE 1.14. Assembly of structure stiffness matrix [K].
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The member stiffness matrix in the global coordinate system
given in Equation (1.19) can be written as

Kg
e


 � ¼
k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

k31 k32 k33 k34 k35 k36

k41 k42 k43 k44 k45 k46

k51 k52 k53 k54 k55 k56

k61 k62 k63 k64 k65 k66

2
6666664

3
7777775

(1.20)

where k11 ¼ C2 EA

L
þ S2

12EI

L3
, etc.

For member A, from Equation (1.18),

Hg
j

� 

A
¼ ::::: þ :::::þ :::::þ k44ð ÞAD1 þ k45ð ÞAD2 þ k46ð ÞAD3 (1.21a)

Vg
j

� 

A
¼ :::::þ :::::þ :::::þ k54ð ÞAD1 þ k55ð ÞAD2 þ k56ð ÞAD3 (1.21b)

Mg
j

� 

A
¼ ::::: þ :::::þ :::::þ k64ð ÞAD1 þ k65ð ÞAD2 þ k66ð ÞAD3 (1.21c)

Similarly, for member B,

Hg
i

� �
B
¼ k11ð ÞBD1 þ k12ð ÞBD2 þ k13ð ÞBD3 þ k14ð ÞBD4 þ k15ð ÞBD5 þ k16ð ÞBD6

(1.21d)

Vg
i

� �
B
¼ k21ð ÞBD1 þ k22ð ÞBD2 þ k23ð ÞBD3 þ k24ð ÞBD4 þ k25ð ÞBD5 þ k26ð ÞBD6

(1.21e)

Mg
i

� �
B
¼ k31ð ÞBD1 þ k32ð ÞBD2 þ k33ð ÞBD3 þ k34ð ÞBD4 þ k35ð ÞBD5 þ k36ð ÞBD6

(1.21f)
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Hg
j

� 

B
¼ k41ð ÞBD1 þ k42ð ÞBD2 þ k43ð ÞBD3 þ k44ð ÞBD4 þ k45ð ÞBD5 þ k46ð ÞBD6

(1.21g)

Vg
j

� 

B
¼ k51ð ÞBD1 þ k52ð ÞBD2 þ k53ð ÞBD3 þ k54ð ÞBD4 þ k55ð ÞBD5 þ k56ð ÞBD6

(1.21h)

Mg
j

� 

B
¼ k61ð ÞBD1 þ k62ð ÞBD2 þ k63ð ÞBD3 þ k64ð ÞBD4 þ k65ð ÞBD5 þ k66ð ÞBD6

(1.21i)

Similarly, for member C,

Hg
i

� �
C
¼ k11ð ÞCD1 þ k12ð ÞCD2 þ k13ð ÞCD3 þ :::::þ :::::þ ::::: (1.21j)

Vg
i

� �
C
¼ k21ð ÞCD1 þ k22ð ÞCD2 þ k23ð ÞCD3 þ ::::: þ ::::: þ ::::: (1.21k)

Mg
i

� �
C
¼ k31ð ÞCD1 þ k32ð ÞCD2 þ k33ð ÞCD3 þ ::::: þ ::::: þ ::::: (1.21l)

1.7.2 Equilibrium Condition

Any of the externally applied forces or moments applied in a certain
direction at a joint of a structure is equal to the sum of the member
forces acting in the same direction for members connected at that
joint in the global coordinate system. Therefore, at joint p,

F1 ¼ Hg
j

� 

A
þ Hg

i

� �
B

(1.22a)

F2 ¼ Vg
j

� 

A
þ Vg

i

� �
B

(1.22b)

M3 ¼ Mg
j

� 

A
þ Mg

i

� �
B

(1.22c)

Also, at joint q,

F4 ¼ Hg
j

� 

B
þ Hg

i

� �
C

(1.22d)

F5 ¼ Vg
j

� 

B
þ Vg

i

� �
C

(1.22e)

M6 ¼ Mg
j

� 

B
þ Mg

i

� �
C

(1.22f)

By writing Equations (1.22a) to (1.22f) in matrix form using Equations
(1.21a) to (1.21l) and applying this operation to the whole structure,
the following equilibrium equation of the whole structure is obtained:



�
F1

F2

M3

F4

F5

M6

�

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼

� � � � � � � �
� ðk44ÞA þ ðk11ÞB ðk45ÞA þ ðk12ÞB ðk46ÞA þ ðk13ÞB ðk14ÞB ðk15ÞB ðk16ÞB �
� ðk54ÞA þ ðk21ÞB ðk55ÞA þ ðk22ÞB ðk56ÞA þ ðk23ÞB ðk24ÞB ðk25ÞB ðk26ÞB �
� ðk64ÞA þ ðk31ÞB ðk65ÞA þ ðk32ÞB ðk66ÞA þ ðk33ÞB ðk34ÞB ðk35ÞB ðk36ÞB �
� ðk41ÞB ðk42ÞB ðk43ÞB ðk44ÞB þ ðk11ÞC ðk45ÞB þ ðk12ÞC ðk46ÞB þ ðk13ÞC �
� ðk51ÞB ðk52ÞB ðk53ÞB ðk54ÞB þ ðk21ÞC ðk55ÞB þ ðk22ÞC ðk56ÞB þ ðk23ÞC �
� ðk61ÞB ðk62ÞB ðk63ÞB ðk64ÞB þ ðk31ÞC ðk65ÞB þ ðk32ÞC ðk66ÞB þ ðk33ÞC �
� � � � � � � �

2
666666666666666664

3
777777777777777775

�
�
D1

D2

D3

D4

D5

D4

�
�

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(1.23)

S
tru

c
tu
ra
l
A
n
a
ly
sis—

S
tiffn

e
ss

M
e
th
o
d

1
7



18 Plastic Analysis and Design of Steel Structures
where the “l” stands for matrix coefficients contributed from the
other parts of the structure. In simple form, Equation (1.23) can be
written as

Ff g ¼ K½ � Df g
which is identical to Equation (1.7). Equation (1.23) shows how the
structure equilibrium equation is set up in terms of the load vector
Ff g, structure stiffness matrix K½ �, and the displacement vector Df g.

Close examination of Equation (1.23) reveals that the stiffness
coefficients of the three members A, B, and C are assembled into K½ �
in a way according to the freedom codes assigned to the members.
Take member A as an example. By writing the freedom codes in the
order of ends i and j around the member stiffness matrix in the global
coordinate system shown in Figure 1.15, the coefficient, for example,
k54, is assembled into the position [2, 1] of K½ �. Similarly, the coeffi-
cient k45 is assembled into the position [1, 2] of K½ �. The coefficients
in all member stiffness matrices in the global coordinate system can
be assembled into K½ � in this way. Since the resulting matrix is sym-
metric, only half of the coefficients need to be assembled.

A schematic diagram showing the assembly procedure for the
stiffness coefficients of the three members A, B, and C into K½ � is
shown in Figure 1.16. Note that since Kg

e½ � is symmetric, K½ � is also
symmetric. Any coefficients in a row or column corresponding to zero
freedom code will be ignored.

1.8 Load Vector

The load vector Ff g of a structure is formed by assembling the individ-
ual forces into the load vector in positions corresponding to the direc-
tions of the freedom codes. For the example in Figure 1.14, the load
factor is given as that shown in Figure 1.17.
[Ke
g]A =

k66k65k64k63k62k61

k56k55k54kk52k51

k46k45k44k43k42k41

k36k35k34k33k32k31

k26k25k24k23k22k21

k16k15k14k13k12k11

1

2

3

1 2 3

53

FIGURE 1.15. Assembly of stiffness coefficients into the structure stiffness
matrix.
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FIGURE 1.17. Assembly of load vector.
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[K g
e ] of member A

[K g
e ] of member C

[K g
e ] of member B

[K ] of structure 

FIGURE 1.16. Assembly of structure stiffness matrix.
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1.9 Methods of Solution

The displacements of the structure can be found by solving Equation
(1.23). Because of the huge size of the matrix equation usually encoun-
tered in practice, Equation (1.23) is solved routinely by numerical
methods such as the Gaussian elimination method and the iterative
Gauss–Seidel method. It should be noted that in using these
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numerical methods, the procedure is analogous to inverting the struc-
ture stiffness matrix, which is subsequently multiplied by the load
vector as in Equation (1.8):

Df g ¼ K½ ��1 Ff g (1.8)

The numerical procedure fails only if an inverted K½ � cannot be
found. This situation occurs when the determinant of K½ � is zero,
implying an unstable structure. Unstable structures with a degree of
statically indeterminacy, fr, greater than zero (see Section 1.2) will
have a zero determinant of K½ �. In numerical manipulation by compu-
ters, an exact zero is sometimes difficult to obtain. In such cases, a
good indication of an unstable structure is to examine the displace-
ment vector Df g, which would include some exceptionally large
values.

1.10 Calculation of Member Forces

Member forces are calculated according to Equation (1.9). Hence,

Pf g ¼ Ke½ � df g
¼ Ke½ � T½ �t Dg

ef g
(1.24)

where Dg
ef g is extracted from Df g for each member according to its

freedom codes and

Ke½ � T½ �t ¼

C
EA

L
S
EA

L
0 �C

EA

L
�S

EA

L
0

�S
12EI

L3
C
12EI

L3

6EI

L2
S
12EI

L3
�C

12EI

L3

6EI

L2

�S
6EI

L2
C
6EI

L2

4EI

L
S
6EI

L2
�C

6EI

L2

2EI

L

�C
EA

L
�S

EA

L
0 C

EA

L
S
EA

L
0

S
12EI

L3
�C

12EI

L3
� 6EI

L2
�S

12EI

L3
C
12EI

L3
� 6EI

L2

�S
6EI

L2
C
6EI

L2

2EI

L
S
6EI

L2
�C

6EI

L2

4EI

L

2
66666666666666666666666664

3
77777777777777777777777775

For the example in Figure 1.14,
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Pf g ¼

Ni

Qi

Mi

Nj

Qj

Mj

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

C
EA

L
S
EA

L
0 �C

EA

L
�S

EA

L
0

�S
12EI

L3
C
12EI

L3

6EI

L2
S
12EI

L3
�C

12EI

L3

6EI

L2

�S
6EI

L2
C
6EI

L2

4EI

L
S
6EI

L2
�C

6EI

L2

2EI

L

�C
EA

L
�S

EA

L
0 C

EA

L
S
EA

L
0

S
12EI

L3
�C

12EI

L3
� 6EI

L2
�S

12EI

L3
C
12EI

L3
� 6EI

L2

�S
6EI

L2
C
6EI

L2

2EI

L
S
6EI

L2
�C

6EI

L2

4EI

L

2
66666666666666666666666666664

3
77777777777777777777777777775

D1

D2

D3

D4

D5

D6

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

In summary, theprocedure forusing thestiffnessmethod tocalculate
the displacements of the structure and themember forces is as follows.

1. Assign freedom codes to each joint indicating the displace-
ment freedom at the ends of the members connected at that
joint. Assign a freedom code of “zero” to any restrained
displacement.

2. Assign an arrow to each member so that ends i and j are
defined. Also, the angle of orientation a for the member is
defined in Figure 1.18 as:
i

j

FIGURE 1.18. Definition of angle of orientation for member.
3. Assemble the structure stiffness matrix K½ � from each of the
member stiffness matrices.

4. Form the load vector Ff g of the structure.
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5. Calculate the displacement vector Df g by solving for
Df g ¼ K½ ��1 Ff g.

6. Extract the local displacement vector Dg
ef g from Df g and cal-

culate the member force vector Pf g using Pf g ¼ Ke½ � T½ �t Dg
ef g.

1.10.1 Sign Convention for Member Force Diagrams

Positive member forces and displacements obtained from the stiffness
method of analysis are shown in Figure 1.19. To plot the forces in con-
ventional axial force, shear force, and bending moment diagrams, it is
necessary to translate them into a system commonly adopted for
plotting.

The sign convention for such a system is given as follows.

Axial Force

For a member under compression, the axial force at end i is positive
(from analysis) and at end j is negative (from analysis), as shown in
Figure 1.20.

Shear Force

A shear force plotted positive in diagram is acting upward (positive
from analysis) at end i and downward (negative from analysis) at
end j as shown in Figure 1.21. Positive shear force is usually plotted
in the space above the member.
FIGURE 1.19. Direction of positive forces and displacements using stiffness
method.

Compressive
i

j

FIGURE 1.20. Member under compression.



i j

FIGURE 1.21. Positive shear forces.
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Bending Moment

A member under sagging moment is positive in diagram (clockwise
and negative from analysis) at end i and positive (anticlockwise and pos-
itive from analysis) at end j as shown in Figure 1.22. Positive bending
moment is usually plotted in the space beneath the member. In doing
so, a bending moment is plotted on the tension face of the member.
i j

FIGURE 1.22. Sagging moment of a member.
Example 1.3 Determine the member forces and plot the shear force
and bending moment diagrams for the structure shown in
Figure 1.23a. The structure with a pin at D is subject to a vertical force
of 100 kN being applied at C. For all members, E ¼ 2 � 108 kN/m2,
A ¼ 0.2 m2, and I ¼ 0.001 m4.

Solution. The freedom codes for the whole structure are shown in
Figure 1.23b. There are four members separated by joints B, C, and
D with the member numbers shown. The arrows are assigned to
74
6

5

B D

8

13

2

9

10

A

C

E

00

0

00

01

2 3

4

B
C

A

D

E

100
kN

5m 
2m 4m

(a) Frame with applied load (b) Freedom codes

FIGURE 1.23. Example 1.3.



24 Plastic Analysis and Design of Steel Structures
indicate end i (tail of arrow) and end j (head of arrow). Thus, the orien-
tations of the members are

Member 1: a ¼ 90�

Member 2: a ¼ 0�

Member 3: a ¼ 0�

Member 4: a ¼ 270� or –90�

The Kg
e½ � for the members with the assigned freedom codes for

the coefficients is

0 0 0 1 2 3

Kg
e½ �1 ¼

1:92� 104 0 �4:8� 104 �1:92� 104 0 �4:8� 104

8� 106 0 0 �8� 106 0

1:6� 105 4:8� 104 0 8� 104

1:92� 104 0 4:8� 104

Symmetric 8� 106 0

1:6� 105

2
666666664

3
777777775

0

0

0

1

2

3

1 2 3 4 5 6

Kg
e½ �2 ¼

2� 107 0 0 �2� 107 0 0

3� 105 3� 105 0 �3� 105 3� 105

4� 105 0 �3� 105 2� 105

2� 107 0 0

Symmetric 3� 105 �3� 105

4� 105

2
66666664

3
77777775

1

2

3

4

5

6

4 5 6 7 8 9

Kg
e½ �3 ¼

1� 107 0 0 �1� 107 0 0

3:75� 104 7:5� 104 0 �3:75� 104 7:5� 104

2� 105 0 �7:5� 104 1� 105

1� 107 0 0

Symmetric 3:75� 104 �7:5� 104

2� 105

2
66666664

3
77777775

4

5

6

7

8

9

7 8 10 0 0 0

Kg
e½ �4 ¼

1:92� 104 0 �4:8� 104 �1:92� 104 0 4:8� 104

8� 106 0 0 �8� 106 0

1:6� 105 �4:8� 104 0 8� 104

1:92� 104 0 �4:8� 104

Symmetric 8� 106 0

1:6� 105

2
66666664

3
77777775

7

8

10

0

0

0

By assembling from Kg
e½ � of all members, the structure stiffness

matrix is obtained:



K½ � ¼

2:0019� 107 0 4:8� 104 �2� 107 0 0 0 0 0 0
8:3� 106 3� 105 0 �3� 105 3� 105 0 0 0 0

5:6� 105 0 �3� 105 2� 105 0 0 0 0
3� 107 0 0 �1� 107 0 0 0

3:375� 105 �2:25� 105 0 �3:75� 104 7:5� 104 0
6� 105 0 �7:5� 104 1� 105 0

1:0019� 107 0 0 4:8� 104

Symmetric 8:0375� 106 �7:5� 104 0
2� 105 0

1:6� 105

2
666666666666664

3
777777777777775
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The load vector is given by

Ff g ¼

0
0
0
0

�100
0
0
0
0
0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

and Df g ¼ K½ ��1 Ff g ¼

1:354� 10�3

�9:236� 10�6

�6:770� 10�4

1:354� 10�3

�1:304� 10�3

�3:713� 10�4

1:353� 10�3

�3:264� 10�6

6:733� 10�4

�4:059� 10�4

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

m
m
radian
m
m
radian
m
m
radian
radian

The member forces can be calculated using Pf g ¼ Ke½ � T½ �t Dg
ef g.

For member 1, where C ¼ cos 90� ¼ 0 and S ¼ sin 90� ¼ 1,

Pf g1 ¼

Ni

Qi

Mi

Nj

Qj

Mj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
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EA

L
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2
66666666666666666666666664

3
77777777777777777777777775

0

0

0

1:354� 10�3

�9:236� 10�6

�6:770� 10�4

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

73:9

�6:5

10:8

�73:9

6:5

�43:3

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

kN

kN

kNm

kN

kN

kNm

Similarly,

Pf g2 ¼

6:5

73:9

43:3

�6:5

�73:9

104:5

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

kN

kN

kNm

kN

kN

kNm

; Pf g3 ¼

6:5

�26:1

�104:5

�6:5

26:1

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

kN

kN

kNm

kN

kN

kNm

; and Pf g4 ¼

26:1

6:5

0

�26:1

�6:5

32:5

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

kN

kN

kNm

kN

kN

kNm
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Bending moment diagram

FIGURE 1.24. Shear force and bending moment diagrams.
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The shear force and bending moment diagrams are shown in
Figure 1.24.

1.11 Treatment of Internal Loads

So far, the discussion has concerned externally applied loads acting
only at joints of the structure. However, in many instances, externally
applied loads are also applied at locations other than the joints, such
as on part or whole of a member. Loads being applied in this manner
are termed internal loads. Internal loads may include distributed
loads, point loads, and loads due to temperature effects. In such cases,
the loads are calculated by treating the member as fixed-end, and
fixed-end forces, including axial forces, shear forces, and bending
moments, are calculated at its ends. The fictitiously fixed ends of
the member are then removed and the effects of the fixed-end forces,
now being treated as applied loads at the joints, are assessed using
the stiffness method of analysis.

In Figure 1.25, fixed-end forces due to the point load and the uni-
formly distributed load are collected in a fixed-end force vector PFf g
for the member as
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FIGURE 1.25. Fixed-end forces.

28 Plastic Analysis and Design of Steel Structures
PFf g ¼

0
QFi

MFi

0
QFj

MFj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(1.25)

The signs of the forces in PFf g should follow those shown in Figure
1.19. In equilibrium, fixed-end forces generate a set of equivalent
forces, equal in magnitude but opposite in sense and shown as QEi,
MEi, QEj, MEj, being applied at the joints pertaining to both ends i
and j of the member. The equivalent force vector is expressed as

PEf g ¼

0
�QFi

�MFi

0
�QFj

�MFj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(1.26)

If necessary, PEf g is transformed into the global coordinate sys-
tem in a similar way given in Equation (1.15) to form

Pg
E

� 	 ¼ T½ � PEf g (1.27)

which is added to the load vector Ff g of the structure in accordance
with the freedom codes at the joints. Final member forces are calcu-
lated as the sum of the forces obtained from the global structural anal-
ysis and fixed-end forces PFf g. That is,

Pf g ¼ Ke½ � df g þ PFf g (1.28)

Fixed-end forces for two common loading cases are shown in
Table 1.1.

Example 1.4 Determine the forces in the members and plot the bend-
ing moment and shear force diagrams for the frame shown in
Figure 1.26a. The structure is fixed at A and pinned on a roller support
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Fixed-end forces
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FIGURE 1.26. Example 1.4.
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at C. For both members AB and BC, E ¼ 2 � 108 kN/m2, A ¼ 0.2 m2,
I ¼ 0.001 m4.

Solution. The structure has 5 degrees of freedom with a degree of stat-
ical indeterminacy of 2. Freedom codes corresponding to the 5 degrees
of freedom are shown in Figure 1.26b. The fixed-end force vector for
member 1 is

PFf g ¼

0
24
16
0
24
�16

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

The equivalent force vector is

PEf g ¼ Pg
E

� 	 ¼

0
�24
�16
0

�24
16

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
0
0
1
2
3

which is added to the externally applied force to form

Ff g ¼

0
�104
16
0
0

8>>>><
>>>>:

9>>>>=
>>>>;

1
2
3
4
5

The orientations of the members are member 1: a ¼ 0�, member
2: a ¼ –45�. The stiffness matrices of the members in the global coor-
dinate system are
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0 0 0 1 2 3

Kg
e½ �1 ¼

1� 107 0 0 �1� 107 0 0

3:75� 104 7:5� 104 0 �3:75� 104 7:5� 104

2� 105 0 �7:5� 104 1� 105

1� 107 0 0

Symmetric 3:75� 104 �7:5� 104

2� 105

2
6666666664

3
7777777775

0

0

0

1

2

3

1 2 3 4 0 5

Kg
e½ �2 ¼

0:473� 107 �0:4698� 106 4:714� 104 �0:473� 107 4:698� 106 4:714� 104

0:473� 107 �4:714� 104 4:698� 106 �0:473� 107 �4:714� 104

1:886� 105 �4:714� 104 4:714� 104 9:428� 104

0:473� 107 4:698� 106 �4:714� 104

Symmetric 0:473� 107 4:714� 104

1:886� 105

2
6666666664

3
7777777775

1

2

3

4

0

5

Hence, the structure stiffness matrix is assembled as

K½ � ¼

1:473� 107 �4:698� 106 4:714� 104 �4:730� 106 4:714� 104

4:767� 106 �2:786� 104 4:698� 106 4:714� 104

3:886� 105 �4:714� 104 9:428� 104

Symmetric 4:730� 106 �4:714� 104

1:886� 105

2
6666664

3
7777775

By solving the structure equilibrium equation, the displacement vec-
tor is determined as

Df g ¼

0
�2:017� 10�3

�1:180� 10�4

2:013� 10�3

1:066� 10�3

8>>>><
>>>>:

9>>>>=
>>>>;

m
m
radian
m
radian

Pf g1 ¼ Ke½ � df g þ PFf g ¼

0
66:8
139:5
0

�66:8
127:7

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

0
24
16
0
24
�16

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0
90:8
155:5
0

�42:8
111:7

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

kN
kN
kNm
kN
kN
kNm

Pf g2 ¼ Ke½ � df g ¼

26:3
�26:3
�111:7
�26:3
26:3
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

kN
kN
kNm
kN
kN
kNm

The shear force and bending moment diagrams of the structure are
shown in Figure 1.27.
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FIGURE 1.27. Results of Example 1.4.
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1.12 Treatment of Pins

Example 1.3 demonstrates the analysis of a frame with a pin at joint D.
The way to treat the pin using the stiffness method for structural anal-
ysis is to allow the members attached to the pinned joint to rotate
independently, thus leading to the creation of different freedom codes
for rotations of individual members. When carrying out elastoplastic
analysis (Chapter 4) for structures using the stiffness method, the
plastic hinges, behaving in a way similar to a pin, are formed in stages
as the loads increase. In assigning different freedom codes to represent
the creation of plastic hinges in an elastoplastic analysis, the number
of degrees of freedom increases by one every time a plastic hinge is
formed. For a structure with a high degree of statical indeterminacy,
the increase in the number of freedom codes from the beginning
of the elastoplastic analysis to its collapse due to instability induced
by the formation of plastic hinges may be large. Elastoplastic analysis
using this method for simulating pin behavior, hereafter called the
extra freedom method, therefore requires increasing both the number
of equilibrium equations to be solved and the size of the structure
stiffness matrix K½ �, thus increasing the storage requirements for the
computer and decreasing the efficiency of the solution procedure. In
order to maintain the size of K½ � and maximize computational effi-
ciency in an elastoplastic analysis, the behavior of a pin at the ends
of the member can be simulated implicitly by modifying the member
stiffness matrix Ke½ �. This latter method for pin behavior simulated
implicitly in the member stiffness matrix is called the condensation
method, which is described next.

1.12.1 Condensation Method

The rotational freedom for any member can be expressed explicitly
outside the domain of the stiffness matrix. In doing so, the rotational
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freedom is regarded as a variable dependent on other displacement
quantities and can be eliminated from the member stiffness matrix.
The process of elimination is called condensation and hence the name
of this method.

In using the condensation method, while the stiffness matrix of
the member needs to be modified according to its end connection con-
dition, the internal loads associated with that member also need to be
modified. There are three cases that need to be considered for a mem-
ber. They are (i) pin at end j, (ii) pin at end i, and (iii) pins at both ends.

Case i: Pin at end j

Consider part of a structure shown in Figure 1.28. The freedom codes
for member 2 with a pin at end j are 1; 2; 3; 4; 5;Xf g where the rota-
tional freedom X is treated as a dependent variable outside the struc-
ture equilibrium equation, leaving the member with only 5 freedom
codes pertaining to the structure stiffness matrix K½ �. Note that the
rotational freedom code ‘6’ belongs to member 3.

From Equation (1.28) for member 2 with internal loads,

Ni

Qi

Mi

Nj

Qj

MjX

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

EA

L
0 0 �EA

L
0 0

0
12EI

L3

6EI

L2
0 � 12EI

L3

6EI

L2

0
6EI

L2

4EI

L
0 � 6EI

L2

2EI

L

�EA

L
0 0

EA

L
0 0

0 � 12EI

L3
� 6EI

L2
0

12EI

L3
� 6EI

L2

0
6EI

L2

2EI

L
0 � 6EI

L2

4EI

L

2
666666666666666666666664

3
777777777777777777777775

ui

vi
yi
uj

vj
yjX

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

0
QFi

MFi

0
QFj

MFj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(1.29)
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FIGURE 1.28. Member with a pin at end j.
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where the rotation at end j is yjX corresponding to a rotational freedom
code ‘X’. Expanding the last equation in Equation (1.29) and given
MjX ¼ 0 for a pin, yjX can be derived as

yjX ¼ � 3

2L
vi � 1

2
yþ i

3

2L
vj � MFj

4EI=L
(1.30)

By substituting Equation (1.30) into the other equations of Equa-
tion (1.29), a modified 5 � 5 member stiffness matrix, Kej


 �
, and a

modified fixed-end force vector, fPFjg, for a member with pin at end j
are obtained:

Ni

Qi

Mi

Nj

Qj

8>>>><
>>>>:

9>>>>=
>>>>;

¼ Kej


 �
ui

vi
yi
uj

vj

8>>>><
>>>>:

9>>>>=
>>>>;

þ PFj

� 	
(1.31)

where

Kej


 � ¼

EA

L
0 0 �EA

L
0

0
3EI

L3

3EI

L2
0 � 3EI

L3

0
3EI

L2

3EI

L
0 � 3EI

L2

�EA

L
0 0

EA

L
0

0 � 3EI

L3
� 3EI

L2
0

3EI

L3

2
6666666666666666664

3
7777777777777777775

(1.32)

PFj

� 	 ¼

0

Q
0
Fi

M
0
Fi

0

Q
0
Fj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0

QFi � 3MFj

2L

MFi �MFj

2

0

QFj þ 3MFj

2L

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(1.33)

Equation (1.33) represents the support reactions equal to those of
a propped cantilever beam. Explicit expressions for the coefficients in
fPFjg are given in Table 1.2 in Section 1.12.1.4.
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The member stiffness matrix in the global coordinate system can
be derived as before using a modified transformation matrix, Tj


 �
,

which is given as

Tj


 � ¼

cos a �sin a 0 0 0

sin a cos a 0 0 0

0 0 1 0 0

0 0 0 cos a �sin a

0 0 0 sin a cos a

2
666666664

3
777777775

(1.34)

Accordingly, for a member with a pin at end j, the member stiff-
ness matrix in the global coordinate system is

Kg
ej

h i
¼ Tj


 �
Kej


 �
Tj


 �t

¼

C2 EA

L
þ S2

3EI

L3
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0
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0
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þC2 3EI

L3
C
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L
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0
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0
@

1
A

3EI

L
S
3EI

L2
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L
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L
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0
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A
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L
þC2 3EI
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2
6666666666666666666666666666666666666664

3
7777777777777777777777777777777777777775

(1.35)

The modified fixed-end force vector in the global coordinate sys-
tem,fPg

Ejg, can be derived in a way similar to Equation (1.27).

There are two ways to calculate the member forces. The first
way is to use Equation (1.24), for which the end rotation at end j of
the member in Dg

ef g is replaced by yjX calculated from Equation
(1.30). The second way is to use a form similar to Equation (1.24):

Pf g ¼ Kej


 �
Tj


 �t
Dg

e

� 	
(1.36a)

where, through Equations (1.32) and (1.34),
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Kej


 �
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(1.36b)

The 5 � 1 member displacement vector Dg
ef g in Equation (1.36a)

is extracted from Df g according to the 5 freedom codes 1; 2; 3; 4; 5f g
shown in Figure 1.28 for the member.

Case ii: Pin at end i

This case is shown in Figure 1.29 where member 2 has a pin at end i
with an independent rotational freedom code Y. The freedom codes
for member 2 with a pin at end i are 1; 2;Y; 4; 5; 6f g. Note that the free-
dom code 3 belongs to member 1.

By writing

Pf g ¼

Ni

Qi

MiY

Nj

Qj

Mj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; df g ¼

ui

vi
yiY
uj

vj
yj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and given MjY ¼ 0 for a pin at end i, yiY can be derived as

yiY ¼ � 3

2L
vi þ 3

2L
vj � 1

2
yj � MFi

4EI=L
(1.37)
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FIGURE 1.29. Member with a pin at end i.
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The corresponding matrices for this case can be derived in a way
similar to Case i mentioned earlier. The results are

Ni

Qi

Nj

Qj

Mj

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼ Kei½ �
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uj

vj

yj

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ PFið Þ (1.38)

where
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L
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L
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L
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(1.39)

PFif g ¼

0

Q
00
Fi

0

Q
00
Fj

M
00
Fj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

0

QFi � 3MFi

2L

0

QFj þ 3MFi

2L

MFj �MFi

2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(1.40)

Equation (1.40) represents the support reactions equal to those of
a propped cantilever beam. Explicit expressions for the coefficients in
PFif g are given in Table 1.2 in Section 1.12.1.4.

Ti½ � ¼

cosa �sin a 0 0 0
sin a cosa 0 0 0
0 0 cosa �sin a 0
0 0 sin a cos a 0
0 0 0 0 1

2
66664

3
77775 (1.41)
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Accordingly, for the member with pin at end i, the member stiff-
ness matrix in the global coordinate system is

Kg
ei
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(1.42)
and

Kei½ � Ti½ �t ¼
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(1.43)

The 5 � 1 member displacement vector Dg
ef g is extracted from

Df g according to the 5 freedom codes 1; 2; 4; 5; 6f g for the member.

Case iii: Pins at both ends i and j

This case is shown in Figure 1.30 where member 2 has a pin at both
ends i and j. The freedom codes for member 2 are 1; 2;Y; 4; 5;Xf g.
Note that the freedom codes 3 and 6 belong to members 1 and 3,
respectively.
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FIGURE 1.30. Member with a pin at end i.
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In this case, substitute MiY ¼ MjX ¼ 0 into Equation (1.29), we
obtain

yiY ¼ vj � vi
L

þMFj � 2MFi

6EI=L
(1.44a)

yjX ¼ vj � vi
L

þMFi � 2MFj

6EI=L
(1.44b)

and
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Qi

Nj

Qj

8>>><
>>>:

9>>>=
>>>;

¼ Keij
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uj

vj
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>>>:

9>>>=
>>>;

þ PFij

� 	
(1.45)

where

Keijf g ¼ EA

L

1 0 �1 0
0 0 0 0
�1 0 1 0
0 0 0 0

2
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3
775 (1.46)

PFij

� 	 ¼
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Q
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>>>>:

9>>>>=
>>>>;

¼
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QFi �
MFi þMFj

� �
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QFj þ
MFi þMFj

� �
L

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(1.47)

Equation (1.47) represents the support reactions equal to those of
a simply supported beam. Explicit expressions for the coefficients in
PFij

� 	
are given in Table 1.2 in Section 1.12.1.4.

It is noted that Keij


 �
is in fact the stiffness matrix of a truss

member. The transformation matrix for the member in this case is

Tij


 � ¼
C �S 0 0
S C 0 0
0 0 C �S
0 0 S C

2
664

3
775 (1.48)

The corresponding stiffness matrix in the global coordinate sys-
tem for a member with pins at both ends is

Kg
eij

h i
¼ EA

L

C2 CS �C2 �CS

S2 �CS �S2

C2 CS

Symmetric S2

2
6664

3
7775 (1.49)
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and

Kg
eij

h i
Tij


 �t ¼ EA

L

C S �C �S
0 0 0 0

�C �S C S
0 0 0 0

2
664

3
775 (1.50)

Modified Fixed-End Force Vector

The explicit expressions for the coefficients of the modified fixed-end
force vectors given in Equations (1.33), (1.40), and (1.47) are summar-
ized in Table 1.2.
TABLE 1.2
Modified fixed-end forces for members with pins
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Fi

w

P

i j

ba

L

Q
000
Fi ¼ Pb

L

Q
000
Fj ¼ Pa

L

Moment
under load

¼ Pab

L
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Procedure for Using Condensation Method

1. For any joints with pins, determine whether the connecting
members have (a) no pin, (b) pin at end i, (c) pin at end j, or
(d) pins at both ends.

2. Use the appropriate stiffness matrix for the cases just given for
all members.

3. Assign freedom codes to each joint.
4. Assemble the structure stiffness matrix K½ �.
5. After solving the structure equilibrium equation, calculate

the angle of rotation yjX or yiY for each pin using Equations
(1.30), (1.37), or (1.44). Calculate the member forces
accordingly.

1.12.2 Methods to Model Pin

There are a number of ways to model a joint with a pin using the for-
mulations given in the previous section. Consider a pinned joint con-
necting two members 1 and 2. There are four ways of formulation for
use in the stiffness method of analysis as shown in Figure 1.31.
Figure 1.31a is based on the extra freedom method where both mem-
bers 1 and 2 have independent rotations D3 and D4 using the full
6 � 6 member stiffness matrix. Figure 1.31b is based on the condensa-
tion method for member 1 using the formulation for pin at end j as
given in Section 1.12.1.1, whereas member 2 retains use of the full
6 � 6 member stiffness matrix. Figure 1.31c is also based on the con-
densation method for member 2 using the formulation for pin at end i
X
3

1

2

1
2

3
Y

1

2

1
2

X
Y

1

2

1
2

3
4

1

2

1
2

(a) (b)

(c) (d)

FIGURE 1.31. Modeling pin at a joint.
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as given in Section 1.12.1.2, whereas member 1 retains use of the full
6 � 6 member stiffness matrix. Figure 1.31d is based on the condensa-
tion method using the formulation for pin at end j for member 1 and
pin at end i for member 2.

Example 1.5 Determine the displacements and forces in the beam
ABC with a pin at B shown in Figure 1.32. Ignore the effect of axial
force. E ¼ 2000 kN/m2, I ¼ 0.015 m4.
(a) Beam with pin at B (b) Freedom codes Extra Freedom
Method 

B CA

5 kN 

2m4m

0

0
0

C
0

0

0

BA
1 2

0

2

1

3

FIGURE 1.32. Example 1.5.
Solution
(i) Extra Freedom Method

When the axial force effect is ignored, a zero freedom code is
assigned to the axial deformation of the members. Thus, the structure
has a total of 3 degrees of freedom shown in Figure 1.32b.

For all matrices, only the coefficients corresponding to nonzero
freedom codes will be shown.

For member 1,

0 0 0 0 1 2

Kg
e½ �1 ¼

:: :: :: :: :: ::
:: :: :: :: ::

:: :: :: ::
:: :: ::

Symmetric 5:625 �11:25
30

2
6666664

3
7777775

0
0
0
0
1
2

For member 2,

0 1 3 0 0 0

Kg
e½ �2 ¼

:: :: :: :: :: ::
45 45 :: :: ::

60 :: :: ::
:: :: ::

Symmetric :: ::
::

2
6666664

3
7777775

0
1
3
0
0
0
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Hence,

K½ � ¼
50:625 �11:25 45
�11:25 30 0

45 0 60

2
4

3
5

Ff g ¼
�5
0
0

8<
:

9=
;

By solving the structure equilibrium equation Ff g ¼ K½ � Df g for
Df g, we obtain

Df g ¼
D1

D2

D3

8<
:

9=
; ¼

�0:395
�0:148
0:296

8<
:

9=
;

Figure 1.33 shows the deflection and rotations of the members.

