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Foreword

I begin my observations with an obvious one: Most graduates of engineering
schools take jobs in industry after graduation. At this stage, they are con-
fronted with the task of designing structural elements of practical projects,
with a view to a structure that will not fail in the course of the desired life
of the element in question. To this end, they have to carry out both static
and dynamic analyses of this element. The following question arises: How
are these young engineers equipped for such tasks? The curriculum they are
offered at the university comprises strength of materials, the theory of elastic-
ity, and vibration analysis. Most undergraduate courses in structural dynamics
are rather basic, and therefore engineers at the beginning of their career try
to distance themselves as much as possible from the applications of the latter.
Similarly, most omit the relatively new field of probabilistic structural analysis.
Thus, the young engineers rarely benefit from the advantages of this modern
analysis.

Failure of structural elements in real-life projects is always due to action of
both static and dynamic loads. Moreover, the uncertainties involved in the
design process call for a probabilistic approach. Thus, both dynamic and
probabilistic structural analyses are a must in modern aerospace, mechanical,
and civil engineering structures. Once the designer is no longer “afraid” to
undertake such analyses, the structures designed by him/her will be more
robust, less conservative, and of much higher quality.

The purpose of this book is to encourage the design engineer to use both these
analyses. Once their basic and physical concepts are understood, their use can
become routine.

The basic concepts of dynamic analysis are described in this book, and the
reader is referred to relevant textbooks in which more information is avail-
able. The basic theory of vibrations; the responses of a structure to external
practical deterministic loads and to random excitation forces; the concept of

xxv
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nondeterministic analysis of structures, and the probabilistic approaches to
crack propagation are included. An extensive collection of examples either
solved analytically or numerically is provided in a manner that enables the
readers to apply the data to his/her own realistic cases. Issues like “factor of
safety,” combined (static and dynamic) failure criteria, and the problem of
“reliability demonstration” of large projects are also included. Relevant com-
mercially available computer codes, extensively used in industry are reviewed.
A list of “do” and “do not do” advice is offered in the final chapter.

The presented material reflects Dr. Maymon’s nearly 40 years of experience
in the fields in question, which included coaching of generations of young
engineers. Dr. Maymon is familiar with their “fears” of these types of analysis,
and with the methodological approaches that enables these “fears” to be
overcome.

It is believed that engineers who read this outstanding book will grasp the
main issues involved in applying structural dynamics and probabilistic analy-
ses. They will be able to follow the demonstrated examples, and “run” their
own practical design problems, with the aid of the attached CD-ROM that
contains the computer files for solving the examples. As a result, their designs
will be improved, and their self-confidence enhanced, making them better
professionals. Moreover, the material presented in the book can serve as
a solid base for an excellent professional course for the interested industry
establishments.

Dr. Maymon ought to be congratulated on this outstanding book that will
benefit our engineers and, through them, all of us.

Dr. Isaac Elishakoff
J.M. Rubin Distinguished Professor

in Safety, Reliability and Security
Florida Atlantic University

Boca Raton, Florida
November 2007
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Most engineers, especially the young ones, rely heavily on modern CAD
programs, which make the lives of today’s designers much easier than those
of previous generations. These programs take care of drawings, tolerances,
special views and cross-sections, lists of parts, check and approval procedures,
and distribution and archiving of the design files. All these modern CAD pro-
grams are capable of performing a basic stress analysis, based on simple finite
elements created for the relevant design. Most of them are also capable of
computing the resonance frequencies of the designed parts.

In spite of the sophistication of these CAD programs, they cannot perform
dynamic analysis of harmonic and random vibrations, responses to transient
loading, and structural reliability analysis, based on probabilistic approaches
to design. Performing such analyses is a major necessity in the design
analysis of practical, real-world structures. Therefore, most of the young
engineers avoid dynamic analyses, and almost all of them avoid probabilis-
tic analysis. They usually think that this part of the design should be left for
“special experts.” Some also create “static equivalent models” for dynamic
problems, in order to solve them with their available static tools, so a cor-
rect dynamic analysis is avoided. Most of them develop a “fear” of structural
dynamics. Almost all never heard of probabilistic structural analysis.

This approach should be avoided if significant improvements in structural
design and the safety of structural systems are desired. Most of the struc-
tural failures encountered in mechanical and aerospace real designs are the
results of dynamic loading and dynamic behavior of the structural elements.
Fatigue and crack propagation, response to transient blast loads, and other
dynamic characteristics are typical reasons that cause failure in structures of
mechanical, civil, and aerospace engineering systems.

The “fear” to do dynamic analyses is unjustified, and once young engineers
understand the basic concepts and procedures of dynamic analysis, their

xxvii



xxviii • Preface

participation in successful designs can be improved. The same argumentation
holds for probabilistic analysis, mainly because it is a much newer field. Many
engineers think that this field belongs to mathematicians and statisticians—
which is really not the case. The reliability of a structural design, which is part
of the total reliability of the product, depends mainly on the design process as
a whole, including all kinds of analyses (analytical and numerical), product’s
model simulations, components tests, and systematic experiments. The math-
ematicians cannot achieve this reliability, and the role of the design engineers
in this task is essential.

Many design engineers have access to one of the commercially available
finite elements computer codes, like NASTRAN®, ANSYS®, ADINATM,
ABAQUS®, and STAGS. They are using it, sometimes, to solve structural
static problems during the design process. The moment these people under-
stand that a structural dynamic problem can be easily solved with these same
codes by using the same database file prepared for the static analysis, more and
more dynamic analyses will be performed during the design, without apply-
ing “equivalent static solutions” that are, in most cases, erroneous. To do
that, a better understanding of the physical meanings of structural dynamics
concepts is essential. This is the main purpose of the present book.

The most important part of a computerized structural analysis is the prepa-
ration of the database file. In this file, the types of the elements are decided
on, geometry of the structure and its dimensions are determined, material
properties are introduced, and boundary conditions are set. This input data is
required for the construction of the rigidity matrix. When material densities
are included, the mass matrix can also be created. These two outcomes—
the rigidity matrix and the mass matrix—are also the basic characteristics
required for dynamic solutions, when the proper external dynamic forces
are introduced to the solution phase. Therefore, the efforts invested in the
correct preparation of the database for the static analysis include inherently
all the information required for dynamic solutions, which then can be per-
formed without much additional effort. This can and should be done when
the designers will not be “afraid” of structural dynamics. The translators of
finite elements codes that are included in today’s probabilistic analysis com-
mercially available programs, and the probabilistic analysis modules that are
included in the present version of the large finite elements codes, enable
the user to perform probabilistic analysis as well, and focus the attention
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to the failure criteria, which may be the most important parameters in a
design analysis.

The professional and the intelligent analysis of the results of a numerical
computation is a basic demand for a successful design. It is easier to inter-
pret the results once the basic physics of the problem and the behavior of the
structure are understood. The following chapters are an attempt to clarify
the basic concepts of structural dynamics and probabilistic analysis. The pre-
sentation is accompanied by basic examples and extensive analysis of results,
in an effort to decrease the “fear” that prevents young engineers from doing
such analyses.

Although the examples presented are very simple, the procedures described
are of a general nature. When an ANSYS file of a simple problem is described,
solved, and understood, the solution of a more complex practical case can be
done just by replacing relevant parts of that file with the new case data. Thus,
the examples can be used as guidelines for many other cases that may be more
practical and more realistic.

Most of the examples described in this book are based on the behavior of
the cantilever beam. For many years, the author was fascinated by this basic
structure. It is a structural element on which all the procedures required for
a comprehensive structural analysis could be demonstrated, and many of the
common mistakes engineers make in computing and testing structural ele-
ments can be demonstrated and explained. One reason why this structural
element is “classical” for educational purposes is that when it vibrates, there
are high accelerations at the tip, where almost no stresses exist, and the maximum
stresses are near the clamped edge, where usually no accelerations exist. Usually,
engineers should be concerned with high dynamic stresses (as the cause for
failure), but it so happens that most of them are concerned with high accele-
ration responses that occur, for this structural element, in a location where
almost no stresses exist. A generic cantilever beam used in most of the numeri-
cal examples is described at the beginning of Chapter 2. Nevertheless, to
emphasize that the described methods are not unique to beams only, some
examples of frames plates and shells are also included. The theory of simple
beams is only briefly discussed in this book, as this is not the objective of this
publication. There are dozens of textbooks describing beam theories, from
the most simplified strength of material approach to much more rigorous
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and complex formulation, and the interested reader can complete his
knowledge by referring to them.

In some simple cases demonstrated in the following pages, analytical solutions
are available. Such solutions are rarely available in real practical designs. The
structural analyst usually uses a numerical algorithm, such as a finite elements
code. Those have been tremendously advanced during the last three decades.
They are commercially available and accessible to most design establishments
and individuals in many design disciplines such as aerospace, mechanical and
civil engineering, and to engineering students, who can use the more limited,
much cheaper educational versions. Solution of the presented examples using
such codes can help designers in evaluating their own cases and writing their
own solutions. Therefore, the input text files used for the simple examples
are listed in the Appendix and included on the CD-ROM that accompanies
this book. A few important basic computer codes used in practical structural
design (certainly not all of them) are described in Chapter 8.

The use of the correct units for the physical properties of an analyzed struc-
ture is also an essential feature in structural analysis, and in any engineering
discipline. The Standard International (SI) system is only one of the ways
parameters can be expressed in an analysis, certainly not the most practical
one for engineers. Any other units system can be used as long as the user
is consistent. If loads are given in kgf (kilogram-force), and dimensions are
given in cm (centimeters), stresses will be in kgf/cm2. For such cases, Young
modulus should be defined in kgf/cm2. If Forces are given in lbs (pounds),
and dimensions are in (inches), stress results are in lbs/in2 (psi, pounds per
square inch). Confusion between kgm (kilogram mass) and kgf (kilogram
force) should be avoided. In some computer codes, the value of the gravita-
tional acceleration g is required, and should be introduced with the proper
units (e.g., g = 9.8 m/sec2 = 980 cm/sec2 = 385.8 in/sec2). Introduction of the
wrong value causes, naturally, erroneous results. In the examples described in
this book, SI units are not used, as these are certainly not the units an engineer
uses in his practice. Nevertheless, it should be emphasized again that the use
of any set of units is appropriate, as long as there is a consistency along the
entire solution process—analytical or numerical. Care should be taken when
frequencies are expressed with the wrong units. Circular frequency, usually
denoted f, is in cycles/seconds or Hertz (Hz), and angular frequency, usually
denoted ω, is expressed in radians/seconds. Wrong use of frequency units
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changes the results by a factor of 2π and its powers! This question is discussed
in more detail when the response of an elastic system to harmonic and random
excitation is described.

It is also important, when long analytical expressions are evaluated, to check
the units of the required quantity on the left-hand side of the equation against
the units on the right-hand side of the obtained expression. Many algebraic
manipulation mistakes can be detected and avoided by using this procedure.

In Chapter 1 of this book, some basics of the theory of deterministic vibrations
are repeated to create a common knowledge base for the readers. Readers
interested in more details about vibration theory should explore the suggested
textbooks.

In Chapter 2, some basics of the theory of slender beams are quoted, as these
beams form most of the numerical examples in this text. It should be noted that
while beams are used in many of the numerical examples, there is no loss of
generality for other cases, as the “beam” represents “database information,”
which can be replaced with any other structural model. Some examples of
frame plates and shell structures have also been added to emphasize this
point.

In Chapter 3, the responses of single-degree-of-freedom (SDOF), multiple-
degrees-of-freedom (MDOF), and elastic (continuous) systems to random
excitation are demonstrated. Again, references to appropriate textbooks are
included.

In Chapter 4, dynamic contact problems are demonstrated and discussed.
This kind of problem is encountered in practical design when one elastic
subsystem is “packed” into another subsystem, and there is a possibility
that during a routine service some parts knock on some other parts of the
structure, thus creating excessive local stresses. The treatment of this sort
of structural behavior is usually avoided in both academic courses and in
practical design. This, in fact, leads engineers to very conservative (and there-
fore inefficient) design solutions for cases where parts can knock against
each other.

In Chapter 5, nondeterministic behavior of structures is discussed. Proba-
bilistic analysis of structure is a fast-developing discipline in structural design,
and any young engineer should be familiar with the basics of the theories and
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applications of this emerging field. According to our belief, this field will be
an important part of the design requirements and specifications in the near
future.

In Chapter 6, random behaviors of crack propagation under repeated loads
are demonstrated and discussed. Crack propagation is highly influenced by the
randomness of many material and design parameters, thus random behavior
cannot be avoided.

In Chapter 7, some dynamic design criteria (including the classical and the
new stochastic factors of safety) are described and discussed.

In Chapter 8, some practical computer programs used for analysis of struc-
tures (static and dynamic, deterministic and probabilistic) are reviewed,
especially those used extensively in the industry and for the numerical
examples described in this book.

Chapter 9 summarizes the book with some important “do” and “do not do”
recommendations for someone who was afraid of structural dynamics and
probabilistic analysis before reading this text and practicing its material. The
author is sure that after reading and practicing, the reader will never again be
afraid of these important design necessities, and his design methodology will
be tremendously improved.

The Appendix contains a list of the computer files used in this book for the
demonstration problems according to the book chapters, and file lists are
included.

A CD-ROM is attached to this publication, in which the files mentioned and
listed in the Appendix are included. The reader can copy these files to his
computer. In many cases, the basic database part of the listed file can be
easily replaced by one of the reader’s files. If this is the case, care must be
taken to modify the rest of the files, too.

As already mentioned, this publication is not intended for use as a textbook
on the subject matter. There are many dozens of textbooks dealing with basic
vibration theory, theory of beams, probabilistic analysis, and crack prop-
agations. The interested reader is referenced to few of the existing texts.
In addition, from the author’s experience, the Internet can be used for
an extensive search on many engineering problems, definitions, benchmark
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cases, and literature. This publication is directed mainly to the entry-level
engineering practitioners, and to established engineering professionals who
undergo a mid-career education cycle. As such, the text can be a solid base
for professional and continuing education courses and for industry training
workshops.

Giora Maymon
January 2008
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C h a p t e r 1 / Some Basics of
the Theory of Vibrations

1.1 A SINGLE DEGREE OF FREEDOM SYSTEM

A good physical understanding of the behavior of vibrating structures can be
achieved by analyzing the behavior of a single degree of freedom (SDOF)
oscillator. The SDOF system is covered by an extremely large number of
textbooks (e.g., refs. [1–12]), and is the basis for every academic course in
vibration analysis in aerospace, mechanical, and civil engineering schools. It
will be discussed briefly in the first chapters to create a common baseline for
the analysis of the behavior of the cantilever beam described in most of the
examples, and for any other continuous structure.

The SDOF system can be excited either by a force (which is a function of
time) acting on the mass, or by a forced movement of the support. The first
type of excitation is usually called “force excitation” and the latter is called
“base excitation.” These two major types of excitations (loadings) are basic to
the structural response analyses of both the SDOF and the continuous elastic
systems.

The classical oscillator contains a point mass m (i.e., all the mass is con-
centrated in one point), which is connected to a rigid support through two
elements: a linear massless spring with a stiffness k and a viscous damper c
(which creates a force proportional to the velocity), or a structural damper
h (which creates a force proportional to the displacement and in 90 degrees
phase lag behind it). The system can be excited either by a force f acting on
the mass or by a base movement xs. The force-excited system is described in
Figure 1.1. Note in the figure that two “elements” connect the mass to the

1
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k

m

f (t )

x (t )

c

FIGURE 1.1 A force-excited SDOF.

support. This is only a schematic representation. The spring element repre-
sents the stiffness of the structure, while the internal viscous (or structural)
damping of the spring is represented by the separate damper.

In the following evaluations, and in the rest of the book, only a viscous damper
is assumed (although treatment of a structural damper is similar and can be
found in many references; e.g., [10]). The basic equation of motion can be
written by equilibrium of forces acting on the mass when it is moved in the x
direction:

mẍ + cẋ + kx = f (t) (1.1)

The natural frequency of the undamped system is

ω0 =
√

k
m

(1.2)

The system is excited by a harmonic force of amplitude f0 and frequency �:

f (t) = f0 e i� t (1.3)

Assume a solution in the form

x(t) = x0 e i�t (1.4)

which yield the following result for x0:

x0 = f0(
k − �2 m

)+ i(�c)
= f0 H(�) (1.5)

where

H(�) = 1(
k − �2 m

)+ i(�c)
(1.6)
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This is a complex expression (called also Transfer Function), which means that
there is a phase difference between the excitation force and the displacement.
Using classical solution methods one can obtain the absolute value of x0,

| x0| = f0

mω2
0

⎡
⎣(1 −

(
�

ω0

)2
)2

+ 4
(

�

ω0

)2

ζ2

⎤
⎦

1/2 = f0
m

Hm(�) (1.7)

where

Hm(�) = 1

ω2
0

⎡
⎣(1 −

(
�

ω0

)2
)2

+ 4
(

�

ω0

)2

ζ2

⎤
⎦

1/2 (1.8)

ζ is the viscous damping coefficient given by

ζ = c

2
√

km
= c

2ωm
(1.9)

and is used extensively in engineering applications. The phase angle between
the displacement and the force is

θ = arctan

[
2ζ

(
�

ω0

)/(
1 −
(

�

ω0

)2
)]

(1.10)

Note that in Eq. (1.7) f0/mω2
0 = f0/k is the static deflection xstatic of the SDOF

under a static force of magnitude f0, and therefore a dynamic load factor
(DLF) can be defined by

DLF = | x0|
xstatic

= 1⎡
⎣(1 −

(
�

ω0

)2
)2

+ 4
(

�

ω0

)2

ζ2

⎤
⎦

1/2 (1.11)

The DLF expresses the amplification of a static deflection because the load
is dynamically applied. A plot of Eq. (1.11) is shown in Figure 1.2. These are
the well-known “resonance curves.” When the system is excited in resonance,
�/ω0 = 1, the maximum value of the DLF is

DLFmax = 1
2ζ

(1.12)
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FIGURE 1.2 The DLF of a force-excited SDOF as a function of frequency ratio.

Examination of Eq. (1.10) shows that at very low excitation frequencies
(�/ω0 → 0), x is in phase with the excitation, and the DLF is close to 1. This
means that the mass is “following” the excitation, with almost no dynamic
effects. At resonance (�/ω0 = 1) the displacement is 90 degrees ahead of the
excitation, and the amplification has a maximum. The value of this maximum
is higher as the damping coefficient is lower. In high excitation frequen-
cies (�/ω0 → ∞) there is a 180-degree lag between the displacement and
the excitation force, and the amplification tend to 0. This means that the
dynamic force does not move the mass, so the SDOF is very rigid in these
excitation frequencies. The length of the response vector and the size of
the phase angle between the excitation force and the displacement are used
extensively in many experimental methods for the determination of resonance
frequencies and mode shapes of a structure (Ground Vibration Test—GVT;
e.g., [13, 14]).

Many engineering applications involve base excitation rather than force
excitation (see Figure 1.3). Such are the cases of structures subjected to earth-
quakes, vehicles moving on rough roads, and structural subsystems mounted
on a main structure. It is convenient to express the excitation by a base input
of acceleration ẍs(t).

It can be shown that u = x(t) − xs(t), the relative displacement between the
mass and the support (which is the extension of the spring) obeys the following
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ck

m
x (t )

xs(t )

FIGURE 1.3 A base-excited SDOF.

differential equation:

mü + cu̇ + ku = −mẍs(t) (1.13)

Thus, the differential equation for the relative displacement (between the
mass and the base—the displacement that causes elastic forces in the spring)
is similar to the differential equation of the basic mass-spring-damper excited
by an external force, but with an “equivalent excitation force,” which is equal
to minus the mass multiplied by the base acceleration.

In most of the cases, the relative displacement between the mass and the
support (and not the absolute displacement of the mass) is responsible for the
stresses in the spring (or in the elastic structure) and therefore is of interest
to the designer. Eq. (1.13) is similar to Eq. (1.1) of the force excitation, where
an “equivalent force,” equal to the mass multiplied by the base acceleration,
in a direction opposite to the base excitation, is applied. Thus, when ẍs(t) =
ẍs0ei�t the term (−mẍs0) can replace f0 in Eq. (1.1), whereas u, the relative
displacement, replaces x, thus:

|u| = (−ẍs 0)

ω2
0

⎡
⎣(1 −

(
�

ω0

)2
)2

+ 4
(

�

ω0

)2

ζ2

⎤
⎦

1/2 (1.14)

When the support is moved by a harmonic displacement (rather than by
harmonic acceleration) of amplitude xs 0 and a frequency �,

xs = xs0 ei�t (1.15)

the acceleration is obtained by double time differentiation

ẍs = −�2xs0 ei�t (1.16)
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and, therefore,

|u|
xs0

=

(
�

ω0

)2

⎡
⎣(1 −

(
�

ω0

)2
)2

+ 4
(

�

ω0

)2

ζ2

⎤
⎦

1/2 (1.17)

Eq. (1.17) is described in Figure 1.4. When the frequency of the base excitation
is small (�/ω0 → 0), there is no relative displacement between the support
and the mass, u → 0, which means that the mass is moving almost as the
support. When the support excitation frequency is high, (�/ω0 →∞), u tends
to xs 0, resulting in a relative displacement of −xs 0; i.e., the mass does not move
relative to the “external world” and all the relative movement between the
mass and the support is due to the base movement. This is the reason why
shock absorbers are mounted on certain structural elements (like a car) and
their frequency is designed to be smaller than the frequency of the expected
base excitation (e.g., road surface roughness). The mass (the car body, in
this case) does not move, while elastic stresses are created in the springs (the
shock absorbers).

It is of major importance to understand and to master the solutions of
SDOFs. In many practical engineering problems, systems can be represented
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FIGURE 1.4 DLF of u(t), the extension of the spring.
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by equivalent SDOF, at least in the early stages of a design. Solutions of an
equivalent SDOF system increase the designer’s understanding of the behav-
ior of the designed structure, and direct him in the right direction in the
critical early stage of a project. Another advantage of the SDOF is that ana-
lytical solutions are usually possible, thus a quick preliminary design cycle can
be obtained. Sometimes, a SDOF equivalent system is not possible, but in
many cases equivalent multiple degrees of freedom (MDOF) models may be
available for a simpler solution. Section 1.3 explains these systems.

1.2 RESPONSE OF A SDOF TO (ANY) TRANSIENT LOAD

When the response of a SDOF system to a general (not necessarily harmonic)
time dependent force is required, the most general solution can be obtained
using the response h(t) of such a system to a unit impulse. A unit impulse is
defined mathematically as an infinitely large force acting during an infinitely
small period, so that the total impulse is one unit. The solution for h(t) is
described in most of the available textbooks. For a SDOF system initially at
rest, with a damping coefficient ζ < 1 (which is usually the case in structural
analyses) it is:

h(t) = 1

mω0
√

1 − ζ2
· e−ζω0t · sin

(
ω0

√
1 − ζ2 · t

)
(1.18)

The response to a general force f (t) can be represented by a series of repeated
impulses of magnitude f (τ)�τ, applied at t = τ. In vibration textbooks, it is
shown that the displacement response of a SDOF system can be written as

x(t) =
τ=t∫

τ=0

f (τ) · h(t − τ) dτ (1.19)

This equation is known as the convolution or Duhamel’s integral, and is used
extensively in Fourier transforms. As h(t − τ) is identically zero for t < τ, the
Duhamel’s integral can also be written as (e.g., [15])

x(t) =
τ=t∫

τ=−∞
f (τ) · h(t − τ) dτ (1.20)
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In many cases, an analytical solution of Eq. (1.20) is possible. In other cases,
a numerical integration scheme can be easily written to get the response of
a SDOF system to an arbitrary transient excitation force. Both cases are
demonstrated in the following pages.

In the first example, a constant step function force is applied to a SDOF
system. This means that at time t = 0, the force f0 = constant is applied, with
zero rise-time. Thus

f (τ) = f0 t ≥ 0 (1.21)

Eq. (1.20) takes the form

x(t) = f0
1

mω0
√

1 − ζ2

τ=t∫
τ=0

exp[−ζω0 (t − τ)] · sin
[
ω0

√
1 − ζ2 · (t − τ)

]
dτ

(1.22)

Performing the definite integration, the DLF can be found:

DLF = e−ζω0t

ωd
[−ζω0 sin(ωdt) − ωd cos(ωdt)] + 1 (1.23)

where ωd = ω0
√

1 − ζ2 is the resonance frequency of the damped system.
Note the difference between ωd and ω0, which is very small for small values of
damping ζ. In Eq. (1.23), the rigidity k = mω2

0 was used to express the static
deflection of the system under a force f0.

In Figure 1.5, the DLF for an undamped system (ζ = 0) is shown. In Figure 1.6,
results are shown for ζ = 0.05. The solution is done with file duhamel1.tkw
(see Appendix).

It is quite interesting to analyze the results shown in Figures 1.5 and 1.6.
The applied force is a step function with zero rise-time. The response of the
undamped system is between zero and twice the static deflection created by
the same force, if applied statically. The maximum DLF equals two. It can be
shown that in cases where the rise-time is finite, and not zero, the maximum
value of the DLF is less than 2. Thus, a transient force that is not repetitive
(i.e., has not a periodical component) causes a dynamic effect to a SDOF
system whose maximum is twice the static effect. Therefore stresses are also
twice of those obtained in the static applied force. When the system is damped,
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there are decreasing fluctuations around the static value of 1, and after a long
enough period, the system is settled with deflection and stresses that are equal
to those created by applying the load statically.

In Section 1.4 it is shown that an elastic system can be described by an equiv-
alent SDOF system, with generalized quantities (generalized mass, rigidity,
damping, and forces). Thus, the same conclusions can be drawn for an elastic
system. Consider the cantilever beam, very slowly and carefully loaded by a
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tip static force f0. The tip deflection is wtip, which can be calculated using
beam theory. Suppose a weight of f0 is suddenly (zero rise-time) put at the
tip. The beam vibrates between a displacement of zero and twice the static
displacement, when it is undamped. If damping exists, the amplitudes of the
tip are damped when time passes and after long enough time the beam takes
the static deflection under the force f0.

Duhamel’s integral can also be performed analytically for harmonic excita-
tions. The results of such an analysis are more general than the one described
earlier for harmonic excitations, as it expresses both the steady state (eval-
uated in Section 1.1) and the transient response. Such solutions are not
demonstrated here, and are left to the interested reader [15].

The Duhamel’s integral cannot always be evaluated explicitly. Numerical
integration can always be performed to determine the response of a SDOF
system (and therefore of any other system, using generalized parameters) to
a general force. In Figure 1.7, a flowchart for such a computational procedure
(cited from [16]) is shown for a trapezoidal integration (see file duhamel2.tkw
in the Appendix). Any other algorithm can replace the integration block of
this scheme. For practical complex structures, the response for any transient
excitation (force, displacement, accelerations, etc.) can be numerically solved
by one of the modules of a commercially available finite elements program,
such as NASTRAN® or ANSYS®.

In some cases, it is easier to solve a SDOF system with a transient loading
by “sewing” together two direct solutions, instead of using the Duhamel’s
integral method. Suppose a system is excited by a half sine force, with the
amplitude of the half sine being F0 and its duration being τ0. In this case, the
excitation is

F = F0 sin(�t) 0 ≤ t ≤ τ0
(1.24)

F = 0 t ≥ τ0

In such a case, it is easier to solve for the system’s behavior up to t = τ0 as
if the excitation is fully harmonic, to find the displacement x(τ0) = X0 and
the velocity ẋ(τ0) = V0, and then solve the homogenous equation for the zero
excited SDOF using the homogenous solution with X0 and V0 as initial con-
ditions. Then, the two solutions can be matched to form a single solution of
displacement as a function of time.
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Mass
Resonance frequencies
Damping coefficients

Physical Data

f(t): External force
h(t): Impulse function

Functions
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Select initial time, t 5 0

Integral 5 I 5 0
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FIGURE 1.7 Flowchart for programming the Duhamel’s integral (from [16]).

1.3 MULTIPLE-DEGREES-OF-FREEDOM (MDOF)
SYSTEM

A multiple-degrees-of-freedom (MDOF) system contains several masses,
interconnected by springs and dampers and excited by several external forces
and/or base excitations. The number of degrees of freedom of such a sys-
tem is determined by the number of masses n. Each mass mi moves with a
displacement xi.
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The analysis of many continuous systems (which, in fact, have an infinite
number of degrees of freedom, as their mass distribution is continuous) can
be analyzed, in many practical cases, by an equivalent system that has a finite
number of degrees of freedom. It is possible to describe a continuous system
by an approximation of a finite number of discrete masses. The main problem
in the construction of such an equivalent system is, usually, the construction of
the appropriate elastic elements (springs) that should approximate the elastic
behavior of each mass relative to the other. In fact, whenever a numerical
analysis of a structure is done (say, by a finite elements code), the continuous
elastic system is approximated by a set of discrete elements, each with its
mass and elasticity. The interested reader should refer to textbooks on the
basics of the finite elements methods and other discretization methods (see,
e.g., [17, 18]).

Therefore, it is essential to learn the behavior of MDOF systems and the
methods used in order to analyze them. Most of the definitions and the meth-
ods of solution of MDOF systems are applied, in this book and in many others,
to the solution of continuous elastic systems.

It can be shown (and it will be demonstrated later in this chapter) that
the following differential equation can be written for a MDOF system in a
matrix form:

[m]
{

ẍ(t)
}+ [c]

{
ẋ(t)
}+ [k]

{
x(t)
} = { f (t)

}
(1.25)

[m], [c], and [k] are mass, damping, and stiffness matrices, respectively. {.} are
vectors of the accelerations, velocities, displacements, and external forces.
The main problem, of course, is to build these matrices properly.

The free undamped vibration of the system is governed by

[m]
{

ẍ(t)
}+ [k]

{
x(t)
} = 0 (1.26)

Assume a solution

{
x(t)
} = { x}e iωt (1.27)

and substitute it into Eq. (1.26). A homogenous equation is obtained:(
[k] − ω2[m]

)
{ x}e iωt = {0} (1.28)
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The nontrivial solution of Eq. (1.28) exists only when their determinant
is zero,

det
∣∣∣[k] − ω2 [m]

∣∣∣ = 0 (1.29)

This relation produces a polynomial equation of the order n for the n values of
the eigenvalues ω2, i.e., ω2

1, . . . , ω2
n. These are the n modal angular resonance

frequencies of the system. Substituting any of these frequencies into Eq. (1.28)
yields a corresponding set of relative (but not absolute) values for {x}. This
is the nth modal shape, also called normal mode. The n normal modes are
described by a matrix [φ] in which the nth column corresponds to the nth
mode shape of the respective frequency ωn. The nth raw corresponds to the
nth degree of freedom of the system. The matrix [φ] is in the form

[φ] =

⎡
⎢⎢⎢⎢⎣

φ1, 1 φ2, 1 · · · φn, 1

φ1, 2 φ2, 2 · · · φn, 2
...

...
...

...

φ1, n φ2, n · · · φn, n

⎤
⎥⎥⎥⎥⎦ (1.30)

The first index is the mode number, and the second index indicates the system
coordinate (degree of freedom).

The resonance frequencies and the mode shapes are characteristic of the
system and not of the loading. They depend only on the masses (or mass
distribution, for a continuous system), rigidities, and boundary conditions.
Therefore, they are attractive for applications of structural dynamics analyses.
The mode shapes (sometimes called normal modes) possess an important
property known as orthogonality. This means that

[φ]T [m] [φ] = [M] (1.31)

where the superscript T represents a transposed matrix and [M] is a diagonal
matrix with elements known as the generalized masses. In a similar way

[φ]T [k] [φ] = [K ] (1.32)

where [K ] is a diagonal generalized stiffness matrix. From Eq. (1.29)

[K ] =
[
ω2

n M
]

(1.33)
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For a system with a damping proportional to the mass and/or the stiffness

[φ]T [c] [φ] = [C] (1.34)

where the elements of the diagonal matrix [C] are called the generalized
damping. The assumption of a proportional damping that yields a diag-
onal generalized damping matrix is not necessarily correct. Nevertheless,
this assumption greatly simplifies the calculations of structural response and
therefore is used extensively in practical engineering applications. When
modal damping coefficients ζn are known (from experiments or from accu-
mulated practical knowledge), it can be shown that

[C] = [2ζnωn M] (1.35)

It should be noted that the generalized quantities M , K , and C are not unique.
They depend on the value of φ, which is a relative set of displacements. Selec-
tion of φ determines the generalized quantities. In some cases, a normal mode
is selected so that its maximum value is 1. In other cases (especially in the
large finite elements computer codes), the normal modes are selected in such
a way that all the generalized masses are equal to 1, so [M] is a diagonal unit
matrix. It is not important what selection is done, as long as the calculation is
consistent.

A very useful transformation that is used extensively in structural analysis is

{ x} = [φ] {η} (1.36)

i.e., the displacements vector { x} is expressed as a linear combination of the
normal modes [φ] and a generalized coordinate vector {η}. This transforma-
tion, sometimes called normal modes superposition, is used extensively in
structural dynamics analysis, and therefore will be demonstrated here for a
system with two DOFs.

The modal matrix for such a system is

[φ] =
[

φ1,1 φ2,1

φ1,2 φ2,2

]
(1.37)

Thus, the transformation is{
x1

x2

}
=
[

φ1,1 φ2,1

φ1,2 φ2,2

]{
η1

η2

}
(1.38)
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or explicitly

x1 = φ1,1 η1 + φ2,1 η2

x2 = φ1,2 η1 + φ2,2 η2
(1.39)

Thus, the displacements are expressed as a linear combination of the gener-
alized coordinates, weighted by the modal shapes.

Substituting the transformation, Eq. (1.36) into Eq. (1.25) and multiplying
each term by φT yields

[φ]T [m] [φ] {η̈} + [φ]T [c] [φ] {η̇} + [φ]T [k] [φ] {η} = [φ]T {f } (1.40)

or

[M] {η̈} + [C] {η̇} + [K ] {η} = [φ]T {f } = {F} (1.41)

Eq. (1.41) can also be written as

[M] {η̈} + [2ζωM] {η̇} +
[
ω2M
]
{η} = {F} (1.42)

where each square matrix [.] on the left side of Eq. (1.42) is diagonal.

The quantity on the right-hand side of Eq. (1.42) is called the generalized
forces matrix {F}. The generalized forces represent the work done by the
external forces when the masses of the system move in a modal displacement.
When the external forces and the normal modes are known, the generalized
forces can be calculated easily.

Eq. (1.42) is a set of n uncoupled equations of motion, where in each of these
n equations only one ηi exists. Each equation can be solved separately for
the generalized coordinate ηi. It can be seen that when a MDOF system is
expressed by its set of generalized masses, generalized stiffnesses, generalized
dampings, and generalized forces, a set of n equations for n separate equiv-
alent SDOFs is obtained. Each equation can be solved using all the known
techniques and algorithms for a SDOF system. When all the generalized coor-
dinates ηi (i = 1, 2, . . . , n) are solved as a function of time, the deflection of the
MDOF system can be obtained using Eq. (1.36) for the displacement vector
{ x} as a function of location and time.

The equations of motion for a base-excited MDOF present the same charac-
teristics. It is more difficult to generalize them because there are too many
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possibilities. At the end of a process of writing force equilibrium for any of
the masses, a set of n equations is obtained. It is important to note which
masses (degrees of freedom) are connected (through springs and dampers)
to the base (“the external world”), and which masses are connected to each
other. It is possible, though, to get a set of uncoupled differential equations
where the left-hand side (l.h.s.) is similar to the l.h.s. of Eq. (1.42), and the
right-hand side (r.h.s.) contains terms that are a function of the rigidities and
damping that exist between those masses that are directly connected to the
base, together with the normal modes of the system. This will be demonstrated
in the examples.

In Figure 1.8, a system with two DOFs is illustrated. The system has two
masses, three springs, and three dampers. The system is excited either by two
external forces acting on the masses, or by a base movement xs(t). Of course,
a combination of both external forces and base movement is also possible, but
will not be demonstrated here.

For the case of the two external excitation forces, the forces acting on the
masses are shown in Figure 1.9.

x1(t ) x2(t )

f2(t )f1(t )

xs(t )
c1 c3c2

k2
k1 k3

m1 m2

FIGURE 1.8 Two DOFs system.

k1x1

m1 m2

f1(t )

k2(x2�x1)

c2(x2�x1)

m1x1

c1x1

f2(t )

k2(x2�x1)

m2x2

k3x2

c3x2c2(x2�x1)

FIGURE 1.9 Forces equilibrium, two external excitation forces.
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Formulating the two force equilibrium equations, it can be easily shown that
the equations of motion can be written by

[
m1 0
0 m2

]{
ẍ1

ẍ2

}
+
[

c1 + c2 −c2

−c2 c2 + c3

]{
ẋ1

ẋ2

}
[

k1 + k2 −k2

−k2 k2 + k3

]{
x1

x2

}
=
{

f1(t)
f2(t)

} (1.43)

When the eigenvalues and eigenvectors of the undamped, unexcited system
(the homogenous equation) are solved, two resonance frequencies and two
normal modes (forming a 2 × 2 [φ] matrix) are obtained. The two uncoupled
differential equations that are a special case of Eq. (1.25) can be solved using
the methods used for one SDOF system.

For the case where there are no external forces, but the base (“the external
world”) is moved with a known time function xs(t), the force equilibrium is
shown in Figure 1.10.

The two force equilibrium equations are

[
m1 0
0 m2

]{
ẍ1

ẍ2

}
+
[

c1 + c2 −c2

−c2 c2 + c3

]{
ẋ1

ẋ2

}
[

k1 + k2 −k2

−k2 k2 + k3

]{
x1

x2

}
=
{

k1 xs(t) + c1 ẋs(t)
k3 xs(t) + c3 ẋs(t)

} (1.44)

The r.h.s of the equation is a known function of time. Note that only the
rigidities and damping between the masses and the support are included in
the r.h.s. of the equation, and not those that are between the two masses.

k1(x1�xs)

m1 m2

k2(x2�x1) k2(x2�x1) k3(x2�xs)

c3(x2�xs)c1(x1�xs) c2(x2�x1) c2(x2�x1)

m1x1 m2x2

FIGURE 1.10 Forces equilibrium, base excitation.
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With some algebraic manipulations, Eq. (1.44) takes the form

[M] {η̈} + [2ζωM] {η̇} +
[
ω2M
]
{η} = [φ]T

{
k1 xs(t) + c1 ẋs(t)
k3 xs(t) + c3 ẋs(t)

}
(1.45)

On the l.h.s. of the equation are values that are typical to the system:
generalized masses [M] (obtained using the mass matrix and the modes
matrix), resonance frequencies ω, and modal damping coefficients ζ. On the
r.h.s. of these equations are some known parameters of the problem (k1, k3, c1,
and c3 ), the transpose modal matrix [φ]T , and the known base movement. The
equations should be solved for {η}, and then the transformation (Eq. (1.36))
can be used for time dependent deflection.

A continuous system is the limit of a MDOF system, when the number of
DOFs tends to infinity. Most of the practical continuous (elastic) systems can
be solved using a finite number of DOFs, as shown in the next chapters.

1.4 INFINITE-DEGREES-OF-FREEDOM (CONTINUOUS)
SYSTEM

For continuous (elastic) systems, the equations of motions are obtained in
details in Chapter 2 (Section 2.2). Just in order to complete the treatment of
the basic theory of vibration, it should be noted here that continuous systems
are treated similar to the way the MDOF systems were evaluated. The dis-
placement perpendicular to the structure is expressed by the famous modal
description:

w(x, t) =
∞∑

n=1

φn(location) · ηn(time) (1.46)

Thus, the deflection is expressed by an infinite summation of general coordi-
nates ηn(t), weighted by an infinite number of modal shapes φn(x), where x is
the location on the structure. This is because the continuous system is made of
an infinite number of small masses. One can define a set of infinite number of
generalized masses. These are obtained for one-, two-, and three-dimensional
structures using



1.5 Mounted Mass • 19

Mn =
∫

length

mL(x) · φ2
n (x) · dx, mL(x) is mass per unit length

Mn =
∫

area

mA(x) · φ2
n
(
x, y
) · dx · dy, mA(x, y) is mass per unit area

Mn =
∫

volume

mV (x) · φ2
n
(
x, y, z
) · dx · dy · dz, mV (x, y, z) is mass per unit volume

(1.47)

In Chapter 2, it is shown that the continuous system can also be analyzed by
solving the infinite set of uncoupled equations for ηn(t):

[M] {η̈} + [2ζωM] {η̇} +
[
ω2M
]
{η} = {F} (1.48)

where [M] and [F] are the generalized mass and generalized forces, respec-
tively, and ω are the resonance frequencies. The actual deformation is then
calculated using Eq. (1.46) with the known mode shapes.

Practically, a finite number of modes are used instead of the infinite number
of modes that exist, unless an analytical solution is possible—a rare case in
practical applications. Justification for this is also described in Chapter 2,
in which the response of a continuous structure (a beam) to deterministic
excitations is described and discussed.

1.5 MOUNTED MASS

One of the main purposes of a practical structure is to support some kinds of
payloads. An aircraft wing produces lift, but also supports the engines and is
used as a fuel tank. The floor of a building supports equipment mounted on
it, as well as furniture and people. Car front structure supports the engine, a
ship mast supports radar equipment, and many more examples can be listed.
Sometimes, the supported payload also has elastic properties, but in many
cases, it can be treated as a mass attached in some way to the main elastic
structure. In these cases, the stiffness distribution of the main elastic structure
is not changed significantly by adding the mass, but the mass distribution is not
the original one. In most of the cases, the “attached mass” (the equipment) is
connected to the structure through an elastic interconnection, such as shock
mounts or another interconnecting structure, whose purpose is to support
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the payload and sometimes to suppress vibrations that are transferred from
the main structure to the payload. The structural system is thus comprised
of the main elastic structure, the elastic interface, and the attached mass.
Because of the additional mass and elastic interface, the resonance frequen-
cies of the original structure are changed, as well as the mode shapes. The
change is significant when the mounted mass and elastic interface are not neg-
ligible compared to the prime structure. In some cases, when the mounted
mass is small, the two subsystems—the original structure and the mounted
mass—can be treated separately, but this is not the general case.

A mass mounted through an elastic structure (which can be represented by a
spring and a damper) has a separate (uncoupled) resonance frequency that
can be calculated by

ωms =
√

ks

mm
(1.49)

where ωms is the angular frequency of the supported mass mm, connected to
the main structure through a spring with rigidity ks.

This frequency can be observed in the solutions only when the main structure
that supports the mass is not taken into account. Generally, when an analysis
of the supported mass and the main supporting structure is performed, the
(coupled) resonance frequencies of the coupled system will not exhibit the
frequency of the uncoupled mounted mass.

Response of a continuous structure with a supported mass to harmonic exci-
tations is demonstrated in Chapter 2. Response of such a structure to random
excitation is shown in Chapter 3.



C h a p t e r 2 / Dynamic Response
of Beams and Other Structures
to Deterministic Excitation

2.1 A GENERIC EXAMPLE OF A CANTILEVER BEAM

In many chapters of this book, the numerical examples treat a cantilever beam
whose data is described in this section.

The data for the cantilever beam demonstrated in these examples is:

1. Steel cantilever beam of length 600 mm, width 80 mm and thickness
5 mm

2. Young modulus is E = 2100000 kg/cm2

3. Specific weight is γ = 7.8 g/cm3; therefore, specific density is ρ =
7.959 × 10−6 kgf sec2/cm4

4. Weight of beam is 60∗8∗0.5∗7.8 = 1872 gramf = 1.872 kgf

As was mentioned in the Preface, the units of the parameters used in a solution
are of major importance. Therefore, for convenience, Table 2.1 shows some
of the typical parameters using three sets of units.

2.2 SOME BASICS OF THE SLENDER BEAM THEORY

It is not the purpose of this book to evaluate and to describe the theory of
beams. Many dozens of textbooks (e.g., refs. [19–25]) describe the theory
of beam. The interested reader should conduct a search using the subjects
“strength of materials,” “beam theory,” and “theory of elasticity.”

21
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TABLE 2.1 Data for the cantilever beam.