C

B

A 0.395 m 

0.296 0.148

FIGURE 1.33. Deflection and rotations.
The member forces for member 1 are

Pf g1 ¼

:: :: :: :: 0 0
:: :: :: :: �5:625 11:25
:: :: :: :: �11:25 15
:: :: :: :: 0 0
:: :: :: :: 5:625 �11:25
:: :: :: :: �11:25 30

2
6666664

3
7777775

0
0
0
0

�0:395
�0:148

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0
0:556
2:223
0

�0:556
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

The member forces for member 2 are

Pf g2 ¼

:: 0 0 :: :: ::
:: 45 45 :: :: ::
:: 45 60 :: :: ::
:: 0 0 :: :: ::
:: �45 �45 :: :: ::
:: 45 30 :: :: ::

2
6666664

3
7777775

0
�0:395
0:296
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0
�4:444

0
0

4:444
�8:891

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

The member forces for the structure are shown in Figure 1.34.
2.223 kNm 

0.556 kN
4.444 kN 

8.891 kNm

4.444 kN0.556 kN 

FIGURE 1.34. Member forces.
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(ii) Method of Condensation

In using this method, the stiffness matrix of member 1 is
condensed so that rotation at end j, denoted as X in Figure 1.35,
becomes a dependent variable. The freedom codes of the structure
are also shown in Figure 1.35.
0
0

0

C

00

0

BA
1 2

0

X

1

2

FIGURE 1.35. Freedom codes: method of condensation.
The stiffness matrix of member 1 is given by Equation (1.32) as

0 0 0 0 1

Kej


 �
1
¼ Kg

ej

h i
1
¼

:: :: :: :: ::
:: :: :: ::

:: :: ::
Symmetric ::

1:4063

2
66664

3
77775

0
0
0
0
1

For member 2,

0 1 2 0 0 0

Kg
e½ �2 ¼

:: :: :: :: :: ::
45 45 :: :: ::

60 :: :: ::
:: :: ::

Symmetric :: ::
::

2
6666664

3
7777775

0
1
2
0
0
0

Hence, the structure stiffness matrix, of size 2 � 2, can be assem-
bled as

K½ � ¼ 46:406 45
45 60

� �

The load vector is

Ff g ¼ �5
0

� �

By solving Ff g ¼ K½ � Df g for Df g, we obtain

Df g ¼ D1

D2

� �
¼ �0:395

0:296

� �
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The rotation yjX for member 1 can be obtained from Equation (1.30) as

yjX ¼ � 3

2L
vi � 1

2
yi þ 3

2L
vj ¼ 3

2� 4
�0:395ð Þ ¼ �0:148

The member forces for member 2 can be calculated using Equation
(1.36a)

Pf g1 ¼ Kej


 �
Tj


 �t
Dg

ef g

¼

:: :: :: :: 0
:: :: :: :: �1:406
:: :: :: :: �5:625
:: :: :: :: 0
: :: :: :: 1:406

2
66664

3
77775

0
0
0
0

�0:395

8>>>><
>>>>:

9>>>>=
>>>>;

¼

0
0:556
2:223
0

�0:556

8>>>><
>>>>:

9>>>>=
>>>>;

which are the same as those calculated before.

1.13 Temperature Effects

Most materials expand when subject to temperature rise. For a steel
member in a structure, the expansion due to temperature rise is
restrained by the other members connected to it. The restraint imposed
on the heated member generates internal member forces exerted on the
structure. For uniform temperature rise in amember, the internalmem-
ber forces are axial and compressive, and their effects can be treated in
the same way as for internal loads described in Section 1.11.

1.13.1 Uniform Temperature

The fixed-end force vector PFf g for a steel member shown in
Figure 1.36 subject to a temperature rise of T � Toð Þ, where T is
the current temperature and To is the ambient temperature of the
member, is given by

PFf g ¼

NFi

0
0
NFj

0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(1.51)
i j

NFjNFi NEjNEi

FIGURE 1.36. Fixed-end forces for member subject to temperature rise.
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where

NFi ¼ �NFj ¼ ETAa T � Toð Þ (1.52)

ET ¼ modulus of elasticity at temperature T,
A ¼ cross-sectional area,
a ¼ coefficient of linear expansion.

As before, the equivalent force vector is PEf g ¼ � PFf g.
In Equation (1.52), ET is often treated as a constant for low tem-

perature rise. However, under extreme loading conditions, such
as steel in a fire, the value of ET deteriorates significantly over a
range of temperatures. The deterioration rate of steel at elevated
temperature is often expressed as a ratio of ET=Eo. This ratio has
many forms according to the design codes adopted by different
countries. In Australia and America, the ratio of ET=Eo is usually
expressed as

ET

Eo
¼ 1:0þ T

2000 ln
T

1100

2
4

3
5

for 0�C < T � 600�C

¼
690 1� T

1000

0
@

1
A

T � 53:5
for 600�C < T � 1000�C

(1.53a)

In Europe, the ratio of ET=Eo, given in tabulated form in the Euro-
code, can be approximated as

ET

Eo
¼ 1� e�9:7265�0:9947T (1.53b)

Although the coefficient of linear expansion a also varies with
temperature for steel, its variation is insignificantly small. There-
fore, a constant value is usually adopted. The overall effect of rising
temperature and deteriorating stiffness for a steel member is that the
fixed-end compressive force increases initially up to a peak at about
500�C, beyond which the compressive force starts to decrease. The
variation of the fixed-end compressive force, expressed as a dimen-
sionless ratio relative to its value at 100�C using a varying
modulus of elasticity according to Equation (1.53a), is shown in
Figure 1.37. For comparison purpose, the variation of the fixed-end
compressive force using a constant value of ET is also shown in
Figure 1.37.
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1.13.2 Temperature Gradient

For a member subject to a linearly varying temperature across its cross
section with Tt ¼ temperature at the top of the cross section and Tb ¼
temperature at the bottom of the cross section, the fixed-end force
vector is given by

PFf g ¼

NFi

0
MFi

NFj

0
MFj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(1.54)

where

NFi ¼ �NFj ¼
Z
A

sdA (1.55a)

s ¼ ETa T � Toð Þ (1.55b)

In Equation (1.55a), the integration is carried out for the whole
cross section of area A. The stress s at a point in the cross section cor-
responds to a temperature T at that point. In practice, integration is
approximated by dividing the cross section into a number of horizon-
tal strips, each of which is assumed to have a uniform temperature.
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Consider a member of length L with a linearly varying tempera-
ture in its cross section subject to an axial force N. If the cross
section of the member is divided into n strips and the force in
strip i with cross-sectional area Ai and modulus of elasticity Ei is Ni,
then, for compatibility with a common axial deformation u for
all strips,

u ¼ N1L

E1A1
¼ ::: ¼ NiL

EiAi
¼ ::: ¼ NnL

EnAn
(1.56)

For equilibrium,

N ¼ N1 þ :::þNi þ ::: þNn (1.57)

Substituting Equation (1.56) into Equation (1.57), we obtain

N ¼
Pn
1

EiAi

L
u (1.58)

By comparing Equation (1.58) with Equation (1.9), it can be seen
that for a member with a linearly varying temperature across its cross
section,

K11 ¼ �K14 ¼
Pn
1

EiAi

L
(1.59)

Equation (1.59) can be rewritten as

K11 ¼ �K14 ¼
Eo

Pn
1

miAi

L
(1.60)

in which

mi ¼ Ei

Eo
(1.61)

The value of mi can be obtained from Equations (1.53a) or (1.53b).
The use of Equation (1.60) is based on the transformed section
method, whereby the width of each strip in the cross section is
adjusted by multiplying the original width by mi and the total area
is calculated according to the transformed section.

The stiffness coefficients for bending involving EI can also be
obtained using the transformed section method. The curvature of
the member as a result of bowing due to the temperature gradient
across the depth of the cross section is given as

k ¼ a
Tt � Tbð Þ

d
(1.62)
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FIGURE 1.38. Fixed-end moments under temperature gradient.
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Hence, the fixed-end moments at the ends of the member, as shown
in Figure 1.38, are

MFi ¼ �MFj ¼ �EaIa
Tt � Tbð Þ

d
(1.63)

where d is depth of cross section.
Similar to the calculation of the axial stiffness coefficient in

Equation (1.60), EaI in Equation (1.63) is calculated numerically by
dividing the cross section into a number of horizontal strips, each of
which is assumed to have a uniform temperature. The width of each
strip in the cross section is adjusted by multiplying the original width
by mi so that

EaI ¼
Xn
1

EiIi ¼ Eo

Xn
1

miIi (1.64)

where Ii is calculated about the centroid of the transformed section.

Example 1.6 Determine the axial stiffness EA and bending stiffness EI
for the I section shown in Figure 1.39. The section is subject to a line-
arly varying temperature of 240�C at the top and 600�C at the bottom.
Use the European curve [Equation (1.53b)] for the deterioration rate of
tf

B

tw
d

FIGURE 1.39. Example 1.6.
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the modulus of elasticity. Eo at ambient temperature ¼ 210,000 MPa.
A ¼ 7135 mm2, I ¼ 158202611 mm4, B ¼ 172.1 mm, d ¼ 358.6 mm,
tw ¼ 8 mm, tf ¼ 13 mm.

Solution. The section is divided into 24 strips, 4 in each of the flanges
and 16 in the web. The temperature at each strip is taken as the tem-
perature at its centroid. The area of each strip is transformed by multi-
plying its width by ET/Eo.

The total area of the transformed section ¼ 4549.9 mm2.
Thecentroidof the transformedsection fromthebottomedge¼239.0mm.
Total EA for the section ¼ 210000 � 4549.9 ¼ 9.555 � 108 N.
The secondmomentof areaof the transformed section¼ 8.422� 107mm4.
Total EI for the section ¼ 210000 � 8.422 � 107 ¼ 1.769 � 1013 Nmm2.

Problems

1.1. Determine the degree of indeterminacy for the beam shown in
Figure P1.1.
FIGURE P1.1. Problem 1.1.
1.2. Determine the degree of indeterminacy for the beam shown in
Figure P1.2.
FIGURE P1.2. Problem 1.2.
1.3. Determine the degree of indeterminacy for the continuous beam
shown in Figure P1.3.



FIGURE P1.3. Problem 1.3.
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1.4. Determine the degree of indeterminacy for the frame shown in
Figure P1.4.
FIGURE P1.4. Problem 1.4.
1.5. The structure ABC shown in Figure P1.5 is subject to a clockwise
moment of 5 kNm applied at B. Determine the angles of rotation
at A and B using
1. Extra freedom method
2. Condensation method

Ignore axial force effect. EI ¼ 30 kNm2.
B

C

A
5 kNm 

3m 
3m 

FIGURE P1.5. Problem 1.5.
1.6. The structure shown in Figure P1.6 is fixed at A and C and
pinned at B and subject to an inclined force of 300 kN. Determine
the forces in the structure and plot the bending moment and
shear force diagrams. E ¼ 2 � 108 kN/m2, I ¼ 1.5 � 10�5 m4,
A ¼ 0.002 m2.
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FIGURE P1.6. Problem 1.6.
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1.7. The frame ABC shown in Figure P1.7 is pinned at A and fixed to a
roller at C. A bendingmoment of 100 kNm is applied at B. Plot the
bending moment and shear force diagrams for the frame. Ignore
the effect of axial force in the members. E ¼ 210000 kN/m2,
I ¼ 0.001 m4.
B C

A

100 kNm

5m
4m 

FIGURE P1.7. Problem 1.7.
1.8. A beam ABC shown in Figure P1.8 is pinned at A and fixed at C.
A vertical force of 5 kN is applied at B. Determine the displace-
ments of the structure and plot the bending moment and shear
force diagrams. Ignore axial force effect. E ¼ 2000 kN/m2,
I ¼ 0.015 m4.
B CA

5 kN 

2m 4m

FIGURE P1.8. Example 1.8
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1.9. Use the stiffness method to calculate the member forces in the
structure shown in Figure P1.9. E ¼ 2 � 105 N/mm2, A ¼ 6000
mm2, I ¼ 2 � 107 mm4.
5m

5m 

30�

10 kN/m 

A B

C

FIGURE P1.9. Problem 1.9.
1.10. Plot the shear force and bending moment diagrams for the con-
tinuous beam shown in Figure P1.10. Ignore axial force effect.
E ¼ 3 � 105 N/mm2, I ¼ 2 � 107 mm4.
10 kN/m

5m 5m 10m 

60 kN 

A B

FIGURE P1.10. Problem 1.10.
1.11. Determine the axial stiffness EA and bending stiffness EI for the
I section shown in Figure 1.39. The section is subject to a line-
arly varying temperature of 150�C at the top and 400�C at
the bottom. Use the European curve [Equation (1.53b)] for the
deterioration rate of the modulus of elasticity. Eo at ambient
temperature ¼ 210000 MPa. A ¼ 7135 mm2, I ¼ 158202611
mm4. B ¼ 172.1 mm, d = 358.6 mm, tw ¼ 8 mm, tf ¼ 13 mm.
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CHAPTER 2

Plastic Behavior
of Structures
2.1 Introduction

The early development of plasticity problems in a general finite ele-
ment approach can be attributed to, for example, Marcal and King,1

Yamada and Yoshimura,2 and Zienkiewicz et al.3 The approach has
also been adopted by Ueda et al.4 for framed structure applications. The
approach is based on plastic flow theory with due consideration given
to the plasticity conditions of the elements. A similar formulation was
also adopted by Nigam5 for dynamic analysis. Unlike the elastic
approach described inChapter 1, all thework is based onmatrix formula-
tion using stiffness methods for analysis extended to the inelastic range.
The complete description of the behavior of a structure from its elastic to
plastic state is termed elastoplastic analysis. Other methods making
use of the stiffness approach to solving plasticity problems for framed
structures include those by Livesley,6 Davies,7 and Majid,8 whose work
was mainly on yielding only by pure bending.

Mathematical programming methods have become an important
area of research in engineering plasticity in recent years. The general
methods of formulation and solution using this approach are typically
referenced by Franchi and Cohn,9 Maier and Munro,10 and Tin-Loi and
Pang.11 A detailed description of mathematical programming methods
is given in Chapter 6.

2.2 Elastic and Plastic Behavior of Steel

This section first describes the structural behavior of a cross section
from its elastic state to a fully plastic state under increasing load.
The general elastoplastic behavior of a structure will then be given
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and its application to plastic design method, under certain limita-
tions, is compared with the elastic design method.

Most structural materials undergo an elastic state before a plastic
state is reached. This applies to bothmaterial behavior of a cross section
and the structure as a whole. For a simply supported steel beam with a
cross section symmetrical about a horizontal axis under an increasing
load applied at midspan, the general stress and strain variations in the
cross section at midspan from a fully elastic state to fracture are shown
in Figure 2.1. The beam is initially loaded producing an elastic stress
f ¼ fe corresponding to an elastic strain e ¼ ee for loading between points
A and B shown in Figure 2.1. When point B is reached, the maximum
stress in the top and bottom fibers of the cross section becomes yielded
such that f ¼ fy, corresponds to a yield strain e ¼ ey. As the load is
increased further, the cross section undergoes a plastification process
in which the yielded area becomes larger and larger, spreading inward
toward the center of the cross section. This plastification with a rela-
tively constant yield stress fy occurs between B and C, at which the
stress corresponding to strain es starts to increase again. From point C,
the cross section enters into a strain-hardening stage until an ultimate
stress fu at D is reached. From point D, the stress starts to decrease with
increasing strainuntil thematerial fractures at point E.The plastification
process is important for steel in plastic design as it ensures that the
material has adequate ductility for the cross section to sustain loading
beyond its elastic limit at B.
Strain

y y y

Stress

(i) (ii) (iii) (iv) (v)

f < fy f = fuf = fyf = fy

Strain hardening

s s

y

B C

D

A

fy

fu

s

E

f

f = fy

FIGURE 2.1. Stress–strain behavior of a cross section.
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FIGURE 2.2. Elastic perfectly plastic behavior for steel.
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For design purposes, it is prudent to ignore the extra strength
provided by strain hardening, which becomes smaller in magnitude
as the grade strength of steel becomes greater. Hence, for simplicity,
steel is always idealized as an elastic-perfectly plastic material with
a stress–strain relationship shown in Figure 2.2 and the corresponding
cross-section plastification of a symmetric section in Figure 2.3. In
Figure 2.2, the stress–strain relationship for the elastic part AB is lin-
ear and its slope is equal to the modulus of elasticity.

According to the idealized stress–strain relationship, the contin-
uous plastification of a cross section shown in Figure 2.3 under
increasing loading induces continuous increase in bending moment
of the cross section. When the extreme fibers of the cross section
reach the yield strain, ey, with a yield stress, fy, a yield moment My

corresponding to a yield curvature ky (see Section 2.3 for the definition
of curvature) at point B, a moment–curvature relationship shown in
Figure 2.4 exists in the section. A further increase in loading causes
partial plastification in the cross section, which signals the start of
Compression 

Tension 

Neutral axis 

f = fyf < fy f = fy

Elastic Elastic plastic Plastic 

Strain 

y y y

Neutral axis 

FIGURE 2.3. Plastification of a cross section.
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FIGURE 2.4. Moment–curvature relationship of a cross section.
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its elastic–plastic state. This elastic–plastic state corresponds to an
increase in bending moment from B to D shown in Figure 2.4. When
the cross section becomes fully plastic at point D, the maximum
moment capacity, called plastic moment Mp, is reached. A further
increase in loading increases the strains and hence the curvature in
the cross section, whereas the plastic moment remains unchanged.
It should be noted that the line DE in Figure 2.4 is not truly horizontal
and the point D is difficult to define for most cross-sectional shapes.
Unless deflection is a prime consideration, for design purposes the
curved part BD of the moment–curvature relationship is often ignored
and the bending moment is assumed to increase linearly from A to C,
at which time the plastic moment is reached. The ratio of the plastic
moment to the yield moment is called the shape factor. The shape fac-
tor varies for different cross-sectional shapes.

Unloading from a plastic state to an elastic state is also assumed
to follow the path parallel to the elastic curve. It should be realized
that because of this assumption for unloading, the elastic relationship
between stress and strain is no longer unique in the sense that the
behavior of the material may follow any elastic curve if the material
unloads from a plastic state to an elastic state. The unloading phe-
nomenon can be demonstrated in Figure 2.4 in which the section
undergoes unloading at F, from which an elastic path FG, usually par-
allel to AC, is assumed. When the section is fully unloaded, residual
deformation corresponding to a curvature at G exists. Therefore, an
elastoplastic analysis is usually performed in an incremental manner
for a given history of loading in order to trace the unique states of
moment and curvature in the cross section.

In reality, the exact value ofMp is difficult to obtain and its calcula-
tion is only approximate. In an experiment, a rectangular steel bar of
dimensions 3 mm� 13 mm was used as a simply supported beam with
a span lengthof 300 mmto support a centrally applied loaduntil collapse.
The beam was bending about its weaker axis. The relationship between
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FIGURE 2.5. Load–deflection curve of a rectangular beam.
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the load and the deflection atmidspan is shown in Figure 2.5. This exper-
iment shows that the load is slightly increasing at rapidly increasing
deflection when the beam is loaded beyond its theoretical collapse load
at B, indicating the strain-hardening effect. The theoretical collapse
load is estimated to be 13.8 kg, or 135.4 N. Hence, the plastic moment

of the beam section is Mp ¼ PL

4
¼ 135:4 � 300

4
¼ 10155 Nmm. The

inverse of the slope of the curve AB has been found to be 0.102 mm/N.

Since the inverse of the slope of the curve AB ¼ L3

48EI
where

I ¼ 13 � 33

12
¼ 29:25 mm4, hence E ¼ 188537 N/mm2.

These mechanical properties can be used for performing elasto-
plastic analysis of structures made of this type of steel bar. The math-
ematical expression of the general moment–curvature relationship for
a rectangular section is presented next.

2.3 Moment–Curvature Relationship in an
Elastic–Plastic Range

A cross section under increasing bendingmoment undergoes three stages
of transformation in its plastification process. As shown in Figure 2.4,
they are elastic (AB), elastic–plastic (BD), and fully plastic (DE).

2.3.1 Elastic Behavior

Figure 2.6 shows a small length of a beam under bending with constant
curvature. The shape of the original element ABCD is transformed
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FIGURE 2.6. Part of a beam under bending.
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into A’B’C’D’ as a consequence of bending so that the extreme edges
A’B’ and C’D’ are both subtending a common center of circles at O. It
can be seen that A’B’ contracts fromAB and therefore the element fibers
along A’B’ are under compression with compressive stress fc. Similarly,
the element fibers along C’D’ are under tension with tensile stress ft.
As a result, an axis exists along aawhere the stress is zero. This is called
the neutral axis at a distance r from the center of the circles at O.

For consistency, the sign convention is that a positive bending
moment causing sagging in the element is associated with a negative
radius of curvature r. The distance y from the neutral axis is measured
positive below the neutral axis.

If the unstrained length along the neutral axis a-a is x and the
length b-b at a distance y from the neutral axis is x0, the axial strain
can be expressed as

e ¼ x0 � x

x

¼ ð�rþ yÞyþ ry
�ry

¼ � y

r

(2.1)

The curvature k of a cross section is defined as

k ¼ 1

r
(2.2)

Hence, from Equations (2.1) and (2.2), the curvature can be defined as
the slope of the strain diagram shown in Figure 2.7.
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FIGURE 2.7. Curvature and strain of a cross section.
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For a bending stress, f, associated with a small area @A in the cross
section, the total compression Fc above the neutral axis is given as

Fc ¼
Z
Top

fð@AÞ

¼ Ek
Z
Top

yð@AÞ
(2.3)

Likewise, the total tension Ft below the neutral axis can be
derived as

Ft ¼
Z

Bottom

fð@AÞ

¼ Ek
Z

Bottom

yð@AÞ
(2.4)

Note that the integrations in Equations (2.3) and (2.4) are about
the neutral axis. For a cross section under pure bending, the sum of
the compression and tension must vanish in order to maintain equi-
librium. Hence,

Fc þ Ft ¼ Ek
Z
A

yð@AÞ ¼ 0 (2.5)

If the location of anyhorizontal fiber ismeasured as y0 froma conve-
nient axis, such as the top or bottom edge, and the location of the neutral
axis is �y from the same axis, Equation (2.5) can then be written as

Ek
Z
A

ðy0 � �yÞð@AÞ ¼ 0 (2.6a)

or

�y ¼

Z
A

y0ð@AÞ

A
(2.6b)
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whereA is the total area of the cross section. Equation (2.6) is often used
to locate the neutral axis numerically for simple asymmetric sections.

By taking the moment about the neutral axis, the bending
moment of the whole section can be found to be

M ¼
Z
A

fyð@AÞ ¼ Ek
Z
A

y2ð@AÞ (2.7)

By defining the second moment of area (or moment of inertia)

as I ¼
Z
A

y2ð@AÞ, the stress f at any point in the cross section can be

written as

f ¼ Ee ¼ M

I
y (2.8)

Equation (2.8) is based on the simple bending theory in which the
plane section remains plane under applied forces and has been used in
elastic design method for decades. It is valid when the whole section
remains elastic and the modulus of elasticity E remains constant.

2.3.2 Elastic–Plastic Behavior

To illustrate the calculation of the moment–curvature relationship
beyond the elastic limit, a symmetric, rectangular section of dimen-
sions b�d is used. When the extreme fibers of a rectangular section
start to yield with f ¼ fy, the corresponding yield moment My, shown
in Figure 2.4, is

My ¼ fyI

ymax
(2.9)

or

My ¼ fyZ (2.10)

where Z ¼ elastic section modulus ¼ I
ymax

and ymax is the distance of

the extreme fibers to the neutral axis. For a rectangular section, it can
be shown that

Z ¼ bd2

6
(2.11)

In this case, the yield strain ey is related to the yield curvature ky by

ey ¼ d

2
ky (2.12)
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FIGURE 2.8. Elastic–plastic behavior.
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A further increase in bending moment of the cross section spreads
the yielding inward toward the neutral axis. Suppose that the yielding
is extended to the point where the elastic core is within a distance bd
from the neutral axis. The corresponding strain distribution can be cal-
culated by the constant curvature k shown in Figure 2.8. Hence,

fy ¼ Ekbd (2.13)

From Figure 2.8,

F1 ¼ fyb
d

2
� bd

� �
(2.14)

F2 ¼ fy
2
bbd (2.15)

Total bending moment, M, about the neutral axis is

M ¼ 2

�
F1

�
d

4
þ bd

2

�
þ F2

�
2

3
bd

��

¼ fy
bd2

6

�
3

2
� 2b2

�

¼ My

�
3

2
� 2b2

�
from Equation (2.10)

(2.16)

The moment–curvature relationship for a rectangular section has
been established through Equations (2.13) and (2.16). A fully plastic
section is achieved only when b ! 0. In this case, k ! 1 and the plas-
tic moment for the section is M ¼ Mp ¼ 1:5My. It should be noted
that when the section starts to yield at b ¼ 0.5, the yield curvature is

ky ¼ 2
fy
Ed

� �
(2.17)
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FIGURE 2.9. Dimensionless moment–curvature relationship for rectangular
sections.

64 Plastic Analysis and Design of Steel Structures
so that

k
ky

¼ 0:5

b
from Equation (2.13) (2.18)

Substituting Equation (2.18) into Equation (2.16), a dimension-
less moment–curvature relationship in terms of the moment ratio
M/My and curvature ratio k/ky can be established. This relationship
for rectangular sections is shown in Figure 2.9.

The plastic moment of any cross-sectional shape can be derived
similarly in the aforementioned manner and the plastic moment can
be expressed generally as

Mp ¼ SMy (2.19)

where S ¼ shape factor of the section. The shape factors for some com-
mon cross-sectional shapes are given in Table 2.1.
TABLE 2.1
Shape factors for common cross sections

Shape Shape factor

Rectangle 1.5
Circular solid 1.7
Circular tube 1.27
Triangle 2.34
I-sections 1.1 – 1.2
Diamond 2
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For some cross-sectional shapes, the derivation of the moment–
curvature relationship could be tedious. With the computational tools
widely available today, the moment–curvature relationship can be
established easily using the numerical method. This can be done by
dividing the cross section into a finite number of strips, and the
moment capacity of the section is calculated by varying the value of
b as in Equation (2.13) for rectangular sections. The steps for using
the numerical method are described here.

1. Assign a value of b for the partial plastification of the cross
section.

2. Calculate the curvature k according to Equation (2.13).
3. Calculate strains for all strips using e ¼ ky, where y is the dis-

tance of the strip from the neutral axis.
4. Calculate the bending stress of the strip using f ¼ Ee.
5. Calculate the axial force in each strip using F ¼ Aif, where Ai

is the area of the strip.
6. Calculate the bending moment of the strip about the neutral

axis using M ¼ Fy.
7. The sum of the moments from all strips is the moment capac-

ity of the section for an assumed value of b.
8. Repeat steps 1–7, varying the value of b from 0 to the extreme

fibers of the section toobtain the bendingmoments for varying b.

It shouldbenoted that the sumof the axial forces is zero.This is also
the condition for locating the neutral axis if the section is nonsymmetric.

The following example shows the typical procedure for using the
numerical method.

Example 2.1 Determine the moment–curvature relationship and
shape factor of the I section shown in Figure 2.10.
T

T

t

B

d

B = 164 mm 

d = 311 mm 

T = 11.48 mm 

t = 7.71 mm 

fy = 355 N/mm2

E = 187100 N/mm2N.A. 
d

FIGURE 2.10. Shape factor of I section.
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Solution. This example demonstrates the calculation of the curva-
tures and bending moments of an I section in tabular form, which is
suitable for routine calculation using a spreadsheet such as Microsoft
Excel. The section is divided into 24 horizontal strips, 4 in each of the
flanges and 16 in the web. The results are shown in Table 2.2, in
which only the calculations of some typical strips are shown. When
the neutral axis occurs at a point within a strip, the strip is further
divided into two strips, one below and one above the neutral axis,
and the calculation is performed for each strip accordingly. The
results of the bending moments for varying elastic core distance bd
are shown in Table 2.3. The resulting shape factor for this section is
1.128. It should be noted that for nonsymmetric sections, the location
of the neutral axis can be found such that the sum of the axial forces
of the strips in Table 2.2 is zero.
TABLE 2.2
Moment–curvature computation for bd ¼ 150 mm from neutral axis

Strip
No.

Strain at
centroid
of strip

Bending
stress
(MPa)

Axial force in strip
due to bending (kN)

Moment about
neutral axis

(kNm)

1 �0.00195 �355.0 �167.1 25.7
.. .. .. .. ..
.. .. .. .. ..
21 0.00184 344.2 162.0 23.6
22 0.00188 351.0 165.2 24.5
23 0.00191 355.0 167.1 25.3
24 0.00195 355.0 167.1 25.7

Total ¼ 0 234.4

TABLE 2.3
Results of bending moments for varying elastic core distance bd

Elastic core
bd (mm) k (mm�1)

Moment about neutral
axis (kNm)

0 1 257
15 1.2649 � 10�4 256.6
30 6.3246 � 10�5 256.1
60 3.1623 � 10�5 253.6
90 2.1082 � 10�5 249.4
120 1.5812 � 10�5 243.8
150 1.2649 � 10�5 234.4
155.5 1.2202 � 10�5 227.8
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Distance of neutral axis from bottom edge ¼ 155.5 mm

k ¼ 355/(187100� 150) ¼ 1.2649� 10�5.

The moment–curvature relationship can be used to measure the
extent of the inelastic zone in a member. Take the cantilever beam of
length L subjected to a point load P at its free end shown in Figure 2.11 as
an example. The location of C where the extreme fibers of the beam start
to yield corresponds to the section having a yield bending momentMy.

The extent of the elastic region is given as

xe ¼ My

P
(2.20)

Equation (2.20) is valid so long as PL � MP. When the beam is at
imminent collapse caused by a collapse load P ¼ Pc, the section at B is
fully plastic for which the length of the elastic region is a minimum,
denoted by xemin and calculated from Equation (2.20). That is,

PcL ¼ MP (2.21)

By using P ¼ Pc and xe ¼ xemin in Equations (2.20) and (2.21),

xemin

L
¼ My

MP
¼ 1

S
(2.22)

Equation (2.22) shows that, for this example, the minimum length
of the elastic zone, or the maximum extent of the inelastic zone, is
inversely proportional to the shape factor of the section. In most struc-
tural shapes used in structures, this is generally true. In general, the
deflection of the structural member depends on the extent of the inelas-
tic zone. For sections with low values of shape factor, such as I sec-
tions, the difference in the member’s deflections calculated with and
without an inelastic zone is very small. In plastic analysis of general
structures, it would be a highly complex task if the inelastic zone such
as that shown in Figure 2.11 is considered. Naturally, a simplified and
Elastic region xe
Inelastic region

P

A BC

FIGURE 2.11. Spread of inelastic zone.
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easy-to-use material constitutive relationship that bears some resem-
blance to the actual stress–strain curve is desired. For this reason, the
inelastic zone is usually ignored in engineering practice and the section
is assumed to be elastic until the plastic moment is reached. This is
equivalent to following the bilinear moment–curvature relationship
ACE shown in Figure 2.4. When the section reaches its plastic moment
under this idealization, the section becomes a plastic hinge occupying
infinitesimal length for the inelastic zone. This forms the basis of the
elastoplastic theory for elastic A-perfectly plastic material using the
plastic hinge concept, which is adopted for the subsequent develop-
ment of the work described in this book.

Example 2.2 Determine the inelastic zone length xp of the simply sup-
ported beam shown in Figure 2.12 when the section under the load
becomes fully plastic. The beam has a uniform rectangular section
with a plastic moment capacity of 165 kNm.

Solution. The section starts to yield at a bending moment of

My ¼ Mp

1:5
¼ 110 kNm. The bending moment diagram of the beam is

shown in Figure 2.13. If the lengths of the inelastic zone are xp1 to
the left and xp2 to the right of the applied load, then from the geometry
of the bending moment diagram,
P

xp

6 m 4 m

FIGURE 2.12. Inelastic zone of simply supported beam.

P

10 m

165110 110

FIGURE 2.13. Bending moment diagram.
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6� xp1
6

¼ 110

165
∴ xp1 ¼ 2 m

4� xp2
4

¼ 110

165
∴ xp2 ¼ 1:33 m

Total length of the inelastic zone is 3.33 m.

2.3.3 Fully Plastic Section

Suppose that the stress distribution of a cross section is as shown in
Figure 2.14 so that the total tensile force above the neutral axis X–X
is T and the total compressive force below the neutral axis is C. For
a fully plastic section of arbitrary shape under pure bending, equilib-
rium requires that the net axial force be zero. Hence,

T ¼
Z
A0

fy@A ¼ C (2.23)

where A0 is the area above or below the neutral axis.
Equation (2.23) is used to find the location of the neutral axis.

Assume that the yield stress fy is the same throughout the section,
then Equation (2.23) becomes

At ¼
Z
At

@A ¼ Ac ¼
Z
Ac

@A (2.24)

whereAt andAc are areas above and below the neutral axis, respectively.
Therefore, for sections made of materials with uniform yield stress, the
neutral axisX–X is also called the equal area axis, which divides the cross
section into two equal parts. For symmetric sections, the equal area axis
coincideswith the centroid of the section aboutwhich the plastic section
modulus is calculated. For nonsymmetric sections, the locations of the
equal area axis and the centroid of the section are different.
T

C

yt

yc

XX

fy

fy

FIGURE 2.14. Stress distribution for a fully plastic section.
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By taking the moment about X–X,

Mp ¼ Tyt þCyc

¼ ðAtyt þAcycÞfy ¼ Zsfy
(2.25)

where Zs ¼ the first moment of area about the equal area axis ¼ plastic
section modulus.

For the rectangular section shown in Figure 2.15, the plastic sec-
tion modulus is given by

Zs ¼ 2 � bd

2
� d

4

� �
¼ bd2

4
(2.26)

Comparing Equation (2.26) with the elastic section modulus Z
and from Equation (2.19),

S ¼ MP

My
¼ Zsfy

Zfy
¼ 1:5 (2.27)

which is the same as that obtained from Equation (2.16) for b ! 0.
b

Plastic neutral axis 

d/2

d/2

T

C

FIGURE 2.15. Plastic section modulus of a rectangular section.
Example 2.3 Determine the plastic section modulus Zs for the
I section shown in Figure 2.16.

Solution

Zs ¼ 2½ð200 � 40 � 220Þ þ ð200 � 40 � 100Þ�
¼ 5120� 103 mm3

Example 2.4 Determine the plastic moment Mp and plastic section
modulus Zs for the T section shown in Figure 2.17 if (a) fy ¼ 320 MPa
for the whole section and (b) fy ¼ 320 MPa for the top flange and
fy ¼ 250 MPa for the web.
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FIGURE 2.17. Plastic section modulus of a T section.
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FIGURE 2.16. Plastic section modulus of an I section.

Plastic Behavior of Structures 71
Solution

(a) Total area ¼ (200� 40) þ (400� 40) ¼ 24000 mm2

(40� y) ¼ 24000/2
∴ y ¼ 300 mm
Zs ¼ (200� 40� 120) þ (100� 40� 50) þ (300� 40� 150)

¼ 2960� 103 mm3

Mp ¼ 320� 2960� 103 ¼ 947.2 kNm
(b) Total force ¼ (200� 40)� 320 þ (400� 40)� 250 ¼ 6560 kN

For half of the force,
(40� y)� 250 ¼ 6560000/2

y ¼ 328 mm
Mp ¼ 320� (200� 40� 92) þ 250� (72� 40� 36)

þ 250� (328� 40 � 164)
¼ 799 kNm
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2.4 Plastic Hinge

According to the bilinear moment–curvature idealization shown in
Figure 2.4, a section attaining its plastic moment capacity undergoes
plastic rotation without any further increase in bending moment. In
other words, the section behaves like a real hinge while possessing a
fully plasticmoment. This hinge behavior, typically pertaining to a plas-
tic hinge, enables a structure to be analyzed continuously by inserting a
plastic hinge at any section reaching its plastic moment. This is the
basic concept for elastoplastic analysis to be performed on structures
using the hinge-by-hinge concept. In tracing the formation of the plastic
hinges, the structure becomes increasingly flexible until its stiffness is
reduced to such a small value that imminent collapse occurs.

For an indeterminate structure under increasing loading, the mag-
nitude of the increase in loads can be calculated by considering the
attainment of plastic moments in sections in an elastoplastic analysis.
Take a fixed-end beam under a point load shown in Figure 2.18 as an
example. The collapse mechanism of the beam requires the formation
of three plastic hinges at A, B, and C.

In carrying out the elastoplastic analysis for this beam, or for any
structure in general, the stiffness-deteriorating nature of the structure
can be visualized by plotting the variation of the load with deflection
at a point. For the fixed-end beam, the variation of the load P with the
vertical deflection at B is plotted and shown in Figure 2.19.

In plotting the load–deflection curve shown in Figure 2.19, it
should be noted that

l each “black dot” represents a plastic hinge at a section in a
fully plastic state; the plastic hinge has attained a bending
moment equal to its plastic moment;

l the elastic state of a structure corresponds to a load level below
the first plastic hinge. Analysis below this load level is called
elastic analysis;

l the elastic–plastic state of a structure corresponds to any load
level between the first and the last plastic hinges. Analysis at
this load level is called elastoplastic analysis;
BA

P

Plastic hinge

C

FIGURE 2.18. Collapse mechanism with plastic hinges of a fixed-end beam.
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FIGURE 2.19. Load–deflection curve of a fixed-end beam.
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l the behavior of a structure between the formation of consecu-
tive plastic hinges is elastic and can be analyzed elastically;

l a fully plastic state of a structure corresponds to a load level at
which the structure collapses. At this load level, analysis stops;

l the slope of the curve indicates the relative stiffness of the
structure; the stiffness decreases as more sections become plas-
tic hinges. At collapse, the stiffness of the structure is zero.

2.5 Plastic Design Concept

Plastic design makes use of the reserve strength beyond the elastic
state of the structure. The structure’s reserve strength, which allows
structural members to be loaded without failure when their maxi-
mum bending capacity is reached, is utilized through the elastic–
plastic state when the loading is increasing. As a result, a more
economical design due to material saving can be achieved when using
the plastic design method. Plastic design can be viewed as a means
whereby the ability of moment redistribution of steel structures is uti-
lized when the structures are loaded beyond their elastic state. It may
be noted that in adopting a bilinear moment–curvature relationship
for steel, the beneficial effect of strain hardening of the material is
ignored. Thus, as far as plastic analysis is concerned, the theoretical
plastic collapse load is always less than the true load and the resulting
design is always slightly conservative.

2.6 Comparison of Linear Elastic and Plastic Designs

For elastic design, each of the members in the structure must have a
design bending moment capacity (fMs) greater than the design
moment (M*) obtained from an elastic analysis. The bending moment
capacity, calculated by including the appropriate capacity factor f and
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FIGURE 2.20. Comparison of elastic design and plastic design.
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other design considerations, is often used to represent the plastic
moment Mp in plastic analysis. Under the design loading, if one
of the members meets the design requirement such that fMs ¼ M*,
the first plastic hinge occurs exactly at the design load level along
the elastic design curve shown in Figure 2.20. In most cases, the
choice of the section for elastic design leads to fMs > M* so that
the first plastic hinge of the structure always occurs at a load level
above the design loading.