Quantity Cm, Kgf (A), sec US Units(B) SI Units(C)

L Length 60 cm 23.622 inches 0.6 m

b Width 8 cm 3.1406 inches 0.08 m

h Thickness 0.5 cm 0.19685 inches 0.005 m

E Young Modulus 2100000 Kgf/cm2 29840 ksi(D) 20.58 × 104 MPa(E)

ρ Mass Density 7.959 × 10−6 kgf sec2/cm4 7.297 × 10−4 Lbs sec2/in4 7800 Nsec2/m4

W Total Weight 1.872 Kgf 4.123 Lbs 18.3456 N(F)

q Weight/Length 0.0312 Kgf/cm 0.1746 Lbs/in 30.576 N/m

(A)Kgf is Kilogram Force.
(B)Units in Inches, Lbs, Seconds.
(C)Units in Meters (m), Newton (N), Seconds.
(D)ksi is 1000 psi (1000 Lbs per Square Inch).
(E)MPa is MegaPascal = 1000000 Pascal = 1000000 Newton/m2.
(F)N is Newton = m kgm/sec2, where kgm is kilogram mass.

The applications and methods described here are based on the slender beam
theory. This is a beam whose cross section dimensions are small relative to
the length of the beam, and the deflections are small relative to the cross
section dimensions. Slender beam theory also assumes that a cross section
plane, perpendicular to the neutral axis of the beam, remains a plane that is
perpendicular to the deflected neutral axis after loads are applied to the beam
system.

Nevertheless, the examples and applications described in this book can be
performed on any linear elastic system, while using any other elastic element
or any other elastic theory. The cantilever beam is used because many practical
problems can be described and solved using this type of structural element,
and the use of a simple elastic model provides the reader with a better way
of understanding the important features of the problem and the described
application.

In fact, the basic formulas describing the behavior of the slender beam can
be derived from the basic rules of the theory of elasticity, by neglecting terms
that are derived for phenomena that do not contribute to the general under-
standing of the beam’s behavior. One should be careful when doing these
neglections. In the large collection of papers that deal with the slender beam
it is possible to find a very old paper (from the 1960s) in the Journal of
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Irreproducible Results in which too many assumption are made, and the author
is left with the beam’s supports only.

The external loading acting on a beam can be concentrated forces, external
moments, and distributed loads along the span. Local effects of concentrated
forces and moments are not handled by the slender beam theory. These exter-
nal loads create, along the length of the beam, bending moments and shear
forces.

A beam has a span of given length (say L) and a cross section whose dimensions
are small compared to the length. The cross section can be of any shape. It is
possible, for a given cross section, to calculate its area A, its area’s moment
of inertia I, and the location of the neutral axis. It is also possible to calculate
the maximum distance that exists in the cross section between the neutral
axis (where the cross-section bending moment is zero) and the cross section
contour. The beam usually has supports that are required in order to constrain
its movements and to eliminate rigid body movement. In the vibration analysis
of beams, sometimes there are no constrains at all. This is, for instance, the
case of a slender missile in its free flight phase.

When a slender beam is loaded by external forces and external moments, one
can describe (using the techniques provided in many strength of materials
textbooks; e.g., [19–24]) the bending moments and the shear forces along the
beam. The bending stresses along the beam are described by the following
well-known expression:

σbending(x) = ±M(x)
I

· y (2.1)

where M is the bending moment at location x, I is the cross section area
moment of inertia, and y is the distance from the cross section neutral axis
in the direction perpendicular to the beam axis. The maximal and minimal
bending stresses are at the top and the bottom of the cross section. If ymax is
the maximal distance from the neutral axis, the maximal bending stress at a
location x is given by

σbending, max(x) = ±M(x)
I

· ymax (2.2)

Note that bending stresses are not the only stresses in a cross section. Shear
stresses also exist, and if the beam is also loaded in its axial direction,



24 • Chapter 2 / Dynamic Response of Beams

additional tension or compression stresses must be added when solving a
practical case.

Another important expression in the theory of slender beams is the relation
between the deflection line and the bending moments. For the slender beam
deflected by small displacements, this relation is

E(x) · I(x) · y′′(x) = −M(x) (2.3)

where y′′(x) is the second derivative (with respect to x), which approximates
the curvature of the beam. The minus sign is due to definitions of the coordi-
nate system. In fact, some of the textbooks omit this minus sign. For a beam
of uniform material and uniform cross section, this equation becomes

E · I · y′′(x) = −M(x)

y′′(x) = −M(x)
EI

(2.4)

Assume a cantilever beam, clamped at x = 0 and free at x = L, loaded by a
force P at the free end. The bending moments are given by

M(x) = P(L − x) (2.5)

Inserting M(x) into Eq. (2.4), integrating twice with respect to x, and calculat-
ing the constants of integration so that at x = 0, both y′(0) and y(0) are equal
to zero, one obtains the well-known deflection of the cantilever beam loaded
by a tip force [26]:

y = P
6EI

(
3Lx2 − x3)

ytip = y(L) = PL3

3EI

(2.6)

Suppose the same beam is loaded by a continuous load w (force per unit
length). The same procedure yields [26]

y = w
24EI

(
6L2x2 − 4Lx3 + x4)

ytip = y(L) = wL4

8EI

(2.7)

More about deflection of beams, shear deformation, torsion, bending moment
distribution, etc. can be found in many textbooks. Solutions for many cases
are given in [26].
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2.3 MODAL ANALYSIS OF A SLENDER CANTILEVER

BEAM

There are many practical methods to obtain the resonance frequencies
(eigenvalues) and the modes (eigenvectors) of a cantilever beam, or of a
general structure. When the beam is uniform (that is, when the cross section
along the beam does not vary), there is an analytical solution for both the
frequencies and the mode shapes. These solutions can be found in the basic
textbooks of vibration (e.g., refs. [1–12]). The solution is shown here without
proof, as a reference to values computed using numerical procedures.

The basic differential equation of a uniform slender beam where the
deflections are a function of both location and time is

EI
∂4w(x, t)

∂x4 = −ρA
∂2w(x, t)

∂t2 (2.8)

This is a result of a state of equilibrium between the elastic and the inertia
forces. ρ is the uniform beam mass density, A is the cross section area, thus
ρA is the mass per unit length of the beam, assumed uniform. It can be shown
that the deflection w(x, t) can be separated into two parts, one dependent on
location only, and the other on time:

w(x, t) = φ(x) · η(t) (2.9a)

Then two differential equations are obtained for φ(x) and η(t):

∂4φ(x)
∂x4 − k4

nφ(x) = 0

∂2η(t)
∂t2 + ω2

nη(t) = 0

(2.9b)

kn is associated with the resonance frequency ωn:

k4
n = ω2

n · ρ · A
EI

(2.10)

The result for a cantilever beam is obtained by solving Eq. (2.9a), taking into
account zero deflection and zero slope at the clamped edge, and zero bending
moment and zero shear force at the free end is (e.g., [10])

φn

( x
L

)
= 1

2

⎧⎪⎪⎨
⎪⎪⎩

[
cos
(

knL · x
L

)
− cosh

(
knL · x

L

)]

+
[

−cos
(
knL
)− cosh

(
knL
)

sin
(
knL
)+ sinh

(
knL
)
]

·
[
sin
(

knL · x
L

)
− sinh
(

knL · x
L

)]
⎫⎪⎪⎬
⎪⎪⎭

(2.11)
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The constant 1
2 is introduced to the equation so that the absolute value of

the tip deflection is normalized to 1 or −1. The eigenvalues are obtained by
solving the equation

tan
(
knL
) = tanh

(
knL
)

(2.12)

The natural frequencies of the beam are then given by

ωn = 2πfn = (knL
)2 ·
√

EIg
WL3 (2.13)

where ωn is the angular frequency (radians/sec), fn is the circular frequency
(cycles/sec = Hz), W is the total weight of the uniform beam, g is the gravi-
tation constant, E is the Young’s modulus, I is the cross section moment of
inertia, and L is the length of the beam.

Values for six normalized eigenvalues (knL) are given in Table 2.2. With these
values, the first three resonance frequencies of the cantilever beam described
in Table 2.1 are calculated and summarized in Table 2.3.

In Figure 2.1, the first three mode shapes of the cantilever beam are shown. It
can be seen that the maximum absolute value of all the modes is 1. All modes
have zero displacement and zero slope at the clamped edge (as derived from
the boundary conditions). The second mode has one additional nodal point
(a location where the modal deflection is zero). The third mode has two
additional nodes, etc.

It is interesting to compare the normalized static deflection of the cantilever
beam subjected to a force at the free tip, and the one subjected to a uniform

TABLE 2.2 Normalized eigenvalues for a uniform cantilever beam.

n 1 2 3 4 5 6

knL 1.875104 4.694091 7.854757 10.99554 14.13717 17.27876

TABLE 2.3 Three resonance frequencies of the
generic numerical example.

Mode 1 2 3

Frequency (Hz) 11.5245 72.2228 202.2260
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FIGURE 2.1 First three modes of a cantilever beam.
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FIGURE 2.2 First vibration mode (full line), continuous normalized static load
deflection (diamonds), and discrete normalized tip force deflection (triangles).

load along its length, to the normalized first mode deflection. In Figure 2.2,
the normalized first mode is shown in full line, the normalized static deflection
due to distributed uniform load is described by the diamonds, and the static
deflection due to tip force by triangles. It can be seen that the normalized
first mode (obtained from an expression that contains both trigonometric
and hyper-trigonometric expressions, Eq. (2.11)) and the static deflection
due to distributed load (obtained from a polynomial expression) are very
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similar. It must not be a surprise, as the inertia loading of a vibrating beam
is characterized by a continuous load. In many applications, it can be much
easier to approximate the deflection function of a vibrating beam by a “static
equivalent” deflection. Algebraic manipulations of the expressions are much
easier then. Care must be taken when stresses are to be computed, as these
are an outcome of double differentiation (with respect to x) of the deflec-
tion line. This differentiation may sometimes introduce significant numerical
errors.

Usually, it is not possible to obtain an analytical solution to the resonance fre-
quencies and mode shapes of a practical, real structure. The analytical solution
obtained above is for a beam with a uniform cross section, and a uniform mate-
rial. When the cross section is not uniform, or when the material properties
are changed along the beam, one has to apply numerical solutions, obtained
in the industry today by one of the large finite element computer codes, like
NASTRAN®, ANSYS®, or ADINATM. In the finite element codes, the con-
tinuous structure is replaced by discrete elements, with specific properties,
and the resonance frequencies and modal shapes are obtained by a numerical
procedure.

A short ANSYS input file (beam1.txt) (see Appendix) for the computation of
the resonance frequencies for the cantilever beam is shown. This file refers to
a case where the beam was replaced by 10 two-dimensional beam elements.
The computation was also done for a beam of 2, 5, and 20 elements, and the
calculated frequencies are shown in Table 2.4.

It is interesting to note that the first resonance frequency is (almost) not
influenced by the number of elements. It is also clear why the computation
of the third resonance with only two elements failed to produce a correct
frequency. The third mode has three nodal points (including the clamp), and
two elements cannot describe such a displacement. It is very encouraging,

TABLE 2.4 Resonance frequencies for the cantilever beam.

2 Elements 5 Elements 10 Elements 20 Elements

1st Mode (Hz) 11.53 11.525 11.525 11.525
2nd Mode (Hz) 72.83 72.253 72.219 72.217
3rd Mode (Hz) 246.28 202.91 202.24 202.19
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from an engineering point of view, to see that the first frequency is
adequately obtained (within a very reasonably small error) even when only
two elements are considered. As will be shown later, many practical dynamic
response problems require the use of only the first resonance frequency. The
smaller the number of elements in the model, the faster the computation,
and the smaller the memory required of the computer for processing the
computation.

For some examples shown in Chapter 3, the frequency of a beam that is
clamped in one end and simply supported on the other hand is also required.
These were calculated using the same ANSYS input file included in the
Appendix (beam1.txt), with the addition of a support in the free end (see
the file listing). Results for three resonances are shown in Table 2.5.

TABLE 2.5 Resonance frequencies for
the clamped-supported beam.

10 Elements

1st Mode (Hz) 50.536
2nd Mode (Hz) 163.78
3rd Mode (Hz) 341.86

2.4 STRESS MODES OF A SLENDER CANTILEVER BEAM

The main purpose of a structural analysis in a design process is to predict the
stresses in the structural design. Most of the design criteria in engineering
applications are related to stresses, or to a structural behavior that is an out-
come of the stress fields in the structure. Stresses in an elastic system are a
direct outcome of the relative displacement, and are obtained by using the
material constitutive relations and the compatibility equations. The means by
which the deflection was obtained, either statically or dynamically, are irrel-
evant. The effect of the dynamic load factor (DLF), described in Chapter 1,
or the amplification factor, is introduced into the system when the deflections
are calculated. The stress behavior of a dynamic response is better understood
when “stress modes” are used.

The concept of stress modes was first introduced in [27], and better described
in [28]. It was further explored in [16]. Some important highlights are
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described here, and stress modes for a cantilever beam are computed in this
chapter.

For a specific type of linear structure, stresses can always be expressed by
some differential operator in the spatial coordinates:

σi = K Li[w(x, t)] (2.14)

K is a constant that depends on the material properties and the structure’s
geometry, Li is a differential operator, w(x, t) is the structural deflection,
which is a function of the location x and the time t. The index i indicates which
stress is being calculated. For instance, σi = σx may be the bending stress in
the x direction, σi = σxy may be the shear stress in the x − y plane, σi = σsc

may be the (concentrated) stress at the edge of a hole in a plate. For a loaded
deflected beam, the bending stress in the tensed side is

σx = −Eh
2

∂2w
∂x2 (2.15)

therefore

K = −Eh
2

; Lx = ∂2

∂x2 (2.16)

The deflection can be described as a linear function of the normal modes and
the generalized coordinates:

w(x, t) =
∞∑

j=1

φj(x) · ηj(t) (2.17)

thus

Li[w(x, t)] =
∞∑

j=1

Li
[
φj (x)
] · ηj(t) (2.18)

According to Eq. (2.14)

σi = K
∞∑

j=1

Li
[
φj (x)
] · ηj(t) (2.19)

This expression can be rewritten as

σi =
∞∑

j=1

�
(i)
j (x) · ηj(t) (2.20)
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where

ψ
(i)
j = K Li

[
φj (x)
]

(2.21)

Eq. (2.20) resembles Eq. (2.17) and therefore the expressions �
(i)
j are called

“stress modes.” By the use of the stress modes, a certain stress (i) in the
structure can be expressed by these modes and the generalized coordinates
ηj, using Eq. (2.20).

The normal modes φj(x) are characteristics of the structure. It seems that
using Eq. (2.21) one can calculate the stress modes �

(i)
j , which are also

characteristics of the structure.

Once the stress modes are calculated, a complete mapping of the stress field in
any structural element due to dynamic loading can be evaluated. Nevertheless,
it is usually impossible to calculate the stress modes using Eq. (2.21) for three
major reasons:

1. The operator Li is not always known in a closed form, although it is
possible to express it for simple cases, as was done for the beam in
Eq. (2.15).

2. The mode shapes of the structure are not always available in closed
form expressions. In many cases, the modes are approximated by
assumed expressions that satisfy the boundary conditions and give
good approximation for the resonance frequencies (i.e., by using a
Raleigh-Ritz method). Such was the approximation of the first mode
of a cantilever beam by a polynom (see Eq. (2.7)). The double differ-
entiation usually required to build an expression for the stresses may
introduce significant errors in the computation.

3. In cases where the mode shapes are obtained by a numerical (say
finite element) computer code, a double numerical differentiation is
required. Such a process may usually introduce large numerical errors.

Examination of Eqs. (2.18) and (2.20) clearly shows that the stress mode is the
stress distribution in the structure when it is deformed to its normal mode. As
most of the commercially available structural computer code can calculate the
stresses when all the structure’s nodes are displaced to a prescribed deflection,
it seems that this is the best way to practically obtain the stress modes of
the structure. It is interesting that the stress mode, which is used for the
solution of a dynamic problem, is calculated using a static problem. When
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a finite element solution for resonance frequencies and resonance modes is
performed, the stress modes can be identified by searching the stresses in
the eigenvector solution, in addition to the normal modes obtained by the
modal solution. These stress modes depend on the normalization factor of
the modal nodes. Thus, the normalized computed modes and the stresses
created by these modes should be used consistently.

Experience has shown that a designer usually has a good intuitive feel for
static loads and is able to identify weak points in his static design by looking at
a static analysis. This intuitive feel is less reliable when dynamic problems are
concerned. The meaning of the normal (displacement) modes may be under-
stood, but visualization of a physical interpretation of a weighted combination
of the normal modes is more difficult. This difficulty is enhanced when the
design issue is the response of the designed structure to random vibration.
By inspecting the stress modes, a better understanding of the dynamic stress
distribution is obtained.

When one calculates the stress modes, special care must be taken to determine
the dimensions of the quantities involved. In Eq. (2.17), the normal mode is
assumed dimensionless. The dimensions of the deflection w are introduced
through the generalized coordinate η. Thus, using the procedure described
for the computation of the stress mode, the structure was really deflected by
A0 · φj, where A0 is a constant that takes care of the length unit, and its value
is 1 (cm, mm, inch, etc.). Practically, the numerical values obtained are the
same. There is no need to be concerned if all the computations are done with
consistent units. This precaution is required only in the cases where mixed
dimensions exist (i.e., length in mm and in inches).

In Figure 2.3, three stress modes of the cantilever beam are shown. Note
that:

1. All stress modes have a maximum at the clamp, the values of which are
512 kgf/cm2, −3213 kgf/cm2, and 8997 kgf/cm2 for the first, second,
and third mode, respectively. This does not mean the stress at the
clamp will be the sum of the three values, because the real stress is
obtained by a weighted combination of the three values, according to
the participation of each mode in the response.

2. The stress modes were calculated assuming a modal displacement of
1 cm at the free tip of the beam. This is the reason why the third mode
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FIGURE 2.3 First three stress modes of the cantilever beam (arrows point to
location of local maximum).

presents the highest values of stresses—the curvature of the beam is
larger for this prescribed “deflection.” The signs of the stresses at the
clamped edge are an outcome of this selection. It will be shown later
that usually, the first displacement mode dominates the response, and
stresses due to the first mode are those that practically influence the
final stress results.

3. Looking at the stress modes, one can estimate that the locations that
will have higher chances for higher stresses are those marked with
arrows at the bottom of Figure 2.3, located where the stress mode has
maximal values. Of course, these are not necessarily the dangerous
locations, as the final stresses are obtained by a weighted summation
of the stress modes. Anyhow, a straight conclusion is that the bending
stress at the free end will always be zero!

The stresses at the finite elements nodes of the cantilever beam can also be
computed using the postprocessor of the finite element solution. In Figure 2.4,
these stresses are depicted for the case of 10 elements along the beam. A very
good agreement can be seen in the stresses at the clamped edge. Due to the
discreteness of the elements, some differences can be seen at points along
the beam, especially in the third mode. When this mode is important to the
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FIGURE 2.4 First three stress modes of the cantilever beam (finite element
computation).

problem, the beam should be divided into more elements, so that the curvature
can be expressed better.

Once the resonance frequencies and the mode shapes of the cantilever beam
(in fact, all beams) are known, the generalized masses can be computed using

Mi =
L∫

0

m(x) · φ2
i (x) · dx (2.22)

m(x) is the mass per unit length, and can be a function of x—a nonuniform
beam—as long as the correct modal shape φi(x) is calculated.

Integration of Eq. (2.22) with the mode shapes given in Eq. (2.11) shows that
the generalized mass for the cantilever beam is

Mi = 1
4

m · L = 1
4

· W
g

(2.23)

where W is the weight of the whole beam, and g is the gravitation constant.
This result does not depend on the mode number.

In most of the large commercial finite element computer codes (e.g., ANSYS,
NASTRAN, etc.) the modes are not normalized to 1. These programs
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normalize the mode shape in such a way that the generalized mass for each
mode is equal to 1. Thus, when one obtains a numerical solution for a modal
analysis, one can assume that the generalized masses in this solution are all
equal to 1. The most important thing for the analyst is to be consistent. When
modes are computed by a finite element code (say ANSYS), the solution
of the response problem (response to external excitation forces) should use
the non-normalized modal shapes obtained by the program, and generalized
masses equal (all) to 1.

2.5 RESPONSE OF A SLENDER BEAM TO HARMONIC

EXCITATION

The differential equation of a one-dimensional structural element (like
any beam) is derived by using Lagrange equation approach (see, e.g., [10]
and [16]).

First, the lateral deflection of the beam w (which is a function of the location
x and the time t) is represented by the modal superposition. Any deflection
is a superposition of a modal function φi(x) (i is the mode number), and
the generalized coordinate ηi(t). A separation between the variables x and
t is performed. It is assumed that φi(x) is a known function, found from
a modal analysis of the structure either by analytical or by a numerical
computation analysis. The mode superposition states, in fact, that the total
lateral displacement of the structure is a weighted sum of the modal shapes.
The weighting functions are the general coordinates ηi(t). Once the general
coordinates are known, the displacements at any location x at any time t can
be calculated by

w(x, t) =
∞∑

i=1

φi(x) · ηi(t) (2.24)

In fact, there is no need to do the infinite sum. A finite sum can be written,
which will approximate the lateral deflection. Later this approximation will
be justified.

w(x, t) ∼=
N∑

i=1

φi (x) · ηi(t) (2.25)
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In order to find a differential equation for the general coordinate ηi(t), the
Lagrange equation is applied:

d
dt

(
∂T
∂η̇r

)
− ∂T

∂ηr
+ ∂U

∂ηr
+ ∂D

∂ηr
= Nr (2.26)

in which

T = 1
2

∫
mẇ2dx (2.27)

is the kinetic energy of the structure

U = 1
2

∫
EIw′′2dx (2.28)

is the potential elastic energy of the structure

D = 1
2

∫
cẇ2dx (2.29)

is the dissipation energy of the structure, due to internal damping, and Nr is
the work done by the external loads.