In contrast, plastic design requires that the last plastic hinge
occurs at or above the design load level. It is clear from Figure 2.20
that if both elastic and plastic designs satisfy the same design loading,
the plastic design method requires a lighter structure with smaller
member size by utilizing the reserve strength of the structure. It is
noted that for a structure with a high degree of statical indeterminacy,
the reserve strength is large. Therefore, the benefit of using plastic
design is greater for structures with high degrees of statical indetermi-
nacy. However, for determinate structures that require only one plastic
hinge to induce a collapse, there is no difference between elastic and
plastic design methods.

2.7 Limit States Design

Limit states design (LSD), also termed load and resistance factor
design (LRFD) in the United States, is based on realistic loading condi-
tions and material properties as opposed to allowable stress design
(ASD), which is mainly based on prescribed loading and stress limits.
Although the linear elastic design method can be applied to both LSD
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and ASD, only the latter is truly elastic. While linear elastic analysis
is performed using the linear load–displacement relationship, elastic
bending theory is applied to ASD for stress calculation, whereas for
LSD, plastic bending theory is used for moment capacity calculation
of the section.

For steel structures, two major limit states need to be considered
for general design: the ultimate limit state and the serviceability limit
state. There are other limit states that may need special treatment and
are usually classified under “accidental loadings” in design codes. In
the present context, only ultimate and serviceability limit states are
dealt with. Analysis and design for structures at elevated tempera-
tures are also given, albeit briefly.

Ultimate limit state design requires that Equation (2.28) be
satisfied: X

i

giPi ¼ S�n � fRn (2.28)

in which Pi ¼ nominal load of type I, including dead, live, wind, and
snow; gi ¼ corresponding load factor; S�n ¼ member actions including
axial force, moment, and shear for member n; f ¼ capacity factor;
Rn ¼ nominal member capacity. For plastic design, the loads are
increased proportionally by a common factor ac such that

ac
X
i

giPi ¼ S�n � fRn and ac � 1:0 at collapse of structure (2.29)

Equation (2.28) implies that an analysis is performed on the struc-
ture that is subjected to the factored loads, whereas Equation (2.29)
implies that the analysis is performed by increasing the common load
factor a until the structure collapses at a ¼ ac. In both Equations
(2.28) and (2.29), the member actions S�n may include both the material
and the geometric effect. In plastic analysis as described in this book,
the geometric effect is not included and is treated separately in design.

2.8 Overview of Design Codes for Plastic Design

Most countries use similar rules for plastic design. In essence, specifi-
cations in plastic design codes require the construction materials to
have adequate ductility for the plastic moment to be fully developed
and sustained until collapse. In addition, for steel material the plastic
hinge should be able to undergo plastic rotation without suffering
from local buckling. Details of the design rules are discussed in Chap-
ter 8. Plastic design codes of practice being used in Australia, the
United States, and Europe are described as they represent the current
design practice in many other countries.
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Plastic design rules developed in the 1960s and 1970s have
been used for a long time. These rules were written on the basis of
simple plastic theory, which was the main concept for analysis at
the time. The simple plastic theory can be applied only to simple
structures using mainly manual methods for analysis. For instance,
the ‘European recommendations for steel construction’ state that
“. . .clauses will generally apply to: -simple or continuous beams;
-one and two storey frames, braced or unbraced.” Most of these rules
for plastic design are still stipulated in current design codes, although
the advent of computers has allowed advanced nonlinear analysis,
including second-order effects, to be admitted for design.

In the United States, both LRFD and ASD design methods
are used by engineers. Both the LRFD specification (AISC, 1999)12

and the ASD specification (AISC, 1989)13 have been superseded
by the combined LRFD–ASD national standard (AISC, 2005).14

The latest specification for structural steel buildings includes an
appendix for ‘Inelastic analysis and design,’ which is essentially a
collection of clauses for plastic design rules published in the earlier
specification.

In Australia, specifications for steel structures design are pub-
lished in AS4100.15 Clauses for plastic design are intertwined with
those for elastic design. Second-order effects on bending moment
due to geometry change of both the structural members and the struc-
ture are taken into account by using a moment amplification factor.
This is, in effect, a reduction factor for the collapse load in plastic
analysis.

In Europe, a set of unified structural codes has been published by
a concerted effort through the European community. Eurocode 3
(CEN, 2005)16 is the specification for steel structures design. Similar
to AS4100, the rules for plastic design are intertwined with those for
elastic design. Different types of analysis for plastic design, including
rigid-plastic, elastic–plastic, and nonlinear plastic, are allowed using
plastic hinges or inelastic zone models.

2.9 Limitations of Plastic Design Method

Although the plastic design method provides some advantages over
the elastic design method, there are limitations to its use. Some of
these limitations are described in this section.

For plastic design, all cross sections must be able to sustain
the plastic moment Mp without showing any sign of local buckling.
To achieve this, the sections must be compact (or class 1 and class
2 cross sections in Eurocode 3). A typical plastic hinge attaining its plas-
tic moment without local buckling effect is shown in Figure 2.21a,
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FIGURE 2.21. Beam under bending with and without local buckling effects.
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whereas a beam subject to local buckling under bending is shown in
Figure 2.21b.

Unless using an advanced nonlinear plastic analysis for design,
the effect of lateral–torsional buckling on plastic behavior of the struc-
ture is not considered. Therefore, all members designed by the plastic
method should be provided with adequate lateral restraints to prevent
lateral buckling.

The steel material must be ductile enough to undergo plastic
rotation without failure. This ductility and other material require-
ments are provided in most design codes. For example, the following
rules stipulated in AS4100 must be satisfied:

1. Hot-formed, doubly symmetric I sections are used with
fy � 450 MPa.

2. The stress–strain relationship for the steel material must have
the characteristics shown in Figure 2.22.

3. No fatigue assessment is required.
e

fy

 0.15 

 0.2 fy

y  6 e

FIGURE 2.22. Ductility requirements for plastic design.
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2.1. Determine the moment–curvature relationship of the rectangular
section shown in Figure P2.1.
90 mm

360 mm

FIGURE P2.1. Problem 2.1.
2.2. Determine the inelastic zone length at midspan for the beam
subject to a uniform distributed load shown in Figure P2.2. The
plastic moment of the rectangular section is 60 kNm. Assume a
linear moment-curvature relationship up to plastic moment.
w (load/length) 

8 m

FIGURE P2.2. Problem 2.2.
2.3. Determine the inelastic zone lengths at A and B for the beam of
uniform rectangular section shown inFigureP2.3when (a) the section
at A becomes fully plastic and (b) when both sections at A and B
become fully plastic. The plastic moment for the beam ¼ 120 kNm.

Elastic moment at A ¼ 3PL

16
and at B ¼ 5PL

32
. L ¼ length of beam.

Assume a linear moment-curvature relationship up to plastic
moment.
5m 5m 

P

AB

xp2 xp1

FIGURE P2.3. Problem 2.3.
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2.4. Determine the inelastic zone lengths at A, B, and C for the fixed-end
beam of the uniform I section shown in Figure P2.4 when (a) the sec-
tion at A becomes fully plastic and (b) when sections at A, B, and C
all become fully plastic. Plastic moment for the beam ¼ 360 kNm.
Shape factor S ¼ 1.2. Assume a linear moment-curvature relation-
ship up to plastic moment.
BC A

3m 5m 
xp3 xp2 xp1

P

FIGURE P2.4. Problem 2.4.
2.5. Determine the location of the plastic neutral axis y and the plas-
tic moment for the section shown in Figure P2.5 if (a) the section
has a uniform yield stress of 300 MPa and (b) the top and bottom
flanges have a yield stress of 300 MPa and the web has a yield
stress of 200 MPa.
800mm 

300mm 

20mm 

10mm 

20mm 

y

100mm 

FIGURE P2.5. Problem 2.5.
2.6. Determine the location of the plastic neutral axis and the plastic
section modulus for the section of uniform yield stress shown in
Figure P2.6. a ¼ 140 mm, b ¼ 410 mm, c ¼ 360 mm.
12 mm 

b

c

a a

12 mm 

10 mm 

FIGURE P2.6. Problem 2.6.
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CHAPTER 3

Plastic Flow Rule and
Elastoplastic Analysis
3.1 General Elastoplastic Analysis of Structures

Chapter 2 shows that a plastic hinge sustaining the full plastic
moment behaves like a real hinge while undergoing plastic rotation.
This implies that the behavior of a steel structure between the forma-
tions of consecutive plastic hinges is elastic and can be simulated
using the linear elastic analysis method as described in Chapter 1.
Take a structure with plastic hinges formed at load levels 1, 2, and 3
shown in Figure 3.1 as an example.

Recall that the equilibrium of a structure is expressed as

Ff g ¼ K½ � Df g (3.1)

For elastoplastic analysis, a common load factor is assigned to
the load vector {F} such that by increasing this common load factor,
the formation of the plastic hinges at 1, 2, 3, etc., shown in Figure 3.1
can be traced incrementally until the structure collapses. If the com-
mon load factor corresponding to the formation of the first plastic
hinge at 1 (at a section in one of the members of the structure) is a1,
the solution of Equation (3.1) for the displacement increment vector
{DD}1 can be written as

DDf g1 ¼ K½ ��1a1 Ff g (3.2)

The incremental member force vector at load level 1 can be cal-
culated using

DPf g ¼ Ke½ � T½ �t DDg
e

� �
(3.3)

where the local displacement increment vector DDg
ef g is extracted

from DDf g1.
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Elastic behavior 
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Elastic behavior 
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2
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FIGURE 3.1. Hinge formation of a structure.
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Subsequent analysis simulating the behavior of the structure
subject to increment of loads between load levels 1 and 2 requires
modification to the stiffness of the member at the point where the for-
mation of the plastic hinge occurs. This is done by treating the plastic
hinge as an internal pin as described in Section 1.12 of Chapter 1, in
which two methods of pin modeling have been presented. These
methods of pin modeling can also be applied in an incremental elasto-
plastic analysis.

After modification to the member stiffness matrix where the
hinge modeling is made, the incremental load factor can be found
between load levels 1 and 2, hereafter called a2 for which the next
plastic hinge at level 2 occurs. The solution for a2 is obtained by solv-
ing Equation (3.4):

DDf g2 ¼ KP½ ��1a2 Ff g (3.4)

where [KP] is the modified structure stiffness matrix, taking into
account the formation of the plastic hinge at 1.

The aforementioned procedure can be repeated until collapse
occurs when the determinant of the structure stiffness matrix
becomes zero. Provided that the same load vector Ff g is used for each
incremental step, the collapse load factor of the structure can be
obtained as the sum of the incremental ones and is given as

acol ¼ a1 þ a2 þ . . . . . . : (3.5)

It can be seen that an important aspect in elastoplastic analysis
is determination of the load level at which the plastic hinge occurs.
For a member with yielding only under pure bending, the criterion
for formation of the plastic hinge is straightforward and is based on
that described in Chapter 2. However, apart from bending moments,
structural members in most structures are also subjected to different
types of actions such as axial forces, shear forces, and torsion. These
forces may affect and usually reduce the plastic moment capacity of
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the section in some or all members and subsequently affect the plastic
collapse loads or load factor of the structure. The influence of these
forces on the plastic moment and the corresponding stiffness of the
structural elements are described in this chapter. The derivation leads
to use of the concept of yield surface whereby the relationship
between the element stiffness matrix and force interactions can be
established. Details of the procedures to deal with the reduced plastic
moment in relation to the calculation of the collapse load factor acol in
incremental elastoplastic analysis are given in Chapter 4.

3.2 Reduced Plastic Moment Capacity Due to
Force Interaction

The presence of axial and shear forces in a cross section reduces its
plastic moment capacity. In many cases, the effect of axial force is sig-
nificant, even in moderately complex structures, whereas the effect of
shear force is usually small and can be ignored. The interaction for-
mula for the reduced plastic moment capacity of a rectangular section
due to axial force is derived. For the commonly used I sections, the
interaction formula is given without derivation. Use of the interaction
formula leads to the important concept of yield surface in plasticity.
Torsion may also affect the plastic moment capacity of a section.
However, this is the case mainly for slender three-dimensional struc-
tures, which are not dealt with here.

3.2.1 Axial Force

The coexistence of axial force and bending moment occurs when, for
example, an axial force is acting eccentrically about the centroid of
the cross section. This is equivalent to the simultaneous application
of both the axial force acting through the centroid and the eccentric
moment bending about the elastic neutral axis of the section. In this
case, plastification starts at the extreme point on one side of the elas-
tic neutral axis and spreads toward the final plastic neutral axis as the
axial force increases. The formula for the moment–axial force rela-
tionship depends on the shape of the cross section. The following
shows the derivation of the reduced plastic moment Mpr due to axial
force for a rectangular cross section. The derivation holds when the
same yield stress applies to both compression and tension.

Rectangular Sections

When a compressive axial force N is applied to a rectangular section
subject to bending, its effect is to increase the compression zone of
the section, shifting the plastic neutral axis to a location as shown
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FIGURE 3.2. Effect of axial force on a rectangular section.
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in Figure 3.2. The final stress distribution, shown in Figure 3.2a, can
be split into two parts, one in pure bending as in Figure 3.2b and the
other in pure axial as in Figure 3.2c.

From Figure 3.2,

N ¼ ðbbdÞfy or b ¼ N

bdfy
¼ N

Np
(3.6)

where b � 1 and Np ¼ squash load of the section. The value of b can be
considered as the magnitude of the applied axial force N in the section
relative to the squash load. The total compressive force C, equal to the
total tensile force T, due to pure bending, is given by

C ¼ T ¼ bd
1� bð Þ
2

fy (3.7)

Hence, the reduced plastic moment capacity, Mpr, is

Mpr ¼ C� ðdþ bdÞ
2

¼ bd2

4
fyð1� b2Þ

¼ Mpð1� b2Þ
(3.8)

where Mp is the plastic moment capacity of the section under pure
bending.

I Sections

The derivation of Mpr for I sections follows a similar procedure as for
the rectangular sections given earlier. There are two cases to be con-
sidered: the neutral axis in the web and the neutral axis in the flange.



+

fy

fy fy

fy

fy

fy fy

fy

b

Tf

t

d
Area = A 

dw

FIGURE 3.3. Effect of axial force on an I section.
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(i) Neutral axis in the web. This is equivalent to a section
carrying an axial force acting on an area equal to bA where

b ¼ N

Np
� t d� 2Tf

� �
A

and A ¼ 2bTf þ t d� 2Tf

� �
. The section and the

stress distribution are shown in Figure 3.3.
It can be derived that

Mpr ¼ Mp 1� b2A2

4tZS

 !
(3.9)

where ZS is the plastic section modulus given by

ZS ¼ bTf d� Tf

� �þ t
d

2
� Tf

� �2

(3.10)

(ii) Neutral axis in the flange. In this case, the axial force is

acting on an area equal to bA where b ¼ N

Np
>

t d� 2Tf

� �
A

. The

corresponding reduced plastic moment capacity can be derived as

Mpr ¼ Mp 1� 1

4ZS
td 2

w þ bA� tdwð Þ2
b

þ 2 bA� tdwð Þdw

" #( )
(3.11)

3.2.2 Shear Force

The magnitude of shear force in a structure is usually so small that it
has little effect on the plastic moment capacity. In the exceptional
case of high shear force, the interaction equation can be derived from
the von Mises yield criterion. For a section with bending stress s and
shear stress t, the von Mises yield criterion gives

s2 þ 3t2 ¼ fy (3.12)
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For pure shear for which s ¼ 0, the shear yield stress ty is, according to
Equation (3.12),

ty ¼ fyffiffiffi
3

p (3.13)

For a rectangular section, a lower bound solution, details of
which can be found in Chen and Sohal,1 for the reduced plastic
moment capacity Mpv, due to shear force can be derived as

Mpv ¼ Mp 1� 3

4

V

Vp

� �2
" #

(3.14)

where V is the shear force with a maximum capacity Vp ¼ ty � area of
section.

Equation (3.14) is valid only when
V

Vp
� 2

3
. In practice, the ratio

V/Vp rarely exceeds 2/3. An approximate solution for rectangular sec-
tions proposed by Drucker2 for design can also be used:

Mpv ¼ Mp 1� V

Vp

� �4
" #

(3.15)

For I sections, only the web is usually assumed to resist the shear
forcewhen themagnitude of the shear force is small. For significant shear
force, the bending moment will be reduced. This assumption leads to a
bending moment–shear interaction relationship as plotted in Figure 3.4.
Further simplification of the bending–shear relationship has been made
for design code use. The Australian steel design code adopts the formula
given in Equation (3.16), which is also plotted in Figure 3.4.
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FIGURE 3.4. Bending–shear interaction.
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Mpv ¼ Mp 1:375� 0:625
V

Vp

� �	 

(3.16)

xample 3.1 Structure ABC shown in Figure 3.5 is subjected to a load
acting at A. The column BC of rectangular section has a moment

apacity of 160 kNm and a squash load of 480 kN. Determine the
aximum load P that the column BC can support by assuming failure
y (a) pure bending and (b) axial-bending interaction.
B

C

A

P

1m 

IGURE 3.5. Example 3.1.
Solution
(a) For yielding at the fixed support C,

P� 1 ¼ 160
P ¼ 160 kN

(b) Using the axial-bending interaction equation [Equation (3.8)]
for a rectangular section,

P� 1

160
¼ 1� P

480

� �2

P ¼ 145.3 kN

3.3 Concept of Yield Surface

The variation of the bending moment with axial force in a rectangular
section can be plotted in terms of the dimensionless quantities (Mpr/Mp)
and b. The resulting curve is called the yield surface because any point
on the yield surface represents a state of the fully yielded cross section
with a bendingmoment,M, and axial force,N, represented by that point.
For a cross section in an elastic state,

m ¼ M

Mp
� Mpr

Mp
(3.17)

and the forces in the cross section are represented by a point within
the space bounded by the yield surface and the two axes. The yield
surface of a rectangular section is shown in Figure 3.6.
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FIGURE 3.6. Yield surface of a rectangular section.
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The yield surfaces for the lower and upper bounds of the practical
range of I sections are plotted in Figure 3.7. Because of the complexity
of Equations (3.9) and (3.11), and taking advantage of the narrow range
of the yield surfaces for I sections, a simplified yield surface, repre-
sented by Equation (3.18), is usually adopted for practical design.

m ¼ 1:0 for
N

Np
� 0:15 (3.18a)

m ¼ 1:18ð1� bÞ for
N

Np
> 0:15 (3.18b)

It should be noted that the coefficient of 1.18 in Equation (3.18b)
changes if the limiting axial force ratio of 0.15 changes. Some
countries adopt different values for this coefficient for design. In
general, the yield surface for any cross-sectional shape is concave out-
ward as typically shown in Figures 3.6 and 3.7. The more concave the
curve is, the relatively stronger the yield surface for the cross section.
Therefore, a yield surface resulting from a straight line joining the
m = M/Mp

Yield surface range for I sections 

1.0 =  N/Np

1.0

m = 1.18 (1 )

0.15

FIGURE 3.7. Yield surfaces of steel I sections.
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points m ¼ 1.0 and b ¼ 1.0 represents the minimum strength of any
cross section. This straight line, shown in Figure 3.6, is given by

m ¼ 1� b (3.19)

For a cross section with unknown bending–axial force interaction for-
mulation, Equation (3.19) can be used as a conservative approximation
for design.

3.4 Yield Surface and Plastic Flow Rule

The yield surfaces described for various cross-sectional shapes can be
presented using a yield function ’ such that for a section in a fully
yielded state under force interaction,

f P1; . . .;Pnð Þ ¼ 0 (3.20)

where P1 ,. . ., Pn are the stress resultants. For a structural member in a
plane frame, n ¼ 6 for both ends with three stress resultants, including
bending moment, shear force, and axial force at each end of the mem-
ber. For example, the yield function of a rectangular section can be
written as

f ¼ mþ b2 � 1 (3.21)

For a yielded section satisfying the force interaction condition,
f ¼ 0. For a section in an elastic state, f < 0. To ensure that these
two conditions are always satisfied for any section, the force ratios
m and b in Equation (3.21), as well as for other yield functions, are
always positive when the yield surface is represented in a quadrant.

Assume that P1 , . . . ,Pn specify a current state of stress resultants
on the yield surface and that a change of state of stress resultants
occurs by the increments DP1 , . . . , DPn due to an increase in loading
on the structure. Because both the original and the final states of
stress resultants satisfy the yield condition [Equation (3.20)], it follows
that

Df ¼ @f
@P1

DP1 þ . . .þ @f
@Pn

DPn ¼ 0 (3.22)

where the partial derivatives must be taken at the original state of
stress resultants. Equation (3.22) can be written in vectorial form as

Df ¼ ff gt DPf g ¼ 0 (3.23)

where ff g contains elements fi ¼ @f
@Pi

and DPf g represents the vector

for the increments of stress resultants. The incremental force vector
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DPf g is of size 6 � 1, corresponding to the three end forces at each end
of a plane frame member. It should be noted that for f containing two
stress resultants, such as m and b in Equation (3.21), ff g represents the
vector containing terms related only to the bending moment and axial
force. From Equation (3.23), the two vectors ff g and DPf g must be
orthogonal to each other according to vector algebra. A geometrical
interpretation of the state of stress with ff g and DPf g at point A on
the yield surface is shown in Figure 3.8.

The orthogonal condition can also be applied to the relationship
between the increments of stress resultants and plastic deformation
as implied by Prager’s3 statement that for elastic-perfectly plastic
material, “the stress increment does no work on the increment of
plastic strain”. When applying to frame members, this statement
means that

Ddp

� �t
DPf g ¼ 0 (3.24)

where Ddp

� �
is the vector of the plastic deformation increments. For

example, for a section yielded under pure bending, Equation (3.24)
holds because the only increment in DPf g is the bending moment,
which is zero for a bilinear moment–rotation relationship. A compar-
ison between Equations (3.23) and (3.24) indicates that Ddp

� �
and ff g

are acting in the same direction but not necessarily with the same
magnitude. Hence, Ddp

� �
and ff g can be related by

Ddp

� � ¼ l ff g (3.25)

where l is an arbitrary scalar factor often termed as the plastic multi-
plier. Equation (3.25) defines the plastic flow rule of structural mem-
bers in frames.

It has been stated, for instance by Kaliszky4, that for nonnegative
work done by stresses going through a cycle of elastic–plastic–elastic
states under changing loads, the increments in strains, and in the cur-
rent case for beam elements, the plastic deformation increment vector,
Pi

Pj

Elastic domain 0

Yield surface 0

P

f

A

BC

O

FIGURE 3.8. State of stress for a yield function.
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Ddp

� �
, must be outward normal to the tangent plane at the point on

the yield surface under consideration. Hence, ff g represents the out-
ward normal vector to the yield surface given by Equation (3.20). This
is called the normality rule in plasticity.

For materials in the plastic state, the plastic flow always occurs
in association with a dissipation of mechanical energy. Thus, for an
increment of plastic deformation Ddp

� �
, the dissipative energy DW

is always positive and is given by

DW ¼ Pf gt Ddp

� � ¼ l Pf gt ff g > 0 (3.26)

where the total stress resultant vector, Pf g, is represented by a line
joining the origin at O (see Figure 3.8) to a point on the yield surface.
Because ff g is normal to the concave-outward yield surface, the angle
between Pf g and ff g is always less than 90�. Therefore, Pf gt ff g is
always positive according to vector algebra. It follows from Equation
(3.26) that l > 0 for a stress resultant vector staying on the yielding
surface.

Suppose that the yield function at point A in Figure 3.8 is given
as fA. For an increment of loading, the stress point moves to point B
with the yield function given as fB. Because both fA and fB satisfy
the yield condition, it follows that Df ¼ fB � fA ¼ 0, the same as
Equation (3.22). However, if the material undergoes elastic unloading
such that the stress point moves from A to C for which fC < 0, it fol-
lows that Df ¼ fC � fA < 0. For elastic unloading, positive work is
done such that

Ddp

� �t DPf g ¼ l ff gt DPf g > 0 (3.27)

Because Df ¼ DPf gt ff g < 0, therefore l < 0. The sign of l is therefore
used as an indication of whether elastic unloading occurs in an incre-
mental elastoplastic analysis.

In summary, the state of stress in a section can be classified as

Elastic state: l ¼ 0 and f < 0;
Plastic state to plastic state: l � 0, f ¼ 0 and Df ¼ 0;
Plastic state to elastic state (elastic unloading): l < 0, f < 0 and

Df < 0.

3.4.1 Plastic Multiplier and General Elastoplastic
Stiffness Matrix

For a section in plastic state, the incremental deformation vector,
Ddf g, consists of both elastic and plastic displacements, depending

on which force components are active in the yield function. For
example, yielding by pure bending induces plastic rotation, whereas
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axial force and shear force induce respective elastic deformation.
Hence,

Ddf g ¼ Ddef g þ Ddp

� �
(3.28)

where the incremental elastic displacement vector Ddef g is related to
the incremental force vector by

DPf g ¼ Ke½ � Ddef g (3.29)

It should be pointed out that Equation (3.29) is equivalent to Equation
(1.9) in Chapter 1 in incremental form.

Substituting Ddef g from Equation (3.28) and Ddp

� �
from Equa-

tion (3.25) into Equation (3.29), we obtain

DPf g ¼ Ke½ � Ddf g � l ff gf g (3.30)

Using Equation (3.30) in Equation (3.23), the plastic multiplier l can
be found to be

l ¼ ff gt Ke½ �
ff gt Ke½ � ff g Ddf g (3.31)

Substituting Equation (3.31) into Equation (3.30), the elastoplastic
stiffness matrix, Kpe

� �
, can be found:

DPf g ¼ KPe½ � Ddf g (3.32)

where KPe½ � ¼ K½ � � Ke½ � ff g ff gt Ke½ �
ff gt Ke½ � ff g

Equation (3.32) is a general expression for a yielded beam ele-
ment. Since a beam element may be subjected to different combina-
tions of yielding states at its ends, the form of KPe½ � varies according
to the state of yielding and the yield function adopted for plastic
analysis.

3.5 Derivation of General Elastoplastic Stiffness Matrices

In finite element analysis, elastoplastic stiffness matrix derived in a
form similar to Equation (3.32) has been commonly used in material
nonlinear analysis. Ueda et al.5 were among the first to apply the theory
to beam elements in frame analysis. For a beam element, the plastic
state at its two ends is considered and the corresponding elastoplastic
stiffness matrix derived. As shown in Figure 3.9, there are four cases
of yield condition for a beam element to be considered: (a) both ends
i and j are elastic, (b) end i is plastic and end j is elastic, (c) end i is
elastic and end j is plastic, and (d) both ends i and j are plastic. Explicit
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expressions of KPe½ � for each of these four cases are given. In deriving
KPe½ �, the force and displacement vectors for each element are
expressed in two parts corresponding to the two ends i and j such that
Equation (3.28) can be rewritten as

Ddf g ¼ Ddi

Ddj


 �
¼ Ddei

Ddej


 �
þ Ddpi

Ddpj


 �
(3.33)

and

DPf g ¼ DPi

DPj


 �
(3.34)

For the incremental plastic displacement vector in Equation (3.33),

Ddpi

Ddpj


 �
¼ fi 0

0 fj

	 

li
lj


 �
(3.35)

according to Equation (3.25). The elastic stiffness matrix can be
expressed as

Ke½ � ¼ Kii Kij

Kji Kjj

	 

(3.36)

3.5.1 Both Ends are Elastic

In this case, li ¼ lj ¼ 0. Hence,

KPe½ � ¼ Ke½ � (3.37)
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3.5.2 End i is Plastic and End j is Elastic

This case implies that lj ¼ 0. From Equation (3.30),

DPi

DPj


 �
¼ Ke½ � Ddf g � Kii

Kji

	 

li fif g (3.38)

Because li fif gt DPif g ¼ 0, therefore

li ¼ fif gt Kii Kij½ �
fif gt Kii½ � fif g Ddf g (3.39)

KPe½ � ¼ KPei½ � ¼ Ke½ � �
Kii

Kji

	 

fif g fif gt Kii Kij½ �
fif gt Kii½ � fif g (3.40)

In the equations just given, fif g ¼

@f
@Ni

@f
@Qi

@f
@Mi

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

for a plane frame

member. If f consists of only N and M as in bending-axial interaction
yield function, then @f=@Qi ¼ 0.

3.5.3 End i is Elastic and End j is Plastic

This case implies that li ¼ 0. Using a similar procedure as given ear-
lier, lj and KPe½ � can be derived as

lj ¼
fj
� �t

Kji Kjj½ �
fj
� �t

Kjj

� �
fj
� � Ddf g (3.41)

KPe½ � ¼ KPej

� � ¼ Ke½ � �
Kij

Kjj

	 

fj
� �

fj
� �t

Kji Kjj½ �

fj
� �t

Kjj

� �
fj
� � (3.42)

where fj
� � ¼

@f
@Nj

@f
@Qj

@f
@Mj

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

.
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3.5.4 Both End i and End j are Plastic

In this case, both li and lj need to be evaluated. By writing

G½ � ¼ fi 0
0 fj

	 

, then

li
lj


 �
¼ Gt Ke G½ ��1 G½ �t Ke½ � Ddf g (3.43)

KPe½ � ¼ KPeij

� � ¼ Ke½ � � Ke½ � G½ � Gt Ke G½ ��1 G½ �t Ke½ � (3.44)

3.6 Elastoplastic Stiffness Matrices for Sections

Different yield surfaces used for the beam element with different
yield conditions give different expressions for the elastoplastic stiff-
ness matrices. These expressions can be given explicitly on the basis
of the derivations described in Section 3.5. In the following section,
elastoplastic stiffness matrices based on the yield surfaces for I sec-
tions [Equations (3.18)] and for general sections [Equations (3.19)]
are given.

3.6.1 End i is Plastic and End j is Elastic

In this case, fj
� � ¼ 0. For I sections, the yield surface consists of two

planes, termed hyperplanes, to be considered. One hyperplane is
where the axial force ratio b � 0.15. The other is where b > 0.15.

Case (a): for I sections when b � 0.15 and for any section based
on yielding by pure bending [Equations (3.18a)].

fif g ¼
@f=@Ni

@f=@Qi

@f=@Mi

8<
:

9=
; ¼

0
0

1=Mp

8<
:

9=
; (3.45)

Expanding Equations (3.39) and (3.40) using Equation (3.45), we get

li ¼ Mp

2
½0 3=L 2 0 �3=L 1�fDdg (3.46)

KPei½ � ¼ EI

�L

1 0 0 �1 0 0
3�=L2 0 0 �3�=L2 3�=L

0 0 0 0
1 0 0

Symmetric 3�=L2 �3�=L
3�

2
6666664

3
7777775

(3.47)
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where � ¼ I=A. The symbols in both Equations (3.46) and (3.47), and in
the following equations, follow those used in Chapter 1.

Case (b): for I sections where g ¼ 1:18
Mp

Np
when b > 0.15 or

g ¼ Mp

Np
for general sections.

Writing fif g ¼ 1

Mp

g
0
1

8<
:

9=
;, it can be derived that

li ¼ Mp

g2 þ 4�
½ g 6�=L 4� �g �6�=L 2�� Ddf g (3.48)

KPej

� � ¼ EI

L g2 þ 4�ð Þ

4 �g �2h �4 g �h
b gg g �b e

h2 2h �gg h2=2
4 �g h

Symmetric b �e
c

2
6666664

3
7777775

(3.49)

where b ¼ 12 g2 þ �
� �
L2

, c ¼ 4 g2 þ 3�
� �

, e ¼ 6 g2 þ 2�
� �

L
, g ¼ 6g

L
, and

h ¼ 2g.

3.6.2 End i is Elastic and End j is Plastic

Case (a): for I sections when b � 0.15 and for any section based on
yielding by pure bending.

In this case, fif g ¼ 0,

fif g ¼
@f=@Nj

@f=@Qj

@f=@Mj

8<
:

9=
; ¼

0
0

1=Mp

8<
:

9=
; (3.50)

Expanding Equations (3.41) and (3.42) using Equation (3.50), we obtain

lj ¼ Mp

2
½ 0 3=L 1 0 �3=L 2� Ddf g (3.51)

½Kpej� ¼ EI

�L

1 0 0 �1 0 0
3�=L2 3�=L 0 �3�=L2 0

3� 0 �3�=L 0
1 0 0

Symmetric 3�=L2 0
0

2
6666664

3
7777775

(3.52)
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Case (b): for I sections where g ¼ 1:18
Mp

Np
when b > 0.15 or

g ¼ Mp

Np
for general sections.

Writing fj
� � ¼ 1

Mp

g
0
1

8<
:

9=
;, it can be derived that

lj ¼ Mp

g2 þ 4�
½�g 6�=L 2� g �6�=L 4�� Ddf g (3.53)

Kpej

� � ¼ EI

Lðg2 þ 4�Þ

4 g h �4 �g 2h
b e �g �b gg

c �h �e h2=2
4 g �2h

Symmetric b �gg
h2

2
6666664

3
7777775

(3.54)

3.6.3 Both Ends are Plastic

Case (a): for I sections when b � 0.15 and for any section based on
yielding by pure bending.

The outward normal vector for both ends is given as

½G� ¼

0 0
0 0

1=Mpi 0
0 0
0 0
0 1=Mpj

2
6666664

3
7777775

(3.55)

where Mpi and Mpj are the bending moment capacities at ends i and j,
respectively.

(i) End moments have the same sign.

li
lj


 �
¼ Mpi

0 1=L 1 0 �1=L 0
0 1=L 0 0 �1=L 1

	 

Ddf g (3.56)

(ii) End moments have different signs.

li
lj


 �
¼ Mp

0 1=L 1 0 �1=L 0
0 �1=L 0 0 1=L �1

	 

Ddf g (3.57)
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KPeij

� � ¼ EI

�L

1 0 0 �1 0 0
0 0 0 0 0

0 0 0 0
1 0 0

Symmetric 0 0
0

2
6666664

3
7777775

(3.58)

Case (b): for I sections where g ¼ 1:18
Mp

Np
when b > 0.15 or

g ¼ Mp

Np
for general sections.

There are two possible forms for the elastoplastic stiffness
matrix depending on the signs of the end moments.

(i) End moments have the same sign; Mpi ¼ Mpj.

G½ � ¼ 1

Mpi

g 0
0 0
1 0
0 �g
0 0
0 1

2
6666664

3
7777775

(3.59)

li
lj


 �
¼ Mpi

2 g2 þ 3�ð Þ
g 6�=L g2 þ 6� �g �6�=L �g2

g 6�=L �g2 �g �6�=L g2 þ 6�

	 

(3.60)

½Kpeij� ¼ 3EI

Lðg2 þ 3�Þ

1 �2g=L �g �1 2g=L �g

4g2=L2 2g2=L 2g=L �4g2=L2 2g2=L

g2 g �2g2=L g2

1 �2g=L g

Symmetric 4g2=L2 �2g2=L

g2

2
6666666664

3
7777777775

(3.61)

(ii) End moments have different signs; Mpi ¼ �Mpj

G½ � ¼ 1

Mpi

g 0
0 0
1 0
0 �g
0 0
0 �1

2
6666664

3
7777775

(3.62)
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li
lj


 �
¼ Mpi

2 g2þ�ð Þ
g 2 g2þ�

� �
=L g2þ2� �g �2 g2þ�

� �
=L g2

g �2 g2þ�
� �

=L �g2 �g 2 g2þ�
� �

=L � g2þ2�
� �

	 


(3.63)

KPeij

� � ¼ EI

L g2 þ �ð Þ

1 0 �g �1 0 g
0 0 0 0 0

g2 g 0 �g2

1 0 �g
Symmetric 0 0

g2

2
6666664

3
7777775

(3.64)

In the derivations just given, the sign of Mp depends on the calcu-
lation of the incremental load factors aA, aB, etc. Details of the deter-
mination of the sign of Mp are given in Chapter 4.

3.7 Stiffness Matrix and Elastoplastic Analysis

Use of the stiffness matrices derived in Section 3.6 in an incremental
elastoplastic analysis represents a direct satisfaction of the yield con-
ditions for any plastic hinge formed during the analysis. The analysis
gives information on the increment of forces, as well as displacements
for both elastic and plastic components. However, the information on
the plastic displacements generated by the plastic hinges is given
implicitly in the results. That is, the solution of the equilibrium equa-
tion of the structure yields only the total displacement vector Ddf g.
The plastic rotation, for instance, of a plastic hinge must be calculated
separately using Equation (3.25). Hence, simulation of plastic hinge
behavior in an incremental elastoplastic analysis is similar to the con-
densation method for modeling the behavior of a pin as described in
Section 1.12.2 of Chapter 1.

Indeed, the stiffness matrices given in Equations (3.47), (3.52),
and (3.58) for cases of yielding by pure bending are identical to Equa-
tions (1.32), (1.39), and (1.46), respectively, at the corresponding ends
with a pin. For plastic design where limited plastic deformation capac-
ity is a design criterion, separate calculations of the plastic deforma-
tion vector are necessary.

The following example demonstrates the difference between
using the pure bending yield criterion and the bending-axial interac-
tion yield criterion. The effects of these yield criteria on the collapse
load of the structure are also shown. Only the results of the analyses
are given. Details of the elastoplastic analysis are explained in the fol-
lowing chapter.
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Example 3.2 Determine the elastoplastic collapse behavior of the steel
frame ABC shown in Figure 3.10. Member 1 is fixed to a rigid wall at A
while member 2 is fixed to a roller support at C. Yield criteria for both
pure bending and I sections bending about the strong axis [Equations
(3.18)] are used for structural members that have the following
properties: E ¼ 2 � 108 kN/m2, A ¼ 0.0105 m2, I ¼ 0.000477 m4,
Mp ¼ 515 kNm.