The evaluation of the equations of motion is not presented here. It can be
found in one of the many textbooks on the subject (i.e., [10] and [16]). During
the evaluation, the following integrals appear:∫

mφr(x)φi(x)dx = 0 for i 
= r∫
mφr(x)φi(x)dx = Mr for i = r

(2.30)

These two equations are the result of the orthogonality of the mode shapes,
which are the eigenvectors of the calculated system. Mr is the generalized
mass of the r-th mode.

When the external loading is a continuous load per unit length (which may be
also a function of time) p(x, t), the external modal work (“generalized force”)
is given by

Ni =
∫

p(x, t)φi(x)dx (2.31)

When the external loading is of n discrete forces (that can be time dependent)
fn(t) at x = xn, the external modal work (“generalized force”) is given by

Ni =
n∑
1

fn(t) · φi(x = xn) (2.32)
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The result of the mathematical evaluation [10] is the following set of N
differential equations:

Mr η̈r + 2ςrωrMr η̇r + ω2
r Mrηr = Nr(t) r = 1, 2, . . . N (2.33)

Two important facts should be noted:

(1) The N equations are decoupled. It means that each of them can be
solved separately for ηr(t).

(2) Each equation is identical to the single degree of freedom equation
(SDOF) of motion, with generalized mass instead of a SDOF mass
and generalized force instead of SDOF excitation force.

Thus, all the techniques used to solve a SDOF equation of motion can be used
for the solution of a multiple degrees of freedom system, once the modes of the
structure (resonance frequencies ωr , eigenvectors φr , and damping factors)
are known.

2.5.1 RESPONSE OF BEAMS TO BASE EXCITATION

Eq. (2.33) is a set of uncoupled differential equations for the solution of the
response of a beam to external excitation forces. These forces are expressed
using the generalized forces, which are obtained using either Eq. (2.31) for
distributed loads or Eq. (2.32) for discrete loads.

When the base of a cantilever beam (the clamped edge) is excited by a
time-dependent displacement xs(t), it can be shown (e.g., [10], [16]) that the
differential equations of the excited beam are

Mr η̈r + 2ζrωrMr η̇r + ω2
r Mrη = −ẍs(t) ·

L∫
0

m(x)φr(x)dx (2.34)

The r.h.s. of Eq. (2.34) contains, in fact, an equivalent generalized force.
The quantity −ẍs · m is a force per unit length acting in the opposite direc-
tion of the excitation displacement, and this force is weighted by the modal
shape.

When m(x) and the mode shape φr(x) are given by closed form expressions,
it is easy to compute the equivalent generalized force. In cases where no
closed form expressions are given, this equivalent generalized force should be
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computed numerically by performing a numerical integration. When using a
finite element code, a small macro-program can be written for post-processing
the numerical results of a modal analysis, by lumping the beam mass at the
finite elements’ model nodes.

2.5.2 RESPONSE OF A CANTILEVER BEAM TO
HARMONIC TIP FORCE

The basic data of the beam is given in Table 2.1. Suppose that the free tip of
the beam is excited by a force of amplitude F0 = 1 kgf and a variable frequency
�. The first three modes were calculated in Section 2.3 (Figure 2.1) and were
normalized so that the tip displacement of all the three modes is φ(x = L) = 1.
The generalized excitation force, according to Eq. (2.32) is

Nr = F0φ(x = L) sin (�t) = 1 sin (�t) (kgf) (2.35)

Assume that all the nodal damping coefficients are ζ1 = ζ2 = ζ3 = 0.02 = 2%.

Usually, higher modes are more damped than lower modes. Typical damping
coefficients for metallic structural elements in the lower modes are in the
order of magnitude of 1–2%. Higher modes, in which many nodal points exist,
are in the order of magnitude of 5–10%. Rarely, higher values of damping
coefficients exist for metallic structures.

The generalized masses for all the three resonance modes, as calculated in
Eq. (2.23), are

M1 = M2 = M3 = 0.25 · m · L = 0.25 W/g (2.36)

where m is the mass per unit length of the uniform beam and W is the total
weight of the beam.

The amplitude of the generalized coordinates can be computed using the
SDOF differential equation:

|ηr | = Nr

Mrω2
r

· 1⎡
⎣(1 −

(
�

ωr

)2
)2

+ 4
(

�

ωr

)2

ζ2
r

⎤
⎦

1/2 r = 1, 2, 3 (2.37)
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The maximum value of the DLF for each mode is 1
2ζr

= 25, as all damping
coefficients are equal, ζr = 0.02.

The maximal values of the generalized coordinate ηr are 9.9847, 0.2512,
and 0.03345 for the first, second, and third mode, respectively. As all the
generalized amplitudes have the same equation (differing only in the sub-
stituted numerical values), and the generalized masses, generalized forces,
and the damping coefficients for all three resonances are equal, the following
relationship must exist:

|η2|max

|η1|max
= ω2

1

ω2
2

= 0.02546

|η3|max

|η1|max
= ω2

1

ω2
3

= 0.00325

(2.38)

Within an acceptable computational error, these ratios agree with the
preceding written maximum values.

The maximum response of the second mode, when excited in the second
resonance frequency, is about 2.5% of the response of the first mode when
excited in resonance. The third mode response is about 0.33% of the response
of the first mode.

The fact that the generalized coordinate is proportional to the inverse of
the frequency squared is the justification to use, in many practical cases,
only the first resonance and mode shape in the analysis of beams to har-
monic excitation. It will be shown later that the same justification also
exists in the analysis of the response to many types of random excitation.
Nevertheless, this should be done carefully, as will be shown in the next
example.

The expression for the generalized coordinate ηr should include the phase
angle between the response and the excitation force. This phase angle is also
obtained from the SDOF system Eq. (1.10):

θr = arctan

[
2ζr

(
�

ω0

)/(
1 −
(

�

ω0

)2
)]

(2.39)
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Thus

ηr = |ηr | · sin (�t + θr) (2.40)

and the total lateral displacement (which includes the first three DOFs) is

w(x, t) = φ1(x) · η1(t) + φ2(x) · η2(t) + φ3(x) · η3(t) (2.41)

In the previous pages, stress modes for the cantilever beam were calculated
for modes that were normalized to a unity at the beam tip. The actual stresses
at the clamped edge of the beam can be obtained by multiplying the values
of the stress modes at that edge with the true deflection of the beam tip. The
values of the stresses contributed by the three modes are shown in Figure 2.3.

The same problem was solved using the ANSYS program. The ANSYS file
(beamharm.txt, see Appendix) for a harmonic response analysis is included
on the accompanying CD-ROM. In Figure 2.5, the absolute tip amplitude
response as computed numerically is shown. In Figure 2.6, the absolute
bending stress at the clamped edge is also shown.

In Table 2.6, results from the analytical and ANSYS finite element compu-
tations for the tip displacement and the clamped edge bending stresses are
compared.

As can be seen, the agreement is excellent.
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FIGURE 2.5 Generalized coordinates for three modes at the beam tip, as calcu-
lated by ANSYS. (The response of the third mode is too small to be seen in this
scale).
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FIGURE 2.6 Bending stresses at the clamp, as calculated by ANSYS.

TABLE 2.6 Comparison of analytical and ANSYS solutions.

Mode Tip Displacement (cm) Bending Stress at Clamp (Kgf/cm2)

Analytical ANSYS Analytical ANSYS

1 9.9843 9.9847 5119.44 5118.28
2 0.2542 0.2512 816.8 814.9
3 0.03243 0.03345 291.8 291.5

2.5.3 RESPONSE OF A CANTILEVER BEAM TO
HARMONIC BASE EXCITATION

In this example, the clamped edge of the beam is moved with a harmonic
displacement excitation of amplitude x0 = 1 cm and a frequency �. The
acceleration of the base movement is

ẍs = −x0�
2 sin (�t) (2.42)

The following calculation is done for the first mode only. The generalized
force, according to Eq. (2.31) is

N1 = x0�
2 sin (�t)mL

ξ=1∫
ξ=0

φ1 (ξ) · d (ξ) (2.43)
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where m is the mass per unit length and ξ = x
L . The integral on the r.h.s. of

Eq. (2.43) is equal to 0.391496. Substituting the numerical values, one gets

N1 = 3.921468 kgf (2.44)

The maximum absolute value of the generalized coordinate in the first
resonance, when � = 2π (11.525 Hz) = 72.41 rad/sec and the damping coef-
ficient is ζ1 = 0.02, is |η1|max = 39.1496 cm. Note that this value is well above
the assumption of small deflections relative to the beam dimensions. Never-
theless, this value will be further used in the example. Stress in the clamped
edge can be calculated by the knowledge of the maximum tip deflection
calculated for the previous example. This ratio is 39.1496/9.9843 = 3.9211,
thus the maximum stress at the clamp is 5118.28 · 3.9211 = 20069.73 kgf/cm2.

The same example can be computed using the ANSYS model in file
beamharm.txt, by changing the command (in the/solution phase) f ,11, f y,1
(unit harmonic force at the tip, node 11) with d,1,dy,1 (unit harmonic
displacement at the tip, node 11), which means an imposed harmonic dis-
placement of 1 at node 11, and computing only for the frequency f1 =
11.525 Hz. The result shows that the tip amplitude is 39.1605 cm, and the
bending stress at the clamp is 20078.88 kgf/cm2, values that agree well with
the analytical solution.

When displaying the results of an ANSYS computation in the general-purpose
post-processor/post1, special attention must be taken to compute the absolute
value for the result. The ANSYS computation presents the results in the real
and the imaginary planes, because a phase angle exists between the excitation
and the response. The presentation of the results in one plane only may lead
to erroneous conclusions!

An interesting result and an educational example is obtained when the behav-
ior of the cantilever beam for which the free tip is excited by a given harmonic
tip deflection. The method of solution was described previously, using the
ANSYS file beamharm.txt (see Appendix). Of course, the displacement at
the tip, node 11, is always 1. In Figure 2.7, the maximum amplitude at node
8 (x/L = 0.7) as obtained from the ANSYS solution is shown. In Figure 2.8,
the maximum values of the response at the first resonance are shown. These
values are not necessarily occurring at the same time, because of phase
differences. The amplitude at the tip is, of course, 1. The different modal
deflections along the beam are mostly negative, which means that while the
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the shape of the beam).

tip is moving in one direction, most of the beam moves in the opposite
direction.

It can be seen that the two resonance frequencies shown in the solved
frequency range are in the vicinity of f1 = 50.5 Hz and f2 = 164 Hz. These
are certainly not the resonance frequencies of the calculated cantilever
beam. A check will show that these frequencies are the two first resonance
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frequencies of a beam that is clamped at one end and simply supported on
the other, as calculated in Table 2.4.

This leads to a very important conclusion: When a structure is excited by
displacement “loads”—imposed deflection (or velocities or accelerations)—
it responds in resonance frequencies and mode shapes that are those of a
structure supported in these excitation points! This is a very important result
that should be memorized when testing of a structure in laboratory conditions
is scheduled, as will be shown later in this book.

2.5.4 TWO EXTERNAL FORCES

Suppose there are two forces acting on the beam. The first, f1, is acting at the
tip of the beam, and the second, f2, is acting at the middle of the beam, in the
opposite direction to f1. Each force has amplitude of 1 kgf. Thus

f1 = fx=L = 1 · sin (�t) kgf

f2 = fx=L/2 = −1 · sin (�t) kgf
(2.45)

From the normal modes described earlier, the modal displacements in each
of these two points and for the three first modes, it can be found that

φ1(x = L) = 1 φ2(x = L) = 1 φ3(x = L) = 1

φ1(x = L/2) = 0.33952 φ2(x = L/2) = −0.71366 φ3(x = L/2) = 0.01969
(2.46)

The generalized forces are, in this case

N1 = 1 · 1 + (−1) · 0.33952 = 0.660477

N2 = 1 · 1 + (−1) · (−0.71366) = 1.71366

N3 = 1 · 1 + (−1) · 0.01969 = 0.980312

(2.47)

Now the three equations (Eq. (2.37)) are no longer equal. The generalized
force of the second mode is almost 2.6 times larger than the generalized force
of the first mode. Thus, the response in this mode will be almost 2.6 times
larger than the one computed in the previous example. In this case neglecting
the second and third mode is still justified. However, if the force in the middle
of the beam has amplitude of, say 100 kgf, neglecting the second mode will be
an error.
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This example shows again that neglecting terms in a solution of a problem
should be done with care and with understanding of the problem and the
data. It is clear to anyone driving on Highway 1 in California that, although
the width of the road is much smaller than its length, the width of the road
cannot be neglected. The larger response of the second mode happens because
two forces, opposite in direction, are acting on the cantilever beam whose
mid-point and tip vibrate in opposite directions in the second mode. Thus,
examination of the properties of the loads relative to the beam mode shapes
can help the designer in his analysis.

2.6 RESPONSE OF A STRUCTURE WITH MOUNTED

MASS TO HARMONIC EXCITATION

The concept of mounted mass was introduced in Chapter 1 (1.5), where an
uncoupled resonance frequency of the added mass and the rigidity of the
connecting structure were mentioned. In the following section, an example
of an attached (“mounted”) mass with two different mounting rigidities is
demonstrated by the following example.

Along the beam, at x = 0.3 L, a mass with a weight of W = 1 kgf (M = W
g =

1/980 kgf · sec2/cm) is attached to the beam through a spring with stiffness Ky.
Two values of Ky are computed, Ky1 = 4 kgf/cm (Case (a)) and Ky2 = 65 kgf/cm
(Case (b)). The uncoupled resonance frequency for the mass itself on its
mounting spring is 9.9646 Hz for Case (a) and 40.17 Hz for Case (b). The three
first natural frequencies of the beam without the added mass and spring are
11.5245 Hz, 72.2228 Hz, and 202.2260 Hz, as shown in Table 2.3. Thus, Case
(a) represents a mounting frequency very close to the first beam resonance,
while in Case (b) the mounting frequency is in between the first and second
resonance. The model is shown in Figure 2.9.

The ANSYS file commass1.txt (see Appendix) was prepared for computing
both the resonance frequencies and modes of the system, and the response
to a random tip force (shown in Figure 3.5 in Chapter 3). As the input PSD
is between 5 to 250 Hz, only resonances within this range are of interest.

In Table 2.7, resonance frequencies of the four modes found in the relevant
range are tabulated for both cases. Mode shapes are shown in Figure 2.10,
where the diamond symbol represents the mounted mass modal displacement.
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FIGURE 2.9 A mass elastically mounted on an elastic beam.

TABLE 2.7 Resonance frequencies: no added mass, Case (a) and Case (b).

No Added Mass Case (a) Ky1 Case (b) Ky2

1st Resonance (Hz) 11.525 9.4725 11.278
2nd Resonance (Hz) 72.212 12.034 35.995
3rd Resonance (Hz) 202.24 72.631 80.030
4th Resonance (Hz) >250 202.54 207.33

It can be seen that the 3rd resonance of Case (a) system is close to the
2nd resonance of the original system, and the 4th resonance of this system
is close to the 3rd resonance of the original system.

Analysis of the mode shapes shown in Figure 2.10 (it should be noted that
for plotting convenience the vertical scales in the subfigures are not identical)
shows that, for Case (a):

(a) The nodal displacement of the mounted mass in the first mode is max-
imal. This mode originates from the mass spring system. As the mass
vibrates on the spring, its inertial forces excite the beam with a shape
similar to the beam’s first mode, but the modal displacements are
smaller than those of the beam’s first mode.

(b) The second mode originates from the beam’s first mode. The mounted
mass vibrates in a direction opposite to the beam.

(c) In the beam’s second and third modes (the system’s third and fourth
modes), the mounted mass does not move, thus it does not participate
in the system’s movement in these modes.
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FIGURE 2.10 Mode shapes. (a) Case (a); (b) Case (b); diamond equals the
mounted mass. Note that not all subfigures have the same y scale.

(d) The distance between the mounted mass and the relevant point on the
beam expresses the elongation of the mounting spring. In other words,
the stresses in the elastic mount are relative to this distance.
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For Case (b):

(a) In the first mode (which is very close to the beam’s first mode), the
mass moves almost together with the beam. No stresses are built in
the elastic mount (the spring).

(b) In the second system’s mode, the modal displacements of the beam
are small compared to their values in the other modes. The mounted
mass has a maximal modal displacement, as the frequency is close to
the mounting resonance frequency.

(c) There is a significant participation of the mounted mass in the third
mode, which is mainly the beam’s second mode. This participation
is responsible to the change of the third frequency from the beam’s
second resonance frequency.

Such observations of the mode shapes can give the designer more insight
into the behavior of the structural system, and may lead to some conclusions
about the response behavior of the system, and to direct design changes, if
required.

In order to show the different behavior of the cases of the beam with the
mounted mass, the beam was subjected to a unit force at the tip, so that the
excitation force at the tip is given by

F = F0 sin (�t) = 1 kgf · sin (�t) (2.48)

where � is the excitation frequency, which was varied between 2 Hz to 250 Hz.
This range covers the range of the four resonances, listed in Table 2.7.

The ANSYS file commass1.txt (see Appendix) includes the solution of the
response of the system to the harmonic force excitation as well as the compu-
tation of the natural frequencies and the response to random excitation, which
is described in Chapter 3. For simplicity, but without any loss of generality,
the element connecting the mounted mass to the main structure comprises of
only a spring, and no damper, which can be introduced by the real constant
of the element combin14 that was used in the ANSYS file.

In Figure 2.11, the displacement response of the tip node is shown for Cases
(a) and (b). The results are shown on a log-log scale so that resolution of the
frequency values is clearer, as well as the difference in amplitude values. This
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FIGURE 2.11 Displacement of the tip of the structure—(a) Case (a); (b) Case (b).

form of display is familiar to engineers who analyze results from vibration
tests. It should be remembered that in some cases, displaying results in a
logarithmic scale may be misleading.

In Figure 2.12, the displacement of the main structure (beam) at the point
where the connecting spring is attached is shown, for Case (a) and Case (b),
with the same log-log display.

In Figure 2.13, the displacement of the attached mass is shown for Case (a)
and Case (b).
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FIGURE 2.12 Displacement of node 4 (below the added mass) of the struc-
ture—(a) Case (a); (b) Case (b).

For Case (a), the two close peaks at the vicinity of 10 Hz are demonstrated
in all three figures. For Case (b), the peak at the vicinity of 36 Hz is also
demonstrated.

The reader should remember that the quantities shown in the figures are the
real part of the computed variables. The true response comprises of in-phase
(with the excitation force) and out-of-phase components. Usually, real and
imaginary components of the results can be displayed after the computation
with the finite element program. The effect of out-of-phase components is
more dominant when damping is included.
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FIGURE 2.13 Displacement of node 14 (the mounted mass) of the structure—
(a) Case (a); (b) Case (b).

In addition, the reader should bear in mind that by using the demonstrated
procedure (harmonic response along the frequency axis), transfer functions
between any two quantities can be computed. The use of transfer function is
very helpful when response to random excitation is computed. This is demon-
strated in more detail in Chapter 3, as well as the response of such a structure
to random excitation.

In many cases of an attached mass, such as the one described by the preceding
example, the design parameter on which the designer can influence at a given
time is the rigidity of the mounted mass support. Usually, the major design of
the main structure is a given fact, and the mass of the required attached mass
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(usually an equipment “black box”) is also defined. By performing a coupled
modal analysis of the main structure plus the attached mass, more insight into
the problem can be gained. A better selection of the mounting rigidity (and
therefore the coupled resonance frequencies) can be recommended, and thus
a better design can be performed.

2.7 SYMMETRIC AND ANTI-SYMMETRIC MODES

AND LOADS

In some structural elements such as the simply supported beam as well as other
more practical structural systems, symmetric and anti-symmetric modes can
be found. In order to demonstrate such modes and to present their rela-
tionship with symmetric and anti-symmetric loads (which may also occur
in practical cases), a finite element solution is presented, based on the file
ssbeam.txt listed in the Appendix. The material and geometric properties
of the simply supported beams are identical to those of the cantilever beam
presented in Table 2.1.

Three resonance frequencies and modes were computed. The frequencies of
these modes are

f1 = 32.349 Hz

f2 = 129.39 Hz

f3 = 291.08 Hz

(2.49)

In Figure 2.14, the first three normal modes are depicted. One can see that the
normal mode shapes are comprised of harmonic (sine) half-waves—the first
mode having one half sine wave, the second mode has two half sine waves, and
the third mode has three sine waves. This is also the outcome of the analytical
analysis, described in most of the basic vibration textbooks. The analytical
expression for the normal modes of a simply supported beam is

φn

( x
L

)
= sin
(

nπ
x
L

)
(2.50)

where n is the mode number.

It can also be seen that the first and the third modes are symmetric with
respect to the beam mid-section, while the second mode is anti-symmetric.
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FIGURE 2.14 Three first modes of the simply supported beam.

Of course, when analyzing more than three modes, it can be concluded that for
n=1, 3, 5, 7, . . . symmetric modes are obtained, while n = 2, 4, 6, 8, . . . produce
anti-symmetric modes.

As already stated, the final response of a linear structure is a weighted linear
combination of the normal modes, and it is interesting to see the amount of
participation of certain modes as a function of the symmetry or anti-symmetry
of the excitation forces.

To demonstrate these effects, the first load of the simply supported beam is
loaded with a single harmonic force at the mid-beam cross-section (node 19 in
file ssbeam.txt). This is a symmetric loading. Without a loss of generality, the
magnitude of the force is selected as 1, and the frequency is varied between
20 Hz to 350 Hz, a range that includes the three computed resonances.

The amplitude at the middle cross-section (node 19) is shown in Figure 2.15,
in a log-log scale. It can clearly be seen that there is no participation of the
second, anti-symmetric, mode.

Next, the loading is set to 2 symmetric forces, at the quarter of the beam’s
length (node 10) and at 3/4 of the length of the beam (node 28). Each load
has a magnitude of 1, and they both act in one direction. In Figure 2.16 the
amplitude of node 10 (quarter length) is shown.
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FIGURE 2.15 Response at node 19 (mid-length) to excitation of one force at
node 19 (symmetric loading).
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FIGURE 2.16 Response of node 10 (1/4 of beam’s length) to excitation at nodes 10
and 28, same directions (symmetric loading).

Again, due to the symmetric loading, there is no participation of the second
(anti-symmetric mode) in the response of the beam.