Solution. Load–deflection curves showing variation of the load factor a
with thehorizontal deflection atC for both cases are shown inFigure 3.11.
The corresponding values of load factors and deflections are given in
Table 3.1. The sequence of plastic hinge formation for both cases is (1)
hinge at C of member 2, (2) hinge at B of member 2, and (3) hinge at A of
member 1. The effect of the axial-bending interaction yield criterion
reduces the collapse load factor of the structure from 1.288 for the pure
bending case to 1.069, or by 17%.
B

C

A

1000  kN

4m

1m

4m

1

2

FIGURE 3.10. Example 3.2.
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FIGURE 3.11. Load–deflection curves.



TABLE 3.1
Results of load–deflection for Example 3

Pure bending case Axial-bending interaction case

Load factor a Deflection at C Load factor a Deflection at C

1.118 14.4 0.935 17.2
1.259 18.9 1.023 23.9
1.288 43.9 1.069 49.5
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3.8 Modified End Actions

It has been shown in Chapter 1 that when using the condensation
method for modeling pins at the ends of a member subjected to inter-
nal loads, the resulting fixed-end forces vary according to the end con-
ditions. The condensation method is based on modeling of the pins
implicitly by modifying the member stiffness matrix. For example, if
a member includes a pin at one end and is fixed at the other, the mod-
ified fixed-end force vector is derived as equivalent to that of a propped
cantilever beam.

In elastoplastic analysis, where yield is accounted for by pure
bending and the resulting plastic hinge is modeled by a pin, the deriva-
tion of the elastoplastic stiffness matrices in the previous sections of
this chapter results in modified fixed-end force vectors identical to
those derived in Chapter 1. However, for yield being accounted for
by force interactions, the modified fixed-end force vectors in an elasto-
plastic analysis, hereafter termed “modified end actions” vectors to
distinguish them from those used in linear elastic analysis, can be
derived in a similar way.

In the presence of internal loads such as distributed loads,
temperature effects, and support settlement, the equilibrium of a
member with fixed ends in an elastic state can be written in incre-
mental form as

DPf g ¼ Ke½ � Ddef g þ DPFf g (3.65)

where DPFf g is the fixed-end force vector. For members with internal
loads, Equation (3.65) should be used instead of Equation (3.29) to
derive the elastoplastic stiffness matrices when the members become
yielded. The corresponding equilibrium equation of the yielded mem-
ber can be written as

DPf g ¼ KPe½ � Ddf g þ DPM
� �

(3.66)

where DPM
� �

is the modified end action vector. Again, there are dif-
ferent forms of DPM

� �
according to the plastic states of the member.
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To derive generic and explicit expressions for DPM
� �

, the elastic fixed-
end force vector is written as

DPFf g ¼ DPFi

DPFj


 �
¼

Ni

Si
Mi

Nj

Sj
Mj

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(3.67)

and the general outward normal vector as

fif g ¼ fj
� � ¼ 1

Mp

g
0
1

8<
:

9=
;

3.8.1 Both Ends are Elastic

In this case, Ddf g ¼ Ddef g and KPe½ � ¼ Ke½ �. Hence,

DPM
� � ¼ DPFf g (3.68)

3.8.2 End i is Plastic and End j is Elastic

Following the same derivation process as in Section 3.5, the plastic
multiplier and the modified end action vector are derived as

li ¼
fif gt KiiKij

� �
Ddf g þ fif gt DPFif g

fif gt Kii½ � fif g (3.69)

DPM
i

� � ¼ DPFf g �
Kii

Kji

	 

fif g fif gt DPFif g

fif gt Kii½ � fif g

(3.70)¼ 1

g2 þ 4�

4�Ni � gMi

Siðg2 þ 4�Þ � 6�ðgNi þMiÞ=L
g2Mi � 4g�Ni

Njðg2 þ 4�Þ þ g2Ni þ gMi

Sjðg2 þ 4�Þ þ 6�ðgNi þMiÞ=L
Mjðg2 þ 4�Þ � 2�ðgNi þMiÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
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3.8.3 End i is Elastic and End j is Plastic

lj ¼ ffjgt½Kji Kjj �fDdg þ ffjgtfDPFjg
ffjgt½Kjj�ffjg

(3.71)

DPM
j

n o
¼ DPFf g �

Kij

Kjj

	 

fj
� �

fj
� �t

DPFj

� �

fj
� �t

Kjj

� �
fj
� �

¼ 1

g2 þ 4�

Niðg2 þ 4�Þ þ g2Nj þ gMj

Siðg2 þ 4�Þ � 6�ðgNj þMjÞ=L
Miðg2 þ 4�Þ � 2�ðgNj þMjÞ

4�Nj � gMj

Sjðg2 þ 4�Þ þ 6�ðgNj þMjÞ=L
g2Mj � 4g�Nj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

3.8.4 Both End i and End j are Plastic

Again, two separate cases are considered, depending on the signs of
the end moments.

(i) End moments have the same sign; Mpi ¼ Mpj.
For [G] given as in Equations (3.59), it can be derived that

li
lj


 �
¼ G½ �t Ke½ � Ddf g þ G½ �t DPFf g

G½ �t Ke½ � G½ � (3.73)

DPM
ij

n o
¼ DPFf g � Ke½ � G½ � G½ �t DPFf g

G½ �t Ke½ � G½ �

¼ 1

2ðg2 þ 3�Þ

2Niðg2 þ 3�Þ � gðgNi þMi � gNj þMjÞ
2Siðg2 þ 3�Þ � 6�ðgNi þMi � gNj þMjÞ=L

2Miðg2 þ 3�Þ � ½gðg2 þ 6�ÞNi þ ðg2 þ 6�ÞMi þ g3Nj � g2Mj�
2Njðg2 þ 3�Þ þ gðgNi þMi � gNj þMjÞ

2Sjðg2 þ 3�Þ þ 6�ðgNi þMi � gNj þMjÞ=L
2Mjðg2 þ 3�Þ þ ½g3Ni þ g2Mi þ gðg2 þ 6�ÞNj � ðg2 þ 6�ÞMj�

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(3.74)

(3.72)
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(ii) End moments have different signs; Mpi ¼ Mpj.
For [G] given as in Equation (3.62), it can be derived that

DPM
ij

n o
¼ 1

2ðg2 þ �Þ

2Niðg2 þ �Þ � gðgNi þMi � gNj �MjÞ
2Siðg2 þ �Þ � 2½gðg2 þ �ÞðNi þNjÞ þ ðg2 þ �ÞðMi þMjÞ�=L
2Miðg2 þ �Þ � ½gðg2 þ 2�ÞNi þ ðg2 þ 2�ÞMi þ g3Nj þ g2Mj�

2Njðg2 þ �Þ þ gðgNi þMi � gNj �MjÞ
2Sjðg2 þ �Þ þ 2½gðg2 þ �ÞðNi þNjÞ þ ðg2 þ �ÞðMi þMjÞ�=L
2Mjðg2 þ �Þ � ½g3Ni þ g2Mi þ gðg2 þ 2�ÞNj þ ðg2 þ 2�ÞMj�

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(3.75)

3.9 Linearized Yield Surface

The normal vector {f } on the yield surface is derived by partial differ-
entiation of the yield function f. Therefore, for a linear yield surface
represented by a straight line, {f } contains only constant terms.
For a nonlinear yield surface, such as that of a rectangular section,
{f } contains terms of the current forces. Because [KPe] is calculated
in terms of {f } and [Ke], which is a constant for linear elastic ele-
ments, KPe½ � is a constant if {f } contains only constant terms. Simi-
larly, [KPe] is nonlinear if {f } contains current forces for nonlinear
yield surfaces.

Consider a nonlinear yield surface as shown in Figure 3.12a.
Because {f} and {DP} are orthogonal to each other, the increment in
forces of a yielded element will invariably cause violation of the yield
condition as the force vector {DP} drifts from A to B. Methods to
(a)

Pi

Pj Pj

Elastic domain  

Yield surface 0

f f

A

B
C

O

P P

Pi

Elastic domain  

Yield surface 0

A

B

O

(b)

FIGURE 3.12. Nonlinear and linear yield surfaces.
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restore satisfaction of the yield condition have been proposed by some
researchers (e.g., Orbison et al.6). The restoration scheme is usually
performed by artificially bringing the force vector point from B to C
on the yield surface. The difficulty in this scheme is that it is hard
to determine the exact location of C. To minimize error, the incre-
mental step of the analysis is set to be small so that points B and C
are close to each other.

For a linear yield surface as shown in Figure 3.12b, the incre-
mental force vector {DP} of a yielded element drifts along the yield
surface so that the yield condition is always satisfied. Therefore, it
may be advantageous in computation to transform a nonlinear yield
surface into a series of linear ones. By doing so, the accuracy of the
solution depends only on the number of linearized hyperplanes
representing the original nonlinear yield surface. Such a scheme
has been implemented in Wong and Tin-Loi7 and is commonly
adopted in mathematical programming for elastoplastic analysis
(see Chapter 6).

Problems

3.1. A structure ABC shown in Figure P3.1 is subjected to a load P
acting at A. The column BC of rectangular section has a
moment capacity of 160 kNm and a squash load of 480 kN.
Determine the maximum load P that the column BC can sup-
port by assuming failure by (a) pure bending and (b) axial-bend-
ing interaction.
B

C

A

P

4 m 

7P

FIGURE P3.1. Problem 3.1.
3.2. The simply supported frame ABC shown in Figure P3.2 is made
of I sections with a moment capacity of 240 kNm and an axial
capacity of 600 kN. Determine the maximum load factor a that



A

4 m 2 m 

B
30  kN

C

5 m 

6  kN

FIGURE P3.2. Problem 3.2.
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the column BC can support by assuming failure by (a) pure bend-
ing and (b) axial-bending interaction.
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CHAPTER 4

Incremental Elastoplastic
Analysis—Hinge by Hinge
Method
4.1 Introduction

This chapter describes a method for incremental elastoplastic analysis.
This method gives a complete load–deflection history of the structure
until collapse. It is based on the plastic hinge concept for fully plastic
cross sections in a structure under increasing proportional loading.
Proportional loading applies to a structure with loads multiplied by
a common load factor. This common load factor, first introduced in
Chapter 3 as a (with respective values a1, a2, etc. at load levels 1, 2,
etc.) in an incremental elastoplastic analysis, is assumed to increase
until the structure collapses. The method consists of a series of elastic
analyses, each of which represents the formation of a plastic hinge
in the structure. Results for each elastic analysis are transferred to
a spreadsheet from which the location for the formation of a plastic
hinge and the corresponding increment of loading in terms of the
common load factor can be obtained.

For analysis which includes the effect of force interaction on the
plastification of a cross section, the method for using elastoplastic
stiffness matrices for the four cases of yield condition for a beam ele-
ment is applied. In contrast, an iterative method using successive
approximation, with plastic hinges resulting only from yielding by
pure bending, is used as an alternative to include the effect of force
interaction in an incremental elastoplastic analysis. These two meth-
ods have been described in Wong1 in which examples with detailed
numerical work were given.
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4.2 Use of Computers for Elastoplastic Analysis

The advent of computers has made structural analysis a good deal eas-
ier. Nowadays, commercial computer software is commonly available
for linear and geometrical nonlinear elastic analyses of structural
frames. Incremental elastoplastic analysis can be considered as a series
of linear elastic analyses performed incrementally, perhaps using com-
mercial computer software, in a step-by-step manner to predict plastic
hinge formation. This technique, in conjunction with spreadsheet
technology, can be used for elastoplastic analysis of large and complex
structures for which member forces and deflections at any level of
loading can be found.

As described in Chapter 3, at a load level being applied to a struc-
ture under a nominal load vector Ff g, the common load factor
corresponding to the formation of a plastic hinge is a1. The solution
of Equation (3.1) for the displacement increment vector DDf g1 is
given as

DDf g1 ¼ K½ ��1a1 Ff g (4.1)

Because Ff g is directly proportional to the member forces, an
increase in Ff g by a common load factor a1 implies the same level
of increase in the member forces. Hence, if DPf g is the vector contain-
ing the member forces for a structure under loading given by Ff g,
member forces for the same structure under loading given by a1 Ff g
must be

DPf g1 ¼ a1 DPf g (4.2)

If the bending moment in DPf g is Mo for an arbitrary section in a
structure and the corresponding bending moment in DPf g1 is M, then
for a plastic hinge to occur at the section under the pure bending yield
criterion, M must be equal to Mp, the plastic moment capacity of the
section. Hence, the value of a1 leading to the formation of the plastic
hinge is

a1 ¼ Mp

Mo
(4.3)

At the load level where the load vector is a1 Ff g, member forces
in the structure can be calculated by Equation (4.2). For any other sec-
tions not yet yielded, the remaining plastic moment capacity, Mr1, is
generally given by

Mr1 ¼ Mp � a1Mo1 (4.4)

where Mo1 is the bending moment obtained from DPf g. The remaining
plastic moment capacities for all sections are then used for predicting
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the formation of the next plastic hinge once the yielded section has
been modeled as a hinge and the structure modified according to the
methods described in Chapter 3. A propped cantilever beam is used
to illustrate this procedure.

Example 4.1 A propped cantilever beam is subjected to an increasing
load aP shown in Figure 4.1 where P ¼ 10 kN, L ¼ 12 m, Mp ¼ 27 kNm
for the beam. What is a at collapse?
B CA

P

L/2L/2

FIGURE 4.1. Elastoplastic analysis of a propped cantilever beam.
Solution. It is obvious that two plastic hinges need to occur at A and B
to induce a plastic collapse mechanism. Therefore, two stages of elas-
tic analysis are needed for the calculation of a at collapse. In addition,
the vertical deflection at B can be calculated as a is increasing. Initial
analysis can be carried out by assuming any value for a. For conve-
nience, a is usually set as 1.

Stage 1:
For P ¼ 10 kN, bending moment at A,MA1 ¼ 3PL=16 ¼ 22.5 kNm, and
at B, MB1 ¼ 5PL=32 ¼ 18.75 kNm. Vertical deflection at B,
vB1 ¼ 7PL3=768EI ¼ 157:5=EI.

For the section at A to become plastic, from Equation (4.3), aA1 ¼
Mp

Mo
¼ 27

22:5
¼ 1:2.

Likewise, for the section at B to become plastic, aB1 ¼ Mp

Mo
¼

27

18:75
¼ 1:44.

Hence, the first plastic hinge occurs at A with a1 ¼ 1.2. At this load
level (for a total load of 1.2 � 10 ¼ 12 kN), the total bending moments
at A and B are 1.2 � 22.5 ¼ 27 and 1.2 � 18.75 ¼ 22.5 kNm, respec-
tively. Total vertical deflection at B is 1.2 � 157:5=EI ¼ 189=EI.



Mp = 27 kNm

22.5 kNm 18.75 kNm 

A B

Mp = 27 kNm

22.5 kNm

A B

(a) Bending moment before multiplying the load factor 

(b) Bending moment after multiplying the load factor 

FIGURE 4.2. Cup-filling analogy for plastic hinge formation.
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The aforementioned calculations for bending moments can be
illustrated using a cup-filling analogy as shown in Figure 4.2.

In Figure 4.2, the height of the two empty cups represents the
full plastic moment capacities at A and B. Upon the application of
nominal load P, the bending moments at A and B are represented by
the partially filled cups as shown in Figure 4.2a. The goal of this stage
of calculation is to find a common minimum load factor a1 so that, by
multiplying the bending moments shown in Figure 4.2a by a1, one of
the cups is full, representing the occurrence of a plastic hinge. This is
shown in Figure 4.2b in which the remaining plastic moment capacity
at B is shown to be 4.5 kNm (¼ 27-22.5).

Stage 2:
At this stage of calculation, the plastic hinge at A is modeled as a real
hinge and the structure ABC becomes a simply supported beam as
shown in Figure 4.3.

For P ¼ 10 kN, the increment in bending moment at B, MB2 ¼ PL=4 ¼
30 kNm and vB2 ¼ PL3=48EI ¼ 360=EI.

For the section at B to become plastic, aB2 ¼ Mp � a1MB1

Mo
¼ 4:5

30
¼ 0:15.
P

A

B

C

FIGURE 4.3. Stage 2 calculation.
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Hence, a2 ¼ 0.15. Total MB ¼ 22:5þ 0:15� 30 ¼ 27 kNm. Total verti-
cal deflection at B, vB ¼ 189=EI þ 0:15� 360=EI ¼ 243=EI .

Subsequent analysis after the insertion of a plastic hinge at B
shows no solution or infinite deflections, indicating that the beam
has reached a collapse mechanism.

Total load factor at collapse, acol ¼ a1 þ a2 ¼ 1:2þ 0:15 ¼ 1:35,
and the collapse load is 1.35 � 10 ¼ 13.5 kN.

A plot of the load factor against the vertical deflection at B is
shown in Figure 4.4. In general, the gradual reduction in the slope
of the load–deflection curve with increasing number of plastic
hinges is an indication of the deterioration of the stiffness of the
structure.

From the example just given, it is obvious that plastic hinge
formation at a section corresponds to the lowest value of load factors
calculated for all sections at each stage of calculation. This pro-
vides a means to identify the locations of plastic hinges without
needing to guess their locations as in traditional plastic analysis.
It is noted that the procedure for calculating the load factor for each
of the sections and for locating the plastic hinges is routine at each
loading stage. This routine procedure enables calculations to be per-
formed in an automated way using tools such as spreadsheets. In the
following section, a spreadsheet procedure is set up to carry out the
routine calculations for each loading stage of the aforementioned
example.

It should be noted that within each loading stage, the analysis is
linear elastic. Therefore, for simple structures, standard formulas can
be used for force and deflection calculations. For complex structures,
forces and deflections can be calculated using commercial structural
analysis computer programs, which are calculation tools commonly
available in most structural engineering design offices.
0
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FIGURE 4.4. Load–deflection curve of a propped cantilever beam.



112 Plastic Analysis and Design of Steel Structures
For structural analysis by computer, a collapse mechanism is
detected when the determinant of the structure stiffness matrix is
zero. In this case, a “run-time error” is usually signaled by the com-
puter. However, in many cases, an exact zero value for the determi-
nant of the structure stiffness matrix is difficult to detect and,
instead, large deflections are obtained in the solution when the struc-
ture has reached a collapse mechanism.

4.3 Use of Spreadsheet for Automated Analysis

Steps for the routine procedure implemented on a spreadsheet for
elastoplastic analysis of general structures are as described.

1. Set up a calculation table on a spreadsheet (e.g., Microsoft
Excel) with headings as shown in Figure 4.5.

2. Perform a linear elastic analysis for the structure subjected to
original loading (with any load factor set as 1); enter the
values of bending moments Mo (Column 3) and deflections
vo (Column 7) from the results of analysis.

3. Calculate the load factor a (Column 5) for each member from
Equation (4.3) such that plastic moment is reached at the ends
of the member.

4. Choose the smallest load factor acr and calculate the cumula-
tive bending moments (Column 6) and deflections (Column 8)
using acr for all members. For the analysis stage i, ai ¼ acr and
the values of the bending moment Mi and deflection vi are
both zero when i ¼ 1.

5. Calculate the residual plastic moments for all other sections
(Column 4); insert a hinge in the structure at the section
where acr is obtained.

6. Repeat steps 2 to 5 until the structure collapses.
Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

Column
8

FIGURE
4.5 

Joint Moment
Mo

Residual
plastic
moment 

MP Mi

Load factor 

Mo

Mp Mi

Cumulative
moment  

Mi 1 Mi c rMo

Deflection
vo

Vi 1 Vi crVo

Cumulative
deflection 

FIGURE 4.5. Spreadsheet table for elastoplastic analysis.



FIGURE 4.6. Spreadsheet for the elastoplastic analysis of a propped cantilever
beam.
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7. Theoretical collapse criterion: Determinant of structure stiff-
ness matrix [K] ¼ 0. When using computers, the collapse
mechanism is reached when
l Run-time error occurs due to zero determinant
l Dramatic increase in displacements occurs

The final collapse load factor acol is the sum of the load factors
acr from all stages of analysis. Although the table in Figure 4.5 is set
up for calculating bending moments and deflections, the table can
be extended to include calculations of axial forces and shear forces,
if desired.

A complete spreadsheet procedure using Excel for the calculation
of the collapse load of the propped cantilever beam in Example 4.1 is
shown in Figure 4.6. The setup of the spreadsheet is self-explanatory.
The total collapse load factor in cell D19 is the sum of the cells E3 and
E11. It is noted that the plastic moment Mp carries a sign that is the
same as that for Mo for each of the sections. According to this rule,
the sign of the plastic moment for each section is assigned under col-
umn I while column J gives its absolute value. For structures with
more stages of calculations, the lines for each stage can be repeated
using the copy and paste functions in Excel.

Example 4.2 Determine the collapse load factor a of the portal frame
shown in Figure 4.7. Mp ¼ 30 kNm for the columns and Mp ¼ 20 kNm
for the rafter. E ¼ 2 � 108 kN/m2, I ¼ 0.0002 m4, and A ¼ 0.015 m2.



40  kN 

6m
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2m

FIGURE 4.7. Elastoplastic analysis of a portal frame.
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Solution. The results of analysis and the corresponding spreadsheet
table for each stage of loading are as follow. The location of the plastic
hinge inserted at the end of each calculation stage is also indicated.
Only bending moments at the joints are calculated. In the tables,
results for Mo are obtained from linear elastic analysis for a load of
40 kN. It is important to emphasize that Mp and Mo always have the
same sign.
Analysis Stage No: 1 Critical Load Factor, acr ¼ 0.503

Member Joint
Moment

Mo

Residual
plastic
moment
MP – Mi

Load
factor
a ¼

Mp �Mi

Mo

Cumulative
moment
Miþ1 ¼

Mi þ acrMo

Plastic
moment

Mp

1 1
2

27.21
�21.75

30
�30

1.103
1.379

13.69
�10.94

30
�30

2 2
3

�21.75
31.00

�20
20

0.920
0.645

�10.94
15.60

�20
20

3 3
4

31.00
�59.62

30
�30

0.968
0.503

15.60
�30

30
�30

Plastic hinge 

1

2

3

4

FIGURE 4.8. Results of calculations and plastic hinge location for stage 1.
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Analysis Stage No: 2 Critical Load Factor, acr ¼ 0.084
1

2

3

4

FIGURE 4.9. Results of calculations and plastic hinge location for stage 2.

Member Joint
Moment

Mo

Residual
plastic
moment
MP – Mi

Load
factor
a ¼

Mp �Mi

Mo

Cumulative
moment
Miþ1 ¼

Mi þ acrMo

Plastic
moment

Mp

1 1
2

65.09
�47.24

16.31
�19.06

0.251
0.403

19.13
�14.89

30
�30

2 2
3

�47.24
52.61

�9.06
4.40

0.193
0.084

�14.89
20

�20
20

3 3
4

52.61
0

14.40
0

0.274
—

20
�30

30
�30
Analysis Stage No: 3 Critical Load Factor, acr ¼ 0.073
Member Joint
Moment

Mo

Residual
plastic
moment
MP – Mi

Load
factor
a ¼

Mp �Mi

Mo

Cumulative
moment
Miþ1 ¼

Mi þ acrMo

Plastic
moment

Mp

1 1
2

129.7
�70.31

10.87
�15.11

0.084
0.215

28.56
�20

30
�30

2 2
3

�70.31
0

�5.11
0

0.073
—

�20
20

�20
20

3 3
4

0
0

0
0

—
—

20
�30

30
�30

1

2

3

4

FIGURE 4.10. Results of calculations and plastic hinge location for stage 3.
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Analysis Stage No: 4 Critical Load Factor, acr ¼ 0.0072
Member Joint
Moment

Mo

Residual
plastic
moment
MP – Mi

Load
factor
a ¼

Mp �Mi

Mo

Cumulative
moment
Miþ1 ¼

Mi þ acrMo

Plastic
moment

Mp

1 1
2

200
0

1.44
�10

0.0072
—

30
�20

30
�30

2 2
3

0
0

0
0

—
—

�20
20

�20
20

3 3
4

0
0

0
0

—
—

20
�30

30
�30

1

2

3

4

FIGURE 4.11. Results of calculations and plastic hinge location for stage 4.
A linear elastic analysis of the structure in Figure 4.11 shows a
dramatic increase in some of the deflections in the structure. This
indicates that collapse of the structure is imminent when the increase
in deflections at collapse may amount to tens of thousand times above
the results in the previous stage of analysis.

Total collapse load factor, acol ¼ 0.503 þ 0.084þ 0.073þ 0.0072 ¼
0.6672 and the total collapse load ¼ 0.6672 � 40 ¼ 26.7 kN.

4.4 Calculation of Design Actions and Deflections

The primary purpose of carrying out plastic analysis is to find the
collapse loads of the structure. For a structurally safe structure, the
collapse loads must be at or above those at the design load level. How-
ever, design actions at ultimate limit states are required only at the
design load level for design checks. Design actions, including bending
moments, shear forces, and axial forces, are not necessarily equal to
those at the collapse load level. The design actions can be obtained
by extracting them from results of the elastoplastic analysis. A proce-
dure used to obtain the design actions from an elastoplastic analysis is
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described. This procedure applies to the calculation of member forces
for the strength limit state, as well as deflections for the serviceability
limit state.

Because an incremental elastoplastic analysis consists of a series
of linear elastic analyses between the formation of plastic hinges,
member forces and displacements at the design load level can be
found by linear interpolation. The linear interpolation calculation is
performed between consecutive plastic hinges, one above and one
below the design load level. This is illustrated in Figure 4.12 in which
the variation of the bending moments with the applied load (or load
factor for multiple loads) of a section is shown.

Figure 4.12 shows that the design load for the structure is Pd.
Suppose that the total load for the formation of a plastic hinge in
the structure above Pd is P1, corresponding to a bending moment M1

in a section, and that below Pd is P2, corresponding to a bending
moment M2 in the same section. The design moment Md for the sec-
tion at design load Pd can be calculated by linear interpolation as

Md ¼ M2 þ Pd � P2

P1 � P2
M1 �M2ð Þ (4.5)

where P1, M1, P2, and M2 are obtained from elastoplastic analysis.
Other forces and displacements can be found in a way similar to Equa-
tion (4.5).

Example 4.3 For the portal frame in Example 4.2, find the design
moments for all members if the design load for the structure is 24 kN.

Solution. The load factor corresponding to the design load is a¼ 24/40¼
0.6. Hence, the design load lies between stage 2 (total load factor¼ 0.587)
and stage 3 (total load factor ¼ 0.66). The moments for all members at
stages 2 and 3 are shown in Table 4.1.
Load 

Bending momentM1

P2

P1
Design load,Pd

M2 Md

Plastic hinge formation

FIGURE 4.12. Interpolation for design actions.



TABLE 4.1
Moments at stages 2 and 3

Moment (kNm) at stage 2 Moment (kNm) at stage 3

Joint i Joint j Joint i Joint j

Member 1 19.13 �14.89 28.56 �20
Member 2 �14.89 20 �20 20
Member 3 20 �30 20 �30

TABLE 4.2
Moments at design load level

Design moment (kNm)

Joint i Joint j

Member 1 20.81 �15.80
Member 2 �15.80 20
Member 3 20 �30
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The design moments, calculated by linear interpolation using
Equation (4.5), for all members at a design load of 24 kN are shown
in Table 4.2. An example of the calculation for member 1, joint i is
illustrated in Figure 4.13.
Total load
factor 

Bending moment 
28.56 

 = 0.587
Design load,  = 0.6

19.13

Design moment = 20.81

 = 0.660

FIGURE 4.13. Interpolation for moments in member 1.
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4.5 Effect of Force Interaction on Plastic Collapse

The presence of axial and shear forces in a cross section reduces its
plastic moment capacity, which, in turn, reduces the collapse load
of the structure. A direct method to take account of the effect of force
interaction is to modify the elastoplastic stiffness matrix in accor-
dance with the three cases of yield condition described in Chapter 3
for the yielded section. An indirect method is to assume yielding by
pure bending for all elements while the collapse load of the structure
is calculated. At the end of the analysis, the reduced plastic moment
capacity due to force interaction is calculated for each element and
the analysis is repeated. This is called the successive approximation
method. Both methods are described here.

4.5.1 Direct Method

This method makes use of the structure stiffness matrix modified to
take account of the formation of plastic hinges. The solution of the
incremental structure equilibrium equation is based on Equation
(3.4) given as

DDf g ¼ KP½ ��1a Ff g (4.6)

in which KP½ � is the modified structure stiffness matrix. The various
forms of the member elastoplastic stiffness matrix KPe½ � lead to differ-
ent KP½ � being formulated due to the different force interaction formu-
lations and yield conditions. Thus, this method requires special
computer programming to create KPe½ � and hence KP½ �. In addition,
the plastic deformation at the plastic hinge has been condensed into
KPe½ � and the extraction of the plastic deformation has to be performed
separately. The advantage of using this method is that the force inter-
action condition is always satisfied at any stage of calculation and the
solution for the collapse load is direct.

Calculation of Load Factor

For yield condition based on pure bending, the load factor a for pre-
dicting the formation of a plastic hinge at a section is calculated
according to Equation (4.3). For yield condition based on force interac-
tion, the calculation of a is more complicated. Its calculation is illu-
strated in Figure 4.14 in which a yield surface diagram for a section
with two dimensionless forces m and b is shown. In addition, the sign
of the forces has been considered so that the yield surface is symmet-
ric and consists of four quadrants of hyperplanes.

Suppose that the forces m and b in a section from a linear elastic
analysis of the structure under loading Ff g are represented by the vec-
tor OG. Formation of a plastic hinge in the section requires an
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FIGURE 4.14. Yield surface of a section.
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increase in the forces by a load factor a such that the vector OG
is extended linearly to point H on the hyperplane CD as shown in
Figure 4.14. In practice, values of a are calculated for all hyperplanes
connecting the points ABCDEF and the one with the smallest positive
value is chosen. For the section to stay yielded in subsequent analysis,
the force point will move along the yield surface. The following exam-
ple, used previously in Example 3.2, illustrates the various aspects of
this method.

Example 4.4 Determine the collapse load P for the frame ABC shown
in Figure 4.15 using the direct method. For both members AB and BC,
E ¼ 2 � 108 kN/m2, A ¼ 0.0104 m2, I ¼ 0.000475 m4, Mp ¼ 515 kNm,
Np ¼ 2600 kN. The members are made of the I section with yield

condition given by m ¼ 1:18ð1� bÞ where m ¼ M

MP
and b ¼ N

Np
for

b > 0.15, otherwise m � 1.
B

C

A

P kN 

4m 

1m 

4m

A B

C1

23

FIGURE 4.15. Steel frame with sequence of plastic hinge formation.
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Solution. A load of P ¼ 1 kN is applied to the structure for initial anal-
ysis. The aim is to find a for a total collapse load of aP. For this struc-
ture, there are three plastic hinges to form before collapse, requiring
three stages of analyses. The calculation of acr is based on geometrical
consideration of the hyperplanes shown in Figure 4.16. More discus-
sion on the use of hyperplanes for calculating acr can be found in
Chapter 6. The sequence of plastic hinge formation is shown in Figure
4.15. Results of the calculations for both members AB and BC are
shown in Table 4.3.

Movements of the forces on the hyperplane for member BC at
different stages of loading are shown in Figure 4.16. For section C,
yielding occurs at stage 1 while section B still remains elastic.
TABLE 4.3
Results of calculations for Example 4.4

Joint

Member AB Member BC
Critical

load
factor

(acr)

Axial
force

(kN)

Bending
moment

(kNm) m

Axial
force

(kN)

Bending
moment

(kNm) m

Stage 1 i 0 266.8 0.518 �757.3 �350 �0.680 934.9
j 350 0.680 �430.7 �0.936

Stage 2 i 0 330.8 0.642 �811.2 �418.1 �0.812 88.5
j 418.1 0.642 �418.1 �0.812

Stage 3 i 515.0 1 �811.2 �418.1 �0.812 46.0
j 0 418.1 0.812 �418.1 �0.812

m

O

1.0

1.0 B

1.0

1.0 

A

C

DE

F

( 0.291, 0.836) at stage 1

( 0.312,
0.812) at stage 2

Member
BC, joint C 

Member
BC, joint B  

FIGURE 4.16. Movements of forces for member BC.
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At stage 2, both sections B and C become yielded and remain at the
same point on the hyperplane. The total collapse load for this struc-
ture is 1069.4 kN.

4.5.2 Successive Approximation Method

The direct method for elastoplastic analysis requires the use of unique
elastoplastic stiffness matrices pertaining to individual yield criteria.
Computer software invoking the direct method must be programmed
to include these unique formulations. This poses a problem for struc-
tural designers using this method as such computer software is not
commonly available. As an alternative, a successive approximation
method, based on yielding by pure bending in each iterative cycle,
can be used to circumvent this problem.

It should be kept in mind that a reduction in the plastic moment
capacity in members due to force interaction usually results in a
reduction in the plastic collapse load of the structure. When using
the successive approximation method, the collapse load factor is cal-
culated on the basis of yielding only by pure bending. Because the
total axial forces in the members are not known until the end of the
analysis at collapse, the reduced plastic moment capacity as a conse-
quence of axial force or shear force can be calculated only when the
analysis is completed. The reduced bending moment capacity for each
member can then be calculated and used in a subsequent cycle of
analysis. The number of cycles of analysis to be performed depends
on the degree of accuracy required for the solution. The method
enables the solutions from the analysis cycles to converge to the true
collapse load. However, the procedure could be tedious if the structure
is complex. An alternative, but conservative, approach is to repeat the
cycle of analysis only once. The result would underestimate the col-
lapse load and err on the safe side for design. The procedure for this
method is demonstrated in the following example using the structure
shown in Example 4.4.

Example 4.5 Determine the collapse load P for the frame ABC shown
in Figure 4.15 using the successive approximation method. For
both members AB and BC, E ¼ 2 � 108 kN/m2, A ¼ 0.0104 m2,
I ¼ 0.000475 m4, Mp ¼ 515 kNm, Np ¼ 2600 kN. The members are
made of I section with the yield condition given by m ¼ 1.18(1�b)

where m ¼ M

MP
and b ¼ N

NP
for b > 0.15, otherwise m � 1.

Solution. For each cycle of analysis, the critical load factor is calcu-
lated using the pure bending yield criterion [Equation (4.3)]. Results
of the first cycle of analysis are given in Table 4.4. At the end of itera-
tion cycle 1, the collapse load of the structure is 1287.5 kN and the
total axial force in BC is 999.3 kN.



TABLE 4.4
Results of calculations for Example 4.5: Iteration cycle 1

Member AB Member BC

Joint

Axial
force
(kN)

Bending
moment
(kNm)

Axial
force
(kN)

Bending
moment
(kNm)

Critical
load

factor (acr)

Stage 1 i
j

0 319.1
418.5

�905.7 �418.5
�515.0

1117.9

Stage 2 i
j

0 400.9
515.0

�999.3 �515.0
�515.0

141.1

Stage 3 i
j

0 515.0
515.0

�999.3 �515.0
�515.0

28.5
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The reduced bending moment capacity of member BC is calcu-
lated and found to be 374 kNm, which is used in the next iteration
cycle of analysis while the bending moment capacity of member AB
remains at 515 kNm. Results of iteration cycle 2 are shown in
Table 4.5.

At the end of iteration cycle 2, the total collapse load is 970.3 kN
and the total axial force in BC is 725.7 kN. The reduced bending
moment capacity of member BC is calculated and found to be
438 kNm, which is used in the next iteration cycle of analysis.

The aforementioned iteration cycle can be repeated as many
times as the accuracy of solution requires. For this example, the col-
lapse load is 1071.5 kN after seven iteration cycles. The iteration
trend is shown in Figure 4.17, where the collapse load is shown to
converge on the exact solution of 1069.4 kN.
TABLE 4.5
Results of calculations for Example 4.5

Member AB Member BC

Joint

Axial
force
(kN)

Bending
moment
(kNm)

Axial
force
(kN)

Bending
moment
(kNm)

Critical load
factor (acr)

Stage 1 i
j

0 231.7
303.9

�657.7 �303.9
�374.0

811.9

Stage 2 i
j

0 291.1
374.0

�725.7 �374.0
�374.0

102.4

Stage 3 i
j

0 515.0
374.0

�725.7 �374.0
�374.0

56.0
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FIGURE 4.17. Convergence of solutionusing successive approximationmethod.
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4.6 Plastic Hinge Unloading

In incremental elastoplastic analysis, it is usually assumed that the plas-
tic hinges, once formed, remain yielded throughout the analysis. This is
true for many structures. However, for some structures, plastic hinges
may unload and become elastic again due to the formation of plastic
hinges elsewhere in the structure. The detection of plastic hinge unload-
ing can be performed by calculating the plasticmultiplier l for each plas-
tic hinge as described in Chapter 3. A plastic hinge undergoes unloading
when the value of l is negative. At any stage of analysis when unloading
is detected, the section corresponding to the unloading plastic hinge
becomes elastic and that stage of analysis is repeated with the section
modified as an elastic one. The following structure demonstrates plastic
hinge unloading in the process of increasing loads.

Example 4.6 Determine the collapse load factor P for the single-story,
double-bay frame shown in Figure 4.18 using the direct method. For
all members, E ¼ 2.1 � 108 kN/m2 and yielding is based only on pure
bending.

For members AB and HG, A ¼ 0.003 m2, I ¼ 0.00001 m4,
Mp ¼ 45 kNm.

For members BC, CD, DF, and FG, A ¼ 0.004 m2, I ¼ 0.00004 m4,
Mp ¼ 78 kNm.

For member ED, A ¼ 0.002 m2, I ¼ 0.000005 m4, Mp ¼ 17.5 kNm.
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FIGURE 4.18. Example 4.6.