Suppose the same two forces are applied to nodes 10 and 28 in opposite direc-
tions. Thus, when one force points upward, the other one points downward.
This is an anti-symmetric loading. The response of node 10 to this loading is
shown in Figure 2.17.

It can be seen that the response is only in the second (anti-symmetric) mode,
due to the anti-symmetry in the loading forces.
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FIGURE 2.17 Response of node 10 (1/4 of beam’s length) to excitation at
nodes 10 and 28, opposite directions (anti-symmetric loading).
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FIGURE 2.18 Response of node 13 (1/3 of the beam’s length) to excitation at
nodes 13 and 25, same directions (symmetric loading).

Another symmetric loading is applied at 1/3 of the beam’s length (node 13,
which is at a node of the third resonance) and at 2/3 of the beam’s length
(node 25, which is also a nodal point of the third mode). Both forces are
acting in the same direction, thus the loading is symmetric. The amplitude of
node 13 is shown in Figure 2.18.

Now, only the first (symmetric) mode is included in the response. There is no
participation of the third (also symmetric) mode, because the locations of the
symmetric loading are in the nodal lines of this mode.
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FIGURE 2.19 Response of node 13 (1/3 of the beam’s length) to excitation at
nodes 13 and 25, opposite directions (anti-symmetric loading).

Next, the same two forces are applied with “anti-phase”; i.e., when one is
acting upward, the second is acting downward. This is an anti-symmetric
loading. The amplitude of node 10 is depicted in Figure 2.19.

Only the second (anti-symmetric) mode is now included in the dynamic
response.

Sometimes, a combination of substructures creates a system that has both
symmetric and anti-symmetric modes, which has to be taken into account in
the dynamic response analysis of the whole system. A well-known case is the
symmetric and anti-symmetric response of an aircraft fuselage with its two
attached wings. In the symmetric response, shown in Figure 2.20(a), the fuse-
lage vibrates up and down, with the wings performing a symmetric bending.
In this mode, the mass of the fuselage is one of the important parameters
of the problem. In the anti-symmetric response, shown in Figure 2.20(b),
the fuselage is doing a rolling movement, with anti-symmetric bending of the
wings. In this response, the fuselage mass moment of inertia is the important
parameter.

In general, it can be stated that symmetric loads do not excite anti-symmetric
modes of the structure, while anti-symmetric loads do not excite symmetric
modes. In addition, loads applied at a nodal line of a certain mode do not
excite that node. Thus, a good knowledge of the complete set of modes of
a structure can lead to an educated guess about its behavior under sets of
external loads.
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(a)

(b)

FIGURE 2.20 Symmetric (a) and anti-symmetric (b) modes of an aircraft
fuselage-wings combination.

2.8 RESPONSE OF A SIMPLY SUPPORTED PLATE TO

HARMONIC EXCITATION

In the previous section, many examples of beams’ structures were demon-
strated. Although the treatment of other structures, such as plates and shells,
is completely similar, an example of the response of a plate structure to har-
monic excitation is described in this section, and the response of the structure
to random excitation is described in Chapter 3.

Without a loss of generality, the demonstrated structure is a rectangular
plate, simply supported along all the four edges. The length of the plate
is a = 40 cm in the x direction, the width of the plate is b = 30 cm in the y
direction, and its thickness is h = 0.5 cm. The plate is made of steel, so that
E = 2.1 · 106 kgf/cm2 and the mass density is ρ = 7.959 · 10−6 kgf · sec2/cm4.
Note that because the numerical analysis is done in units of kgf, cm, and
seconds, rather strange units are obtained for the mass density, which is
not the weight density (not the “specific gravity”). The poison ratio of the
material is assumed ν = 0.3, and the damping ratio of all the relevant modes
is assumed ζ = 2% = 0.02. The vibration of a simply supported rectangular
plate can be computed analytically. The modes of such a plate are given
by (e.g., [4])
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φm,n = sin
(

mπ
x
a

)
· sin
(

nπ
y
b

)
(2.51)

In Eq. (2.51), m is the number of half sine waves in the x (length) direction,
and n is the number of half sine waves in the y (width) direction.

It was also shown (e.g., [26]) that the resonance frequencies of a simply
supported rectangular plate are given by

fm,n = Km,n

2π

√
D

ρhb4 (2.52)

where

D = Eh3

12
(
1 − ν2
)

Km,n = π2

(
m2 +
(

b
a

)2

· n2

) (2.53)

b is the shorter edge of the plate

For the given data, the analytically computed first frequency is

f1,1 = 211.95 Hz (2.54)

From Eq. (2.51), it can be seen that the modes of a simply supported plate
comprises half sine waves in both x and y direction. If m = 1, it means that in
the x direction there is only one half sine wave. If m = 2, there are two half
waves, which means that at the center the modal displacement is zero. Same
arguments can be evaluated for the y direction. Thus, for each normal mode
(a combination of m and n), except for m = 1, n = 1, there are lines of zero
modal displacement called nodal lines. These are analogous to nodal points
in a beam structure.

The plate’s data is introduced into an ANSYS file ssplate.txt (see the
Appendix). A modal analysis was performed. In Table 2.8, the resonance
frequencies of eight modes are listed, together with the m and n numbers of
each of the calculated modes.

Note that the modes are arranged according to the increasing resonance
frequencies. The relevant m’s and n’s are not necessarily in any order. Their
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TABLE 2.8 Resonance frequencies and modal index of
the simply supported plate.

Frequency (Hz) m n

1 211.76 1 1
2 440.08 2 1
3 617.87 1 2
4 820.47 3 1
5 844.81 2 2
6 1222.8 3 2
7 1293 1 3
8 1352 4 1

m � 1; n � 1
211.76 Hz

m � 2; n � 1
440.08 Hz

m � 3; n � 1
820.47 Hz

m � 3; n � 2
1222.8 Hz

m � 1; n � 2
617.87 Hz

m � 2; n � 2
844.81 Hz

Mode 3

Mode 4

Mode 1

Mode 2

Mode 5

Mode 6

1

21

1 1

1

1

1
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2 2

2
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FIGURE 2.21 Six first modes and resonance frequencies.

order is determined according to the case data, and may be different (as well
as the frequencies) when dimensions and material properties are different
from those of the present example.

In Figure 2.21, six first normal modes are described. In the figure, nodal
lines are shown in dotted lines. The (+) and (−) signs describe regions where
the normal nodal displacements are upward and downward, respectively. In
Table 2.9, four harmonic loadings are listed and described. The excitation
is between 200 Hz and 1250 Hz (without any loss of generality), so that only
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TABLE 2.9 Harmonic loading cases—location, magnitude, and direction
of forces.

Details Remarks

Case 1 x/a = 1/2; y/b = 1/2, F = +1, Node 811 Symmetric Load
Case 2 x/a = 3/4; y/b = 1/4, F = +1, Node 416 Nonsymmetric Load
Case 3 x/a = 3/4; y/b = 1/4, F = +1, Node 416 Symmetric Load

x/a = 1/4; y/b = 3/4, F = +1, Node 1206
Case 4 x/a = 3/4; y/b = 1/4, F = +1, Node 416 Anti-symmetric Load

x/a = 1/4; y/b = 3/4, F = −1, Node 1206
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FIGURE 2.22 Response of mid-plate node (811) to Case 1 excitation.

the six modes depicted in Figure 2.21 are responding to this excitation. Note
(from Table 2.8) that the seventh resonance (1293 Hz) is pretty close to the
sixth frequency (1222.8 Hz), and the eighth frequency (1352 Hz) is also not
far away.

As the amplitude of the excitation force is selected as 1, the response curves
shown in the following figures describe also the transfer function between
the excitation force at the relevant location and the response at the relevant
nodes. The locations of these specific nodes are listed in Table 2.9.

In Figure 2.22, the response of the mid-plate node (node 811) to Case 1
excitation is shown. Because this location lies on nodal lines for all modes
except the first and the fourth, there are peaks in the response only at the first
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FIGURE 2.23 Response of mid-plate (node 811) to excitation at node 416
(Case 2).

and the fourth modes. The “rise” in the response at the end of the frequency
range is due to the participation of the seventh mode (see Table 2.8), which
is outside the range of the selected excitation.

In Figure 2.23, the response of the mid-plate (node 811) to the nonsymmetric
excitation at node 416 is shown (see Table 2.9). Having a nodal line passing
through this node to all but two modes results in an increased response only
in the first and fourth modes.

In Figure 2.24, response to Case 2 excitation at node 416 (at the excitation
point) is shown. Response to all the normal modes is depicted, although it
is difficult to distinguish between the fourth and the fifth resonances (820 Hz
and 845 Hz).

In Figure 2.25, response to Case 2 excitation at node 1206 is shown. Again,
response to all the normal modes is depicted, although it is difficult to
distinguish between the forth and the fifth resonances (820 Hz and 845 Hz).

In Figure 2.26, the response of the mid-plate node 811 to Case 3 excitation is
shown (Table 2.9), which comprises two excitation forces in the same direction.
Note that only the first and the fourth modes respond in high amplitudes. In
Figure 2.27, the response of node 416 to the same excitation is shown. Only
modes in which both nodes 416 and 1206 are with the same sign (first and fifth
modes, Figure 2.21) participate in the response. The response of node 1206



62 • Chapter 2 / Dynamic Response of Beams

1.0E 2 02

1.0E 2 03

1.0E 2 04

1.0E 2 05
1.0E 1 03

Frequency (Hz)

Q
u

an
ti

ty

1.0E 1 02 1.0E 1 04

FIGURE 2.24 Response of node 416 to the excitation of Case 2 (Table 2.9).
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FIGURE 2.25 Response of node 1206 to the excitation of Case 2 (Table 2.9).

is exactly the same of that of node 416, due to the symmetry of the loading,
and therefore is not plotted.

In Figure 2.28, the response of the mid-plate (node 811) to the anti-symmetric
loading of Case 4 (Table 2.9) is shown. The response seems to be chaotic, but
bearing in mind that the values of the response, as seen in the figure, are of the
order of magnitude 10−17, the chaotic behavior is really due to the numerical
process, and practically the response is zero.
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FIGURE 2.26 Response of mid-plate (node 811) to same direction excitations at
nodes 416 and 1206 (Case 3 of Table 2.9).

1.0E 2 02

1.0E 2 04

1.0E 2 03

1.0E 2 05

1.0E 2 06
1.0E 1 03

Frequency (Hz)

Q
u

an
ti

ty

1.0E 1 02 1.0E 1 04

FIGURE 2.27 Response of node 416 to same direction excitations at nodes 416
and 1206 (Case 3 of Table 2.9).

In Figure 2.29, the response of node 416 to the opposite direction anti-
symmetric loading (Case 4 of Table 2.9) is described. Only modes that
have different direction modal response—the second, third, and sixth of
Figure 2.21—respond to this excitation.

To demonstrate that the computing process is capable of also computing
stresses in different locations of the plate, stresses in the x (longitudinal)
and y (transversal) direction of one location in the plate—node 416—are also
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FIGURE 2.28 Response of mid-plate (node 811) to opposite direction excitations
at nodes 416 and 1206 (Case 4 of Table 2.9).
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FIGURE 2.29 Response of node 416 to opposite direction excitations at nodes 416
and 1206 (Case 4 of Table 2.9).

included in the input file ssplate.txt (see Appendix). The stresses are com-
puted for Case 2 of Table 2.9; i.e., a single force at node 416. In Figures 2.30
and 2.31, stresses in the x and y directions, respectively, are shown. As the
excitation force in node 416 has a magnitude of 1, these two figures thus depict
the transfer function between force at node 416 and stresses (x and y direc-
tion) in the same location. Stresses in any other location can be computed,
using the correct commands that can be added to file ssplate.txt.
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FIGURE 2.30 Stresses in the x direction at node 416, Case 2 loading.
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FIGURE 2.31 Stresses in the y direction at node 416, Case 2 loading.

Note that for the simply supported plate, the curvature of the modal-deflected
plate is zero at the nodal lines, due to the sinusoidal characteristic of the
solution (see Eq. (2.51)), and because lateral bending stresses of a plate are
proportional to their curvature. This is not necessarily the case for other
boundary conditions set on other plates. If, for instance, the plate is clamped
in all or some of its boundaries, local curvature will cause bending stresses
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at these clamps. This is not demonstrated here, but can be computed by the
reader by slightly changing the boundary conditions in the input file ssplate.txt
listed in the Appendix.

2.9 VIBRATIONS OF SHELLS

Shells, especially thin walled, are an important part of any design of an
aerospace structure. Vibrations of shells do not find their proper place in
most of the textbooks of basic vibration analysis.

Once a numerical computational method is used to analyze a structure, it is not
important whether the structure contains shells, as their inclusion becomes
part of the structural model input file. Of course, there are considerations
that influence what types of elements are selected for the computation, but
these considerations are part of the finite elements code expertise, and do not
necessarily belong to the structural analysis.

Nevertheless, it is important for the reader to be familiar with the characteris-
tics of the modal analysis results of thin shells. As in plates, the modal analysis
of shells is performed by solving the differential equations of the shells. The
differential equations of shells are much more complex than those of plates,
especially because an additional special dimension is introduced. There are
many textbooks dealing with the differential equations of shells, and probably
the best of them is [60]. The differential equations of shells can be extremely
simplified (and still be much more complex than those of plates), and easier
modal analysis can be performed on such simplified equations. Such simpli-
fications and modal analysis can be found in [61], which is one of the few
textbooks that include such analysis for thin shells of revolution.

When solving the differential equations of thin elastic shells, the typical
solution contains a summation of modes that have the special form

φm,n = φm

( x
L

)
θn(θ) (2.55)

φ is a function of x—the shell axial direction—and contains the number m
of half waves that the mode has in the axial direction, just as it is done in
plates. This function has to meet the boundary conditions on both ends of
the shell. θ is a function in the θ direction—the angle in the circumferential
direction of the shell—and contains the number n of full circumferential waves
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(in difference from the plate’s definitions). This function is periodic. For the
simplest case where the shell is a cylinder of length L, and is simply supported
in both ends, the functions φm are sine waves, as well as the θn functions.
Eq. (2.55) takes the form

φm,n

( x
L

, θ
)

= sin
(

mπ
x
L

)
· sin(nθ) (2.56)

The nodal lines (lines of zero modal displacements) of the modes described
by Eq. (2.56) are circles and straight lines along the cylindrical shell. In
Figure 2.32, nodal lines for the case m = 3, n = 4 are shown.

In Figure 2.33, cross sections of the modal displacements are shown for n = 0,
n = 1, and n = 2. In the case of n = 1, the displacements of the cross sections
are all in the same direction, in and out during the vibrations. These vibrations
are like a breathing of the shell. In the case of n = 1, the displacements of the
cross section forms one full wave (half of the circumference is out, the other
half is in). This is a vibration in which the whole shell is vibrating like a beam
with a ring cross section. Only when n ≥ 2, one starts to see the “classical”
cylinder’s vibrations.

It is very difficult to find analytical solutions for the resonance frequencies
of practical shells, which are part of a realistic practical structure. On the

FIGURE 2.32 Nodal lines for simply supported cylindrical shell, m = 3, n = 4.
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n � 0 n � 1 n � 2

FIGURE 2.33 Cross sections of modes with n = 0, 1, and 2.

other hand, there is no need for the design engineer to look for the analytical
solution, as a numerical computational procedure based on finite element
methods is always possible, with the advantage of performing a solution with
the true structural boundary conditions. To demonstrate this, a finite element
file shell1.txt (listed in the Appendix) was written as a very simple demon-
stration of the numerical procedure. Only 10 modes were requested in this
numerical analysis. The data used in the computation is

r = 10 cm, Radius of the Shell

L = 60 cm, Length of the Shell

t = 0.1 cm, Thickness of the Shell

E = 2.1 · 106 kgf
cm2 , Young’s Modulus

ρ = 7.959 · 10−6 kgf · sec2

cm4 , Mass Density

ν = 0.3, Poisson’s Coefficient

(2.57)

The results for the frequencies for the first 10 modes are summarized in
Table 2.10.

A very interesting phenomenon is demonstrated by these results. There are
five couples of modes, and for each couple the frequencies are identical. The
reason for this is that for the same frequency, there are two possibilities for
the shell to vibrate; these two are shifted by a rotation angle from each other.
The results are better understood for the mode with n = 1 (which was not a
solution for the present example). The n = 1 mode is a bending mode of the
whole shell as a beam. This beam can vibrate either in the horizontal direction
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TABLE 2.10 Resonance modes of the example.

Mode Frequency (Hz) m, Number of Axial n, Number of
Number Half-Waves Circumferential Waves

1 389.96 1 3
2 389.96 1 3
3 417.66 1 4
4 417.66 1 4
5 598.29 1 5
6 598.29 1 5
7 650.95 1 2
8 650.95 1 2
9 726.74 2 4

10 726.74 2 4

of the cross section, or in the vertical direction. These are two different modes
even if their frequencies are equal, and should be taken into account when a
response problem is solved.

For thin-walled shells, there are many possible modes of vibration, as the val-
ues of m and n and their combinations create a great number of modes. Some
methods of shells response analysis (especially response to acoustic wide-
band excitation) use the “modal density” concept; i.e., compute the response
by assuming that in a given bandwidth of frequencies there is a certain (high)
number of modes. These methods are not treated in this publication, and the
interested reader should search for information on modal density.



C h a p t e r 3 / Dynamic
Response of a Structure to
Random Excitation

3.1 RANDOM EXCITATION AND RESPONSE

The previous chapters demonstrated the response of a SDOF, MDOF, and
continuous elastic systems to a deterministic time-dependent excitation, espe-
cially harmonic. A deterministic excitation is known (or can be calculated) at
every time explicitly.

In practical structures, especially in aerospace and civil engineering designs,
cases where the excitation is deterministic are not frequent. In most of the
cases, the excitation is not known explicitly, and only some statistical proper-
ties of this excitation are known. This is the case, for instance, for aerodynamic
forces acting on a wing, rough road excitation of a moving vehicle, earthquake
excitation of buildings and bridges, wind excitation of tall buildings, waves
excitation of marine structures, etc.

A random excitation includes a mixture of different levels of external forces
or externally imposed displacements that contain components of many differ-
ent frequencies. Boundary layer excitation over an aircraft wing is a typical
example of external continuous random pressure excitation. Waves acting on
an offshore oil rig are another example of random forces acting on a struc-
ture. Excitation of the wheels of a vehicle traveling on a rough road is an
example of continuous imposed random displacements. An earthquake is a
typical example of a transient randomly imposed displacement on the base of
a building.

70
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During many years, data on many kinds of excitations was collected and
analyzed. Usually, the analysis determines the mean excitation, the disper-
sion in excitation level around the mean, and the frequency content of the
excitation. Many specifications and standards were written, in which the ran-
dom excitation is specified in terms of PSD (Power Spectral Density) of the
required quantity (e.g., [29]).

The PSD is a function that describes the energy content distribution of a
quantity over the frequency range. The reader who is interested in the mathe-
matical definitions of the PSD and other characteristics of the terms involved
in statistical dispersion should refer to one or more of the many textbooks
and papers dealing with the subject (e.g., [10, 15, 16, 32–34]). In this chapter,
only some basic terms will be explained more rigorously in order to enhance
the physical understanding of the role of random excitations in structural
dynamics—analysis and testing.

Random input of accelerations is a very common application in the environ-
mental testing of a structural system, and of any designed system. The system
is mounted on a shaker that applies acceleration to it. The control system of
the shaker is set to input a given PSD of acceleration, according to a PSD
curve obtained from formal specifications or data collected in field tests.

A typical input (obtained, say, from formal specifications) is described in
Figure 3.1.

Usually, input PSD curves in formal specifications are given on a log-log scale.

It should be noticed that acceleration PSD, though most common in practical
applications, is not the only possible random input. Input can be random
forces, random displacements, random pressures, etc. The units of the PSD
are always the relevant quantity squared divided by frequency. Usually, the
frequency is given by Hz. Thus, acceleration PSD has units of g2/Hz, force
PSD—kgf 2/Hz, etc. In some analytical solutions, it is more convenient to use
the angular frequency, in radian/sec, and it is very important to know how to
transfer units from one system to another.

As can be seen later in this book, the act of imposing accelerations on the
system, either from formal specifications or from prototype field tests, can
lead to erroneous testing of the system. This will be shown later. Meanwhile,
a better understanding of the types of possible random input is called for.
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FIGURE 3.1 A typical acceleration input in a vibration test.

There are some special inputs, which are used extensively in the literature
and in practice, which the reader should be familiar with. A “white noise” is
an input that has a uniform value along the frequency axis, which means that
it has equal energy in all the frequency range. An ideal mathematical white
noise has frequency content from −∞ to +∞. This is really a mathematical
definition, as in practice, a negative frequency is not defined. Thus, an “engi-
neering white noise” can be defined as an input with a constant value of PSD
from 0 to +∞, thus the name “one sided white noise.” The input may be
a “band limited” when the frequency range of it is limited between two fre-
quencies, ωlow to ωup, close to each other. These three examples are depicted
in Figure 3.2. The PSD described in Figure 3.1 is a practical case of a “wide
band,” nonuniform input PSD.

In Figure 3.3, a time signal with wide band frequency content is depicted. The
artificially generated time signal for this example has a normal distribution
with zero mean and a standard deviation (1σ) of 1. The amplitude is random,
and seldom crosses the value of 3 (3σ). In fact, in the shown example, the signal
touches and crosses the value of ±3 only four times. The signal includes a large
number of frequencies.

In Figure 3.4, a narrow band time signal is shown. The amplitude is random
(and crosses the value of 3 only once), but a dominating frequency can be
detected.
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FIGURE 3.2 Three special PSD functions (based on [16]).
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FIGURE 3.3 Wide band random signal (the time coordinate is insignificant).

A random variable has a probability density function (PDF) that describes its
distribution. This distribution can be characterized by its statistical moments.
The first moment is the mean value, which in fact is the center of gravity of the
PDFcurve. Thesecondmoment is themeansquare(MS)value, whichprovides
information about the dispersion of the random variable population around
the mean. The MS is the second moment of inertia of the PDF curve around
an axis at the mean value. The square root of the MS, the RMS (Root Mean
Square) value, is also called the standard deviation (SD), and is usually called
1σ. The third moment is called skewness, and provides information about the
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FIGURE 3.4 Narrow band random signal (the time coordinate is insignificant).

symmetry of the distribution of the random variable around the mean. There
are also higher statistical moments. A normal (or Gaussian) distribution is fully
described by its mean and MS values. It can be shown that, for a normal dis-
tribution, 84.13% of the values are smaller than 1σ, 97.72% are smaller than
2σ, 99.865% are smaller than 3σ, 68.27% of the random values are included
in the range of ±1σ, 95.45% are included in the range of ±2σ, and 99.73%
are included in the range of ±3σ. Thus, when a range of ±3σ is selected, only
0.27% of the random values are out of this range.

More knowledge about random signals and their statistical parameters can
be obtained from textbooks on statistics and probabilities (e.g., [35]).

Two important relations are extensively used in the analysis of the response
of any system to random excitation (and not only in structural analysis):

1. The area under the PSD curve is the MS value of the random input.
Thus, to obtain the MS value, the PSD curve is to be integrated with
respect to the frequency. Note that when the PSD curve is depicted
on a log-log scale (like, say, in Figure 3.1), the mean square is not the
sum of the trapezoidal areas seen in the curve!

MS =
∫

over all frequency range
PSD · dω

RMS = √
MS

(3.1)
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The square root of the MS, called the RMS, is the standard deviation
of the given input, (1σ). The standard deviation is also a measure of
the dispersion of the quantity around the mean value.

2. The PSD of the response of a system to an input PSD is given by the
following expression:

PSDresponse(ω) = ∣∣H(ω)
∣∣2 · PSDinput(ω) (3.2)

In Eq. (3.2), the function
∣∣H(ω)
∣∣ is the absolute value of the transfer function

between the input and the output. When the input is in PSD of force, and∣∣H(ω)
∣∣ is the transfer function between force and displacement (as in Eq. (1.6),

Chapter 1), then the PSD of the response is that of displacements. One can use
any transfer function available from simulations or measured in experiments
in Eq. (3.2); for example, a transfer function between a forced acceleration at
a certain point on the structure, and the bending stress in another structural
location. Once the PSD of the input is known (either by field tests, analytical
or numerical considerations or from formal specifications) and the transfer
function is known, the PSD of the desired response can be computed. This
is the reason why the calculation or measurement of a transfer function is so
essential. Transfer functions do not necessarily have to be computed. They also
can be measured in well-planned experiments during a development phase or
during field tests of prototypes.

Introducing Eq. (3.2) into Eq. (3.1), one obtains

MSresponse =
∫ ∣∣H(ω)

∣∣2 · PSDinput(ω) · dω

RMSresponse =
√∫ ∣∣H(ω)

∣∣2 · PSDinput(ω) · dω

(3.3)

Eq. (3.3) is a basic relationship between input and output in a linear system.
Except from the quantitative use of the equation, some important qualitative
conclusions can be drawn. Suppose the input force PSD is a one-sided white
noise. It was already shown that for a SDOF system, the transfer function
between force input and displacement output is a function with very small
values along most of the frequency range, and with a narrow peak (the “nar-
rowness” of which depends on the damping coefficient) around the resonance
frequency. Thus, multiplying the square of this transfer function with the con-
stant value input PSD results in a function that also has small values along
most of the frequency range, with a peak around the resonance frequency.
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Thus, when a SDOF system is excited by a wide band force excitation the
system responds with a random narrow band response, which means that
the SDOF response has frequency components only around the resonance
frequency, the amplitude of which is random. Thus, it is said that the SDOF
is a “filter” to the wide band excitation. The contribution to the total MS of
the response displacement comes mainly from the vicinity of the resonance
frequencies.

When a MDOF system is treated, and this system has well separated reso-
nance frequencies, the transfer function looks similar to that of the SDOF
system, but has several (the number of which is the number of degrees of
freedom) peaks. Thus, the response PSD curve also has several peaks. The
response of the system has random amplitudes, but has several dominant
frequencies, close to the resonance frequencies. When the resonance fre-
quencies are not well separated, a “wider,” and not a narrow, response PSD
function is observed, for which all the described results are valid.

A continuous elastic structure behaves basically as a MDOF system. In fact,
the usual solutions (like finite element computations) use discretization to
replace the continuous system with a MDOF one. For a SDOF system, the
absolute square of the transfer function between force input and displacement
output is ∣∣H(ω)

∣∣2 = 1
m2ω4

0
· 1⎡
⎣(1 −

(
ω

ω0

)2
)2

+ 4
(

ω

ω0

)2

ζ2

⎤
⎦

(3.4)

Because of the argumentation described previously, the PSD of the response
is almost totally from the component of excitation in the resonance frequency
ω0, no matter what the shape of SF(ω)—the PSD of the excitation force.
SF(ω) can be replaced by SF(ω0), the value of the PSD function at ω0, and
the PSD of the response displacement, according to Eq. (3.2), is

SX (ω) ∼= 1
m2ω4

0
· SF(ω0)⎡
⎣(1 −

(
ω

ω0

)2
)2

+ 4
(

ω

ω0

)2

ζ2

⎤
⎦

(3.5)

The MS of the displacement, according to Eq. (3.3) is

MSX = SF(ω0)

∞∫
0

∣∣H(ω)
∣∣2 dω (3.6)
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Integration is done from 0 because negative frequencies are not considered.
It can be shown that

∞∫
0

∣∣H(ω)
∣∣2 dω = 1

m2 · π

4ζω3
0

(3.7)

Thus,

MSX ∼= πSF(ω0)
4m2ζm3

0
(3.8)

Eq. (3.8) is the exact solution for the MS of the displacement response of a
SDOF system subjected to a “one-sided white noise” force excitation in the
positive frequency range, and a very good approximation to the response to
a random, nonconstant PSD force excitation.

Note that the MS value of the response is inversely proportional to the cube
of the resonance frequency. This means that the RMS value is inversely
proportional to the frequency to the power of 3/2. When a MDOF (or con-
tinuous) system is analyzed the contribution of each resonance to the MS
decreases with the cube of the resonance frequencies. In addition, the MS is
inversely proportional to the damping coefficient, and the RMS is inversely
proportional to the square root of the damping coefficient.

Analytical solutions for the response of MDOF and continuous systems to
random PSD excitation are not shown in this book. The reason is that these
solutions usually contain integrals of the mode shapes and other parameters
of the problem, which usually cannot be solved explicitly, and the user does
a numerical integration. Therefore, it seems appropriate to solve the whole
problem numerically from the beginning, usually by a finite element code.
The interested reader can find analytical solutions in many technical and
textbooks. Formulations and examples are included in [16], which contains
practical material from many references in the literature. It should however
be mentioned that when analytical solutions are performed for continuous
elastic systems, the integrals in the MS expressions contain expressions of
the transfer functions

∣∣H∗
j (ω)
∣∣ · ∣∣Hk(ω)

∣∣, where
∣∣H∗

j (ω)
∣∣ is the conjugate of∣∣Hj(ω)

∣∣ and where j and k are the mode numbers. When j = k, the expres-

sions obtained contain
∣∣Hj(ω)
∣∣2. When j 
= k, a mixed term is obtained.

The integral of the terms that contain
∣∣Hj(ω)
∣∣2 gives the contribution of the

mode j to the MS value. The integral of the mixed terms gives the inter-
modal interaction between mode j and mode k. When the systems have well
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separated resonance frequencies (as is the case for the cantilever beam and
other beams), the inter-modal interaction terms are very small compared
to the “direct” contribution of each mode, and can usually be neglected.
For structures in which the resonances are not well separated, the mixed
terms may have a significant contribution to the result. In any case, the
PSD module of one of the commercial finite element codes (like ANSYS®

or NASTRAN®) takes care of the real case, and includes the inter-modal
interactions inherently.

Sometimes, there is confusion between PSD functions given in (quantity)2/Hz
(i.e., along a circular frequency axis, cps or Hz) and (quantity)2/(rad/sec)
(i.e., along an angular frequency axis, radian/sec). Most of the closed form
equations and solutions described or analyzed in the literature include ω,
the angular frequency. On the other hand, in most specifications the PSD
is given along the f axis. Special care should be given to these units, either
by translating the given PSD to the required units (as shown below) or by
introducing 2πf instead of ω in the relevant equations. The PSD is given in
(quantity)2/(rad/sec) and called PSDω, then the PSD in (quantity)2/Hz, called
PSDf . Suppose there is a uniform excitation of PSDω((quantity)2/(rad/sec))
between ω1 and ω2. The MS of this input is PSDω · (ω2 − ω1). The equivalent
PSD in (quantity)2/Hz is PSDf and the MS of this input is PSDf · ( f2 − f1).
The MS values in both cases must be equal, thus:

PSDf · ( f2 − f1
) = PSDω · (ω2 − ω1) = PSDω · 2π

(
f2 − f1
)

(3.9)

thus,

PSDf = 2π · PSDω (3.10)

The finite elements codes (i.e., ANSYS, NASTRAN, etc.) are built in such
a way that internal frequency computations are in Hz. Therefore, input PSD
in these programs must always be given in (quantity)2/Hz and not in angular
frequency.

3.2 RESPONSE OF AN ELASTIC STRUCTURE TO

RANDOM EXCITATION

The cantilever beam in the following demonstration is subjected to a random
tip force, which has a power spectral density described in Figure 3.5. The
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FIGURE 3.5 PSD of tip excitation force.

input was selected so it will contain the three first resonances of the beam.
The value of the PSD of the force was selected so that the RMS (Root Mean
Square) of the force is 1 kgf. Mean square value is obtained by an integration
of the PSD function with respect to the frequency:

Mean square of F = PSDF�f = 0.004081632 · (250 − 5
) = 1 kgf2

FRMS = 1 kgf
(3.11)

First, a numerical solution is presented using the ANSYS finite element code.
Then, a closed form approximate solution is presented and partially compared
to the numerical analysis.

In file beamrand_1.txt (see Appendix), an ANSYS file for the solution
of this problem is listed. When doing an ANSYS solution, there are two
post-processors in which results can be analyzed and displayed. The first
is /POST1 (the general post-processor), in which RMS values of displace-
ments, velocities, accelerations, and stresses along the beam can be shown
and listed. Remember that the RMS value is equal to 1σ of the results,
and a value of 3σ contains 99.73% of the required quantity. The second
post-processor is /POST26 (time domain post-processor) in which frequency
domain results such as response PSD can be computed and displayed,
and mathematical manipulations of response parameters, like integration,
differentiation, multiplication, and much more can be performed.

In Figures 3.6, 3.7, and 3.8 the RMS values of the deflections, acceler-
ations, and bending stress along the beam are shown, respectively. One
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FIGURE 3.6 RMS values of displacements along the beam (/POST1).
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FIGURE 3.7 RMS values of the acceleration along the beam (/POST1).

should remember that the RMS values are statistical parameters, and two
RMS values of, say, displacements in two locations, do not necessarily occur
simultaneously.

In Figure 3.9, the PSD of the displacement at the tip of the beam (node 11)
is shown. Note that almost all of the deflection response is due to the first
mode. The magnitude of the responses in the second and third modes cannot
be seen in the figure.

In Figure 3.10, the PSD of the acceleration at the tip of the beam (node 11) is
shown. Note that the contribution of all the first three modes is almost equal.
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FIGURE 3.8 RMS values of the bending stress along the beam (/POST1).
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FIGURE 3.9 PSD of the deflection at the free tip (/POST26).

In Figure 3.11, the PSD of the bending stress at the clamped edge of the beam
(node 1) is shown. Note that the contribution of the first second mode is very
small relative to the first mode, and the contribution of the third mode is
almost undistinguished.

When the PSD curves are integrated with respect to the frequency, the MS
(Mean Square) values of the quantity are obtained. The square root of the
MS is the RMS, which is equal to 1σ (one standard deviation) of the quantity.
It is interesting to compare the RMS values obtained using the /POST1 and



82 • Chapter 3 / Dynamic Response of a Structure

0

2

4

6

8

10

12

0 50 100 150 200 250
Frequency (Hz)

P
S

D
 o

f T
ip

 A
cc

el
er

at
io

n
 (g

2 /
H

z)

FIGURE 3.10 PSD of the acceleration at the free tip (/POST26).
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FIGURE 3.11 PSD of the bending stress at the clamped edge (/POST26).

the /POST26 post-processors. This integration can be performed directly in
the /POST26 post-processor.

In Figure 3.12, the integral of the PSD of the tip displacement is shown. It
can be seen that the contribution to the MS is mainly due to the first mode.
The last value, at f = 250 Hz, is 0.2922 cm2, and therefore the RMS value
is wRMS (tip) = √

0.2922 = 0.54055 cm, compared to 0.5403 cm obtained in
Figure 3.6.

In Figure 3.13, the integral of the PSD of the tip acceleration is shown. The
last value at f = 250 Hz is 219.95 g2, and therefore, the RMS value is ẅRMS (tip)
= √

219.95 = 14.831 g, compared to 14.827 g obtained in Figure 3.7.
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FIGURE 3.12 Integral of PSD of tip displacement.
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FIGURE 3.13 Integral of PSD of tip acceleration.

In Figure 3.14, the integral of the PSD of the bending stress in the clamped
edge is shown. The last value at f = 250 Hz is 93402 (kgf/cm2)2, and there-
fore the RMS value is σRMS(clamp) = √

93402 = 305.62 kgf/cm2, compared
to 305.6 kgf/cm2 in Figure 3.8.

In addition, the contribution of each resonance to the total MS value can be
found, by taking the values between two plateaus of the curves. In Table 3.1,
the contribution of each resonance and comparison between total results of
/POST1 and /POST26 post-processor are shown. The data is taken from the
original ANSYS results file.
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FIGURE 3.14 Integral of PSD of the clamped edge bending moments.

TABLE 3.1 Contribution of first three modes to the required quantities.

Tip Deflection Tip Acceleration Max. Bending Stress
cm2, cm g2, g (kgf/cm2)2, kgf/cm2

1st Mode MS 0.290998 8.8233 76745.3
RMS 0.5394 2.97 277.03

2nd Mode MS 0.00115 56.4969 12359.4
RMS 0.0339 7.528 111.17

3rd Mode MS 0.000052 154.4531 4297.3
RMS 0.00721 12.428 65.55

Total /POST26 MS 0.2922 219.95 93402
RMS 0.54055 14.831 305.62

Total /POST1 MS 0.2919 219.84 93391
RMS 0.5403 14.827 305.6

It is interesting to analyze the results shown in Figures 3.9–3.14. It can be
seen that although all the deflection is contributed by the first mode, with
very small contributions of the second and third modes, the accelerations due
to the different modes are significant. If an acceleration meter is put on the
beam, the PSD of its measurements will look like Figure 3.10. The designer,
looking at these “experimental” results, may conclude that there are three
frequency ranges with which one has to be concerned, each at the vicinity
of the resonance frequency. However, the fact is that the stresses, for which
usually design criteria are set, do not exhibit the same results. About 85% of
the MS value of these stresses is due to the first mode! The reason for this
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“pseudo-paradox” is that MS values of displacements are a function of 1/ω3
i .

Thus, as the resonance frequency is higher, the MS deflection response to that
mode is decreased dramatically—by the cube of the frequency. As stresses
are the results of the relative displacements between the different locations
on the structure, the stresses too are less influenced by higher resonance
frequencies.

These results demonstrate one of the most common errors performed by
structural and mechanical design engineers during a design process. These
engineers fear, for the wrong reasons, high accelerations, when they should
fear high relative displacements (or more correct, curvatures) that contribute
to the stresses. These existing stresses are usually the cause of structural
failure. The fact that measurements (say in vibration tests) show high acceler-
ations means usually that the structure is noisier, but is not necessarily going
to fail.

In the past, the main measured quantities in vibration tests were of accel-
erations. This happened because acceleration is a convenient quantity to
measure—it does not need an external reference, unlike displacement and/or
velocities. Today, more and more environmental testing laboratories do a
real-time signal processing, thus acceleration is measured directly, but dis-
placement can be displayed on line during the tests. Nevertheless, it should
be noted that as structural failure is usually due to excessive stresses in the
structure, it is more desirable to measure stresses (or, as it can easier be
done—strains) than acceleration. In fact, a reasonable “mixture” of many
measurement devices tailored for the specific structure and its loads is the
best possibility when a structural dynamic test is prepared.

3.2.1 CLOSED FORM SOLUTION

The solution follows the procedure outlined in ([16], Ch. 5), based on [15].
Suppose a structure is subjected to a cross-spectral density function (the cross-
spectral density function is a more generalized form of the PSD function, to
allow cross relation between excitation in one location to another location on
the structure, and is described in many textbooks on signal processing).

The cross-spectral excitation function is Sq(x1, x2, ω), which means a cross-
spectral excitation function of two locations x1 and x2 and a function of the
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angular frequency ω. This function can be evaluated in terms of the structural
modes, with coefficients SQjQk:

Sq(x1, x2, ω) =
N∑

j=1

N∑
k=1

SQjQk (ω) · φj(x1) · φk(x2) (3.12)

It was shown in the literature ([15], [16]) that

SQjQk (ω) =
⎡
⎣∫

x1

∫
x2

Sq(x1, x2, ω) · φj(x1) · φk(x2) dx1dx2

⎤
⎦/MjMk (3.13)

where Mj is the jth generalized mass. SQjQk is a NxN generalized cross-spectral
density matrix for the N modes.

In many practical cases, the cross-spectrum can be separated into one of the
following forms:

Sq(x1, x2, ω) = S0(ω) · f (x1, x2)

Sq(x1, x2, ω) = S0(ω) · f1(x1) · f2(x2)
(3.14)

and S0(ω) can be taken out of the integral of Eq. (3.13).

When the matrix SQjQk is obtained, the cross-spectral density function of the
response can be obtained [15] by

Sw(x1, x2, ω) =
N∑

j=1

N∑
k=1

SQjQk (ω) · �H∗
j (ω) · �Hk(ω) · φj(x1) · φk(x2) (3.15)

where

�Hj(ω) = 1

ω2
j

[
1 −
(

ω

ωj

)2

+ i · 2
(

ω

ωj

)
· ζj

] (3.16)

and �H∗
j (ω) is the conjugate of �Hj(ω); i.e., the same expression with a minus

sign preceding the complex term.

RMS values of the response are then obtained by integrating the cross-spectral
density function of the response over the angular frequency range ω.
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When the problem was solved using the ANSYS program, it was shown that
the PSD of the tip displacement is obtained accurately using only the first
mode. Therefore, in this closed form solution, and without any loss of gen-
erality, only the first mode is considered. Such approximations are very good
engineering practice—the analytical solution is simplified using the conse-
quence of a numerical computation.

The excitation is of a random tip force. Therefore, the cross-spectral density
function is taken from the second Eq. (3.14):

Sq(x1, x2, ω) = S0(ω) · f1(x1) · f2(x2)

f1(x1) = 1 when x1 = L, 0 elsewhere

f2(x2) = 1 when x2 = L, 0 elsewhere

(3.17)

As the mode shape displacement equal to 1 at the tip of the beam, the
generalized PSD at the tip for the first mode is

SQ1Q1 = S0(ω)
M2

1
(3.18)

Note that in Eq. (3.18) the PSD is given as a function of ω, the angular
frequency, while in Figure 3.5 it is given as a function of f , the circular fre-
quency. It is advisable to do the calculation in the angular frequency range;
therefore,

S0(ω) = 1
2π

Sf ( f ) = 1
2π

0.004081632
kgf2

Hz
= 0.000649611

kgf2

rad
/

sec
(3.19)

In addition, the generalized mass is given by (see Eq. (2.23))

M1 = 1
4
ρbhL = 0.00047754

kgf · sec2

cm
(3.20)

The product �H1(ω) · �H∗
1 (ω) that appears in Eq. (3.15) is

�H1(ω) · �H∗
1 (ω) = 1

ω4
1

· 1⎧⎨
⎩
[

1 −
(

ω

ω1

)2
]2

+ 4
(

ω

ω1

)2

ζ2
1

⎫⎬
⎭

(3.21)

The maximum value of Sw(ω) at the tip of the cantilever beam is obtained
at the first resonance frequency, when ω

ω1
= 1. The first resonance at the
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angular frequency is ω1 = 2π · (11.525 Hz
) = 72.4137 rad

/
sec, and for a

damping coefficient ζ1 = 0.02 one obtains

max Sw(ω) = SQ1Q1

M2
1

(
max �H1H∗

1
) = .000649611

.000477542
625

(72.4137)2 = .06474
cm2

rad
/

sec

(3.22)

To get the maximum PSD of the tip displacement response in circular fre-
quency, this value should be multiplied by 2π, thus

max Sw
(

f
) = 2π · 0.06474 = 0.40677

cm2

Hz
(3.23)

This is the same as the maximum value obtained using the ANSYS code,
shown in Figure 3.9. The MS value is obtained using

E
(

w2 (x = L)
)

= π · SQ1Q1

4ζ1ω
3
1

= 0.2946 cm2 (3.24)

This value is compared to 0.2922 cm2 obtained by the numerical computation.
The RMS value is obtained by the square root of Eq. (3.24), and is 0.5482 cm,
compared to 0.5406 cm obtained using the ANSYS code.

3.3 RESPONSE OF A CANTILEVER BEAM TO CLAMP

DISPLACEMENT EXCITATION

Suppose the previous example is a real case of an engineering design. Assume
that the results depicted in that example are real results measured on a
prototype during a field test. Can we find another excitation, which can be
performed in the laboratory using standard equipment to simulate the real
measured conditions? Recall that the previous example was of a cantilever
beam excited by a force at the tip. Standard commercial vibration test equip-
ment usually excites accelerations (or displacements). Can the results of the
previous example be simulated by a displacement excitation? The first thing
to think of is to mount the cantilever beam, with a suitable clamp, on top of
a shaker and excite the clamp with some given displacement. The following
example shows that the problem is not so simple.

The beam is excited by a prescribed random displacement at the clamp, whose
PSD is constant between 5 Hz to 250 Hz. The PSD of the clamp displacement
is so selected to produce a tip displacement with RMS value equal to the
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RMS of the previous example, 0.5403 cm, where random force was applied
to the tip (the “experimental results”). This can be done by first applying a
PSD that produces a RMS value of 1 cm at the tip, and then adjust it so that
the MS value of the tip displacement is 0.2919 cm2. A short calculation shows
that the constant displacement PSD should be 0.000054128 cm2/Hz (see file
beamrand_2.txt in the Appendix).