Incremental Elastoplastic Analysis—Hinge by Hinge Method 125
Solution. A curve for the variation of P with the horizontal deflection
at B and the sequence of plastic hinge formation for the structure is
shown in Figure 4.19. The analysis shows that hinge 4 undergoes
unloading after hinge 5 in member FG occuring at a total load factor
P ¼ 0.735. Also, hinge 2 at E undergoes unloading after hinge 6 in
member CD occuring at a total load factor P ¼ 0.747. The section at
E becomes a plastic hinge again when hinge 8 occurs at a total load
factor P ¼ 0.752. At collapse, the total load factor P ¼ 0.769.
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FIGURE 4.19. Load–deflection curve and hinge formation sequence for
Example 4.6.
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4.7 Distributed Loads in Elastoplastic Analysis

The plastic analysis methods described so far have focused on struc-
tures subjected to point loads only. For structures subjected to point
loads, plastic hinges occur at sections either at joints or where the
point loads act. A member with internal point loads can be discretized
into shorter elements connected at joints where the internal point
loads are acting.

For members subjected to distributed load, plastic hinges may
occur within the length of the load along the member. The usual
way of dealing with distributed load in plastic analysis is to simulate
the action of the distributed load by equivalent point loads. The mem-
ber subjected to the distributed load is then discretized into shorter
elements according to the number of equivalent point loads generated.
Although this method is usually satisfactory, the difficulty of deter-
mining an adequate number of equivalent point loads is always pres-
ent, and the accuracy of results is not known. In the following
paragraph, an iterative procedure to locate the plastic hinge for mem-
bers under distributed loads is presented. The method shows conver-
gence both to the correct locations of the plastic hinges in members
and to the correct plastic collapse load.

A member of length L subjected to a distributed load linearly
varying from w1 at one end to w2 at the other is shown in Figure 4.20.

Assume that the shear force and bending moment at end i of the
member are Si and Mi, respectively, obtained at the completion of an
elastoplastic analysis. The bending moment Mx at a distance x from
end i is given by

Mx ¼ Six �w1x
2

2
� w2 �w1ð Þx3

6L
�Mi (4.7)

The bending moment Mx is a maximum when the shear force is zero.
That is,

Sx ¼ @Mx

@x
¼ Si �w1x � w2 �w1ð Þx2

2L
¼ 0 (4.8)
w1

x L

w2

Mi

Si Mx
Sx

i j

FIGURE 4.20. Member with a linearly varying distributed load.



Incremental Elastoplastic Analysis—Hinge by Hinge Method 127
By solving Equation (4.8) for x, the location for the occurrence of
a possible plastic hinge is identified. The member can be discretized
into two with the joint located at the point where maximum Mx

occurs and the collapse load can be reevaluated. This procedure can
be repeated until both the location of the plastic hinge and the col-
lapse load of the structure converge with satisfactory accuracy.

Example 4.7 Determine the plastic collapse load factor a and the
location of the internal plastic hinge at a distance x from A for the
fixed-end beam ABC with a UDL of 10 kN/m along AB as shown in
Figure 4.21. Plastic moment capacity of the member, Mp ¼ 100 kNm.
A B C

10  kN/m 

x

6m 2m

FIGURE 4.21. Example 4.7.
Solution. The beam is discretized into three elements so that a joint
can be arbitrarily assigned within the length AB. In the first instance,
a joint D is assigned at a distance of 3 m from A and the resulting plas-
tic hinge formation sequence is shown in Figure 4.22a. Elastoplastic
analysis cycle 1 gives a total collapse load factor a ¼ 2.963. Using
Equation (4.8), the location of the maximum bending moment is
found to be 3.75 m from A in element DB and the corresponding bend-
ing moment is 108.3 kNm from Equation (4.7). Obviously, the bend-
ing moment is in violation of the yield condition.

A second elastoplastic analysis is then carried out with a revised
location for the joint D at 3.75 m from A. In this case, the total col-
lapse load factor is found to be 2.844 and the location of the maximum
bending moment remains unchanged at D as shown in Figure 4.22b. It
should be noted that the moving joint D is where the last plastic hinge
occurs. Therefore, in this example, only one adjustment of the plastic
hinge location is required to give the correct collapse load factor using
only one iteration of analysis. A summary of the results is given in
Table 4.6.
(a)

A B C3.75m 2.25m D 2m 

3 21

A B C3m 3m D 2m 

3 21

(b) 

FIGURE 4.22. Member discretization and hinge formation sequence.



TABLE 4.6
Results of iterative analysis

Analysis
cycle

Hinge formation
sequence

Total load
factor a

Plastic hinge location x
from A (m)

1 1 1.975 3.0
2 2.319
3 2.963

2 1 1.975 3.75
2 2.319
3 2.844
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It may be useful to compare the results just given with those
obtained from the equivalent point loads method. When using this
method, a number of alternatives may convert the distributed load into
point loads. Some of these load conversions and the corresponding
plastic hinge formation sequence are shown in Figure 4.23. Results are
shown in Table 4.7. It can be seen that the structure shown in
Figure 4.23b gives results comparable to those obtained using the more
accurate iterative method. When using the equivalent point loads
method, the accuracy of the results depends on both the number of dis-
cretized elements and theway the equivalent point loads are calculated.
In general, the accuracy increases with the number of discretized ele-
ments used. Note that the order of plastic hinge formation is not the
same for all the structures shown in Figure 4.23.
(c)

(a)

3m 3m 2m

21

30  kN 15  kN 15  kN 

3

2m 2m 2m 

20  kN

21

10  kN 10  kN

3

20  kN

2m 

2m 2m 2m 

30  kN 

21 3

30  kN 

2m 3m 3m 2m 

60  kN

31 2

(d) 

(b) 

FIGURE 4.23. Equivalent point loads and hinge formation sequence.



TABLE 4.7
Results from equivalent point load method

Structure
Hinge formation

sequence
Total load
factor a

Figure 4.23a 1 2.452
2 2.570
3 2.963

Figure 4.23b 1 2.162
2 2.424
3 2.857

Figure 4.23c 1 1.568
2 2.051
3 2.222

Figure 4.23d 1 1.422
2 1.721
3 1.778
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Example 4.8 Determine the collapse load factor a of the portal frame
shown in Figure 4.24 Properties of the members are

Columns AB, ED, HG: A ¼ 0.02 m2, I ¼ 0.01 m4, Mp ¼ 20 kNm,
Np ¼ 80 kN.

Beam BD: A ¼ 0.04 m2, I ¼ 0.015 m4,Mp ¼ 50 kNm,Np ¼ 120 kN.
Beam DG: A ¼ 0.07 m2, I ¼ 0.02 m4,Mp ¼ 80 kNm,Np ¼ 200 kN.

The members are made of the I section with the yield condition given

by m ¼ 1.18(1�b) where m ¼ M

Mp
and b ¼ N

Np
for b > 0.15, otherwise

m � 1.
B C

A

D

E

5  kN 

15m 

10m 

H

10  kN 

10m 15m 15m 

4  kN

F G

8  kN 

0.6  kN/m 0.8 kN/m

1

2

3 5 4

6

7

FIGURE 4.24. Example 4.8 with plastic hinge formation sequence.
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Solution. The beams are initially assigned internal nodes at midspan
at C and F in BD and DG, respectively. The sequence of plastic hinge
formation, with a total of seven plastic hinges, is also shown in Fig-
ure 4.24. The first attempt gives a collapse load factor a ¼ 1.2935,
and the maximum moment location for DG is found to be 16.296 m
from D. By relocating the node F to this point at 16.296 m from D
and performing a second analysis, collapse load factor a is found to
be 1.2868. Subsequent analysis shows that the relocated node F
remains unchanged. Note that for all members made of the same
material, the collapse load is independent of the Young’s modulus, E.

Problems

4.1. Determine the collapse load factor a for the propped cantilever
beam ABCD shown in Figure P4.1. Mp ¼ 80 kNm; E, I, and A
are constants.
BA

10 kN

2.5 m5 m 

20 kN

2.5 m

DC

FIGURE P4.1. Problem 4.1.
4.2. A steel warehouse is subjected to a horizontal design load of
150 kN acting at B and a vertical design load of 110 kN acting
at C shown in Figure P4.2. In order to find the collapse strength
of the structure, the loads are assumed to increase proportionally
by a common factor a. An initial sizing for the members requires
1m

D150  kN 

4m

2m 110  kN 

4m

2m

Pin

A

B C

E

FIGURE P4.2. Problem 4.2.
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a steel section of plastic moment capacity equal to 140 kNm to
be used for all members. An elastoplastic analysis is then carried
out for the proportional loads applied at a ¼ 1. Results of the anal-
ysis for bending moments and horizontal deflection at B are
shown in the following tables.

Calculate the total bending moments for all members,
the total horizontal deflection at B at collapse, and the collapse
load factor ac of the structure. Also, calculate the bending
moment and the horizontal deflection, both at B, at design load
level (i.e., at total a ¼ 1.0). Assume pure bending for the yield
condition.
Analysis Stage No: 1 Critical Load Factor, acr ¼
mber Joint

Moment

Mo

(kNm)

Residual

plastic

moment

MP-Mi

(kNm)

Load factor

a ¼ Mp �Mi

Mo

Cumulative

moment

Miþ1 ¼
Mi þ acrMo

(kNm)

Horizontal

deflection

do (mm)

Cumulative

horizontal

deflection

qiþ1 ¼
qi þ acrdo
(mm)

A
B

0
�46.2

30

B
C

�46.2
�51.1

C
D

�51.1
166.6

D
E

166.6
0

Analysis Stage No: 2 Critical Load Factor, acr ¼
mber Joint

Moment

Mo

(kNm)

Residual

plastic

moment

MP – Mi

(kNm)

Load factor

a ¼ Mp �Mi

Mo

Cumulative

moment

Miþ1 ¼
Mi þ acrMo

(kNm)

Horizontal

deflection

do (mm)

Cumulative

horizontal

deflection

qiþ1 ¼
qi þ acrdo
(mm)

A
B

0
�323.9

234

B
C

�323.9
�273.3

C
D

�273.3
0

D
E

0
0
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Analysis stage 3 shows that the structure has collapsed.

4.3. A steel lecture theatre is subjected to design loads shown in
Figure P4.3. The plastic method has been adopted for the design
of the structure. In order to find the failure load of the structure,
the loads are assumed to increase proportionally by common
factor a.
A

200  kN 

11m 

5m

A

8m

B

D

120  kN 
C

250  kN 

3m 6m

FIGURE P4.3. Problem 4.3.

M

A

B

C

An initial sizing for the members requires a steel section
with Mp ¼ 304 kNm and Np ¼ 1810 kN to be used for all mem-
bers. An elastoplastic analysis is then carried out for loads
applied at the design level (i.e., a ¼ 1). Results of the analysis
for bending moments Mo and axial forces No are shown:

nalysis Stage No: 1 Critical Load Factor, acr ¼
Note: Negative (�) axial force ¼ compression.

ember Joint

Moment

Mo

(kNm)

Residual

plastic

moment

MP � Mi

(kNm)

Load factor

a ¼ Mp �Mi

Mo

Cumulative

moment

Miþ1 ¼
Mi þ acrMo

(kNm)

Axial

force

(kN)

No

Cumulative

axial force (kN)

Niþ1 ¼ Ni þ acrNo

B A

B

338.3

�211.9

63.7

C B

C

�211.9

114.0

�81.7

D C

D

114.0

0

�328.7



Incremental Elastoplastic Analysis—Hinge by Hinge Method 133
Analysis Stage No: 2 Critical Load Factor, acr ¼
Member Joint

Moment

Mo

(kNm)

Residual

plastic

moment MP

� Mi (kNm)

Load factor

a ¼ Mp �Mi

Mo

Cumulative

moment

Miþ1 ¼
Mi þ acrMo

(kNm)

Axial

force

(kN)

No

Cumulative

axial force (kN)

Niþ1 ¼ Ni þ acrNo

AB A

B

0

�359.7

63.8

BC B

C

�359.7

236.1

�104.2

CD C

D

236.1

0

�359.0
Analysis Stage No: 3 Critical Load Factor, acr ¼
Member Joint

Moment

Mo

(kNm)

Residual

plastic

moment MP

– Mi (kNm)

Load factor

a ¼ Mp �Mi

Mo

Cumulative

moment

Miþ1 ¼
Mi þ acrMo

(kNm)

Axial

force

(kN)

No

Cumulative

axial force (kN)

Niþ1 ¼ Ni þ acrNo

AB A

B

0

0

26.8

BC B

C

0

811.8

�173.6

CD C

D

811.6

0

�402.1
Analysis stage 4 shows that the structure has collapsed.

a. Calculate the total bending moments and the total axial
forces at collapse for all members.

b. By calculating the critical load factor acr for each stage of anal-
ysis, determine the collapse load factor acol of the structure.

c. Calculate the bending moment (M*) and the axial force (N*)
for member CD at design load level (i.e., at total a ¼ 1.0).

d. Check whether member CD would satisfy the following com-
bined bending-axial actions for design:

M� � 1:18Mp 1�N�

Np

� �
� Mp

4.4. Determine the collapse load factor a for the portal frame shown in
Figure P4.4. For all members, E ¼ 2 � 107 kN/m2, A ¼ 0.0104 m2,
I ¼ 0.000475 m4, Mp ¼ 515 kNm, Np ¼ 2600 kN. The members
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are made of rectangular sections with yield condition approxi-

mated by m ¼ 1.43(1 � b) where m ¼ M

MP
and b ¼ N

NP
for b > 0.3,

otherwise m � 1.
4  kN 

8 m 

8  kN 

10 m 

1  kN 

FIGURE P4.4. Problem 4.4.
4.5. Determine the collapse load factor a for the pin-based portal frame
shown in Figure P4.5. For all members, E ¼ 250000, A ¼ 0.04,
I¼ 0.15,Mp ¼ 200,Np ¼ 700, all in consistent units. The members
are made of I sections with yield condition given by

m ¼ 1:18 1� bð Þwherem ¼ M

MP
and b ¼ N

NP
for b > 0.15, otherwise

m � 1.
80

4

80

4

70

160

4

FIGURE P4.5. Pin-based portal frame.
4.6. Determine the collapse load factor a for the gable frame shown in
Figure P4.6. For all members, E ¼ 2 � 108 kN/m2. For members
AB and ED, A ¼ 0.0179 m2, I ¼ 0.00136 m4, Mp ¼ 1140 kNm,
Np ¼ 4475 kN. For members BC and CD, A ¼ 0.0188 m2,
I ¼ 0.00169 m4, Mp ¼ 1290 kNm, Np ¼ 4700 kN. The members
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are made of I sections with yield condition given by

m ¼ 1:18 1�bð Þ where m ¼ M

MP
and b ¼ N

NP
for b > 0.15, otherwise

m � 1.
B

C

A

D

P kN 

3.048 m

E

P kN 

3.048 m

2P kN 

4P kN 

5P kN 

2P kN 

3P kN 

3.048 m3.048 m 3.048 m 

1.828 m 

5.182 m 

0.914 m

0.914 m 0.914 m 

6.096 m

FIGURE P4.6. Gable frame.
4.7. Determine the load factor a and the horizontal deflection atC at col-
lapse for the two-story, rigid-jointed frame shown in Figure P4.7.
For all members, E ¼ 2.1 � 108 kN/m2. For members AB, BC, DE,
and EF, A ¼ 0.145525 m2, I ¼ 0.024604 m4, Mp ¼ 11290 kNm,
9P kN 

15 m 

9P kN 

15 m 

2P kN 

P kN 

15 m 

A

B

C

D

E

F

FIGURE P4.7. Two-story rigid-jointed frame.
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Np ¼ 29100 kN. For members CF, CE, and BE, A ¼ 0.022996 m2,
I ¼ 0.001008 m4, Mp ¼ 893 kNm,Np ¼ 4600 kN. The members are
made of tubular sections with yield condition approximated by

m ¼ 1:25 1� bð Þ where m ¼ M

MP
and b ¼ N

NP
for b > 0.2, otherwise

m � 1.

4.8. Determine the collapse load factor a for the propped cantilever
beam ABC subjected to UDL of 10a kN/m along BC shown in
Figure P4.8. Locate the plastic hinges at collapse. Mp ¼ 80 kNm;
E, I, and A are constants.
A

4 m 6 m 

C

10  kN/m 

B

FIGURE P4.8. Propped cantilever under UDL.
4.9. A frame ABCD shown in Figure P4.9 is analyzed with different
pinned conditions at the joints, and results of the bending
moments are shown in Figure P4.10. If the plastic moment capac-
ity of the members of the frame is 169 kNm, determine the
sequence of plastic hinge formation and hence the load factor a
at collapse.
A

B C

P = 200α kN 

D

1.5 m 4 m 

2.5 m 

FIGURE P4.9. Problem 4.9.



Case Joint D

A 72.3 –98.5 100.0 0

0

0

0

0

0

0

B 0 –92.2 126.0

C 51.9 0 204.0

D 138.4 –180.4 0

E 0 0 218.2

F 0 –218.2 0

G 800 0 0

H Collapse 
P = 200 kN 
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B C

D

P = 200 kN 

A

B C

D

P = 200 kN 
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B C

D

P = 200 kN 
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D

P = 200 kN 
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B C

D

P = 200 kN
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B C
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P = 200 kN 
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D

P = 200 kN
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D

Structure Joint A Joint B Joint C

FIGURE P4.10. Results of analyses of different joint cases.
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CHAPTER 5

Manual Methods of
Plastic Analysis
5.1 Introduction

In contrast to incremental elastoplastic analysis, classical rigid plastic
analysis has been used for plastic design over the past decades, and
textbooks on this topic are abundant.1–3 Rigid plastic analysis makes
use of the assumption that the elastic deformation is so small that it
can be ignored. Therefore, in using this method of analysis, the mate-
rial behaves as if the structure does not deform until it collapses plas-
tically. This behavior is depicted in the stress–strain diagram shown
in Figure 5.1.

Although classical rigid plastic analysis has many restrictions in
its use, its simplicity still has certain merits for the plastic design of
simple beams and frames. However, its use is applicable mainly for
manual calculations as it requires substantial personal judgment to,
for instance, locate the plastic hinges in the structure. This some-
times proves to be difficult for inexperienced users. This chapter
describes the classical theorems of plasticity. The applications of
these theorems to plastic analysis are demonstrated by the use of
mechanism and statical methods, both of which are suitable for man-
ual calculations of simple structures. Emphasis is placed on the use of
the mechanism method in which rigid plastic behavior for steel mate-
rial is assumed.

5.2 Theorems of Plasticity

There are three basic theorems of plasticity from which manual meth-
ods for collapse load calculations can be developed. Although
attempts have been made to generalize these methods by computers,4



0

fy

f

FIGURE 5.1. Rigid plastic behavior.
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the calculations based on these methods are still largely performed
manually. The basic theorems of plasticity are kinematic, static, and
uniqueness, which are outlined next.

5.2.1 Kinematic Theorem (Upper Bound Theorem)

This theorem states that the collapse load or load factor obtained for a
structure that satisfies all the conditions of yield and collapse mecha-
nism is either greater than or equal to the true collapse load. The true
collapse load can be found by choosing the smallest value of collapse
loads obtained from all possible cases of collapse mechanisms for the
structure. The method derived from this theorem is based on the bal-
ance of external work and internal work for a particular collapse
mechanism. It is usually referred to as the mechanism method.

5.2.2 Static Theorem (Lower Bound Theorem)

This theorem states that the collapse load obtained for a structure that
satisfies all the conditions of static equilibrium and yield is either less
than or equal to the true collapse load. In other words, the collapse
load, calculated from a collapse mode other than the true one, can
be described as conservative when the structure satisfies these condi-
tions. The true collapse load can be found by choosing the largest
value of the collapse loads obtained from all cases of possible yield
conditions in the structure. The yield conditions assumed in the
structure do not necessarily lead to a collapse mechanism for the
structure. The use of this theorem for calculating the collapse load
of an indeterminate structure usually considers static equilibrium
through a flexibility approach to produce free and reactant bending
moment diagrams. It is usually referred to as the statical method.
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5.2.3 Uniqueness Theorem

It is quite clear that if a structure satisfies the conditions of both static
and kinematic theorems, the collapse load obtained must be true and
unique. Therefore, the uniqueness theorem states that a true collapse
load is obtained when the structure is under a distribution of bending
moments that are in static equilibrium with the applied forces and no
plastic moment capacity is exceeded at any cross section when a col-
lapse mechanism is formed. In other words, a unique collapse load is
obtained when the three conditions of static equilibrium, yield, and
collapse mechanism are met.

It should be noted that an incremental elastoplastic analysis
such as that described in Chapter 4 satisfies all three of these condi-
tions: (1) static equilibrium—elastic analysis is based on solving a
set of equilibrium equations contained in matrices; (2) yield—the
moment capacity for every section is checked and a plastic hinge is
inserted if plastic moment is reached in any section; insertion of a
plastic hinge in the analysis ensures that the moment capacity is
not exceeded; and (3) mechanism—the formation of a collapse mecha-
nism is checked by (a) determining whether the determinant of the
stiffness matrix is zero; a zero value leads to an error message if a com-
puter is used for analysis; and (b) excessive deflections if an exact zero
stiffness cannot be detected. Hence, the collapse load obtained from
an elastoplastic analysis is, in general, unique.

5.3 Mechanism Method

This method requires that all possible collapse mechanisms are iden-
tified and that the virtual work equation for each mechanism is estab-
lished. The collapse load Pw (or collapse load factor ac if a set of loads
are applied) is the minimum of the solutions of all possible collapse
mechanisms for the structure. In establishing the virtual work equa-
tion, the total internal work as sum of the products of the plastic
moment, Mp, and the corresponding plastic rotation, y, at all plastic
hinge locations j (j ¼ A, B, . . ., etc.) must be equal to the total external
work. The total external work is expressed as the sum of the products
of the externally applied load, acP, and the corresponding distance, d,
it displaces for all loads i (i ¼ 1, 2, . . ., etc.). Mathematically,X

j

Mpy
� �

j
¼ ac

X
i

Pdð Þi (5.1)

For Equation (5.1), a relationship between y and d can be established so
that ac is evaluated independently of these two terms.
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Example 5.1 A fixed-end beam, of length L and plastic moment capac-
ity Mp, is subject to a point load P as shown in Figure 5.2a. Determine
the collapse load P ¼ Pw.
(a) Fixed-end beam (b) Collapse mechanism

P

2L /3L /3

Load
displacement 

Angle of plastic 
rotation 

Plastic
hinge

A

B

C

P

FIGURE 5.2. Plastic analysis of a fixed-end beam.
Solution. The first step is to guess the possible collapse mechanism.
In this case, it is obvious that the collapse mechanism is induced
by the formation of three plastic hinges at A, B, and C shown in
Figure 5.2b.

From Figure 5.2b, the load displacement can be related approxi-
mately to the angles of plastic rotation by

d ¼ L

3
y ¼ 2L

3
b (5.2)

Hence, y ¼ 2b. At B, the total plastic rotation is (y þ b). The internal
work, Wi, of the system due to the plastic rotations at A, B, and C is

Wi ¼ MPyþMP yþ bð Þ þMPb ¼ MP6b (5.3)

The external work, We, is

We ¼ Pwd ¼ Pw
2L

3
b (5.4)

The virtual work equation is We ¼ Wi, which gives Pw ¼ 9MP

L
.

5.4 Statical Method

This method uses the flexibility (or force) method of analysis, which
requires construction of the final bending moment diagram by super-
posing a free (from a determinate structure) bending moment diagram
upon the reactant (from a redundant structure) bending moment
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diagrams. As for the mechanism method, only a guess of the correct
collapse mechanism will lead to the correct estimate of the collapse
load when using the statical method.

Example 5.2 A cantilever beam ABCD is subject to two point loads of
30a and 50a kN shown in Figure 5.3. The plastic moment capacity of
the beam is Mp. Calculate the collapse load factor a ¼ ac.
30 kN 50 kN

2m 2m 2m 

ABC
D

FIGURE 5.3. Plastic analysis of cantilever beam using the statical method.
Solution. This is an indeterminate structure with 1 degree of indeter-
minacy. If the bending moment M at the fixed support A is made
redundant, then the free and reactant bending moment diagrams can
be constructed as shown in Figure 5.4.
_
1

73.4 -M/3

+

73.4 86.6

1

86.6 -2M/3

(a) Free bending moment
     diagram 

(b) Reactant bending moment
      diagram 

(c) Final bending moment 
     diagram 

50 kN30 kN 50 kN30 kN
1.1

FIGURE 5.4. Free and reactant bending moment diagrams.
This structure requires the formation of two plastic hinges to
induce a collapse mechanism. There are two possibilities: (a) plastic
hinges at A and B or (b) plastic hinges at A and C. It is unlikely to have
a collapse mechanism with plastic hinges at B and C because of the
larger moment at A.
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Case a: plastic hinges at A and B.

M ¼ Mp and Mp ¼ 86:6a� 2

3
M;

therefore a ¼ Mp

52
:

Check: Bending moment at

C ¼ 73:4a� 1

3
Mp ¼ 73:4�Mp

52
� 1

3
Mp ¼ 1:08Mp:

This case is not valid because the yield condition is violated at C.

Case b: plastic hinges at A and C.

M ¼ Mp and Mp ¼ 73:4a� 1

3
M;

therefore a ¼ Mp

55
:

Check: Bending moment at

B ¼ 86:6a� 2

3
Mp ¼ 73:4�Mp

55
� 2

3
Mp ¼ 0:67Mp:

The yield condition has not been violated at B. Hence, case b is critical

and a ¼ ac ¼ Mp

55
.

It should be noted that, according to the static theorem, the true
collapse load from the statical method is the largest of all possible
solutions only if the yield or equilibrium condition is not violated.
The static theorem does not apply to this example as the yield condi-
tion in case a is violated.

5.5 Uniformly Distributed Loads (UDL)

When using the mechanism method, the main difficulty in dealing
with a distributed load is to calculate the external work as it normally
requires integration for its evaluation. However, some convenient
concepts can be developed to circumvent this difficulty. The follow-
ing example demonstrates the treatment of uniformly distributed
loads using both statical and mechanism methods.

Example 5.3 A fixed-end beam shown in Figure 5.5 is subjected to a
uniformly distributed load of w (load/length). Determine the collapse
load w ¼ wc.



w

L

FIGURE 5.5. Fixed-end beam with UDL.
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Solution
By Statical Method
Fixed-end moments, which are equal because of symmetry, are chosen
as the redundant forces. The free and reactant bending moment dia-
grams are shown in Figure 5.6.

For this problem, three plastic hinges, two at the ends and one at
midspan of the beam, are required to induce a collapse mechanism.
From Figure 5.6,

M ¼ MP at the supports and
wL2

8
�M ¼ Mp at midspan.

therefore w ¼ wc ¼ 16Mp

L2

By Mechanism Method
The collapse mechanism is shown in Figure 5.7. For the two straight
segments of the beam (half of the beam in this case), total external

work ¼ 2�
Z L=2

w@xf gxy ¼ wL2y=4:

0

+wL2/8

+

MM

MM
w/length Mp

Mp

Mp

FIGURE 5.6. Free and reactant bending moment diagrams for a fixed-end beam.

w

x

x

FIGURE 5.7. Collapse mechanism for a fixed-end beam under UDL.
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Internal work ¼ 4MPy. Because total external work ¼ internal work,

therefore w ¼ wc ¼ 16Mp

L2
:

5.5.1 Method to Calculate External Work for UDL

Calculation of the external work due to UDL requires integration as
demonstrated in the previous example and may become tedious for
certain types of structures. Now, consider a UDL of length L=2
between two plastic hinges for a straight segment of a beam as
shown in Figure 5.8. The equivalent point load for the UDL is wL=2
acting at midspan of the segment. The displacement covered by
the equivalent point load is Ly=4 and the work done is therefore

wL=2ð Þ Ly=4ð Þ ¼ wL2y
8

, which is the same as the result by integration.

Therefore, for calculation purposes, UDL can be treated as equivalent
point loads for any straight segment of the structural members.
w
wL/2

L/2

(L /4 )

FIGURE 5.8. Treatment of UDL.
Example 5.4 A fixed-end beamABC is subjected to a UDL of 10a kN/m
being applied along AB as shown in Figure 5.9. Mp ¼ 100kNm for the
beam. Determine the collapse load factor a ¼ ac.
B CA

10  kN/m 

2m 6m 

FIGURE 5.9. Example 5.4.
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Solution. Three plastic hinges are required to form a collapse mecha-
nism.Assume that the location of the inner plastic hinge is at D at a dis-
tance x from A as shown in Figure 5.10. The equivalent point loads for
segments AD and DB are used in the work equation. Using the mecha-
nism method, the relationship between y and b is first established by

xb ¼ 8� xð Þy:
Internal work ¼ Mp 2bþ 2yð Þ:
External work ¼ 10ax x=2ð Þbþ 10a 6� xð Þ 6� x

2
þ 2

� �
y:

For internal work ¼ external work,

Mp ¼ 5ax
4

15� 2xð Þ:

For maximum bending moment to occur at D,

@Mp

@x
¼ 15� 4x ¼ 0:

Therefore, the plastic hinge occurs at D at x ¼ 3:75m:
Hence,

Mp ¼ 35:156a or a ¼ ac ¼ 2:84
x

x/2 (6-x)/2
10 x 10 (6-x)

D
A

B

FIGURE 5.10. Equivalent point loads for UDL in Example 5.4.
5.6 Continuous Beams and Frames

In order to examine all possible collapse modes for continuous beams
and frames, the concept of partial and complete collapse is introduced
in the following section. In particular, partial collapse often occurs in
continuous beams and frames upon which multiple loads are applied.

5.6.1 Partial and Complete Collapse

The discussion in the previous sections focused mainly on simple
indeterminate structures. Typically, these structures have n degrees
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of indeterminacy and require n + 1 number of plastic hinges to form a
collapse mechanism. In such cases, the structures are said to have
failed by complete collapse. We define complete collapse as

When a structure with n degrees of indeterminacy col-
lapses due to the formation of p number of plastic hinges
where p ¼ n + 1, the structure fails by complete collapse;
in this case, determination of the member forces for the
whole structure at collapse is always possible.

However, partial collapse of a structure can be defined as

When a structure with n degrees of indeterminacy col-
lapses due to the formation of p number of plastic hinges
where p < n þ 1, the structure fails by partial collapse; in
this case, it may not be possible to determine the member
forces for some parts of the structure.

Structures may fail plastically by complete or partial collapse. In
either case, the stiffness of the structure at collapse is zero. For contin-
uous beams and frames where the degree of indeterminacy is large,
partial collapse is not uncommon.

5.6.2 Application to Continuous Beams

The procedure for plastic analysis of continuous beams is as follows:
identify possible collapse mechanisms, mostly due to partial collapse,
in each of the spans; use either the mechanism method or the statical
method to find the collapse load or load factor for each collapse mech-
anism; and identify the critical span, which, when collapse occurs, is
the one with smallest collapse load or load factor.

Example 5.5 Determine the collapse load factor P ¼ Pw for the contin-
uous beam shown in Figure 5.11. Plastic moment of the beam is Mp.
3P P

LL

A B

2L 2L

C

FIGURE 5.11. Plastic collapse of continuous beam.
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Solution. The mechanism method is used for the solution.
For left span AB, the plastic hinge occurs at midspan and B as

shown in Figure 5.12. The virtual work equation is

3PwLy ¼ Mp 3yð Þ;

therefore Pw ¼ Mp

L
:

A B

3 Pw

FIGURE 5.12. Collapse mechanism for span AB.
Similarly, for right span BC with two plastic hinges shown in
Figure 5.13, the virtual work is

Pw2Ly ¼ Mp 3yð Þ;

therefore Pw ¼ 1:5Mp

L
:

Hence, the left span is critical and Pw ¼ Mp

L
:

Pw

B C

FIGURE 5.13. Collapse mechanism for span BC.
5.6.3 UDL on End Span of a Continuous Beam

In the case of the collapse mechanism at an end span of a continuous
beam, it behaves like a propped cantilever due to the formation of two
plastic hinges, one within the length and the other at the interior sup-
port of the end span. In this case, the exact location of the plastic
hinge within the length of the end span needs to be found.

Consider the end span of a continuous beam shown in Figure 5.14.
Assume that the internal plastic hinge of the end span is at a distance x
from the free end. The collapse mechanism for the end span is also
shown in Figure 5.14. The purpose of the analysis is first to minimize



Mp

Mp

Plastic hinge 

x

Continuous beam 

End span w

w

FIGURE 5.14. Collapse mechanism at end span of a continuous beam.
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the load w or maximize the bending moment Mp of the internal plastic
hinge so that the value of x can be found.

The relationship between the angles of plastic rotation y and a is

yx ¼ a L� xð Þ;
therefore a ¼ yx

L� x
:

External work ¼ wxð Þ x
2
yþw L� xð Þ L� x

2

� �
a ¼ wLx

2
y:

Internal work ¼ MpaþMp aþ yð Þ ¼ Mp
Lþ x

L� x

� �
y:

External work ¼ Internal work,

therefore w ¼ Mp
2 Lþ xð Þ

L Lx � x2ð Þ
� �

(5.5)

For minimum w,
dw
dx

¼ 0. It can be proved that if w ¼ Mp
f1 xð Þ
f2 xð Þ , thendw

dx
¼ 0 will lead to the following equation:

f1 xð Þ
f2 xð Þ ¼

f
0
1 xð Þ
f
0
2 xð Þ (5.6)

where f
0
xð Þ represents the first derivative of f xð Þ.

From Equations (5.5) and (5.6),

Lþ x

Lx � x2
¼ 1

L� 2x
giving x2 þ 2Lx � L2 ¼ 0;

therefore x ¼ 0:414L:
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Substituting x into Equation (5.5) gives w ¼ 11:65
Mp

L2
.

This is the standard solution of the collapse load for UDL acting
on the end span of a continuous beam.

Example 5.6 What is the maximum load factor a that the beam shown
in Figure 5.15 can support if Mp ¼ 93 kNm?
20 kN/m 

6m 8m 

10  kN/m 

FIGURE 5.15. Example 5.6.
Solution
Left span

20a ¼ 11:65
Mp

L2
¼ 11:65

93

62

� �
¼ 30kN=m;

therefore a ¼ 1:5:

Right span

10a ¼ 11:65
Mp

L2
¼ 11:65

93

82

� �
¼ 17kN=m;

therefore a ¼ 1:7:

Hence, the maximum load factor a ¼ 1:5

5.6.4 Application to Portal Frames

A portal frame usually involves high degrees of indeterminacy. There-
fore, there are always a large number of partial and complete collapse
mechanisms (sometimes termed basic mechanisms) that can be com-
bined to form new collapse mechanisms with some plastic hinges
becoming elastic (unloading) again. For complex frames, it requires
substantial judgment and experience in using this method to identify
all possible partial and complete collapse mechanisms.
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For simple portal frames, the following types of collapse mechan-
isms should be identified:

(a) Beam mechanism—when vertical loads are applied to beams
and horizontal loads to columns to form partial collapse
mechanisms as shown in Figure 5.16.
FIGURE 5.16. Beam mechanisms for beams and columns.
(b) Sway mechanism—when horizontal loads are applied to form
complete collapse mechanisms as shown in Figure 5.17.
FIGURE 5.17. Sway mechanism.
(c) Combined mechanism—a combination of beam and sway
mechanisms only if unloading occurs to one or more plastic
hinges as shown in Figure 5.18.
FIGURE 5.18. Combined mechanism.
Example 5.7 A fixed-base portal frame is subject to a vertical load of
2P and a horizontal load of P shown in Figure 5.19. The length of
the rafter is 6L and of the column is 4L. Find the collapse load P ¼ Pw :



4L

3L 3L

2P

P

FIGURE 5.19. Example 5.7.
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Solution. The portal frame has 3 degrees of indeterminacy. Therefore,
a complete collapse mechanism requires four plastic hinges.

(i) Beam mechanism.
From Figure 5.20(i), 2P 3Lyð Þ ¼ 4Mpy

P ¼ 2Mp

3L

(ii) Sway mechanism.
From Figure 5.20(ii), P 4Lyð Þ ¼ 4Mpy

P ¼ Mp

L

(ii) Sway mechanism 

(iii) Combined mechanism of (i) and (ii)

2P

P

2P 

P

2P

P

(i) Beam mechanism

FIGURE 5.20. Collapse mechanisms for portal frame.



154 Plastic Analysis and Design of Steel Structures
(iii) Combined mechanism of (i) and (ii).

From Figure 5.20(iii), P 4Lyð Þ þ 2P 3Lyð Þ ¼ 6Mpy

P ¼ 3Mp

5L

Hence, (iii) is critical and Pw ¼ 3Mp

5L
.

Example 5.8 A fixed-base portal frame is subject to two horizontal loads
of 2P and 3P as shown in Figure 5.21. Find the collapse load P ¼ Pw.
2L

6L

2L

3P 

2P

FIGURE 5.21. Example 5.8.
Solution. The three possible collapse mechanisms are shown in
Figure 5.22.

(i) Beam mechanism.

3P 2Lyð Þ ¼ 4Mpy

P ¼ 2Mp

3L

(ii) Sway mechanism.

2P 4Lyð Þ þ 3P 2Lyð Þ ¼ 4Mpy

P ¼ 2Mp

7L

(iii) Combined mechanism of (i) and (ii).

Relationship between y and b is 2Ly ¼ 4Lb; hence, y ¼ 2b.

2P 2Lyð Þ þ 3P 2Lyð Þ ¼ Mp 2yð Þ þMp 2bð Þ

P ¼ 3Mp

10L



(ii) Sway mechanism 

(iii) Combined mechanism of (i) and (ii)

3P

2P

3P

2P

3P

2P

(i) Beam mechanism

FIGURE 5.22. Collapse mechanisms for Example 5.8.
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Hence, mechanism (ii) is critical and P ¼ Pw ¼ 2Mp

7L
:

5.7 Calculation of Member Forces at Collapse

While design actions at design load level can be calculated by interpo-
lation in an elastoplastic analysis, it is difficult, if not impossible, to
calculate the same using mechanism or statical methods. This is par-
ticularly the case for the mechanism method because the behavior of
the structure prior to collapse is ignored. The mechanism method is
based on a rigid–plastic approach because the structure is assumed
to be rigid until collapse occurs. However, when a complete collapse
occurs to a structure, it is still possible to calculate the member forces
at collapse because the structure is reduced to a determinate one due
to the formation of plastic hinges. This statement is not valid for
structures failed by partial collapse.