In Figure 3.15, the RMS values of the relative displacements (that is, the
displacement of the beam minus the displacement of the clamp) along the
beam are shown. Comparing Figure 3.15 to Figure 3.6, it can be clearly seen
that the deformation of the beam is quite different!

In Figures 3.16 and 3.17, RMS values of the accelerations and bending
stresses along the beam are shown, respectively. Comparison to Figure 3.7
and Figure 3.8 reflects quite different behavior. The acceleration at the clamp
is no longer zero (because it was excited by a given random displacement).
The large curvature near the clamp is very high, which results in much higher
bending stresses in the clamp. Results of the tip displacement, tip acceler-
ation, and bending stress at the clamp presented in Figures 3.18, 3.19, and
3.20, respectively, demonstrate quite a different (from the previous exam-
ple) spectral content of each quantity. A much more response component of
the second and third mode is demonstrated. Performing the integrals of the
PSD curves, this can be seen more explicitly in Figures 3.21, 3.22, and 3.23,
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FIGURE 3.15 Mean square values of displacement along the beam (clamp
excitation).
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FIGURE 3.16 Mean square values of accelerations along the beam (clamp
excitation).
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FIGURE 3.17 Mean square values of bending stress along the beam (clamp
excitation).
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FIGURE 3.18 PSD of beam’s tip displacement (clamp excitation).
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FIGURE 3.19 PSD of beam’s tip acceleration (clamp excitation).
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FIGURE 3.21 Mean square of tip displacement (clamp excitation).
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FIGURE 3.22 Mean square of tip acceleration (clamp excitation).
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FIGURE 3.23 Mean square of bending stress at the clamp (clamp excitation).

where the integrals of the PSD functions are shown. Thus, a simulation of
one loading condition (assumed to be the real experimental result) by a
different kind of excitation is quite difficult. The problem is further discussed
in Section 3.5.

3.4 RESPONSE OF A CANTILEVER BEAM TO TIP

DISPLACEMENT EXCITATION

Suppose the cantilever beam, which is originally excited by a random tip force,
is tested by applying a random displacement at the tip. This is equivalent to
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mounting the beam on its clamp, and attaching a shaker to the tip of the beam,
with a control input that is adjusted to create a flat, constant displacement PSD
in the frequency range of 5 Hz to 250 Hz. The ANSYS file for this example is
beamrand_3.txt (see Appendix). As displacement is imposed on the tip of the
beam, the modal analysis should be done with a constraint at the tip. Thus,
the resonance frequencies are no longer those of the cantilever beam, but of
a beam clamped at one end and simply supported on the other end. From this
point of view, such a test will not be representative to the “real” behavior of
the beam in a field test!

The input PSD of the tip displacement is such that a RMS value of 0.5403 cm
is obtained at the tip, so that the RMS displacement is equal to the “real” field
test result. To do so, the constant value of the tip displacement PSD should
be 0.00119152 cm2/Hz.

In Figures 3.24, 3.25, and 3.26, the RMS displacements, accelerations, and
bending stresses along the beam are shown, respectively. These should be
compared to Figures 3.6, 3.7, and 3.8 for the “real” results.

In Figures 3.27, 3.28, and 3.29, the PSD of the tip displacement, tip accelera-
tion, and the bending stress at the clamp are shown, respectively. The beam
has now three resonance frequencies at 50.5 Hz, 163.8 Hz, and 341.9 Hz. Thus,
only the two first resonances participate in the response, as the excitation has
a zero PSD above 250 Hz.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

0

0.1

0.4

0.3

0.2

0.6

0.5

0.7

0.9

0.8

1

R
M

S
 o

f 
D

is
p

la
ce

m
en

ts
 (

cm
)

FIGURE 3.24 RMS of displacements along the beam.
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FIGURE 3.26 RMS of the bending stress along the beam.
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FIGURE 3.28 PSD of tip acceleration (equal PSD of displacement times ω4).
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FIGURE 3.29 PSD of bending stress at the clamp.

It can clearly be seen that the computed PSD of the tip displacement is equal
exactly to the imposed displacement, as it should be. The acceleration PSD has
the form of a 4th order parabola. Acceleration equals displacement multiplied
by ω2 = (2πf )2, and the PSD, which includes a square of the quantity, has a
factor of ω4 = (2πf )4. In the PSD of the bending stress, two resonances can
be seen; the third is not responding as the excitation ends at 250 Hz.

It is clearly seen that in this example, our search for an excitation, which
is different from the original force excitation, led to a solution in which the
magnitudes of the stresses and displacements are “erroneous,” and resonance
frequencies are not those demonstrated in the virtual “field test!”
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3.5 SIMULATION OF AN IMPORTANT STRUCTURAL

PARAMETER IN A VIBRATION TEST

In the previous sections, it was demonstrated that it was impossible to com-
pletely simulate results of one excitation (random force at the tip), called “the
real” conditions, by other types of excitations, which are more easily obtained
using standard environmental test laboratory equipment. The demonstrations
included an excitation of the clamp by prescribed random displacements and
excitation of the tip by a prescribed random displacement spectrum. In the
latter, even the frequencies of the response were not the correct ones.

The main purpose of vibration laboratory tests is to discover failures in the
design before a final structural design (product) is determined. Therefore, it
is important for the designer to be able to analyze the performance of the
structure, and to decide “what he is afraid of.” This decision (the determi-
nation of failure criteria) is in fact one of the most important issues in the
design process. If the failure criterion is based on a limit value of stress, it
is important to test the structure in such a way that the stresses are simu-
lated in the laboratory test. If the design criterion is based on a limit value
of displacements or accelerations, it is important to check these values in the
tests. When the design criterion includes several criteria, it is usually easier
to design different tests for the different criteria, conditioned on the knowl-
edge of the interference between those criteria. It is easier to design a test in
which only part of the important parameters of the structural performance
are tested, and then two or more kinds of tests are performed.

The importance of establishing failure criteria, or to determine failure modes
of the structure, is again emphasized, not only as a routine procedure during
the design process, but also as a must in the design of experimental testing of
the designed structure. Designers should bear in mind that a complete labo-
ratory simulation of the real field conditions is seldom possible, and should
be ready to design several different tests for a given structure, so that each
test may check for a different possible failure mode.

Assume, reasonably, that the failure criterion of the cantilever beam structural
design is the stress at the clamped edge, for the “real” case where the tip is
excited by a random force. The designer does not want this bending stress
to be higher than a given value, say the material yield stress. Then, a test
that involves base acceleration excitation (which can be performed using the
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standard environmental testing laboratory equipment) can be designed in
such a way that the magnitude and the PSD of the bending stress at the clamp
can be simulated, without any certainty that other parameters are correctly
simulated in other locations. Thus, a reasonable test for one of the design
failure criterion can be established, while, when more than one criterion
exists, other kinds of tests may be required.

Sometimes a design criterion on acceleration is required, not necessarily
because of structural aspects but for other reasons. For instance, if sensitive
equipment is to be mounted at the tip of a cantilever structure, the acceler-
ation at that tip is the input that this equipment should withstand. Thus, it is
important sometime to simulate, in tests, the acceleration PSD at the tip.

When both criteria are required (i.e., simulation of the PSD of the clamp stress
and simulation of the PSD of the beam’s tip acceleration), two different tests
may be required, as will be demonstrated in the following sections.

The method in which such tests can be designed is demonstrated for both the
cantilever beam and a cantilever plate (which may simulate an aerodynamic
stabilizer).

3.5.1 TWO EXAMPLES

THE CANTILEVER BEAM

The “Real” Behavior

The cantilever beam demonstrated here is the one for which the “real” case
was solved in Section 3.3. The RMS values for the displacement, accelera-
tion, and bending stress along the beam were depicted in Figures 3.6, 3.7,
and 3.8, respectively. The PSD of the response to a tip random force were
shown in Figures 3.9, 3.10, and 3.11 for the tip displacement, tip acceleration,
and clamp stress, respectively. It may be clearer if the results shown in these
figures are plotted on a log-log scale, as was done in Figures 3.30 (for the tip
displacement), 3.31 (for tip acceleration), and 3.32 (for clamp stress). The
representation of test results on a log-log scale is very common in the routine
procedures of environmental testing laboratories. Such representation may
have more resolution when close resonances exist, and better depict the
results when values of response are of a different order of magnitude.
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FIGURE 3.30 PSD of beam’s tip displacement (identical to Figure 3.9).
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FIGURE 3.31 PSD of beam’s tip acceleration (identical to Figure 3.10).

The procedures described in the following section deal with the determination
of equivalent tests, and describe how, based on experimental results (such as
flight tests), the spectrum of the excitation can be determined).

Determination of the Excitation Force

Based on Eq. (3.2), the following equation can be written:

PSDoutput = |TF|2input−output gPSDinput (3.25)
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FIGURE 3.32 PSD of beam’s clamp stress (identical to Figure 3.11).

where |TF|2 ( the Transfer Function Squared, TFS) has replaced |H (ω)|2, for
convenience. It can be written, for the transfer function between the tip force
and the tip displacement

PSDytip = |TF|2F→ytip
· PSDF (3.26)

Using the structural model, one can calculate the TFS between the excitation
force and the tip deflection by using the harmonic response option of the finite
element program. A unit tip force of different frequencies is applied to the
model, and the required output response is calculated. In the ANSYS pro-
gram, the harmonic response module is used. Usually, the transfer function
has a real part and an imaginary part (or an amplitude and a phase angle),
but the square of the transfer function is a real quantity. In Figure 3.33, the
square of the transfer function between a tip force and a tip displacement is
shown. In Figure 3.34, the square of the transfer function between a tip force
and the stress at the clamped edge is shown. These transfer functions can
also be obtained experimentally, using a unit excitation force swept slowly in
the frequency domain, measuring and plotting the tip displacement and the
clamp stress.

When the transfer functions are known (either from a model or from experi-
ments), the use of Eq. (3.26) and similar may be used to calculate the PSD of
the excitation force:

PSDF = PSDytip/ |TF|2F→ytip

PSDF = PSDSbend/ |TF|2F→S

(3.27)
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The values of PSDytip and PSDSbend are taken from experiments of the “real”
system; for instance, flight tests. Using the results presented in Figures 3.30
and 3.31, or in Figures 3.32 and 3.33, the PSD of the excitation force
(Figure 3.5) is obtained.

The square of the transfer function between a tip force and the tip acceleration
|TF|2F→atip

can also be computed or measured. In this case, the PSD of the
excitation force is calculated using

PSDF = PSDatip/ |TF|2F→atip
(3.28)

where PSDatip is the PSD of the measured tip acceleration.

In the described case, only one excitation force exists, and therefore only one
experimentally measured PSD is required in order to find its PSD function.
In cases where more than one excitation force exists, the number of required
measured quantities is equal to the number of unknown excitations (say n
excitations), and a set of n linear equations must be solved.

The previous case was solved using ANSYS as the finite element pro-
gram, and transferring the results into an EXCEL spreadsheet, and into a
MATLAB® file (to calculate the squared transfer functions). Nevertheless,
these calculations can be performed directly using the spreadsheet.

Equivalent Base Excitation

In the case described (which was called the “real” case), the cantilever beam
is excited by a tip force. A true test of such a system is to excite the tip of the
beam by a random force. This kind of test (force control) is not a standard pro-
cedure in the traditional equipment of vibration testing laboratories where the
control is done by accelerometers. If one excites the tip of the beam by a ran-
dom acceleration, the natural frequencies of the system are changed, because
they are now those of a beam clamped in one side and simply supported in the
excited tip. The only way to retain the true resonance frequencies is to excite
the clamp of the beam—base excitation. As this excitation is not identical to
the “true” excitation, the stresses at the clamp and the displacement of the
tip will not represent the real behavior of the structure. There is a possibility
to excite the clamp so that the PSD of the tip acceleration will be the “true”
one, and there is a possibility to excite the clamp so that the PSD of the stress
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at the clamped edge will represent the “true” stresses. It is not possible to do
both with the same base excitation. To decide which condition to fulfill—the
clamped edge stress or the tip displacement—depends on the failure mode
analysis of the structure. If the most dangerous failure mode is the stress at
the clamped edge, the test should be designed to imitate the stress PSD. If the
dangerous condition is the tip displacement (or the tip acceleration), the test
should be designed to imitate that PSD. Sometimes, two dynamic tests should
be designed in order to complete an experimental proof of the structure.

The PSD function of the relative displacement between the base and the
tip is

PSDyrel = |TF|2y0→yrel
· PSDy0,1 (3.29)

where PSDyrel is the PSD of the relative displacement, and PSDy0,1 is the PSD
of the required base excitation. The squared transfer function in Eq. (3.29)
can be obtained by either a model (say ANSYS) or an experiment. ANSYS
computation is shown in Figure 3.35.
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FIGURE 3.35 Squared transfer function between base displacement and (relative)
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In Figure 3.36, the squared transfer function between base displacement and
the clamped edge stress is shown:

PSDS = |TF|2y0→S · PSDy0,2 (3.30)

where PSDS is the PSD function of the stress at the clamped edge, and
PSDy0,2 is the required PSD of the base excitation.

Using Eq. (3.29), the squared transfer function of Figure 3.35 and the “true”
PSD of relative displacement (Figure 3.30), the equivalent PSD of base excita-
tion (already translated to PSD of base acceleration) is calculated and shown
in Figure 3.37. Using Eq. (3.30), the squared transfer function of Figure 3.36
and the true PSD of the clamped edge (Figure 3.32), the equivalent base
excitation (already translated to PSD of base acceleration) is calculated and
shown in Figure 3.38.

The acceleration PSD functions shown in Figures 3.37 and 3.38 can be
“digitized” and reintroduced to an ANSYS solution of the cantilever beam
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problem, this time with base excitations. It can be shown that if the excitation
of Figure 3.37 is used, the PSD of the tip relative displacement is the “true”
one (while other quantities, such as stresses, are not reproduced). If the
excitation of Figure 3.38 is used, the PSD of the stresses at the clamped
edge is reproduced, while other quantities are not reproduced. Thus, the first
case can be used to test the structure when tip deflection is important to its
functionality, while the second excitation can be used to test the case where
the stress at the clamp is the important feature. Note that in the ANSYS
program, only 50 values of PSD input are possible; therefore, digitization
must be done carefully, to represent the peaks and valleys of the digitized
curve.

The problem of performing a test that will simulate the true behavior
of a structure as measured in field tests is a major concern to environ-
mental test designers. Until lately, the standard equipment of vibration
environmental testing laboratories was controlled by accelerometers, and
force excitation, which usually simulates better the true excitations, was
impossible. In the last five years, with the improvement of digital con-
trol equipment and the miniaturization of load cells, capable of measuring
forces, a different approach starts to emerge. In research performed by
the JPL laboratory of NASA, a new method of controlling the equipment
with force gages was developed. A new testing procedure was suggested
[36], based on [37] and on JPL research published in the literature (e.g.,
[38]). The presented approach carries the test methods into a more ade-
quate experimental representation, although further development, based
on the transfer function approach described in the last pages, is still
required.

A CANTILEVER DELTA PLATE

The “Real” Behavior

In the previous chapter, the process of “designing” an equivalent vibration
test was demonstrated for a one-dimensional structure. In this chapter, a
two-dimensional (plate) structure is presented.

In Figure 3.39, the cantilever delta steel plate finite element model is shown.
This model is included in the file wing1.txt (see Appendix). The root chord
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is 40 cm long, the tip chord is 20 cm long, and the span is 30 cm long.
The thickness of the plate is 0.5 cm. The node numbers are also shown in
Figure 3.39.

In Figure 3.40, the modal shapes for the first four resonance frequencies are
shown. The first mode is a first bending, the second mode is the first torsion
mode, the third mode is a second bending, and the fourth mode is a second
torsion mode. The resonance frequencies are

f1 = 55.026 Hz

f2 = 157.85 Hz

f3 = 303.3 Hz

f4 = 429.8 Hz

(3.31)

In the “real” case (“flight”), two random forces are acting on this structure.
One force is acting on the trailing edge of the tip chord (node 89). It has a
uniform PSD function between 20 Hz to 500 Hz, and its RMS value is 2 kgf.
At the center of the tip chord (at node 49) is an additional random force with
the same frequency content and an RMS value of 1 kgf. The “real results” are
the response of the plate to these random forces, and as such can be treated as
“flight test results.” For simplicity and a clear understanding, force excitations

FIGURE 3.39 The structure, the elements, and the nodes.
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FIGURE 3.40 Four modal shapes of the delta plate.

are used. When, for instance, pressures rather than forces excite the plate,
the same procedure can be used.

Two important quantities are considered in this example:

1. The real displacement of node 89 (trailing edge, tip chord).

2. The maximal equivalent stress (Von-Mises stress) in the plate. It is
possible to show that this stress has a maximum in node 71 (one node
before the last one in the root chord).

In Figure 3.41, the PSD function of the “real” displacement of node 89 is
shown. In Figure 3.42, the PSD function of the equivalent stress at node 71 is
depicted.

Four transfer functions (squared) are of interest, and calculated using ANSYS
(but also can be obtained experimentally):

1. Squared transfer function between excitation force at node 89 and the
displacement at that node, shown in Figure 3.43.
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FIGURE 3.43 Squared transfer function, force at node 89, displacement at 89.

2. Squared transfer function between excitation force at node 89 and the
equivalent stress at node 71, shown in Figure 3.44.

3. Squared transfer function between excitation force at node 49 and the
displacement at node 89, shown in Figure 3.45.

4. Squared transfer function between excitation force at node 89 and the
equivalent stress at node 71, shown in Figure 3.46.

The following equations can be written for the PSD functions of the
displacement in node 89 and the stress at node 71:

PSDZ89 = |TF|2f 89→z89 · PSDf 89 + |TF|2f 49→z89 · PSDf 49

PSDσ71 = |TF|2f 89→σ71 · PSDf 89 + |TF|2f 49→σ71 · PSDf 49

(3.32)

The left-side terms are the PSD functions that can be measured—for
instance, in “flight tests”—and were calculated by the ANSYS model
(Figures 3.41 and 3.42). They are also computed using the squared transfer
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FIGURE 3.46 Squared transfer function, force at node 49, stress at 71.

functions and the PSD of the input forces. Figure 3.47 describes the results
obtained using the first of Eq. (3.32), and is identical to Figure 3.41.
Figure 3.48 was obtained using the second Eq. (3.32) and is identical to
Figure 3.42.

Equivalent Base Excitation

The equivalent excitation is obtained by exciting the root chord with a random
displacement excitation (that can easily be transformed to an acceleration
base excitation). For this computation, two squared transfer functions are
required, and were computed using the ANSYS:

1. Squared transfer function between root chord displacement z0 and the
displacement in node 89, shown in Figure 3.49.

2. Squared transfer function between root chord displacement z0 and the
stress in node 71, shown in Figure 3.50.
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FIGURE 3.50 Squared transfer function between base excitation and stress in
node 71.
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FIGURE 3.51 PSD of base excitation required to simulate displacement at
node 89.

The following equations can be used for the computation of the PSD function
of the equivalent excitations:

PSDZ89 = |TF|2z0→z89 · PSDz0z

PSDσ71 = |TF|2z0→σ71 · PSDz0s
(3.33)

where PSDz0z is the PSD function of base displacement excitation that sim-
ulates displacement at node 89 (shown in Figure 3.51), and PSDz0σ is the
PSD function of base displacement that simulates stress at node 71 (shown
in Figure 3.52). If required, these functions can be modified to include PSD
functions of acceleration.

The results of Figures 3.51 and 3.52 can be digitized and used to solve (using
ANSYS) the response in two cases, the displacement at node 89 and the stress
at node 71. Results are shown in Figures 3.53 and 3.54.

Comparing Figures 3.53 and 3.41, and Figures 3.54 and 3.42, it can be seen
that the peak levels are identical, and the frequencies at which these peaks
exist. There are some minor differences in the shape of the curves. These
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FIGURE 3.52 PSD of base excitation required to simulate stress at node 71.
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changes are the result of the ANSYS computation method, which collocate
frequency points around the resonance frequencies.

3.6 RESPONSE OF A STRUCTURE TO ACOUSTIC

EXCITATION

Computation of the response of a structure to acoustic (random pressure)
excitation using a finite element code like the ANSYS has some unique
features that differ from the routine computation of a response to random
forces or random displacements. Therefore, an example of such a response is
presented here.

Acoustic excitation is a random load generated by pressure fluctuations acting
on the structure. For flight vehicles, a major kind of excitation is the turbulent
flow that exists around the structure—the flow causes pressure fluctuations on
different surfaces of the structure. These pressure fluctuations are random in
nature and cause a vibration response of the surfaces of flight vehicles. There
are models that simulate such pressure fluctuations. One model is described
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in [16], based on [39] and [40]. Similar response to wind loads exists in civil
engineering structures, and response to water flow in marine structures.

To solve the problem of the response of a structure to pressure fluctuations
(either analytically or numerically), the power spectral density (PSD) of the
excitation is required. In many Standards and Specifications, acoustic exci-
tation (pressure fluctuation) is described not by direct PSD curves, but by
acoustic decibels (dBs) (e.g., MIL-STD 810, procedure 515 [31]. These val-
ues are usually given in the specifications with values of acoustic dBs in a “1/3
octave bandwidth” and thus it is important to convert these values to a regular
PSD function. A procedure to do such conversion is shown in this paragraph.

Some basic concepts are detailed here. An octave is a bandwidth limited by
two frequencies so that the upper frequency is twice the lower frequency.
Third octave (1/3 octave) bandwidths are obtained by dividing the octave into
three “sub-bandwidths,” which are all equal in a frequency logarithmic scale.
Thus, an octave between 20 Hz and 40 Hz is divided into three log-equal
bandwidths: 20–25.2 Hz, 25.2–31.7 Hz, and 31.7–40 Hz.