Example 5.9 Calculate the member forces of the structure at collapse

for Example 5.7 given that Pw ¼ 3Mp

5L
.

Solution. The member forces can be calculated using the appropriate
free-body diagrams through the plastic hinges shown in Figure 5.23(i).

For the free-body diagram ED shown in Figure 5.23(ii), take the
moment about D:



A

B C D

E

4L 

3L 3L

2Pw

Pw

(i)

4L

MP

Ey

MP

Ex

Dy

Dx

(ii)

4L

MP

Ey

MP

Ex

Cy

Cx

3L

(iii) 

Ey

Ex

B C D

4L

3L 3L

2Pw

Pw

Ay

Ax

(iv)

EA

FIGURE 5.23. Free-body diagrams with plastic hinges.
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Mp þMp � Exð4LÞ ¼ 0

Ex ¼ Mp

2L

Hence; Dx ¼ Ex ¼ Mp

2L
:

For free-body diagram CDE shown in Figure 5.23(iii), take moment
about C:

Mp �Mp � Exð4LÞ þ Eyð3LÞ ¼ 0

Ey ¼ 4Ex

3
¼ 2Mp

3L

Also,

Cx ¼ Ex ¼ Mp

2L
;Cy ¼ �Ey ¼ � 2Mp

3L
:

For free-body diagram ABCDE shown in Figure 5.23(iv), from
equilibrium,
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Ax þ Pw � Ex ¼ 0;

therefore Ax ¼ � Mp

10L
:

Ay � 2Pw þ Ey ¼ 0;

therefore Ay ¼ 8Mp

15L
:

Finally, to verify that the bending moment is elastic at B, a free-body dia-
gramAB shown in Figure 5.24 is chosen and themoment is taken about B:

Mp þM þAxð4LÞ ¼ 0

M ¼ 3Mp

5

4L

M

MP

By

Bx

Ay

Ax

FIGURE 5.24. Free-body diagram for AB.
As expected, the bending moment at B is below Mp and

Bx ¼ �Ax ¼ Mp

10L
:

The bending moment and shear force diagrams for the portal
frame are shown in Figure 5.25. The axial forces for the members are

AB ¼ 8Mp

15L
, BD ¼ Mp

2L
, ED ¼ 2Mp

3L
.

5.8 Effect of Axial Force on Plastic Collapse Load

As in elastoplastic analysis, the effect of axial force on plastic collapse
load can be calculated by successive approximation. The effect of axial
force on the plastic moment capacity for each member is calculated at
the end of the first iteration, and the reduced moment capacity is used



Mp

Mp

Mp

Mp
Mp

Mp

10L

5

3Mp 15L

8Mp

3L

2Mp

2L

Mp

5

3Mp

FIGURE 5.25. Bending moment and shear force diagrams.

158 Plastic Analysis and Design of Steel Structures
in the second iteration calculation in which a new collapse load or
load factor is obtained. This procedure is repeated until the collapse
load converges to a value with sufficient accuracy. The following
example demonstrates this process.

Example 5.10 In Example 5.9, if L ¼ 1 m; Mp ¼ 120 kNm;
Np ¼ 320 kN for all members, determine the collapse load of the
structure. The members are made of I section with yield condition

given by m ¼ 1:18 1�bð Þ where m ¼ M

MP
and b ¼ N

NP
for b > 0.15,

otherwise m � 1.

Solution. The first iteration gives Pw ¼ 72 and the axial forces in
the members are AB ¼ 64 kN b ¼ 0:2ð Þ; BD¼ 60 kN b ¼ 0:1875ð Þ;
ED¼ 80 kN b ¼ 0:25ð Þ:Thereducedplasticmoments for themembersare
(Mp1ÞAB ¼ 113:28 kNm; Mp1ÞBD ¼ 115:05 kNm; Mp1ÞED ¼ 106:2 kNm:

��
The subscript “1” indicates the plastic moments at the end of the first
iteration. The collapse load factors for the collapse mechanisms are

(i) Beam mechanism:

P ¼ Mp

� �
AB

þ 2 Mp

� �
BD

þ Mp

� �
ED

6L
:

(ii) Sway mechanism:

P ¼ Mp

� �
AB

þ Mp

� �
ED

2L
:

(iii) Combined mechanism:

P ¼ Mp

� �
AB

þ 2 Mp

� �
BD

þ 3 Mp

� �
ED

10L
:

For the combined mechanism, the axial forces in the members are

NBD ¼ Mp

� �
ED

2L
; NED ¼ Mp

� �
ED

þ Mp

� �
BD

3L
; NAB ¼ 2Pw �NED:



TABLE 5.1
Results of solutions by iteration

Iteration

(Mp)AB

(kNm)

(Mp)BD
(kNm)

(Mp)ED
(kNm)

P (beam

mechanism)

P (sway

mechanism)

P (combined

mechanism) Pw

1 120 120 120 80 120 72 72
2 113.28 115.05 106.2 74.93 109.74 66.20 66.20
3 115.65 118.10 109.0 76.81 112.33 67.89 67.89
4 115.01 117.48 108.10 76.35 111.56 67.43 67.43
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Results are given in Table 5.1.
Table 5.1 shows that the collapse load factor Pw converges to a

value of 67.43 at the end of the fourth iteration and is about 7% differ-
ent from that when the bending-axial interaction is not considered.

Problems

5.1. Using the mechanism method, determine the collapse load factor
a for the propped cantilever beam ABCD shown in Figure P5.1.
Mp ¼ 80 kNm.
B CA

kN kN

2.5 m 5 m 2.5 m 

D

FIGURE P5.1. Problem 5.1.
5.2. Find the minimum plastic moment capacity Mp required for the
beam ABC to form a mechanism. Assume that the plastic hinges
occur at B and C.
A
B C

2m 4m 

50 kN 

10 kN/m 

FIGURE P5.2. Problem 5.2.
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5.3. Find the common collapse load factor l applied to the loads for
the structure with Mp ¼ 100 kNm shown in Figure P5.3.
68  kN 

20 kN/m 

5m 3m 3m

FIGURE P5.3. Problem 5.3.
5.4. Determine the collapse load factor a for the propped cantilever
beam ABC subjected to UDL of 10a kN/m along BC shown in
Figure P5.4. Locate the plastic hinges at collapse. Mp ¼ 80 kNm.
A

4 m 6 m

B

10  kN/m

FIGURE P5.4. Propped cantilever under UDL.
5.5. Using the mechanism method, calculate the plastic moment Mp

required to support the beam shown in Figure P5.5 before it col-
lapses. Assume that the plastic hinges occur at A, B, and C.
10 kN/m 

60 kN

5m 3m A B C

FIGURE P5.5. Fixed-end beam.
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5.6. Identify the critical collapse mechanism for the portal frame
with one support pinned and the other fixed shown in
Figure P5.6 and calculate the common factor P at collapse. Plas-
tic moment ¼ Mp.
3L

3P

P

L

L

L

FIGURE P5.6. Problem 5.6.
5.7. Determine the collapse load factor a for the pin-based portal frame
shown in Figure P5.7. For all members, Mp ¼ 200;Np ¼ 700; all in
consistent units. The members are made of I sections with the

yield condition given by m ¼ 1:18ð1�bÞ where m ¼ M

MP
and

b ¼ N

NP
for b > 0:15 otherwise m � 1:
80

4

80

4

70

160

4

FIGURE P5.7. Pin-based portal frame.
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5.8. Determine the value of P at collapse for the column shown in
Figure P5.8. The plastic moment of the column is Mp.
P

L

2L

P
2L 

B

C

A

D

E

L

FIGURE P5.8. Problem 5.8.
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CHAPTER 6

Limit Analysis by Linear
Programming

F. Tin-Loi
6.1 Introduction

We recall that plastic limit analysis is concerned with the problem of
finding how “strong” a given structure is. In particular, the aim is to
estimate the factor by which the live load component needs to be
amplified so that a structural crisis, which takes the form of plastic
collapse, occurs. Plastic collapse takes place when the structure is
converted into a mechanism by the development of a suitable number
and disposition of plastic hinges.

It should be noted that the plastic collapse factor represents one
of the most important outcomes of a plastic structural analysis, as it is
useful for the reliable and economical safety assessment and design of
ductile structures.

As discussed in Chapter 4, this required information can be com-
puted in a step-by-step fashion by following the evolution of the inelas-
tic structural response of a suitably discretized structure to a given
loading history. However, such time-stepping analyses are often com-
putationally demanding and may even be unsuitable for preliminary
design purposes. Far more appealing would be a direct (nonevolutive)
and simple method, namely as carried out through a rigid plastic limit
analysis, that is able to provide the plastic collapse load factor quickly.

Classical hand-based calculation methods for limit analysis, as
described in Chapter 5 and in some well-known and excellent text-
books,1–3 are founded on the two fundamental theorems of plasticity.
Commonly referred to as the static (safe or lower bound) theorem and
the kinematic (unsafe or upper bound) theorem, these notions were
developed in the early 1950s and are cumbersome to use, except for
the simplest cases of discrete structures for which yielding is governed
by a single stress resultant (e.g., by bending moment only instead of by
a combination of, say, bending moment and axial force).



164 Plastic Analysis and Design of Steel Structures
Both of these theorems are strongly suggestive of constrained
optimization approaches. In fact, Charnes and Greenberg4 recognized,
soon after dual-bound theorems were proposed, that the limit analysis
of trusses could be cast as a linear programming (LP) problem. The use
of mathematical programming as a conceptual and formal tool for
solving a variety of plastic analysis problems, including of course
limit analysis, has been the subject of intense research over the last
three decades. Some of the key academic events held in the early years
on the application of mathematical programming to engineering plas-
ticity include a NATO advanced study course at Waterloo, Canada in
1977; a workshop at Liège, Belgium in 1982; a Euromech Colloquium
at Imperial College, London in 1984; a series of lectures at the Interna-
tional Centre for Mechanical Sciences, Udine in 1987; and a confer-
ence at the Faculté Polytechnique de Mons, Belgium in 1989. The
proceedings of the 1977 Waterloo conference5 still represent one of
the best introductions to this subject.

Unfortunately, despite the fact that such research has clearly
highlighted the power and elegance of mathematical programming
methods, their use for solving real engineering problems has been spo-
radic and below expectations. While this may be attributed to a natu-
ral tendency for designers to continue using techniques with which
they are familiar, the blame also justifiably lies with our university
courses that still, in most cases, teach only classical and often tedious
techniques involving, for instance, upper bound approximations to the
collapse load using an approach based on identification and combina-
tion of basic mechanisms.

The primary aim of the present chapter is to fill this gap. We start
with brief statements concerning the dual pair of bound theorems of
limit analysis that should clearly suggest associated formulations as
constrained optimization problems. For simplicity of implementation,
we focus on application of the static theorem. Students are then imme-
diately introduced to the solution of some simple examples through
application of the LP capability of the popular Microsoft Excel spread-
sheet software. We then provide a general description of the discrete
plane frame problemwith a view to its eventual computer implementa-
tion as a MATLAB script. Again the underlying formulation is cast as
an LP problem. A note on the optimal plastic design problem concludes
the chapter.

6.2 Limit Analysis Theorems as Constrained
Optimization Problems

As discussed in Chapter 5, the pair of bound theorems of limit analysis
concern statements regarding equilibrium, the mechanism condition,
and yield satisfaction (often also called “conformity”).
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For our purposes, the following are useful statements of the
static and kinematic theorems, respectively.

Static limit theorem: An external load computed on the basis of
an assumed distribution of stress resultants that satisfy equilibrium
and the yield condition is less than or equal to the true collapse load.
Hence, among all statically admissible solutions (i.e., sets of such pos-
sible stress resultants), the best estimate is the one that maximizes
the statically admissible load factor as.

It follows that the load factor as for any statically admissible
solution is a lower bound on the correct load factor ac for plastic
collapse of the structure, i.e., as � ac.

Kinematic limit theorem: An external load computed on the
basis of an assumed mechanism in which the stress resultants satisfy
equilibrium is greater than or equal to the true collapse load. Hence,
among all kinematically admissible solutions (i.e., possible collapse
mechanisms), the best estimate is the one that minimizes the kine-
matically admissible load factor ak.

It follows that the load factor ak for the development of any kine-
matically admissible solution is an upper bound on the correct load
factor ac for plastic collapse of the structure, i.e., ac � ak.

The following remarks are worth noting:

1. Stated in the just given form, it is immediately obvious that the
numerical application of both theorems involved maximization
(static theorem) or minimization (kinematic theorem) under the
various stated constraints. In particular, the operative form of the
static theorem is simply to maximize the load factor (treated as a
variable) subject to constraints on equilibrium and yield confor-
mity. The optimum value of this constrained optimization prob-
lem, if it exists, will furnish the exact collapse load provided that
the discrete model is a proper representation of the actual
structure.

2. When the constraints of the optimization problem are linear (as in
the case when bending only governs the formation of plastic hinges
or when a yield condition involving combined stress resultants has
been suitably piecewise linearized), the mathematical program-
ming problem becomes, as is well known, an LP problem. It is then
useful to note that if the static LP problem has an optimal solution,
then so does the kinematic LP, and moreover the two solutions
coincide with the collapse load factor ac. This uniqueness of the
collapse load factor follows from the strong duality property in LP
(see, e.g., Chvátal6).

3. It cannot be automatically assumed that application of the static
(kinematic) theorem on a discrete model of the structure would
provide a strict lower (upper) bound. This is only so, as indicated
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earlier, if the model is a true representation of the actual structure.
For instance, any model that involves yield conformity checks
at only some sections, leaving out some critical ones that do yield,
is unlikely to provide a lower bound. Similarly, if a nonlinear
yield surface has been approximated as an inscribed piecewise
linear one, the strength of the plastic zone will be underestimated,
and it is highly likely that the collapse load will also be
underestimated.

6.3 Spreadsheet Solution of Simple Limit Analysis Problems

Our purpose in this section is to formulate and solve, as LP problems,
some simple beam and frame problems for which bending governs
only the formation of plastic hinges. For this purpose, we use the
static theorem and recall that its application involves the following
steps.

(a) Identify the discrete locations in the structure that are deemed to
be critical, that is, locations at which plastic flexural hinges may
occur.

(b) Develop appropriate equilibrium equations for the bending
moment at each of the chosen critical sections. This can be
achieved easily in the same fashion as the well-known step in
the flexibility analysis of structures. In essence, the actual equilib-
rium distribution of bending moments can be expressed as the
sum of the bending moments on a primary (suitably released)
structure subjected to the applied loads and of an unknown self-
stress moment distribution. This can be written formally as

m ¼ aB0fþ B1x (6.1)

where vectorm collects the bending moments at all critical sections,
f are the given known loads (governed by the load multiplier a),
x is a vector of redundants (releases), and quantities B0 and B1 are
referred to, respectively, as the basic and redundant load matrices.
For simple structures, such as the ones considered in this chapter,
the redundants can be chosen by inspection and the necessary
matrices can then be easily calculated manually by statics. Accu-
rate and efficient techniques exist for automatic selection of x,
and consequent generation of B0 and B1, but these are not to be
discussed in this book.

(c) List the yield conditions that apply at each of the critical sections.
If we assume, for simplicity, that the plastic moment capacities
Mp in both positive and negative bending are equal at all these sec-
tions, then these conditions are
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�Mp � m � Mp: (6.2)

(d) Use Equations (6.1) and (6.2) as constraints and set up the static
limit analysis problem as the following LP problem:

maximize a
subject to m ¼ aB0fþ B1x;

�Mp � m � Mp:

9=
; (6.3)

(e) Input LP data for solution by a selected LP solver. This section out-
lines use of the LP solver facility built into the Excel spreadsheet.

Example 6.1: Simple Propped Cantilever

This first example is that of a simple propped cantilever (Figure 6.1a)
of constant plastic moment capacity Mp ¼ 10.

This is a problem that can be solved easily by hand calculations.
However, our purpose is to clarify how various data can be obtained
for setting up the appropriate LP problem and also to detail how Excel
can be used to obtain the optimal solution.

The structure is onefold statically indeterminate and we choose
the vertical reaction r (assumed to be positive up) at the propped sup-
port as the redundant (Figure 6.1b). The bending moment distribu-
tions corresponding to the primary (released) structure and to the
redundant are as shown, respectively, in Figures 6.1c and 6.1d; the
assigned signs are consistent but arbitrary (with sagging moments
assumed to be positive). These distributions can be used to set up
the equilibrium conditions m ¼ aB0fþ B1x once the locations of
critical sections have been decided upon. It should also be noted that
4
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FIGURE 6.1. Example 6.1: Simple propped cantilever.
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the entries for B0f are directly available from the bending moment dis-
tribution shown in Figure 6.1c.

Let us assume that there are three potential hinge locations,
indicated by the numbers 1, 2, and 3 in Figure 6.1a.

It is now a simple matter to set up the equilibrium conditions for
these locations as follows:

m1

m2

m3

2
4

3
5 ¼

�35

�10

0

2
4

3
5aþ

10

5

2:5

2
4

3
5r

where the subscripts used in conjunction with the m values designate
the critical section number. It is important to remember that variable
r for LP purposes is a “free” variable (namely, �1 � r � 1). Also, a,
being the only term in the objective function that is to be maximized,
can be similarly treated as a free variable.

The yield conditions for each of the three sections can be written
explicitly as

�10

�10

�10

2
64

3
75 �

m1

m2

m3

2
64

3
75 �

10

10

10

2
64

3
75:

Before we start entering required data into Excel for solution by
its linear optimizer, it is useful to reduce the number of variables by
eliminating m1, m2, and m3. This can be achieved by combining the
m expressions with their corresponding yield constraints. After this
has been carried out, a complete specification for our limit analysis
problem [Equation (6.3)] in LP format is then as follows:

Objective: max a
Variables: a; r
Constraint1: �35aþ 10r � 10
Constraint2: �35aþ 10r � �10
Constraint3: �10aþ 5r � 10
Constraint4: �10aþ 5r � �10
Constraint5: 2:5r � 10
Constraint6: 2:5r � �10

As expected, there are six constraints (or two per critical section repre-
senting positive and negative yielding). Also, note that in Excel, we do
not need, as shown earlier, to explicitly provide bounds for the free
variables a and r.

The following now describes in some detail how Excel is used to
solve the LP problem.
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(a) Check if the solver add-in is present. Open Excel and check if the
Solver command is present on the Tools menu. If not, it should be
added in by using the Add-ins menu, selecting Solver Add-in, and
clicking OK. If the Solver Add-in is not currently installed, you
will be asked whether you want to install it and you can proceed
to add it in.

(b) Prepare an Excel sheet for data entry and processing. While it is
not essential, it would be useful to label your worksheet for ease
of checking for data entry errors and to have a clearer picture as to
which variable and constraint values are being referenced. The lay-
out largely depends on the user’s preference. We will adopt a simple
and largely uncluttered worksheet. We proceed as follows:
l In cell A1, provide a short description of the example.
l Provide names of the two variables in cells A3 and A4.
l Provide names of the six constraints in cells A6 to A11.
l Enter RHS values for all constraints in cells B6 to B11 and label
the column at cell B5. This step and all of the aforementioned
steps are mandatory, as RHS values could be entered directly
after naming the Solver.

l All variable and constraint function values will be kept in the
appropriate C column, namely C3 to represent a, C4 to represent
r, C6 to contain the explicit constraint function for Constraint1,
etc.

l We now enter these constraint functions: click on cell C6 and
define it by entering the formula¼ –35*C3þ 10*C13, click on cell
C7 and define it by ¼ –35*C3 þ 10*C13, etc. until the last cell,
C11, has been defined.

At this stage, the spreadsheet should appear as in Figure 6.2.

(c) Enter Solver parameters. Complete the following steps to enter the
LP information that the solver needs to compute the collapse load
multiplier:
l On the Tools menu, click Solver. You should see the box in
Figure 6.3.

l In the Set Target Cell box, enter the cell reference for the objec-
tive function. In our case, it coincides with variable a or cell C3.

l Make sure that Max is selected since we are maximizing.
l In the By Changing Cells box, enter the cell references for each
of the two variables. In our case, enter C3:C4 (by clicking and
dragging on the appropriate cells in typical Excel fashion).

l In the Subject to the Constraints box, click the Add option. After
an Add Constraint dialog appears, enter the Cell Reference for
the first constraint (i.e., C6), the appropriate type of constraint



FIGURE 6.3. Example 6.1: Solver parameters box.

FIGURE 6.2. Example 6.1: Spreadsheet layout for LP problem.
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(i.e., �), and the RHS of the constraint (i.e., B6). The result
should be as in Figure 6.4.

l Click Add (or OK) and repeat for each of the remaining five con-
straints. The final box should be as in Figure 6.5.

(d) Solve the LP problem and obtain the output.
l We are now ready to solve the LP problem. Simply click Solve.
You will see the box in Figure 6.6.
FIGURE 6.4. Example 6.1: Add constraint box.



FIGURE 6.5. Example 6.1: Completed solver parameters box.

FIGURE 6.6. Example 6.1: Result of solve.
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l If you wish to keep the solution values on the worksheet, click
Keep Solver Solution. This means that the values for your vari-
ables have been changed with the corresponding changes to the
cells defining objective function and constraint functions.
Because we may wish to test this model further, we revert back
to the original values by simply clicking on Restore Original
Values.

l Finally, you can choose the type of report you wish to generate
in the Reports box. In our case, we wish to have a summary of
the results. Hence click Answer and then OK. You will notice
that a new sheet marked Answer Report 1 has been generated.

l The report is given in Figure 6.7.
(e) Interpreting the results. The report allows easy interpretation of

our limit analysis run.

In summary, it indicates that the limit load multiplier
ac ¼ 1:4286, the redundant r ¼ 4, and the mechanism produced



FIGURE 6.7. Example 6.1: Results report.

172 Plastic Analysis and Design of Steel Structures
involves activation of constraints Constraint2 and Constraint5 in
view of their “binding” status (with corresponding cell values at the
limit indicating that the plastic moment capacities at these sections
have been reached). These two constraints represent development of a
hogging hinge at section 1 and a sagging hinge at section 3, respectively.
This particularmechanism is shown in Figure 6.8. Unfortunately, Excel
cannot provide dual values at optimality; in our case these would corre-
spond to hinge rotations as the constraints for the static problem relate
to yield conditions. The interpretation of optimal dual values is clarified
in later sections of this chapter.
4

FIGURE 6.8. Example 6.1: Mechanism.
Example 6.2: Pinned Gable Frame

We now provide a second example to reinforce how the static limit
analysis problem can be set up for Excel solution. Fewer details, as
compared to Example 6.1, are provided; these are left to the student
to work out.
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FIGURE 6.9. Example 6.2: Pinned gable frame.
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The structure, which is a simple gable frame with pinned sup-
ports (Figure 6.9a), has been deliberately selected because it tra-
ditionally poses various problems for students who try to solve it
manually by application of the mechanism approach. Many find it
difficult to identify critical mechanisms and to calculate appropriate
hinge rotations for use in the traditional virtual work approach.

For our static LP approach, we select the horizontal reaction at
the right-hand support as the redundant (Figure 6.9b); the vertical
reaction is 3:25a, as can be verified by taking moment equilibrium
about the left-hand support. Simple statics will furnish the bending
moments corresponding to applied loads (Figure 6.9c) and redundant
(Figure 6.9d); bending moments are assumed to be positive if they
cause tension on the inner faces of members.

Assuming, as before, a structure of constant plastic moment
capacity Mp ¼ 10, we can set up an LP problem in the same format
as in Example 1, namely,
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Objective: max a
Variables: a;h
Constraint1: 4aþ 4h � 10
Constraint2: 4aþ 4h � �10
Constraint3: 15aþ 5h � 10
Constraint4: 15aþ 5h � �10
Constraint5: 14aþ 6h � 10
Constraint6: 14aþ 6h � �10
Constraint7: 13aþ 5h � 10
Constraint8: 13aþ 5h � �10
Constraint9: 4h � 10
Constraint10: 4h � �10

After entering and solving this LP problem in Excel, we obtain
the solution report shown in Figure 6.10.

As the results report shows, the optimal solution is ac ¼ 1:5,
the redundant h ¼ �2:5 (the negative sign indicates that this hori-
zontal reaction acts in the opposite direction to the one initially
assumed), and the mechanism involves formation of a positive
moment hinge at section 2 and of a negative moment hinge at
section 5. The fact that the two plastic hinges are formed is not
surprising, as the original structure is onefold indeterminate. This
information allows us to draw the collapse mechanism, which is dis-
played in Figure 6.11.
FIGURE 6.10. Example 6.2: Results report.
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FIGURE 6.11. Example 6.2: Mechanism.
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6.4 General Description of the Discrete Plane Frame Problem

It should be clear by now that the spreadsheet LP approach described
in the previous section eliminates the often tedious and sometimes
difficult process involved in the hand calculation of trial mechanisms.
A disadvantage, however, lies in the fact that, except for simple struc-
tures for which yielding is governed by a single stress resultant, the
hand generation of equilibrium and yield conditions can become a
formidable task.

The aim of this section is to describe how the limit analysis for
large plane frame problems, involving combined bending-axial force
plastic hinges (as well as pure moment hinges), can be systematically
set up for automatic generation via a spreadsheet or other popular
modeling environment, such as MATLAB.

The structural idealization described is based on the familiar
static-nodal system representation invariably used in finite element
modeling. As described previously, we adopt the static LP approach
to find the limit load multiplier.

6.4.1 Mathematical Model and Governing Relations

Structural Model

The following basic assumptions are made:

(a) The structure is plane and is made up of straight prismatic
finite elements connected at nodes.

(b) Plastic deformations are assumed to be lumped at the ends of
each element while the element itself is considered to be rigid.

(c) A generalized plastic hinge model, extended to include axial
effects, is assumed valid.

(d) Classical perfect plasticity conditions apply so that plastic
deformations are consistent with the normality rule.

(e) Displacements are small so that equilibrium equations refer
to the initial undeformed structure geometry.
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The frame is idealized as a number of elements that are
interconnected at a discrete number of nodes. The discretization is
made on the basis of known or assumed locations at which hinges
may form. As an example, the planar frame shown in Figure 6.12
has been modeled using four elements and five nodes. All external
forces are reduced to act on these nodes in the form of concentrated
forces. Thus, for the model shown, the equivalent nodal load vector
af has a dimension ð9� 1Þ, consistent with the 9 degree of freedom
model. As usual, a is the live load multiplier and f is known. To sim-
plify the notation, let p ¼ af. Member axes are also shown with, for
instance, element 1 oriented in the node 1 to node 2 direction.

Each finite element is described in terms of three independent (or
so-called “natural”) stress resultants (thus eliminating rigid body
motions). The particular choice adopted is as shown in Figure 6.13.
It consists of three normalized stress resultants, namely axial force
and bending moment at the “start” node j of the generic ith element
and a bending moment at the “end” node k of the element. These
nondimensional generalized forces, collected in vector si, are repre-
sented, respectively, by si1, si2, and si3. More explicitly, si1 ¼ nj=N

i
p,
j

k

si
3

si
2

si
1

Li

FIGURE 6.13. Generic frame element.
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si2 ¼ mj=M
i
p and si3 ¼ mk=M

i
p, where n is the axial force, m is the bend-

ing moment, Np is the pure axial plastic capacity of the member, and
Mp is its pure moment plastic capacity; various subscripts and super-
scripts used are self-explanatory.

Equilibrium

We are now in a position to establish the equilibrium relations for the
structure. For this purpose, consider the generic frame element i of
length Li oriented at an angle y to the horizontal, as in Figure 6.14.
The three selected independent stress resultants si are shown together
with the remaining three stress resultants required to self-equilibrate
the member. Also indicated are the corresponding proportions of the
applied loads, collected in the ð6� 1Þ vector pi, on end nodes j and k
required to maintain nodal equilibrium. More explicitly,

piT ¼ ½pj1; pj2; pj3; pk1; pk2; pk3�:
Equilibrium at the element level can be simply established by

writing the six nodal equilibrium equations. For node j, the conditions
for horizontal, vertical, and moment equilibrium can be written,
respectively, as

SH ¼ 0 ¼ pj1 � si1cosyþ
si2 þ si3

Li
siny;

SV ¼ 0 ¼ pj2 � si1siny�
si2 þ si3

Li
cosy;

SM ¼ 0 ¼ pj3 � si2;
j

k

iL

iL

pj2

pj3

pj1
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FIGURE 6.14. Self-equilibrated element and corresponding nodal loads.
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and similarly for node k as

SH ¼ 0 ¼ pk1 þ si1cosy�
si2 þ si3

Li
siny;

SV ¼ 0 ¼ pk2 þ si1sinyþ
si2 þ si3

Li
cosy;

SM ¼ 0 ¼ pk3 � si3:

These relations can be compactly expressed as

Bisi ¼ pi (6.4)

where Bi represents the ð6� 3Þ element equilibrium matrix

Bi ¼

cosy �siny=Li �siny=Li

siny cosy=Li cosy=Li

0 1 0
�cosy siny=Li siny=Li

�siny �cosy=Li �cosy=Li

0 0 1

2
6666664

3
7777775
:

We are now in a position to generate the equilibrium conditions
at the structure level. This structure equilibrium can be written as

Bs ¼ p (6.5)

where, for a structure discretized into n elements and d degrees of free-
dom, B is the ðd� 3nÞ structure equilibrium matrix, s is the ð3n� 1Þ
vector of all stress resultants collected in the traditional concatenated
form sT ¼ ½s1T . . . snT �, and pT ¼ ½p1 . . . pd�.

B can be assembled from element Bi matrices through a process
very similar to the assembly of stiffnessmatrices. In essence, it uses loca-
tion or freedom vectors that contain information relating to where ele-
ments of Bi need to be inserted into B. For instance, element 4 of the
frame shown in Figure 6.12 has the location vector ½7 8 9 0 0 0� so that
the entire first row of B4 is placed in the seventh row of the ð9� 12Þ
matrix B in the columns appropriate to frame element 4, namely col-
umns 10, 11, and 12; the second row of B4 is placed in the eighth row of
B in the same columns; the third row of B4 is placed in the ninth row of
B in the same columns; and the three remaining rows ofB are set to zeros
since the corresponding location vector entries are zeros.

Piecewise Linear Yield Conditions

As indicated previously, a generalized plastic hinge can form at any of
the member ends. For the generic member i (Figure 6.13), a hinge can
thus form at node j through the combined axial-bending interaction
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of the active stress resultants ðsi1; si2Þ and another hinge at node k
through the effect of ðsi1; si3Þ. Of course, the description presented here
also includes, as a special case, the more familiar and simpler case of
hinge formation through bending action only.

The yield conformity condition is typically nonlinear. However,
for our purposes, we will adopt a suitably piecewise linearized repre-
sentation of such yield surfaces. This is computationally advanta-
geous, as the underlying discrete limit analysis problem can be cast
as an LP (rather than nonlinear programming) problem.

As an example, consider the case of a solid rectangular section
under combined axial force and bending. For node j of element i, a
simple eight-hyperplane lower bound approximation to the well-
known nonlinear condition (e.g., Massonnet and Save2)

ðsi1Þ2 þ
��si2�� � 1

is as shown in Figure 6.15.
The eight yield conditions (one for each hyperplane) that govern

the linearized yield locus can be written explicitly, in order of the
hyperplane numbering shown in Figure 6.15, as follows:
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FIGURE 6.15. Piecewise linear approximation of nonlinear yield locus.
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‘1s
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i
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i
1 þm2s

i
2 � r ij2;

‘2s
i
1 �m2s

i
2 � r ij2;

‘1s
i
1 �m1s

i
2 � r ij1;

�‘1s
i
1 �m1s

i
2 � r ij1;

�‘2s
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1 �m2s

i
2 � rij2;

�‘2s
i
1 þm2s

i
2 � r ij2;

�‘1s
i
1 þm1s

i
2 � r ij1

where ð‘1 ¼ 1=
ffiffiffi
5

p
; m1 ¼ 2=

ffiffiffi
5

p Þ are the direction cosines of the normal
to hyperplane 1, ð‘2 ¼ 3=

ffiffiffiffiffiffi
13

p
;m2 ¼ 2=

ffiffiffiffiffiffi
13

p Þ are the direction cosines
of the normal to hyperplane 2, r ij1 is the perpendicular distance of
hyperplane 1 from the origin, and r ij2 is the perpendicular distance
of hyperplane 2 from the origin.

Before providing a compact vector–matrix representation of these
relations, it would be worthwhile to give a geometric explanation of
the yield condition pertaining to one hyperplane. Consider the stress
resultant OS with components ða;bÞ and a single hyperplane, as
shown in Figure 6.16.

Geometrically, the yield condition is expressed as OB � OH.
Thus, when OB, the projection of OS on OH, is less than OH, the
stress point lies in the rigid region. However, when OB ¼ OH, the
stress point is located on the yield hyperplane. Now, OB ¼ OAþAB,
and because OA ¼ a cosb, AB ¼ b sinb, and OH ¼ r, then the condi-
tion OB � OH can be written as a cosbþ b sinb � r, which is precisely
s2

s1

A

H
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O R

(a,b)
S

hyperplane 

FIGURE 6.16. Geometrical interpretation of yield condition for a hyperplane.
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the generic yield condition for any hyperplane. Also, ðcosb; sinbÞ are
clearly the direction cosines of the outward normal to the hyperplane.

In general, the yield conditions for node j of element i can be
written concisely as

NiT
j sij � rij (6.6)

where, for the case shown in Figure 6.15,

NiT
j ¼

‘1 m1

‘2 m2

‘2 �m2

‘1 �m1

�‘1 �m1

�‘2 �m2

�‘2 m2

�‘1 m1

2
66666666664

3
77777777775
; rij ¼

r ij1
r ij2
r ij2
r ij1
r ij1
r ij2
r ij2
r ij1

2
6666666666664

3
7777777777775

; sij ¼ si1
si2

� �
:

We can now collect the relations that apply to both nodes j and k
to provide the yield conditions for element i, or

NiTsi � ri (6.7)

which has the same form as Equation (6.6) and where, obviously,

NiT ¼

‘1 m1 0
‘2 m2 0
‘2 �m2 0
‘1 �m1 0

�‘1 �m1 0
�‘2 �m2 0
�‘2 m2 0
�‘1 m1 0
‘1 0 m1

‘2 0 m2

‘2 0 �m2

‘1 0 �m1

�‘1 0 �m1

�‘2 0 �m2

�‘2 0 m2

�‘1 0 m1

2
666666666666666666666666664

3
777777777777777777777777775

; ri ¼ rij
rik

� �
; si ¼

si1
si2
s13

2
4

3
5:

Finally, we can assemble the yield conditions for the whole
structure, which can be represented in the indexless form of Equation
(6.7) as

NTs � r (6.8)
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where, as is typical in finite element methodology, vector and matrix
quantities represent the unassembled contributions of corresponding
elemental entities, as concatenated vectors and block diagonal matri-
ces, respectively. In particular, sT ¼ ½s1T . . . snT �, rT ¼ ½r1T . . . rnT �, and
N ¼ diag½Ni . . .Nn�. In general, if the yield surface at a node has been
piecewise linearized into y hyperplanes, then matrix N is of size
ð3n� 2ynÞ and r is a ð2yn� 1Þ vector.

6.4.2 Dual LP Statements of the Discrete Limit
Analysis Problem

Within the framework provided by the static-nodal description we can
now formulate the discrete form of the static approach to limit analy-
sis as the following LP problem in variables are a and s:

maximize a
subject to Bs� af ¼ 0;

NTs � r

9=
; (6.9)

where 0 is a null vector of appropriate size, namely ðd� 1Þ.
It is interesting to note that, at this stage, anyone familiar with

mathematical programming will, without needing to understand the
physical meaning of the quantities involved, be able to immediately
formulate the dual LP problem from known duality properties in
LP.6 The dual problem can be encoded as

minimize rTz
subject to BTu�Nz ¼ 0;

f
T
u ¼ 1;

z � 0

9>>=
>>;

(6.10)

where z and u are dual variables.
Mechanically speaking, z can be recognized as a vector of non-

negative plastic multiplier rates and u as a vector of nodal displace-
ment rates. The first constraint set represents compatibility, and the
second a normalized external work term. Note that application of
the work equation (equating external work rate and internal dissipa-
tion) gives

afTu ¼ rTz

and because f
T
u ¼ 1, then the objective function of the LP problem

[Equation (6.10)], for any admissible solution (possible mechanism),
is in fact the kinematically admissible load factor ak.

Knowledge of LP provides yet another extremely useful property
related to these LP problems, namely that the Lagrange multipliers of
the optimal solution to the static (kinematic) problem provide us
directly with a set of optimal kinematic (static) variables. Most LP
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solvers, including the one included in the MATLAB optimization
toolbox, will report these multipliers as a by-product of the optimiza-
tion. Specifically, each constraint in Equation (6.9) is associated with a
Lagrange multiplier, and at optimality the elements of the reported
Lagrange multiplier vector of length ðdþ 2ynÞ are ordered in the order
of the static constraint set. For instance, the first d multipliers repre-
sent the optimal values for the displacement rates u (conjugate with
the static variables af), and the next 2yn multipliers furnish the opti-
mal plastic multiplier rates z associated with each of the yield hyper-
planes. This useful property can be used to obtain, say, kinematic
optimal solutions without having to actually solve the kinematic
problem [Equation (6.10)].

6.5 A Simple MATLAB Implementation for Static
Limit Analysis

In his 1990 preface to the volume on the series of lectures held at the
International Centre for Mechanical Sciences, Udine, Lloyd Smith7

rightly wrote that the practical espousement of mathematical pro-
gramming approaches in engineering plasticity is largely dependent
on the availability of software that can handle practical structures.
After so many years since that workshop, one must lament that,
while there are some high-quality codes available, not nearly enough
has been achieved in that direction. In many respects, that role needs
to be fulfilled by our students—the engineers of tomorrow.

The aim of this section is to provide some key ideas as to how a
limit analysis software can be simply constructed. While the particu-
lar pilot code described is restricted only to plane frames for which
pure moment plastic hinges can be formed, it is general enough to
be easily extendable. Moreover, even in its present form, it can handle
quite large structures, primarily because of the state-of-the-art so-
called interior point LP solver it uses.

The coding has been carried out using the well-known MATLAB
technical computing language. As indicated earlier, this language may
not be as popularwith students as Excel, butMATLABdoes provide sev-
eral key advantages, including, for instance, the ability to handle very
large data structures. It should also be mentioned that an alternative,
increasingly popular, encoding tool is the use of one of themany sophis-
ticatedmodeling systems available.We need onlymention one of them,
namely GAMS (an acronym for General Algebraic Modeling System),8

that is specifically designed to make the construction and solution of
large and complex mathematical programming models easy for the
nonmathematically oriented user. Its application for solving the limit
analysis problem has been illustrated, for example, by Tin-Loi.9 GAMS,
incidentally, is freely accessible over the internet.10
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The main features of the MATLAB script described here are as
follows: a simple design that follows directly the concepts introduced
in the previous section; use of an input data text file that facilitates
the solution of different problems; writing of a brief output text file
that allows for results to be printed and kept; a structure that can eas-
ily be extended by students; and, finally, call to a powerful LP solver
(LINPROG), available as part of the optimization toolbox of MATLAB,
that can handle very large LP problems.

(a) Data specification and input. A text file is used for data spec-
ification and because it is separate from but has to be incorporated as
part of the MATLAB main script, it must be named with the conven-
tional “.m” extension (e.g., LA_in.m).

Thedata specificationhasbeenpurposelykept as simple aspossible.
It consists of a Title, specification of numbers of elements and degrees
of freedom, element data (namely orientations of element and plastic
moment capacities), element location vectors, and basic load vector.

As an example, consider the model of the simple propped canti-
lever analyzed previously through Excel. A static-nodal model is
shown in Figure 6.17 and the corresponding input file is shown in
Figure 6.18. It should be noted that the orientation j� k and y
(Figure 6.13) is given in terms of directed projections. In particular,
array El_dat contains the signed x projections in column1, the signed
y projections in column2, and the plastic moment capacities in col-
umn3 (with each row of El_dat representing an element). This data
structure allows for easy extension of the data specification to
include, for example, combined stresses (e.g., by adding plastic axial
capacity information in column4).

(b) Read and check data input. The main MATLAB script starts
off with clearing all variables, reading the input file LA_in.m, and
performing some checks for size conformity, as in Figure 6.19. Addi-
tional checks, including a plotting facility if desired, can be added to
the script.
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FIGURE 6.17. Model of simple propped cantilever.



Title = 'Example 1: simple propped cantilever'; 

Num_el  = 3; 
Num_dof = 8; 

El_dat = [ 5    0  10 
           2.5  0  10 
           2.5  0  10 ]; 

LV =     [ 0  0  0  1  2  3 
           1  2  3  4  5  6 
           4  5  6  7  0  8 ]; 

f = zeros(Num_dof,1); 
f(2) = -1; 
f(5) = -4;

FIGURE 6.18. Input file LA_in.m.

% Limit Analysis of Plane Frames 
%   Caters only for pure moment hinges 
%   Stress resultant s = (n,m1,m2) 
%   LP solver LINPROG 
% Script : LA.m 
% Input  : LA_in.m 
% Output : LA.out  

% F. Tin-Loi: 22 Nov 92 
% Revised:    15 Mar 07 

clear all 

% Input data (from data file) 
% --------------------------- 
LA_in

% Input element data : dx dy Mp 
% Input location vectors LV 
% Input load f 

% Check size 
% ---------- 

% Check number of elements 
if Num_el ~= size(LV,1) 
  error('No. elements incompatible with LV size'); 
end;

% Check number of dof 
if Num_dof ~= max(max(LV)) 
  error('No. dof incompatible with LV size') 
end;

FIGURE 6.19. Data input and checking.
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(c) Assemble equilibrium matrix. The next phase involves the
calculation of element equilibrium matrices and the assembly of the
structure equilibrium matrix B. The code faithfully follows the proce-
dure described in Section 6.1. Location vectors are used for the assem-
bly process and, because MATLAB does not allow zero index values, a
simple artifice is used to “assemble” elements corresponding to zero



% Assemble equilibrium matrix B 
% ----------------------------- 

% Zero equilibrium matrix B 
% Add in a dummy row at dof+1 for freedom = 0 
B = zeros(Num_dof+1,3*Num_el); 

% Change all 0 in LV to Num_dof+1 
LV(LV==0) = Num_dof+1; 

% Assemble by looping through all elements 
for i=1:Num_el 

  % Generate equilibrium sub-matrix b 
  L  = sqrt(El_dat(i,1)^2+El_dat(i,2)^2); 
  cs = El_dat(i,1)/L; 
  sn = El_dat(i,2)/L; 
  sL = sn/L; cL = cs/L; 
  b = [  cs -sL -sL 
         sn  cL  cL 
         0   1   0 
        -cs  sL  sL 
        -sn -cL -cL 
         0   0   1  ]; 
  % Assemble 
  ii = i*3-2; 
  jj = ii+2; 
  B(LV(i,:),ii:jj) = b; 

end;

% Delete last "dummy" row to form B 
B = B(1:Num_dof,:);

FIGURE 6.20. Construction of a structure equilibrium matrix.
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location vectors. What has been done is to introduce an additional
freedom, assemble zero freedoms into that location, and then finally
delete that row from the structure equilibrium matrix. The associated
code fragment implementing this is given in Figure 6.20.

(d) Form LP problem for solution with LINPROG. The way data
are organized for processing by the optimizer largely depends on the
particular solver used. In our case, we use LINPROG, a large-scale
interior point solver. Because we have restricted ourselves to plastic
hinges formed only by pure bending, the yield conditions are simply
enforced as upper and lower bounds on the stress variables. As shown
in Figure 6.21, results are recovered from the quantities alpha (optimal
load multiplier), s_alpha (vector containing the values of all variables
at optimality), and lambda (the dual optimal or Lagrange multiplier
values).

(e) Postprocessing. This part of the script (Figure 6.22) simply
extracts the collapse load and optimal stress resultant values from
vector s_alpha, the dual displacement vector u from the Lagrange mul-
tiplier output, and also the indices (namely, whether s2 or s3 is active)
and locations (namely, which elements) of activated hinges.



% Process results 
% --------------- 

% Extract alpha and s 
alpha = s_alpha(Num_var,1); 
s = s_alpha(1:Num_var-1); 

% Lagrange multiplier 'lambda' contains dual values 
%   lambda.eqlin ... deflection 
%   lambda.lower ... active LB (negative yield) 
%   lambda.upper ... active UB (positive yield) 

% Deflections (-ve sign, conjugate with -f) 
u = -lambda.eqlin; 

% Extract yield mode indices 
lam_neg = lambda.lower; 
lam_pos = lambda.upper; 
Index_yield_neg = find(lam_neg > 1e-6)'; 
Index_yield_pos = find(lam_pos > 1e-6)'; 

% Find element number and active stress (s2 or s3) 
el_neg = ceil(Index_yield_neg./3); 
s_neg = Index_yield_neg-3*(el_neg-1); 
el_pos = ceil(Index_yield_pos./3); 
s_pos = Index_yield_pos-3*(el_pos-1);

FIGURE 6.22. Postprocessing the results.

% Set up LP and solve using Matlab LINPROG solver 
% ----------------------------------------------- 

% Find number of variables s and alpha 
Num_var = Num_el*3+1; 

% Add load vector to last column of B 
B(:,Num_var) = -f; 

% Objective function coefficients for min (-alpha) 
obj(1,Num_var) = -1; 

% RHS b 
b = zeros(Num_dof,1); 

% Set bounds on variables s and alpha 
VUB = zeros(Num_var,1); 
VUB(:,1) = inf; 
for i=1:Num_el 
  VUB(i*3-1,1) = El_dat(i,3); 
  VUB(i*3,1) = El_dat(i,3); 
end;
VLB = - VUB; 
VLB(Num_var,1) = 0;  % LB on load factor = 0 

% Solve LP 
% All constraints are equalities, RHS b = 0 
% All variables specified with UB and LB 

% Call LINPROG 
[s_alpha,alpha,EXITFLAG,OUTPUT,lambda] = ... 
    linprog(obj,[],[],B,b,VLB,VUB);

FIGURE 6.21. Setting up and solving the LP problem.
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% Write output file 
% ----------------- 

fname = 'LA.out'; 
fid = fopen(fname,'w'); 
MyDate = date; 
fprintf(fid,'Title :    %s\n',Title); 
fprintf(fid,'Date  :    %s\n\n',MyDate); 
fprintf(fid,'alpha :    %10.6f\n\n',alpha); 
fprintf(fid,'Stress resultants s:\n'); 
for i = 1:Num_el 
  fprintf(fid,'  El  %-4d %+6.4e  %+6.4e  %+6.4e\n',... 
      i,s(3*i-2:3*i)); 
end;
fprintf(fid,'\n'); 
fprintf(fid,'Displacements u:\n'); 
for i = 1:Num_dof 
  fprintf(fid,'  dof %-4d %+6.4e\n',i,u(i)); 
end;
fprintf(fid,'\n'); 
fprintf(fid,'Negative hinges (element, s2 or s3):\n'); 
for i=1:size(el_neg,2) 
  fprintf(fid,'  El  %-4d s%-6d\n',el_neg(i),s_neg(i)); 
end;
fprintf(fid,'Positive hinges (element, s2 or s3):\n'); 
for i=1:size(el_pos,2) 
  fprintf(fid,'  El  %-4d s%-6d\n',el_pos(i),s_pos(i)); 
end;
fclose(fid);

FIGURE 6.23. Output of the results.
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(f) Output results to a file. Finally, some key results are written
to a text file named LA.out, as detailed in Figure 6.23. As an example,
the output obtained from running actual data specified in Figure 6.18
is shown in Figure 6.24. The student should verify that these results
agree with the Excel run.
Title :    Example 1: simple propped cantilever 
Date  :    15-Mar-2007 

alpha :      1.428571 

Stress resultants s: 
  El  1    +0.0000e+000  +1.0000e+001  +5.7143e+000 
  El  2    +0.0000e+000  -5.7143e+000  +1.0000e+001 
  El  3    +0.0000e+000  -1.0000e+001  +0.0000e+000 

Displacements u: 
  dof 1    +0.0000e+000 
  dof 2    -1.4286e-001 
  dof 3    -2.8571e-002 
  dof 4    +0.0000e+000 
  dof 5    -2.1429e-001 
  dof 6    +2.8571e-002 
  dof 7    +0.0000e+000 
  dof 8    +8.5714e-002 

Negative hinges (element, s2 or s3): 
  El  3    s2      
Positive hinges (element, s2 or s3): 
  El  1    s2      
  El  2    s3     

FIGURE 6.24. Output for simple propped cantilever example.



Limit Analysis by Linear Programming 189
6.6 A Note on Optimal Plastic Design of Frames

We conclude this chapter with a note concerning the design or synthesis
problem, as opposed to the analysis or state problem so far considered.
Our treatment of this minimum weight (or volume) problem is not via
certain known results such as Foulkes’ classical theorems (e.g., Neal3)
but through a computation-basedmathematical programming approach.

We retain all the assumptions made in Section 6.4.1 for the limit
analysis problem, except that we assume that bending only causes the
formation of plastic hinges in the minimum weight problem. In addi-
tion, we make two new and important assumptions. First, it is
assumed that a continuous variation of section properties is available,
although in practice only a discrete number of sections is available.
The implication is that, mathematically, the underlying problem
becomes one of continuous optimization instead of the far more chal-
lenging discrete (or integer programming) optimization problem. Sec-
ond, although the variation of typical beam sections is such that
their weight per unit length varies nonlinearlywith the plasticmoment
capacity (e.g., in proportion to M0:6

p for beam sections), we assume that
the variation is linear. Justification for this is provided for instance by
Neal,3 who indicated that it is unlikely that a large range of values
of Mp will need to be considered in the minimum weight problem.
We note that there areways inwhich both nonlinear variation and com-
bined stresses can be accommodated in theminimumweight algorithm
(e.g., Tin-Loi11) but these aspects are not discussed here.

The assumption that weight per unit length is of the form
ðaþ bMpÞ is a particularly important one, as the total weight W of
the structure can now be written as

W ¼
X
i

ðaþ bMpÞiLi ¼ a
X
i

Li þ b
X
i

Mi
pL

i:

Clearly, minimizing W can be achieved by minimizing the alternative
weight (or objective function for the optimization) w given by

w ¼
X
i

Mi
pL

i: (6.11)

The limit analysis problem [Equation (6.3) or (6.9)] can now be
modified to provide a formulation for the minimum weight problem;
the latter is used if more generality is required, especially if the
MATLAB code described in Section 6.5 is used as the basis for the syn-
thesis problem. We should also remember that the load p ¼ af is now
known. Since we wish to solve our illustrative example with manu-
ally calculated data in Excel, we adopt a modification of Equation
(6.3). The optimization problem, which requires minimizing the
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weight of the frame and identifying in the process plastic moment
capacities of all members subject to the usual constraint of equilib-
rium and yield conformity, can be written as

minimize
X
i

Mi
pLi

subject to m ¼ B0pþ B1x;
�Mp � m � Mp:

9>=
>; (6.12)

Because objective function and constraints are all linear, we
obtain an LP problem. It is also worthy of note that, as for the limit
analysis problem, a dual LP problem can be written; we will not
expand on this but will leave it to interested students who are familiar
with mathematical programming to do so.

We conclude this section with a classical simple frame example,
considered for instance by Neal3 in nondimensional form. We present
a dimensional version of the same problem in Figure 6.25a. Also
shown (Figure 6.25b) are the three assumed redundants used to gener-
ate the required moment expressions for the seven critical sections
indicated. The beam is assumed to be uniform with a plastic moment
capacity of r1 while both uniform columns have identical moment
capacities of r2.

In the following, we state the LP problem, for which combined
equilibrium and yield conformity constraints for each of these critical
sections, as detailed previously in Section 6.3, have to be written
(Constraint1 to Constraint14). Note also that a pair of constraints,
related to positive and negative bending, has to be specified for each
check point. We have arbitrarily assumed that positive bending pro-
duces tension on the inner face of the frame. Finally, the nonnegativ-
ity conditions for r1 and r2 have been specified, respectively, as
Constraint15 and Constraint16.

The LP problem is as follows:

Objective: min w ¼ 12r1 þ 8r2
Variables: h; v;m; r1; r2
4

20 
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h(a) (b)
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r2 r2
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FIGURE 6.25. Simple frame example for minimum weight design.
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Constraint1: 12v þm� r2 � 160
Constraint2: 12v þmþ r2 � 160
Constraint3: 4hþ 12v þm� r2 � 120
Constraint4: 4hþ 12v þmþ r2 � 120
Constraint5: 4hþ 12v þm� r1 � 120
Constraint6: 4hþ 12v þmþ r1 � 120
Constraint7: 4hþ 6v þm� r1 � 0
Constraint8: 4hþ 6v þmþ r1 � 0
Constraint9: 4hþm� r1 � 0
Constraint10: 4hþmþ r1 � 0
Constraint11: 4hþm� r2 � 0
Constraint12: 4hþmþ r2 � 0
Constraint13: m� r2 � 0
Constraint14: mþ r2 � 0
Constraint15: r1 � 0
Constraint16: r2 � 0

The corresponding Excel setup is shown in Figure 6.26. Values of
variables and constraints are stored in corresponding cells located in
column H. We have also included a table of variable coefficients in
FIGURE 6.26. Excel sheet for minimum weight problem.



FIGURE 6.27. Solution report for minimum weight problem.
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columns B to F to allow for easy data checking and generation of con-
straint expressions.

Solution of this LP problem using the Excel solver add-in pro-
vides the report displayed in Figure 6.27. As indicated, the optimal
solution is w ¼ 600, r1 ¼ r2 ¼ 30, h ¼ �10, v ¼ 10, and m ¼ 10. These
optimal plastic capacities are exactly as given by Neal.3

It is more difficult, however, to extract from Excel the optimal
collapse mechanism, which, it must be noted, is not necessarily
unique. The “status” of the constraints indicates if they are binding,
but a “binding” status does not necessarily indicate if the
corresponding hinge is active (i.e., if it contributes to the mechanism).
Of course, if a dual solution were available then the nature of yielded
sections (whether active or inactive) could be determined.

For this particularly simple frame, results indicate the 2 degrees
of freedom mechanism shown in Figure 6.28; the hinge at critical sec-
tion 1 is inactive. The reason why this type of mechanism is possible
is that both beam and columns have the same plastic moment



FIGURE 6.28. Feasible collapse mechanism.
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capacities. Neal3 discussed this aspect in some depth and provided,
through Foulkes’ geometrical analogue (mapping possible solutions
on the r1 � r2 space), alternative feasible mechanisms.
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CHAPTER 7

Factors Affecting Plastic
Collapse
7.1 Introduction

Plastic analysis has been used traditionally to assess the collapse behav-
ior of structures on the basis of yielding of cross sections under propor-
tionally increasing loading. However, there are some circumstances
under which the traditional methods of plastic analysis cannot be
applied.

For example, there are materials that may not be able to sustain
plastic moment throughout the loading history because of lack of duc-
tility in thematerials. In this case, it may be necessary to limit the plas-
tic rotation in the plastic hinges instead of allowing for indefinite
plastic rotation capacity. In other cases, instead of increasing the load-
ing, it may be more realistic to increase some prescribed displacements
proportionally, such as foundation settlements, in order to realize the
effect of settlements on failure behavior of the structure.

For structures under increasing temperature, such as those in fires,
it is more relevant to calculate the failure temperature, rather than the
failure load, for the assessment of the safety of the structure under high
temperature. In this case, proportionally increasing prescribed temp-
eratures may be a better way to assess the collapse behavior of the
structure.

This chapter discusses the influence of these factors on the failure
of structures and describes ways of analyzing the structures.

7.2 Plastic Rotation Capacity

A prominent feature for structures to be able to perform satisfactorily
in a plastic fashion is the ability of the structural members to main-
tain their plastic moment capacities while undergoing plastic
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deformations. Some materials are so brittle that plastic deformation at
rupture is relatively small or even nonexistent. Such materials, for
example, glass, are said to be nonductile. However, some materials,
such as steel, are ductile and can sustain large plastic deformation
before rupture occurs. Ductile materials are particularly suitable for
structural design using the plastic method because of their ability to
sustain plastic deformation and to maintain plastic moment capacity.
Concrete, although brittle, in conjunction with steel as reinforcement
can become ductile. However, whether ductile or not, the ductility of
all materials is finite. A more realistic criterion for defining failure in
the plastic design of structures may be based on assessing the limit of
ductility for the materials when the structural members are under-
going plastic deformation. In the following, plastic deformation refers
to plastic rotation only.

7.2.1 Ductility of Steel

The plastic rotation capacity of a material is related to the ductility of
the material. Traditionally, a simplified approach to imposing ductil-
ity requirements for plastic design is to ensure that the ratio of plastic
strain to elastic strain must be greater than a certain prescribed value.
A typical requirement of ductility for steel is that shown in Figure 2.20
in which the minimum ratio of plastic strain to elastic strain is 6.
This assumption is based on the traditional practice for the plastic
design of simple and low-rise structures where the number of plastic
hinges is small before collapse occurs. For large rigid-jointed and
highly redundant steel structures, some yielded sections may undergo
large plastic rotations as the number of plastic hinges grows. In this
case, it is more realistic to check the actual plastic rotation capacity
against the maximum available plastic rotation, termed “plastic rota-
tion demand,” in plastic hinges. The serviceability requirement
regarding plastic rotation for design may be written as

yd � yh (7.1)

where yd is plastic rotation demand and yh is plastic rotation capacity
as shown in Figure 7.1.

Work to quantify the plastic rotation capacity of steel members
has been carried out previously by a number of researchers.1,2 An
expression given by Ziemian and colleagues3 for the plastic rotation
capacity of steel I sections, modified from an expression originally
developed by Lay and Galambos,1 is adopted and given here:

yh ¼ 2:84ey s� 1ð Þ bt

dw

� �
Aw

Af

� �1=4
" #

1þ V1

V2

� �
hw

2hc

� �
(7.2)
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FIGURE 7.1. Plastic rotation.
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where ey is yield strain, s is ratio of strain-hardening strain (es) to yield
strain (ey) �6 for steel (see Figure 2.1), b is flange width, t is flange
thickness, d is section depth, w is web thickness, V1=V2 (� 1.0) is ratio
of the magnitudes of the shears on both sides of the plastic hinge,
hw is distance between centers of flanges, and hc is distance between
compression flange and the plastic neutral axis. For yielding due to
pure bending, hw ¼ 2hc. For yielding due to axial force-bending inter-
action, the plastic rotation capacity is reduced by the ratio hw=2hc

(� 1.0) as suggested by Kemp.2

In order to ensure that the plastic rotation capacity takes into
account the flange or web buckling, an additional requirement, also
given by Kemp,2 needs to be checked:

yd=yy � Rmð¼ yhm=yyÞ (7.3)

where yy is maximum elastic rotation at the plastic hinge, yhm is
inelastic rotation at which ultimate bending moment occurs, and
Rm is given by

Rm ¼ l 2s� 1þ e
l

1� l

� �
hw

2hc
(7.4)

where l is the plastic proportion length based on flange, web, or lateral
buckling of the section and e is ratio of elastic to strain-hardening
modulus, approximately equal to 50 for steel. The plastic proportion
length l is defined as the ratio of the length of the plastic region
to the half-span length. Typically, Rm ¼ 3 should be achieved if
l > 0.115. To ensure that local buckling would not occur during
plastic bending, most design codes specify maximum values for the
slenderness (b=t) of the flange and the web. In the following, a method
to relate the slenderness to Rm is given.

Based on Kemp’s work, it was found that within all practical
ranges of steel I sections, the flange is likely to buckle first. Therefore,
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it is assumed in the present analysis that l is based on flange buckling
only. A complete theoretical estimation of l can be found in Kemp.2

The onset of flange buckling due to bending is related to the
plastic proportion length l ¼ lf by

b

tf

� �
b

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

1:5eb �Cf ptf=lfL
� �2

s
(7.5)

where
b

tf

� �
b

is the ratio of flange width-to-thickness at buckling;

Cf ¼ 0.5 for no web or warping restraint, or ¼ 1.0 with web and warping
restraint; and L is length ofmaximummoment to point of contraflexure
in the beam; for a simply supported beam, L is half of the span length;

eb ¼ eyf sþ 0:5e
lf

1� lf

� �
(7.6)

eyf ¼ yield strain, approximately equal to 0.00125 for a yield stress of
250 MPa.

Using Equations (7.5) and (7.6), lf can be solved iteratively and
Rm calculated according to Equation (7.4). The use of plastic rotation
capacity in plastic analysis is demonstrated in Section 7.3.

7.2.2 Plastic Rotation Demand

Plastic rotation starts when a section reaches its plastic moment. An
example of plastic rotation is shown in Figure 7.2a where the plastic
hinge of a member attached to a fixed support undergoes a plastic rota-
tion yd1. For an originally straight member with a plastic hinge within
its length such as that shown in Figure 7.2b, the amount of plastic
rotation is the sum of yd2 and yd3.

There are two ways to calculate the plastic rotation in plastic
analysis according to whether the “condensation method” or the
“extra freedom method” (Section 1.12) is used to model the plastic
hinge. When using the condensation method, the plastic hinge
is modeled implicitly in the element stiffness matrix described in
Section 4.4.1 and the plastic rotation is calculated separately in
d1

d2 d3

(a) (b)

FIGURE 7.2. Plastic rotation.
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Equation (3.25). When using the “extra freedom method,” the plastic
hinge is modeled explicitly in the element stiffness matrix and the
plastic rotation is obtained directly from the displacement vector in
the solution of the structure equilibrium equation.

Example 7.1 A fixed-end beam ABC shown in Figure 7.3 is subjected
to an applied load P at B. Calculate the plastic rotation demand of
the plastic hinges at collapse. E ¼ 2 � 108 kN/m2, A ¼ 0.00764 m2,
I ¼ 0.000216 m4, Mp ¼ 324 kNm.
B CA

P

3 m 5 m 

FIGURE 7.3. Fixed-end beam for Example 7.1.
Solution. For this structure, three plastic hinges occur in the following
order: at sections C, B, and A. The values of plastic rotations at differ-
ent stages of calculation are shown in Table 7.1.

At analysis stage 1, the first hinge occurs at C at a load of
P ¼ 276.48 kN. At analysis stage 2, the second plastic hinge occurs
at B at an increment of P ¼ 58.18 kN. During this stage, section C
undergoes a plastic rotation of 3.16 � 10�3 radians. At analysis stage
3, the third plastic hinge occurs at A at an increment of P ¼ 10.91
kN. During this stage, section B undergoes a plastic rotation equal
TABLE 7.1
Results for Example 7.1

Stage 1 Increment in P Increment in plastic rotation (radian)

At C At B

yc yB1 yB2

1 276.48
2 58.18 3.16 � 10�3

3 10.91 3.51 � 10�3 3.16 � 10�3 3.51 � 10�3

Total 345.57 6.67 � 10�3 6.67 � 10�3
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FIGURE 7.4. Plastic rotations at plastic hinges.
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to the sum of rotations at the ends of members AB and BC while
section C undergoes a further plastic rotation of 3.51 � 10�3 radians.
The angles of plastic rotation at B and C are shown in Figure 7.4.

At B, yB1 ¼ 3.16 � 10�3 radians and yB2 ¼ 3.51 � 10�3 radians,
giving a total plastic rotation of 6.67 � 10�3 radians. When using the
extra freedom method, yc, yB1, and yB2 are all obtained from the solu-
tion of the structure equilibrium equation.

When using the condensation method, during stage 3 calculation
the plastic hinge at B is assumed to occur either in member AB or in
member BC in order for the stiffness matrix to be modified. Suppose
that the plastic hinge at B occurs in member AB. The incremental
solution to the equilibrium equation of the structure gives the vertical
deflection of 0.01053 m and an elastic rotation of 3.51 � 10�3 radians
at B in BC. Separate calculations give values of plastic rotations of
6.67 � 10�3 radians at B in member AB and 3.51 � 10�3 radians at C
in member BC.

7.3 Effect of Settlement

Traditionally, structural design against foundation failure is usually
based on the allowable bearing capacity of the supporting soil or the
integrity of the foundation members such as rafts and piles. The
allowable bearing capacity is governed by the consideration of individ-
ual foundation settlements, which are compared with allowable
limits stipulated in design codes and building regulations. The magni-
tudes of the actual settlements are usually calculated on the basis of
the magnitudes of applied forces obtained independently from struc-
tural analysis. It is well known that settlements may induce member
forces in addition to those due to design loads. However, the coupling
effects between induced member forces in the superstructure and
settlements are rarely investigated by design engineers, although
some research has been done in this area, which is typically consid-
ered a soil–structure interaction problem. A soil–structure interaction
problem can be cast as one using a simple model consisting of a
single foundation mat resting on soil or using a complex model where
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the superstructure, foundation, and soil medium are treated as a con-
tinuous system. While the simple model does not reflect the effects of
settlement on the behavior of the superstructure above the founda-
tions, the complex model involves large amounts of information and
requires sophisticated computational techniques, such as the finite
element method, which may not be entirely suitable for routine use
by practicing engineers.

A common approach to the control of differential settlements in
foundations is to limit the damage caused by angular distortion, which
is measured as the ratio of the difference of settlements between
adjacent foundations to the distance between them. The maximum
allowable angular distortion for buildings varies according to the
damage limit requirements in the buildings, but a nominal value of
1/3004 seems reasonable for limiting the damage to general building
services.

The use of angular distortion for controlling foundation settle-
ment is, in some cases, considered overly simplified when assessing
structural damage. A more rational approach to the design of founda-
tions may be to evaluate the actual settlement effects on the strength
and serviceability requirements of the structure. The plastic design
concept can be brought in to check the strength requirements of the
structure. In this approach, the advantage of the inelastic properties
of the constructional materials, particularly steel, can be taken by
making use of the ability of the materials to accommodate deforma-
tion as a consequence of excessive settlement. The following intro-
duces such an approach using serviceability requirements to limit
the amount of plastic rotations due to foundation settlement accord-
ing to Equations (7.1) and (7.3). The method takes into account simul-
taneous deformations in the foundation, including vertical, lateral,
and rotational movements. This method can also be used to monitor
effects of foundation settlement in existing structures.

7.3.1 Plastic Analysis Due to Settlement Effects

In a settlement problem, attention is usually centered on the move-
ment of the foundation in the vertical direction, although, in reality,
lateral and rotational movements also exist. These lateral and rota-
tional movements may be because of eccentric and inclined loads
acting on the foundation, uneven movement in the soil, or other fac-
tors. This is illustrated in Figure 7.5 where the foundation is displaced
from point A to point B.

In addition to the vertical movement D, a lateral movement d
and a rotational movement b may also exist. Under this situation,
forces are induced in the member associated with these movements
and are subsequently redistributed to other parts of the structure.
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FIGURE 7.5. Foundation movements.
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The magnitudes of the induced forces increase as the magnitudes
of D, d, and b increase. When the foundation movement continues, the
forces in some members become so great that yielding occurs in the
form of plastic hinges. At this stage, some limiting values of D, d,
and b may be reached before the serviceability requirements of the
structure are violated. The desire to calculate these limiting values
leads to the concept of “ultimate settlement factor”, in contrast to
the “collapse load factor” in a plastic analysis.

Consider a propped cantilever beam ABC subjected to a vertical
load P acting at midspan as shown in Figure 7.6. In order to investigate
the effects of settlement at the support on the behavior of the struc-
ture, a prescribed displacement d at A is assumed. A settlement factor,
multiplied to d and increasing until some serviceability requirements
of the structure are breached, can be used to assess the settlement
effects while the externally applied load P remains constant. The set-
tlement factor, at its limit, is herein termed the “ultimate settlement
factor”, au, at which the structure is no longer serviceable.

If the settlement d of the beam in Figure 7.6 keeps increasing, the
section at C will eventually become yielded. Indeed, when the settle-
ment d reaches a value at which section C becomes yielded, any
P

A
B C

FIGURE 7.6. Settlement of a propped cantilever beam.
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further increase in settlement at A will only induce plastic rotation at
C, while the structure will not form a collapse mechanism when the
applied load is increased until collapse. In this case, the rotation
capacity of the plastic hinge described in Section 7.2, which can be
used as the serviceability requirement of the structure, is checked
against the plastic rotation demand due to foundation settlement.

It must be emphasized that for some structures there may be vari-
ous settlement modes for different settlement scenarios. In using this
method, a number of possible settlement modes can be assumed and,
by carrying out plastic analysis and comparing au, the worst settlement
scenario can be predicted. The method can also be used to monitor the
safety level of a structure where known settlements occur.

7.3.2 Modified End Actions Due to Settlements

Forces induced in members as a consequence of support settlement
are often treated as internal loads and calculated as a set of fixed-end
forces in the stiffness method of analysis. In elastoplastic analysis
where the direct method (Section 4.4.1) is used, the fixed-end forces
have to be modified in order to take into account the presence of plas-
tic hinges in the members. The forces derived from these modified
fixed-end forces are termed “modified end actions” (MEA). A general
description of the method to calculate MEA has been given in
Section 3.8.

The calculation of MEA due to settlement for members with
yielding due to pure bending is straightforward. For example, a mem-
ber with one hinge at one end can be treated as a propped cantilever
with one end displaced by settlements. The general expression of
MEA vector is given by Equation (3.66) as

DPf g ¼ KP½ � Ddf g þ DPM
� �

(7.7)

where the MEA vector due to settlement is given by

DPM
� � ¼ KP½ � D0

� �
(7.8)

in which the settlement displacement vector fD0g contains the gen-
eral settlement values (D, d, and b shown in Figure 7.5) associated
with the member. For a member with settlement at end j, the settle-
ment displacement vector is written explicitly as

D0
� � ¼ 0 0 0 D d bf gt (7.9)

Because [KP] varies with both the state of plasticity and the yield
criterion adopted for the member, the form of MEA also varies. For
example, if a horizontal beam of length L with a plastic hinge due to
yielding by pure bending at end j is subjected to a vertical settlement
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d also at end j, the MEA vector, using Equation (3.52) for ½KP�, can be
calculated as
fDPMg ¼

0

� 3EI

L3
d

� 3EI

L2
d

0

3EI

L3
d

0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(7.10)
Example 7.2 A two-story, two-bay frame with fixed supports A, B, and
C is subjected to design loads shown in Figure 7.7.
34 kN 17 kN 34 kN 34 kN 17 kN 

34 kN 34 kN 68 kN 68 kN 68 kN 

16 kN 

24 kN 

A B C

4.5 m 4.5 m 4.5 m 4.5 m 

5 m 

5 m 

FIGURE 7.7. Example with settlement effect.
All beams at the top level are 200UB25.4, at the lower level are
310UB40.4, and all columns are 150UC37.2. It is predicted that settle-
ment would occur only vertically at the support at B. The initial
forces in the members due to the design loads are first calculated by
elastoplastic analysis (it happens that no plastic hinge occurs under
the design loads). An elastoplastic analysis is then carried out by
imposing an increasing vertical settlement D at B. Yielding by pure
bending is assumed in the analysis, and the rotation capacity at plastic
hinges is governed by Equation (7.1) only.
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Solution. The following assumptions are made in calculating the rota-
tion capacities at the plastic hinges: s ¼ 6, ey ¼ 0.00125, hw ¼ 2hc,
V1/V2 ¼ 1. The properties of the members are given in Table 7.2.
TABLE 7.2
Properties of members in Example 7.2

Member Mp (kNm) yh (radian)

150UC37.2 72 0.042
200UB25.4 61 0.032
310UB40.4 146 0.032
If the plastic rotation capacity requirement is not considered,
the formation of the plastic hinges follows the sequence shown in
Figure 7.8 and the amounts of plastic rotations of the plastic hinges
at increasing D are shown in Figure 7.9. The analysis shows that after
formation of the 11th plastic hinge, the structure offers no resistance
to further foundation settlement at B.
1

2
3

4

5

67

8

9

10 

11

FIGURE 7.8. Plastic hinge formation sequence.
If plastic rotation capacity requirement is considered, it can be
seen from Figure 7.9 that hinge 1 reaches its rotation capacity of
0.032 radians first at a total settlement D ¼ 206 mm. This is also equal
to the ultimate settlement factor (au ¼ D) at which only the first three
plastic hinges occur before the structure is considered no longer ser-
viceable as the rotation capacity of hinge 1 has been reached.

The same frame is again analyzed but the predicted settlements
at B are as given in Figure 7.5 in which D ¼ 10 mm, d ¼ 2 mm, and
b ¼ 0.002 radians. This set of settlements is increased proportionally
by a common factor au. The axial-bending interaction is assumed for
the yield criterion.
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Results show that the rotation capacity of the plastic hinge at
the right hand end of the top beam (hinge 1 in Figure 7.8) is reached
with an ultimate settlement factor au ¼ 20.4. This is equivalent to
D ¼ 204 mm, d ¼ 40.8 mm, and b ¼ 0.04 radians.

7.4 Effect of High Temperature

Thermal loading as a consequence of temperature rise, usually treated
as internal loads in structural analysis using the stiffness method,
induces a set of self-equilibrating forces in the structure. With a mod-
erate temperature rise, internal loads are calculated in terms of the
thermal expansion of the structural materials. A general method to
include the effects of high temperature in elastic analysis has been
described in Section 1.13. For completeness of this chapter, some of
the equations used in Section 1.13 are used here again.

According to the theory of plasticity, the self-equilibrating forces
induced by thermal expansion have no effect on the plastic collapse
loads that are obtained in a plastic analysis by increasing the applied
loads proportionally until collapse. Therefore, traditional plastic anal-
ysis with monotonically increasing loading may not be able to reflect
the detrimental effect of rising temperature in a structure.

At very high temperatures, themember forces induced by thermal
loading are always associated with changes of the material properties
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of the member, which need to be considered in analysis. For struc-
tural design of structures at high temperatures, the critical tempera-
ture at which the structure fails in situations such as fire is often
required. Indeed, the performance of structures in fire is an impor-
tant issue in structural engineering, and analytical techniques are
required to deal with structures under severe fire conditions. Sophis-
ticated methods, such as the finite element method, have been
developed for analyzing structures in fire (e.g., see Najjar and
Burgess5 and Schleich et al.6).

In the following, a simple approach to the assessment of plastic
collapse of steel structures in fire is introduced. Themethod can be used
in plastic analysis where the critical temperature of the structure,
rather than the collapse load, is calculated.

7.4.1 Structures Subject to Uniform Temperature

For a structure under a set of loads P applied at location i (i ¼ 1, 2,
3,. . .) with corresponding deflections d and a uniform temperature T
in member j (j ¼ 1, 2, 3,. . .) undergoing plastic rotation, the virtual
work equation in plastic analysis using the upper bound approach
for the calculation of the load factor a applied uniformly to the loads
at collapse is given by

a
X

Pdð Þi ¼
X

MprTy
� �

j
(7.11)

where the reduced plastic moment MprT at temperature T is given as
a function f( ) by

MprT ¼ f MpT ; bN
� �

(7.12)

MpT

Mp20
¼ fyT

fy20
¼ fyT (7.13)

where bN is the ratio of the axial force to the squash load and MpT is
the plastic moment capacity at temperature T. Equation (7.12) is used
for sections subjected to the bending-axial interaction described in
Chapter 3, and Equation (7.13) represents the yield stress deterioration
rate fyT at rising temperature. The yield stress at T ¼ 20�C is given
as fy20. The yield stress deterioration rate of steel stipulated in the
Australian code is given by

fyT ¼ 905� T

690
for T � 215�C

fyT ¼ 1 for T < 215�C (7.14)
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It should be noted that Equation (7.11) is similar to Equation (5.1)
except that in the present formulation the plastic moment capacity is
temperature dependent. For any member where thermal restraint
induces internal forces due to thermal expansion, the axial thermal
load is calculated by

PT ¼ ETAat T � 20ð Þ (7.15)

where ET ¼ modulus of elasticity at temperature T and at is the coeffi-
cient of linear thermal expansion. Equation (7.15a) can be rewritten as

PT ¼ E20Aat fET T � 20ð Þ (7.16)

where fET ¼ ET

E20
is the deterioration rate of the modulus of elasticity

at temperature T given by Equations (1.53a) or (1.53b). The variation
of PT is shown in Figure 1.37.

A critical temperature analysis for a structure can be carried out
by setting a ¼ 1 in Equation (7.11) in which T becomes the only vari-
able. By solving Equation (7.11), the critical temperature can be
obtained. It must be emphasized that, contrary to a plastic analysis
for structures at room temperature, the static loads in a critical tem-
perature analysis are to remain constant.

Example 7.3 Determine the critical temperature of the propped cantile-
ver beam made of the steel I section shown in Figure 7.10 when (a) the
simply supported end is free to expand and (b) the simple supported end
is restrained from expanding. For the beam, Mp ¼ 324 kNm, Np ¼ 820
kN, at ¼ 0.000012/�C, E ¼ 2 � 108 kN/m2, A ¼ 0.0005 m2.
Beam without thermal restraint  Beam with thermal restraint 

B CA

120 kN 

5 m 5 m 

B CA

120 kN 

5 m 5 m 

(a) (b) 

FIGURE 7.10. Beam failure by rising temperature.
Solution. According to the mechanism method, the virtual work
equation is

Mp 3yð Þ ¼ 120 5yð Þ;
therefore Mp ¼ 200 ¼ MprT : (7.17)
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(a) Because the beam is not thermally restrained,

MprT ¼ MpT ¼ 324
905� Tc

690

� �

Hence, from Equation (7.17), the critical temperature can be obtained:
Tc ¼ 479�C.

(b) Because of thermal restraint, the axial force in the beam at
critical temperature Tc is

N ¼ ET � 0:0005� 0:000012� ðTc � 20Þ ¼ ET � 6� 10�9ðTc � 20Þ
Hence,

MprT ¼ MpT ¼ 324
905� Tc

690

� �
� 1:18 1� N

820
905� Tc

690

� �
0
BB@

1
CCA

Solving Equation (7.17) using, for example, Microsoft Excel gives
Tc ¼ 296�C.

The aforementioned example shows that the strength of a steel
member is reduced greatly by the axial-bending interaction generated
by thermal restraints at the supports. For more complex structures,
the formation of plastic hinges may help relieve the thermal restraints
between members. Prior to collapse, members in the structure may be
completely free of thermal restraint as a result of the formation of plas-
tic hinges, which transform the structure into a statically determinate
one. The following example shows that prior to collapse at the collapse
temperature, the thermal loading induces no forces in the members.

Example 7.4 Determine the critical temperature of the steel portal
frame subject to rising uniform temperature shown in Figure 7.11
when a ¼ 1. Assume failure by pure bending only. All members are
I sections with Mp ¼ 558 kNm and Np ¼ 2800 kN.
6 m 6 m 

8 m

100 kN

50 kN

A

B C

D

FIGURE 7.11. Portal frame subject to rising uniform temperature.
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Solution. The failure mode is a combined beam-sway mechanism

shown in Figure 7.12. The critical load factor is a ¼ 3Mp

500
. For a ¼ 1

at critical temperature,

Mp ¼ 500

3
¼ 558

905� Tc

690

� �

Hence, Tc ¼ 699�C.
100 kN 

50 kN

FIGURE 7.12. Combined beam-sway collapse mechanism.
For this example, it may be useful to examine the effect of
the axial–force interaction. If the plastic moment capacity of the
members is denoted as MpT, the axial forces in the members at
collapse are

AB: NT ¼ 4MPT

15
; BC: NT ¼ MPT

4
; CD: NT ¼ MPT

3
:

The axial force ratios of the members are

AB:
NT

NPT
¼ 4MPT=15

NPT
¼ 4MP

15NP
¼ 0:05 < 0:15;

BC:
NT

NPT
¼ MPT=4

NPT
¼ MP

4NP
¼ 0:05 < 0:15;

BC:
NT

NPT
¼ MPT=3

NPT
¼ MP

3NP
¼ 0:067 < 0:15:

Therefore, the members are not subjected to axial-bending effects.
Axial force as a consequence of thermal expansion in any member is
zero at collapse when the members are free to expand.

The two examples just given are simple enough to enable the
critical temperature to be calculated directly. For complex structures,
elastoplastic analysis may be used and a direct evaluation of the
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critical temperature may be difficult. The next section introduces an
indirect method to calculate the critical temperature of structures
subject to uniform temperature rise.

7.4.2 Critical Temperature Evaluation in Elastoplastic Analysis

This is a trial-and-error method that makes use of the fact that a
unique temperature rise in the members corresponds to a unique col-
lapse load factor for the structure. For a uniform temperature rise in
the members, the collapse load is independent of the modulus of elas-
ticity. Therefore, variation of the collapse load factor ac is directly
related to the yield strength of the member, which is a function
of the temperature. Thus, the relationship between the collapse load
factor and the temperature in the structure varies in the same way
that the yield strength varies with the temperature. If the collapse
load factor–temperature relationship is plotted as in Figure 7.13, the
critical temperature Tc of the structure at failure corresponds to a
collapse load factor ac equal to 1. Tc can be obtained by interpolation
as shown in Figure 7.13. For a linear relationship between yield
strength and temperature, the ac–temperature relationship is also lin-
ear and only two collapse analyses are required to establish the critical
temperature by interpolation. To calculate the critical temperature for
structures with a nonuniform temperature rise in the members, refer
to Wong.7
Collapse load 
factor c

Temperature Tc

c = 1 

Individual collapse analyses 

FIGURE 7.13. Collapse load factor–temperature relationship.
Example 7.5 A steel frame made of members with the same size is
subjected to design loads shown in Figure 7.14. Determine the critical
temperature of the members at which the structure fails. Assume that
all members are subjected to uniform temperature rise. For all
members, Mp ¼ 304 kNm, E ¼ 2 � 108 kN/m2, A ¼ 0.00689 m2,
I ¼ 188 � 10�6 m2.
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FIGURE 7.14. Steel frame with rising temperature.
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Solution. The yield strength deterioration rate of steel with tempera-
ture according to Equation (7.14) is used. From elastoplastic analysis,
the collapse load factor ac at room temperature is found to be 2.742with
three plastic hinges formed in the structure. This collapse load
factor does not change until the temperature in the structure reaches
215�C when the yield strength of steel starts to deteriorate. At each
chosen temperature, the values of Mp and E are calculated and the
corresponding collapse load factor is found from the elastoplastic analy-
sis. The following results are obtained: at 300�C, ac ¼ 2.404; at 500�C,
ac ¼ 1.609; at 700�C, ac ¼ 0.814. A plot of the ac–temperature relation-
ship is shown in Figure 7.15. A simple linear interpolation calculation
gives Tc ¼ 653�C when ac ¼ 1.
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FIGURE 7.15. ac–temperature relationship.
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7.5 Second-Order Effects

Second-order effects include both the effect of nodal displacements
(called the P-D effect) and the effect of crookedness of the member
(called the P-d effect). The P-D effect induces an additional bending
moment in a member as a result of the eccentric load acting on the
member. The eccentric load occurs due to the relative nodal displace-
ments at the ends of the member. An example is shown in Figure 7.16
in which an additional bending moment equal to P � D is induced due
to the sway of the frame. The P-d effect induces an additional bending
moment in a member as a result of the combined actions of the axial
force acting along the originally straight chord of the crooked mem-
ber. The crookedness is usually caused by member bending.

Second-order (geometrical nonlinear) analysis can be carried out
for structures, taking into account both P-D and P-d effects. In such
an analysis, a common load factor is applied to the imposed loads
so that by varying the value of the load factor, buckling failure of
the structure occurs. At failure due to buckling of the structure, the
common buckling load factor is denoted by lc. Most commercial
structural analysis programs for frames can perform analysis for lc.
As material yielding is not considered in buckling analysis, the actual
failure load factor, la, of the structure is usually lower than lc taking
into account the effect of material yielding.

A simplified and approximate way to calculate the actual failure
load is based on the use of the Merchant–Rankine formula, which
takes into account both material and geometrical nonlinear effects.
The Merchant�Rankine formula takes the form of

1

la
¼ 1

lp
þ 1

lc
(7.18)
H

P

(a) Before loading (b) During loading

H

P

FIGURE 7.16. Second-order effects.
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where lp is the plastic collapse load factor.
Experiments show that a more accurate estimate of la can be

achieved by modifying Equation (7.18) as

1

la
¼ 0:9

lp
þ 1

lc
(7.19)

Hence,

lp ¼ la
0:9

1� la
lc

0
BB@

1
CCA (7.20)

Because practical design requires that the actual failure load
factor is equal to the design load factor so that la ¼ 1.0, a moment
amplification factor dp can then be defined as

dp ¼ 0:9

1� 1

lc

(7.21)

Equation (7.21) is used in design codes to amplify the required
plastic moment capacity for plastic design when the upper bound
approach is used. Using Equation (7.21), the actual failure load factor
can be obtained from modifying the plastic collapse load factor by

la ¼ lp
dp

(7.22)

As seen from the aforementioned derivation, the bending
moments in plastic analysis, amplified by dp due to both P-d and P-D
effects, are equivalent to reducing the plastic collapse load factor by
dp. In the Australian steel design code (AS4100-1998), use of the
moment amplification factor is in accordance with the following rules:

a. For lc � 10, second order effects can be ignored.
b. For 5 � lc< 10, the minimum required plastic moment capac-

ity Mp for the members is amplified by the factor dp in a

rigid�plastic analysis where dp ¼ 0:9

1� 1

lc

.

The aforementioned equation is equivalent to reducing
the plastic collapse load factor by the same factor. Hence, in

an elastoplastic analysis, the actual failure load ¼ lP
dp
.

c. For lc < 5, a second-order plastic analysis (advanced analysis)
has to be carried out.
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It should be noted that in Eurocode 3, an amplification factor

¼ 1

1� 1

lc

0
BB@

1
CCA is applied to the loading only when 3 � lc < 10. No spe-

cific method is specified in the American AISC design code for ampli-
fication calculation due to second-order effects. Finally, it should be
noted that a more precise calculation of the actual failure load should
be based on Equation (7.19) rather than on Equation (7.22).

Problems

7.1. Determine the plastic collapse load factor a and the plastic
rotation demands at the plastic hinges at collapse for the
structure shown in Figure P7.1. For the beam, Mp ¼ 420 kNm,
E ¼ 2 � 108 kN/m2, I ¼ 320 � 10�6 m4, A ¼ 0.02 m2.
B CA

80  kN 

5 m 5 m 

120  kN 

D

6 m 

FIGURE P7.1. Problem 7.1.
7.2. Determine the plastic rotation capacity Rm of a 6-m-long simply
supported beam of yield stress equal to 250 MPa with a section
shown in Figure P7.2. There is no web or warping restraint to
the beam. Assume yielding by pure bending only.
400 

200 

20

20

20

FIGURE P7.2. Problem 7.2 (all dimensions in millimeters).
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7.3. Determine the critical temperature of the steel frame shown in
Figure P7.3. For the members, Mp ¼ 558 kNm, Np ¼ 2560 kN,
at ¼ 0.000012/�C, E ¼ 2 � 108 kN/m2, I ¼ 477 � 10�6 m4,
A ¼ 0.0105 m2. (Note: At collapse, the plastic hinges enable the
frame to expand freely.)
250 kN 

4 m

4 m 4 m 

FIGURE P7.3. Problem 7.3.
7.4. Determine the critical temperature of the fixed-end beam ABC
made of steel I section shown in Figure P7.4 when (a) the effect
of axial force on plastic moment capacity is ignored and (b) the
effect of the axial force-bending interaction due to thermal expan-
sion is considered. For the beam, Mp ¼ 558 kNm, Np ¼ 2560 kN,
at ¼ 0.000012/�C, E ¼ 2 � 108 kN/m2, I ¼ 477 � 10�6 m4,
A ¼ 0.0105 m2.
B C A 

450 kN

2 m 4 m 

FIGURE P7.4. Problem 7.4.
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CHAPTER 8

Design Consideration
8.1 Introduction

In general, most design rules applied to elastic design can be similarly
applied to plastic design. Additional rules stipulated in design codes
for plastic design are mainly to ensure that plastic moments at yielded
sections can be maintained and the plastic collapse load achieved
without exhibiting local buckling in the cross sections. Local buck-
ling comes about because of the occurrence of certain structural phe-
nomena when the structure is loaded beyond its linear elastic limit.
These structural phenomena, including lateral–torsional buckling,
flexural buckling, excessive shear force, and cyclic loading, should
be avoided when the plastic design method is used.

One way to ensure that structures perform satisfactorily accord-
ing to plastic design theory is through laboratory tests. Full-scale tests
on the plastic behavior of steel structures have been carried out.
Figure 8.1 shows a full-scale test being carried out on a cold-formed
steel portal frame at Sydney University.

In the following chapter, major design rules governing the plastic
design process are described with reference to Australian (AS4100)1,
European (EC3),2 and United States (AISC)3 design codes. For the AISC
code, only the load and resistance factor design method is referred to.
Both AS4100 and AISC specify that the yield strength of steel for plas-
tic design cannot exceed 450 MPa as ductility becomes a concern
when steels of higher yield strength are used.

8.2 Serviceability Limit State Requirements

This is mainly concerned with the deflection of structures. For certain
types of structures, such as portal frames subjected to high wind loads,



FIGURE 8.1. Test on cold-formed steel portal frame (courtesy of School of
Civil Engineering, the University of Sydney).
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horizontal deflection is often excessive and could be the main factor
governing the design. The check for serviceability is usually carried
out in the same way as for elastic design. That is,

d � D (8.1)

where d is the maximum deflection obtained from elastic analysis
under service loads and D is the deflection limit.

When the deflection check is performed, a common assumption
for plastic design is that no plastic hinge should occur when the struc-
ture is subjected to service loads. This assumption is made to avoid
the formation of permanent plastic deformation under cyclic loading
such as wind. The formation of plastic deformation in a structure
under cyclic loading may lead to failure by incremental collapse or
alternating plasticity. Incremental collapse occurs when both residual
moments and plastic rotations increase after each cycle of loading
until a plastic collapse mechanism is formed. Alternating plasticity,
also termed low cycle fatigue, is a phenomenon where cracks in the
material grow because of repeated plastic deformation until rupture



B CA

P

L/2 L/2

FIGURE 8.2. Beam subjected to cyclic loading.
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occurs in the structure. By performing elastoplastic analysis in a
step-by-step manner, the behavior of a structure that may fail by
incremental collapse or alternating plasticity can be traced.

Take the propped cantilever beam shown in Figure 8.2 as an
example. For this structure, the collapse load factor ac is 1.35. Suppose
that a cyclic load with a maximum value of a ¼ 1.3 for P ¼ 10 kN is
applied to the structure. L ¼ 12 m and Mp ¼ 27 kNm.

The application of the load follows the following sequence in the
elastoplastic analysis: 1.3P, �1.3P, �1.3P, 1.3P. The sequence repre-
sents a complete cycle of the load applied in both upward and down-
ward directions. In the first cycle, only one plastic hinge occurs at
A. The plastic rotation of the plastic hinge at A, which is unloaded
after the peak load is reached, is also calculated. Results of the first
half-cycle of loading are shown in Table 8.1. At the end of the first
half-cycle of loading (after stage 3 analysis), the applied load is reduced
to zero, leaving a set of self-equilibrating residual moments in the
beam and permanent deformation of 1080=EI at A.
TABLE 8.1
Results of the first half-cycle of loading

Analysis Stage No: 1 Critical Load Factor, acr ¼ 1.2

Member Joint
Moment

Mo

Residual
plastic
moment
Mp � Mi

Load factor

a ¼ Mp �Mi

Mo

Cumulative
moment

Miþ1 ¼
Mi þ acrMo

Permanent
rotation at
A (radian)

AB A 22.5 27 1.2 27
B 18.75 27 1.44 22.5

BC B �18.75 �27 1.44 �22.5
C 0 27 1.44 0
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Analysis Stage No: 2 Load Factor, a ¼ 0.1
Member Joint
Moment

Mo

Residual
plastic
moment
Mp � Mi

Load factor

a ¼ Mp �Mi

Mo

Cumulative
moment

Miþ1 ¼
Mi þ acrMo

Permanent
rotation at
A (radian)

AB A 0 0 27 1080=EI
B 30 4.5 25.5

BC B �30 �4.5 �25.5
C 0 27 0
Analysis Stage No: 3 Load Factor, a ¼ �1.3
Member Joint
Moment

Mo

Residual
plastic
moment
Mp � Mi

Load factor

a ¼ Mp �Mi

Mo

Cumulative
moment

Miþ1 ¼
Mi þ acrMo

Permanent
rotation at
A (radian)

AB A �22.5 �54 �2.25 1080=EI
B �18.75 �52.5 1.125

BC B 18.75 52.5 �1.125
C 0 27 0
Analysis Stage No: 4 Load Factor, a ¼ �1.1
Member Joint
Moment

Mo

Residual
plastic
moment
Mp � Mi

Load factor

a ¼ Mp �Mi

Mo

Cumulative
moment

Miþ1 ¼
Mi þ acrMo

Permanent
rotation at
A (radian)

AB A �22.5 �24.75 1.1 �27 1080=EI
B �18.75 �28.125 1.5 �19.5

BC B 18.75 28.125 1.5 19.5
C 0 27 0
Analysis Stage No: 5 Load Factor, a ¼ 0.2
Member Joint
Moment

Mo

Residual
plastic
moment
Mp � Mi

Load factor

a ¼ Mp �Mi

Mo

Cumulative
moment

Miþ1 ¼
Mi þ acrMo

Permanent
rotation at
A (radian)

AB A 0 54 �27 �1080=EI
B �30 �7.5 �25.5

BC B 30 7.5 25.5
C 0 27 0
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Analysis Stage No: 6 Load Factor, a ¼ 1.3
Member Joint
Moment

Mo

Residual
plastic
moment
Mp � Mi

Load factor

a ¼ Mp �Mi

Mo

Cumulative
moment

Miþ1 ¼
Mi þ acrMo

Permanent
rotation at
A (radian)

AB A 22.5 54 2.25 1080=EI
B 18.75 52.5 �1.125

BC B �18.75 �52.5 1.125
C 0 27 0
At the end of stage 6 calculations, the load is again reduced to
zero, leaving a set of residual, self-equilibrating moments as shown.
By repeating the aforementioned process, it can be shown that the
residual moments do not grow. This structure exhibits alternating
plasticity under the cyclic load. A cycle of the load–plastic rotation
at A is shown in Figure 8.3.

8.3 Ultimate Limit State Requirements

Ultimate limit state requirements for plastic design stipulated in most
design codes are based on the assumption that structures using this
design method are ductile enough to sustain plastic deformation with-
out premature failure. Most rules for plastic design were developed
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FIGURE 8.3. Load–plastic rotation relationship for one cycle of load at A.



224 Plastic Analysis and Design of Steel Structures
many years ago when rigid–plastic theory was commonly used for ana-
lyzing and designing simple to moderately complex structures. The
elastoplastic analysis method introduced in this book enables the
design of structures with virtually any degree of complexity. Therefore,
care must be taken when applying these rules to complex structures.
For some complex structures, it may be necessary to check rotational
capacity in plastic hinges as described in Chapter 7 even after all design
code requirements are satisfied. Because of the complicated interaction
between yielding of steelmaterial and local buckling,most design rules,
many of them empirical, apply specifically to standard structural sec-
tions with double or monosymmetry such as I sections, box sections,
channels, and circular hollow sections.

8.3.1 Class of Sections

The ability of a plate element with specified end support conditions to
yield under compression before buckling occurs depends on the yield-
ing strength and the slenderness of the cross section of the plate. The
slenderness is defined as the ratio of its length (b) to its thickness (t) in
the cross section of the plate element shown in Figure 8.4.

To ensure that a section is able to sustain plastic moment with-
out exhibiting local buckling in plastic design, the slenderness ratios
of all plate elements in the cross section must be less than some
limiting values. In AS4100 and AISC, structural steel cross sections
are classified into three categories—compact, noncompact, and slen-
der—whereas in EC3, structural steel cross sections are classified into
four categories—classes 1, 2, 3, and 4. For plastic design, AS4100 and
AISC require that sections of the structural members must be com-
pact, whereas EC3 requires the use of class 1 or class 2 sections. Class
2 sections are used at the location only where the last plastic hinge
occurs. For other section classes in EC3, rotation capacity should be
checked against plastic rotation demand for plastic hinges. In all three
design codes, the slenderness must be less than a value related to m as
explained later. The ways slenderness is expressed to satisfy plastic
design in the three design codes are given in Table 8.2.

Slight differences in defining slenderness of plate elements in the
cross sections exist among the three design codes. The definitions of
the dimension b for calculating the slenderness of the plate elements
of both welded and rolled I sections are shown in Figure 8.5.
b

t

FIGURE 8.4. Slenderness ratio of a plate ¼ b/t.



TABLE 8.2
Slenderness requirements for plastic design

AS4100 EC3 AISC

Slenderness limit b

t
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250

r
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� m

ffiffiffiffiffiffiffiffi
235

fy

s
b

t
� m

ffiffiffiffi
E

fy

s

t

t

b(AISC)
b(AISC)b(EC3)

b(EC3)

b(AS4100)
b(AS4100)

b(AS4100)
b(AS4100)

b(EC3 & AISC) b(EC3 & AISC)

t

t

FIGURE 8.5. Values of b in different codes.
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For plates under compression as a consequence of bending, the
values of m for different loading conditions are given in Table 8.3.

For comparison, slendernesses for a section with fy ¼ 300 MPa
and E ¼ 200000 MPa are calculated using the rules in the three codes
and the results are shown in Table 8.4.
TABLE 8.3
Values of m

AS4100 EC3 AISC

Flange (compression by bending) 9 9 0.38
Web (bending) 82 72 3.76
Web (compression only) 30 33 1.12

TABLE 8.4
Limiting slenderness ratio (b/t ) for plate elements in I-sections

AS4100 EC3 AISC

Flange (compression by bending) 8.2 8.0 9.8
Web (bending) 74.9 63.7 97.1
Web (compression only) 27.4 29.2 28.9
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8.3.2 Unbraced Length

To prevent lateral–torsional buckling from occurring in a beam that
contains plastic hinges, a maximum unbraced length between lateral
braces along the length of the beam subject to bending should be spe-
cified. The member should be restrained by lateral braces along the
compression flange (torsional restraints). The following requirements
apply only to double symmetric I sections.

AS4100

The unbraced length Lb between lateral braces cannot exceed a length
given by

Lb

ry
� ð80þ 50bmÞ

ffiffiffiffiffiffiffiffi
250

fy

s
(8.2)

where ry is the radius of gyration about the minor axis and bm is the
ratio of smaller to larger end moments in the length Lb, positive for
reverse curvature and negative for single curvature.

EC3

The maximum unbraced length between torsional restraints of a
member segment subject to bending is determined by satisfying the
following empirical formula:

Lb

ry
�

5:4þ 600fy
E

� �
h

tf

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:4

fy
E

� �
h

tf

� �2

� 1

s (8.3)

where h is the depth of the section and tf is the flange thickness. Equa-
tion (8.3) is valid provided that there are one or more intermediate
restraints between the torsional restraints at a spacing satisfying the
requirement for Lm given by Equation (8.12) in Section 8.3.4.2 with
N* ¼ 0.

AISC

Both AS4100 and AISC have similar conditions for calculating the
maximum unbraced length. The condition for AISC is given by

Lb

ry
� ½0:12þ 0:076bm� E

fy

� �
(8.4a)
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Equation (8.4a) is similar to that in an earlier version of AISC rules in
which the modulus of elasticity E in Equation (8.4a) is multiplied into
the equation. If E ¼ 30000 ksi, Equation (8.4a) then becomes

Lb

ry
� ½3600þ 2280bm� 1

fy

� �
(8.4b)

8.3.3 Plastic Hinge Stability

The region close to a plastic hinge in a member is vulnerable to lateral
buckling instability because of the rotational nature of the plastic
hinge. A common means to ensure stability in a region where a plastic
hinge occurs is to provide adequate lateral restraints in that region.
Both flanges of the section should be restrained.

AS4100

Lateral restraints are provided within a distance of 0.5d1 from the
plastic hinge and d1 is the clear depth of the web. In addition, if a
design bearing load, P�

b (such as a secondary beam sitting on a main
beam), or a design shear force, V*, is such that

P�
b or V� � Vc

10
(8.5)

where Vc is the shear capacity of the web, then load bearing stiffeners
should be provided as shown in Figure 8.6.

EC3

Lateral restraints should be provided within a distance of 1.5 times the
flange width, or 0.5 times the height of the plastic section, from the
plastic hinge.
P*
b  or V *

d1/2
d1/2

Plastic hinge is to form 
within this length 

FIGURE 8.6. Shear requirements at a plastic hinge.
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AISC

No additional recommendation is made other than that the member
should satisfy the maximum unbraced lateral restraint length
requirement.

8.3.4 Combined Actions Requirements

In plastic design, the effect of the combined actions of bending
moment and axial force is most significant. The following require-
ments ensure that the plate elements in the cross section do not crip-
ple due to axial force while the section is undergoing plastic bending.
The requirements apply mainly to steel members made of I sections.

AS4100

Member Slenderness
To ensure that the full moment capacity can be maintained when the
collapse mechanism develops, check the axial force N* where

N�

fNs
� 0:60þ 0:40bmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns=NOL

p
" #2

when
N�

fNs
� 0:15 (8.6a)

and

N�

fNs
� 1þ bm � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns=NOL

p
1þ bm þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ns=NOL

p
" #

when
N�

fNs
> 0:15 (8.6b)

where fNs is the design squash load of the section with capacity
factor f ¼ 0.9,

NOL ¼ p2EI
L2

where L is the actual length of the member.
If Equation (8.6b) is not satisfied, the member shall not contain

plastic hinges and should be designed elastically.

Web Slenderness
To ensure that no local buckling occurs to the web due to both bend-
ing moment and axial force interaction, check the axial force N* along
the length of the member where

N�

fNs
� 0:60� d1

tw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfy=250Þ
p

137

" #
for webs where 45 � d1

tw

ffiffiffiffiffiffiffiffi
fy
250

r
� 82

(8.7a)
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or

N�

fNs
� 1:91� d1

tw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfy=250Þ
p

27:4

" #
� 1:0 for webs where 25 <

d1

tw

ffiffiffiffiffiffiffiffi
fy
250

r
< 45

(8.7b)

or

N�

fNs
� 1:0 for webs where

d1

tw

ffiffiffiffiffiffiffiffi
fy
250

r
� 25 (8.7c)

where d1 is the clear web height as defined in Figure 8.5 and tw is the
web thickness.

For the case where
d1

tw

ffiffiffiffiffiffiffiffi
fy
250

r
> 82 (local buckling occurs under

pure bending), the member must be designed elastically.

EC3

Details of the relevant clauses in EC3 in relation to combined actions
for members containing plastic hinges have been explained by King.4

The theory was published by Horne5 on elastic stability of columns
under the actions of axial force N* and bending moment M*. It is
based on the following simple combined action equation:

M�

Mcr

� �2

þ N�

Ncr
¼ 1 (8.8)

where Mcr is the critical bucking moment of the member with no
warping stiffness given by

Mcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2EI
L2

� �
GIt

s
(8.9)

Ncr ¼ p2EI
L2

(8.10)

where G is shear modulus, L is length of member, and It is torsion
constant for the cross section ¼ Pðbt3=3Þ.

For stable sections with plastic hinges within the laterally
restrained length Lm, Mcr is equal to the elastic, or conservatively
the plastic, moment capacity moderated by a moment gradient factor
C1 provided that Lm is not greater than 0.6L. That is,

M� ¼ Mcr ¼
Wplfy

C1
(8.11)
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where Wpl is the plastic section modulus of the section. The values of
C1 for different cases of moment gradient can be found in EC3. Using
Equations (8.8) to (8.11), it can be found that the limiting value of
Lm is

Lm

ry
¼ 38ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

57:4

N�

A

� �
þ 756

C1
2

W2
pl

AIt

 !
fy
235

� �2
vuut

(8.12)

AISC

For web slenderness, check

(i) For
N�

fNs
� 0:125;

h=tw � 3:76

ffiffiffiffiffi
E

Fy

s
1� 2:75

N�

fNs

� �
(8.13a)

(ii) For
N�

fNs
> 0:125;

h=tw � 1:12

ffiffiffiffiffi
E

Fy

s
2:33� N�

fNs

� �
� 1:49

ffiffiffiffiffi
E

Fy

s
(8.13b)

where h is the clear distance between the flanges. For a column
designed by the plastic method,

fNs � 0:85ðffyAÞ for braced frames (8.14a)

fNs � 0:75ðffyAÞ for moment frames (8.14b)

In addition, the slenderness of the column has to satisfy the following:

L=r � 4:71

ffiffiffiffiffi
E

Fy

s
(8.15)

8.3.5 Connections

In general, a full-strength connection should have a strength capacity
not less than that of the connectingmembers. This assumption has been
made when connections are designed in accordance with elastic design.

The rotation capacity at any of the plastic hinges in the connec-
tions should not be exceeded. If the materials of the steel members
satisfy the ductility requirements, it is unlikely that the rotation
capacity of any plastic hinge in a simple or moderately complex struc-
ture will be exceeded when all other design requirements are satisfied.
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Answers
Chapter 1

1.1. 1
1.2. 1
1.3. 1
1.4. 16
1.5. yA ¼ 0.0357 rad., yB ¼ �0.0714 rad.
1.6. Axial: AB ¼ �418.7 kN, BC ¼ �295.3 kN
SF diagram BM diagram

1 kN

3.2 kN

4 kNm 

9 kNm

1.7.

SF diagram BM diagram
14.1 kN

70.6 kNm

29.4 kNm



234 Answers
1.8. yA ¼ �0.111 rad., yB ¼ �0.0864 rad. vB ¼ �0.181 m.
SF diagram BM diagram

5.56 kNm

2.96 kNm
4.26 kN

0.74 kN
1.9. Axial force: AB ¼ 43.1 kN, BC ¼ 48.1 kN
Shear force: AB ¼ 28.4 kN, BC ¼ 2.85 kN
Bending moment: AB ¼ 26.7 kNm, BA ¼ BC ¼ 9.7 kNm,
CB ¼ 4.5 kNm

1.10. n k
SF diagram BM diagram

60.7 kNm

67.9 kNm 

103.6 kNm

A B C

73.2 kNm

25.7 kN 

34.3 kN

60.4 kN 

39.6 kN
1.11. EA ¼ 1.170 � 109 N, EI ¼ 2.653 � 1013 Nmm2.

Chapter 2

P2.2. xp ¼ 4.619 m
P2.3. (a) xp1 ¼ 0.968 m, xp2 ¼ 1.455 m

(b) xp1 ¼ 0.833 m, xp2 ¼ 2.5 m
P2.4. (a) xp1 ¼ 0.285 m

(b) xp1 ¼ 0.25 m; xp2 ¼ 0.667 m; xp3 ¼ 0.417 m
P2.5. (a) y ¼ 600 mm; Plastic moment ¼ 1249 kNm

(b) y ¼ 700 mm; Plastic moment ¼ 1045 kNm
P2.6. 276 mm from bottom; Zs ¼ 3.05 � 106 mm3
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Chapter 3

P3.1. (a) P ¼ 40 kN; (b) P ¼ 30 kN
P3.2. (a) a ¼ 8; (b) a ¼ 6.78

Chapter 4

P4.1. a ¼ 2.0 (first hinge at a ¼ 1.896)
P4.2. a ¼ 1.152; deflection at B ¼ 98.2 mm; at design load level,

moment ¼ �90.7 kNm, deflection ¼ 62.6 mm
P4.3. a) Answers will be used for part c;

b) acol ¼ 1.371; c) M* ¼ 126.2 kNm, N* ¼ 331.6 kN;
d) M* < 293 kNm

P4.4. a ¼ 196.2 (exact)
P4.5. a ¼ 0.8293 after 4 iterations
P4.6. P ¼ 112.3
P4.7. P ¼ 889.4 with deflection ¼ 318 mm at C
P4.8. a ¼ 1.259 with hinges at A and at 6.423 m from A
P4.9. A, D, G, H. a ¼ 1.760

Chapter 5

P5.1. a ¼ 2.0
P5.2. Mp ¼ 70 kNm
P5.3. l ¼ 1.47
P5.4. a ¼ 1.26
P5.5. Mp ¼ 80 kNm

P5.6. P ¼ 7MP

6L
P5.7. a ¼ 0.829. Plastic hinges formed at mid-span and right end of

the rafter.

P5.8. P ¼ 13MP

6L
with plastic hinges at A, B and D.

Chapter 7

P7.1. ac ¼ 1.400, hinges at D, A, C; at a ¼ 1.164,
yD ¼ 4.53 � 10�4 radians; at a ¼ 1.400, yD ¼ 1.12 � 10�2

radians, yA ¼ 1.066 � 10�2 radians.
P7.2. lf ¼ 0.182, Rm ¼ 4.02
P7.3. 596 �C
P7.4. (a) Tc ¼ 534 �C; (b) Tc ¼ 76 �C
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structural analysis
computational issues, 1–2
computer programs, 1–3, 66–9, 76, 107,

108–16, 119–20, 122–3, 164,
166–75, 183–9

concepts, 1–54
degrees of freedom, 3–9, 28–32, 192–3
direct stiffness method, 3, 6–9
elastoplastic stiffness matrix, 91–106,

119–24
flexibility method, 2, 142–4
internal loads, 27–32, 33–50, 126–30
matrix formulations, 2
member stiffness matrix, 9–11, 13–14,

15–18, 20–7, 83, 92, 198–200,
203–6

methods of solution, 19–20
pins, 4–6, 23–7, 32–45, 82–3, 99–100
problems, 50–3
second-order effects, 76, 213–16
statical indeterminacy, 2–9, 20, 30–2,

50–1, 74, 148
stiffness method, 2–54
temperature effects, 45–50, 53, 75,

206–12
structural engineering design offices, 111
structure stiffness matrix

assembly, 14–18, 21–7, 31–45
compatibility condition, 14–16
concepts, 7–9, 14–20, 21–7, 31–45, 83,

92, 113–16, 119–24
equilibrium condition, 14, 16–18, 20–7
methods of solution, 19–20
pins, 32–45, 99–100

successive approximation method
concepts, 107, 119, 122–4, 157–9
force interaction effects on plastic

collapse, 119, 122–4, 157–9
sway mechanisms, partial/complete

collapse, 152–9, 210–11

T
temperature effects

coefficient of linear expansion, 46–50,
208–12

concepts, 45–50, 53, 75, 195, 206–12
cross-sectional area, 46–50, 206–12
failure temperatures, 195, 206–12
internal loads, 27, 45–50, 206–12
modulus of elasticity, 46–50, 53,

208–12
temperature gradient, 47–50
uniform temperature, 45–7, 207–11

temperature gradient, concepts, 47–50
thermal loading, 45–50, 206–12, 216

see also temperature effects
Tin-Loi, F. 163–93
torsion, 77–8, 82–3, 197–8, 213–14,

219–31
torsional restraints, 226–7
transformations

see also load. . .
concepts, 11–13, 28–32, 39–45
coordinates, 11–13, 28–32
displacement transformation, 12–13
load transformation, 11–13, 28–32

transformed section method, temperature
effects, 48–50

truss members, stiffness matrix, 39–40
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U
UDL see uniform distributed loads
ultimate limit state, LSD concepts, 75,

223–30
ultimate settlement factor, concepts,

202–3
unbraced length, design issues, 226–7
uniform distributed loads (UDL)

concepts, 144–7, 149–51, 160
continuous beam end span,

149–51, 160
external work calculation method,

146–7
uniform temperature

see also temperature effects
concepts, 45–7, 207–11

uniqueness theorem, plasticity theorems,
141

United States
see also AISC
design codes, 74–6, 215, 219, 224–31

unloading
concepts, 58–69, 90–2, 124–5,

151–5
plastic hinges, 124–5, 151–5

upper bound theorem see kinematic
theorem. . .

V
von Mises yield criterion, 85–6

W
Waterloo conference (1977) 164
web slenderness, design issues, 228–30
wind loads, 219–20

Y
yield conditions, piecewise linear yield

conditions, 178–82
yield curvature, concepts, 62–9
yield function

concepts, 89–92
definition, 89

yield moment
see also shape factors
concepts, 57–69

yield surface
see also axial forces; bending moments
concepts, 83, 87–99, 104–5, 119–24,

181–3
definition, 87
elastoplastic analysis, 92–9, 104–5,

119–24
linear/non-linear contrasts, 104–5
plastic flow rule, 89–92
stress states, 91

yielding, pure bending, 55, 61–3,
69–72, 82–3, 87, 91–2, 96–106,
108–16, 119–24, 131–7, 175–93,
204–6, 228–30

Young’s modulus, 10
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