Acoustic sound pressure levels (SPL) is defined by

SPL = Acoustic Decibel (dB) = 20 · log
(

Prms

Pref

)
(3.34)

Prms is the root mean square value of the pressure, and Pref is a reference
pressure defined as

Pref = 2 · 10−4 dyne/cm2 = 2 · 10−5 Pascal =
= 2.0408 · 10−6 kgf/m2 = 2.0408 · 10−10 kgf/cm2

= 2.9 · 10−9 psi

(3.35)

For a continuous PSD function, the PSD function is given for bandwidth of
1 Hz wide, and the relation is

PSD(f ) = (Prms)
2/1 Hz (3.36)

To correct for bandwidths that are not 1 Hz, one defines

LPS = SPL − �L

�L = 10 · log
(
�f
) (3.37)
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where �f is the actual bandwidth. �L is a “trimming” factor, which takes
care of the fact that the bandwidths are not 1 Hz, but �f . Then, the Prms is
obtained from Eq. (3.34) as

Prms = Pref · 10LPS/20 (3.38)

For the reader’s convenience, Table 3.2 describes 1/3 octave bandwidth
between 20 Hz and 2000 Hz, a range that is of common use in aerospace
applications. The center frequency, the individual bandwidth of each divi-
sion, and the value of the corresponding �L are also shown. These are used
later in the numerical example.

Using the values of �L given in Table 3.2 and Eqs. (3.37) and (3.38), one can
find a relation between the PSD value ((Prms)

2/1 Hz, see Eq. (3.36)) and the
sound pressure level spectrum defined in a given specification. In Table 3.3,
SPL levels that define a uniform PSD(f ) = 1 · 10−6(kgf/cm2)2/Hz in the
range 20–1000 Hz, together with the local Prms are shown. A constant value

TABLE 3.2 1/3-octave divisions, 20–2032 Hz.

Bandwidth Bandwidth, Center �L
Range, Hz Hz Frequency, Hz

1 20–25.2 5.2 22.4 7.16
2 25.2–31.7 6.5 28.3 8.129
3 31.7–40 8.3 35.6 9.191
4 40–50.4 10.4 44.9 10.170
5 50.4–63.5 13.1 56.6 11.173
6 63.5–80 16.5 71.3 12.175
7 80–100.8 20.8 89.8 13.181
8 100.8–127 26.2 113.1 14.183
9 127–160 33 142.5 15.185

10 160–201.6 41.6 179.6 16.191
11 201.6–254 52.4 226.3 17.193
12 254–320 66 285.1 18.195
13 320–403.2 83.2 360 19.201
14 403.2–508 104.8 453 20.204
15 508–640 132 570 21.206
16 640–806 166.3 718 22.209
17 806–1016 209.7 905 23.216
18 1016–1280 264 1140 24.216
19 1280–1613 333 1437 25.224
20 1613–2032 419 1810 26.222
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TABLE 3.3 SPL level for a range of 20–1000 Hz.

SPL, dBs PSD,
(
kgf/cm2

)2/
Hz Prms,

(
kgf/cm2

)
1 141 1 · 10−6 1 · 10−3

2 142 1 · 10−6 1 · 10−3

3 143 1 · 10−6 1 · 10−3

4 144 1 · 10−6 1 · 10−3

5 145 1 · 10−6 1 · 10−3

6 146 1 · 10−6 1 · 10−3

7 147 1 · 10−6 1 · 10−3

8 148 1 · 10−6 1 · 10−3

9 149 1 · 10−6 1 · 10−3

10 150 1 · 10−6 1 · 10−3

11 151 1 · 10−6 1 · 10−3

12 152 1 · 10−6 1 · 10−3

13 153 1 · 10−6 1 · 10−3

14 154 1 · 10−6 1 · 10−3

15 155 1 · 10−6 1 · 10−3

16 156 1 · 10−6 1 · 10−3

17 157 1 · 10−6 1 · 10−3

PSD spectrum was selected arbitrarily, since it is convenient for the numerical
example. This case was done without a loss of generality for the general case.

The values of the PSD and the Prms in Table 3.3 are identical only because
a uniform pressure spectrum was selected. This is not general, and in other
cases, different values may fill the table. The SPL curve as a function of
frequency is linear in a logarithmic scale of the frequency, and the PSD curve
has a uniform value over the frequency range. Specific nonlinear curves from
given specifications can be treated using the same approach. In such a case,
the PSD curve is not necessarily linear.

The total root mean square value PRMSTotal of the pressure acting on the
structure can be obtained by integrating the PSD( f ) function over the given
frequency range.

PRMSTotal =

√√√√√√
f 2∫

f 1

PSD( f ) · df (3.39)
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Suppose the PSD range is 20–1000 Hz. For the uniform values of PSD given
in Table 3.3, the PRMST is computed by

PRMSTotal =
√

1 · 10−6 · (1000 − 20) = 0.03130 kgf
/

cm2 (3.40)

The process of computing the response of a structure to acoustic excitation
is now demonstrated. The structure is a simply supported wide beam, shown
in Figure 3.55. Dimensions and material properties are shown in the figure.
The beam was modeled by plate elements. An acoustic pressure excites one
face of the beam, with PSD function shown in Figure 3.56. This excitation is
corresponding to the PSD calculated and presented in Table 3.3, where SPL
levels are shown in the second column of the table.

b � 5

t � 0.5

E� 2.1�106 (kgf/cm2)

� � 7.959�10�6 (kgf�sec2/ cm4)

� � 0.3

L � 40

FIGURE 3.55 Simply supported steel wide beam.
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FIGURE 3.56 PSD function of excitation pressure.
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The problem was solved using ANSYS. As shown in previous examples, the
response of a structure to spectral excitation is performed in ANSYS by
running two analyses the modal analysis and the spectral analysis.

The file for the numerical computation, bbplate.txt, is listed in the Appendix.
Running a spectral response analysis to pressure excitation requires that in
the modal analysis, the pressure should be introduced into the solution com-
mands (this is different from response to force excitation). The introduction
of pressures into the modal analysis does not change the modal results, but a
certain matrix that is required in the spectral analysis for scaling the results
is created and saved in the working files of the finite element program. This
command is shown in the bbplate.txt file.

In order to compare the response of the beam to equivalent force excitation
(each pressure on an element can be replaced by four nodal random forces),
the bbplate.txt file also contains a solution procedure for the response to
equivalent force excitation. As forces on the edge simply supported nodes do
not contribute to the response, the equivalent forces on the other nodes were
corrected by a factor so that the static deflection of the beam to these forces
will yield the same mid-beam deflection as the pressure excited beam. This
factor is found by short trial and error computations. This is also reflected in
the bbplate.txt file (see Appendix).

The wide beam model is shown in Figure 3.57. The resonance frequencies of
the beam are

f1 = 73.05 Hz

f2 = 295.01 Hz

f3 = 671.4 Hz

f4 = 805.2 Hz

f5 = 1086.3 Hz

(3.41)

Only the first four resonances are included in the range of the excitation input,
20–1000 Hz.

In Figure 3.58, the RMS values of the beam’s lateral displacements are shown.
It is qualitatively seen that these displacements contain mainly the first mode
response.
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FIGURE 3.57 Finite element model with boundary conditions.
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FIGURE 3.58 RMS values of the beam’s response. Only the first mode partici-
pates.
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FIGURE 3.59 RMS values of acceleration response. More modes participate.

In Figure 3.59, the RMS values of the accelerations are depicted. It can be
seen that although the displacement response is comprised mainly of the first
mode response, there are acceleration responses in other modes, too. Higher
modes in the displacement response are attenuated because displacements
are inversely proportional to the resonance frequencies squared, as was also
demonstrated by the previous numerical examples.

In Figure 3.60, RMS values of bending stresses in the simply supported beam
are shown. As stress is proportional to the relative displacements of the struc-
ture, the behavior of the stress distribution is similar to the displacement
distribution. Thus, the fact that higher modes participate in the acceleration
response, this does not reflect on the stress distribution.

In Figure 3.61, the PSD function of the mid-beam displacement is shown.
As there is no response in higher modes, only the frequency region around
the first resonance is shown. This is also shown in Figure 3.62, where the
integral of the mid-beam displacement PSD (MS value of the displacement) is
shown.

In Figure 3.63, the integral of the mid-beam bending stress PSD is shown. It
can be seen that although the major part of the MS value is contributed by the
first mode, there is a small contribution of the third mode, 671.4 Hz, which is
a symmetric mode.
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FIGURE 3.60 RMS values of bending stress; the first mode governs the response.
(Note that when ANSYS analysis is performed, the RMS values appear in color.)
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FIGURE 3.61 PSD of mid-beam response; higher frequencies are not shown.

When the equivalent random force excitation, also described in file bbplate.txt
(see Appendix), was run, identical results were obtained. These results are
not shown here. It is suggested that the reader will complete these runs and
compare them to the random pressure excitation response.
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FIGURE 3.62 Integral of mid-beam PSD of deflection.
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FIGURE 3.63 Integral of PSD function of mid-beam bending stress; some contri-
bution of the 3rd mode can be traced.

3.7 AN EXAMPLE OF A FRAME STRUCTURE

In the preceding paragraphs, examples for beam elements were demon-
strated. In Section 3.5, an example of a plate was shown. Here, an exam-
ple of a frame structure is depicted. This is done in spite of the fact that the
described process does not depend on the type of the structure. Once a numer-
ical input file of a structure is prepared—be it a beam, a frame, a plate, a shell,
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or a structural combination of different structural elements—the treatment
is identical to all the structures.

In addition, analytical solution is not included in these examples. The two
examples can be solved analytically, using the methods described in Chapter
5 of [16]. The solution process is long and includes calculation of resonance
frequencies, modal shapes, generalized masses, generalized forces, and inte-
grals of the transfer functions. This can be avoided if a finite element solution
can be obtained very quickly, in a time schedule that is compatible with the
needs of a real practical project.

The frame treated here has three members—lengths L1, L2, and L3. Each
of these members has a width b1, b2, and b3, and thickness of h1, h2, and
h3. Material properties can differ from member to member. A schematic
description is shown in Figure 3.64. The left vertical member is clamped at
the bottom, while the right member is simply supported at the bottom node.
The frame is excited by random force acting horizontally at the tip of the
left member. The PSD of this force is described in Figure 3.65. The PSD is
uniform, and the RMS of the force was selected to be 1 kgf.

In the demonstrated example, without a loss of generality, all three members
are of equal length, width, and thickness, and are made of the same material.
In the input file frame1.txt (see Appendix), general geometry and materials
can easily be included.

The data for the demonstrated frame is

L1 = L2 = L3 = 60 cm
b1 = b2 = b3 = 8 cm
h1 = h2 = h3 = 1 cm
E1 = E2 = E3 = 2100000 kgf/cm2

ρ1 = ρ2 = ρ3 = 7.959 × 10 − 6 kgf sec2/cm4

ν1 = ν2 = ν3 = 0.3

(3.42)

This data was introduced to file frame1.txt in a parametric way, so changes
in these parameters can be introduced easily, changing the data parameters
in the input file. This form of input file should be preferred when parametric
studies are required.
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FIGURE 3.65 PSD of excitation force RMS of the force is 1 kgf.
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Six resonance frequencies were calculated. Results for the preceding data are

f1 = 15.712 Hz
f2 = 72.025 Hz
f3 = 109.75 Hz
f4 = 142.24 Hz
f5 = 273.09 Hz
f6 = 327.18 Hz

(3.43)

Only the four first frequencies are within the bandwidth of the excitation;
therefore, there is no response in the fifth and sixth frequencies. These four
resonance and mode shapes are shown in Figure 3.66.

For demonstration purposes, different damping coefficients were selected to
the four modes:

ζ1 = 0.03
ζ2 = 0.01
ζ3 = 0.005
ζ4 = 0.01

(3.44)

The damping coefficients of modes 2, 3, and 4 were specially selected low
values, in order to enhance response in these modes (the lower the damping,
the higher the response).

In Figure 3.67, the RMS value of the displacements along the frame, in
the horizontal (X ) direction, is shown. It can be seen that the displacement
response is composed mainly of the first mode.

This is not the case for the RMS values of the X accelerations along the
frame structure, as can be seen in Figure 3.68. Again, it is demonstrated that
acceleration may comprise higher modes. The acceleration RMS values due
to higher modes are the result of the higher frequencies, and not due to higher
amplitudes!

When an element table is created, the RMS value of the bending stress in
node 1—the clamped end of the left member—is found to be 28.276 kgf/cm2.

In Figure 3.69, the PSD function of the X displacement of node 11—the tip
node of the left member of the frame—is shown. It can be seen that the
response is mainly due to the first mode of this member, with no participation
of the higher modes.
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FIGURE 3.66 Four resonances of the demonstrated frame.
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FIGURE 3.67 RMS values of X displacements along the frame.



130 • Chapter 3 / Dynamic Response of a Structure

Y

Z X

FIGURE 3.68 RMS values of X accelerations along the frame.
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In Figure 3.70, the PSD of the X acceleration of node 11 is depicted. The
first and the third modes exhibit large PSD values, while modes 2 and 4 are
contributing much less response values to the PSD function.

In Figure 3.71, the PSD of the bending stress at the clamped edge is shown.
Although some responses of higher modes are seen, the PSD is mainly
comprised of the first mode.

Many other results can be plotted while analyzing this case, as well as all
other examples. The main conclusion from the present example is that the
displacements are influenced mainly by the first mode, and so are the stresses.
On the other hand, the acceleration shows response in higher modes too, due
to the higher values of frequencies.

3.8 RESPONSE OF A STRUCTURE WITH MOUNTED

MASS TO RANDOM EXCITATION

A random force at the tip excites the beam, with the input force PSD given in
Figure 3.5. This is also a part of the file comass1.txt (see Appendix) that was
prepared for ANSYS. Results for RMS values along the beam for displace-
ments, accelerations, and bending stresses are shown in Figures 3.72, 3.73,
and 3.74, respectively.

The PSD functions of several quantities are shown in the following figures
for Cases (a) and (b). Figure 3.75 describes the PSD of the tip deflection of
the beam. Figure 3.76 describes the PSD of the displacement of the mounted
mass. Figure 3.77 describes the PSD of the tip acceleration. In Figure 3.78,
the PSD of the acceleration of the mounted mass, and in Figure 3.79 the
PSD of the bending stress at the clamp are shown. For clarity, only the
frequency ranges where significant values can be detected in the graphs are
included.

As was already stated in Chapter 2, in many cases of an attached mass, such as
the one described by the preceding example, the design parameter on which
the designer can influence at a given time is the rigidity of the mounted mass
support. Usually, the major design of the main structure is a given fact, and
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FIGURE 3.72 RMS of displacements along the beam: (a)—Case (a); (b)—Case
(b). Diamonds represent the mounted mass.

the mass of the required attached mass (usually an equipment “black box”) is
also defined. By performing a coupled modal analysis of the main structure
plus the attached mass and a response to random excitation, more insight into
the problem can be gained. A better selection of the mounting rigidity (and
therefore the coupled resonance frequencies) can be recommended, and thus
a better design can be performed.
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FIGURE 3.75 PSD of beam’s tip displacements: (a)—Case (a); (b)—Case (b).



3.8 Response of a Structure • 137

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

0.009

0.010

0 10 20 30 40

Frequency (Hz)

P
S

D
 o

f 
M

as
s 

D
is

p
la

ce
m

en
t 

(c
m

2 /
H

z)

(b)

50

Frequency (Hz)

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

0.05

0.05

P
S

D
 o

f 
M

as
s 

D
is

p
la

ce
m

en
t 

(c
m

2 /
H

z)

10 15 200 5

(a)

FIGURE 3.76 PSD of mounted mass displacements: (a)—Case (a); (b)—
Case (b).



138 • Chapter 3 / Dynamic Response of a Structure

0

2

4

6

8

10

12

Frequency (Hz)

P
S

D
 o

f 
T

ip
 A

cc
el

er
at

io
n

 (
g

2 /
H

z)

0

2

4

8

10

6

12

Frequency (Hz)

P
S

D
 o

f 
T

ip
 A

cc
el

er
at

io
n

 (
g

2 /
H

z)

(b)

0 20 40 60 80 100

40 60 8020 100 120 1400

(a)

FIGURE 3.77 PSD of beam’s tip acceleration: (a)—Case (a); (b)—Case (b).



3.8 Response of a Structure • 139

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

P
S

D
 o

f 
M

as
s 

A
cc

el
er

at
io

n
 (

g
2 /

H
z)

(a)

10 30 40 50 60 70 80 90 100200

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

Frequency (Hz)

P
S

D
 o

f 
M

as
s 

A
cc

el
er

at
io

n
 (

g
2 /

H
z)

(b)

0 10 20 30 40 50 60 70 80 90 100

FIGURE 3.78 PSD of mounted mass acceleration: (a)—Case (a); (b)—Case (b).



140 • Chapter 3 / Dynamic Response of a Structure

0
0 20 80 10040 60

10000

20000

30000

40000

50000

60000

Frequency (Hz)

P
S

D
 o

f 
B

en
d

in
g

 S
tr

es
s 

at
 C

la
m

p
(k

g
f/

cm
2 )

2 /
H

z

(a)

0

120000

100000

80000

60000

40000

20000

Frequency (Hz)

P
S

D
 o

f 
B

en
d

in
g

 S
tr

es
s 

at
 C

la
m

p
 (

kg
f/

cm
2 )

2 /
H

z

(b)

0 10 60 70 80 90 10020 30 40 50

FIGURE 3.79 PSD of bending stress at clamp: (a)—Case (a); (b)—Case (b).

3.9 RESPONSE OF A SIMPLY SUPPORTED PLATE TO

RANDOM EXCITATION

The simply supported plate, whose response to harmonic excitations was
demonstrated in Chapter 2, Section 2.8, is now treated numerically, using
ANSYS, for its response to random excitation. The plate’s data is identical to
the data described in Chapter 2, Section 2.8.
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For this analysis, a file ssplaterand.txt (which is listed in the Appendix) was
written. The post-processing part of this file is identical to ssplate.txt, also
listed in the Appendix.

In order to use only the first six modes of the plate, described in Chapter 2,
Section 2.8, and without any loss of generality, the simply supported plate
is now subjected to random excitation force acting at node 416 (location
of this node is described in Table 2.9). The PSD function of the excitation
force was selected as a uniform PSD between the frequencies 200 Hz and
1250 Hz. This range ensures that only the first six modes are participat-
ing in the response. Any other PSD functions can be selected and replace
the input in file ssplaterand.txt. The PSD excitation function is shown in
Figure 3.80.

When a computation of the response to random excitation is run with a finite
elements code, computation of normal modes is required. This is not so for a
harmonic response analysis demonstrated in Chapter 2. The modal analy-
sis was introduced into file ssplate.txt just for the purpose of computing
and demonstrating the normal modes, but is not required for the harmonic
response analysis.

When response to random excitation described in Figure 3.80 is run, the
regular post-processor of the finite elements code is used to find the RMS
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FIGURE 3.80 PSD of force excitation at node 416.
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values of displacements, stresses, velocities, accelerations, etc. It was found
that the RMS value of the mid-plate displacement is

ZRMS
(
node 811

) = 0.00062941cm (3.45)

The RMS of the displacement at node 416 (under the acting random
force) is

ZRMS
(
node 416

) = 0.00043744 cm (3.46)

The values are very small because the excitation force is very small. Computing
the RMS value of the excitation force, by integrating the PSD function in
Figure 3.80 yields

FRMS = 1 kgf (3.47)

The acceleration of node 811 (mid-plate) is

ARMS
(
node 811

) = 2582.6 cm/sec2 = 2.6353 g (3.48)

and the acceleration of node 416 (at the force location) is

ARMS
(
node 416

) = 6441.8 cm/sec2 = 6.573 g (3.49)

The PSD functions of different parameters are computed using the time and
frequency domain post-processor of the finite elements code. Some of the
results are shown in the following pages.

In Figure 3.81, the PSD function of the displacement of the mid-plate (node
811) is shown. PSD function of the displacement of node 416 (at the force
location) is shown in Figure 3.82. In Figure 3.83, the PSD function of σx at
node 416 is shown, and that of σy (at the same node) in Figure 3.84. PSD
function of the acceleration of node 416 is shown (in cm/sec2) in Figure 3.85,
and in g’s in Figure 3.86.

When the integral of a PSD function is performed, the Mean Square (MS)
value of that parameter is obtained. Taking the square root of this value,
the Root Mean Square (RMS) value is obtained. In Figure 3.87, the integral
of the PSD function of the acceleration of node 416 (in g’s, Figure 3.86) is
performed with the finite elements code. From the figure, the contribution of
each of the participating modes to the total MS value can also be concluded.
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FIGURE 3.82 PSD function of displacement at node 416 (at the force location).

The RMS value obtained by this integration is

ARMS
(
node 416

) = 6.575 g (3.50)

which is in very good agreement with the result obtained in Eq. (3.19).

Similar integrations were performed for the RMS value of the displacements
in nodes 811 and 416. The following results were obtained:

ZRMS
(
node 811

) = 0.0006296 cm
ZRMS
(
node 416

) = 0.0004376 cm
(3.51)
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FIGURE 3.83 PSD function of the σx stress at node 416.
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FIGURE 3.84 PSD function of the σy stress at node 416.

which are in very good agreement with Eqs. (3.15) and (3.16).

From Figures 3.81 through 3.87, the designer can gain a lot of knowledge
about the behavior of the structural element under analysis—the amount of
participation of different modes in the dynamics of this element, the con-
tribution of each mode to the total behavior of the structural element, the
different behavior of different locations on the structure, and much more.
There is practically no limit to the number of structural parameters that can
be computed using the capabilities of the spectral analysis module and the
time-frequency domain post-processors of the commercially available finite
elements codes.
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C h a p t e r 4 / Contacts in
Structural Systems

4.1 STATIC CONTACT

In many cases, a structural element makes contact with another part of the
structure during its response to external loading. If the loading is slow—
static or quasi-static—the contact creates a new situation, in which boundary
conditions of the system are changed. If the loading is dynamic, there are new
boundary conditions for a short period of time, and there is an impact on the
system that may, in some cases, create excessive stresses and other undesirable
effects. Examples for contact problems can be found in many engineering
applications. The response of a packaged equipment in a box subjected to
external vibrations may exhibit contact problems when the equipment is not
pre-loaded in its packaging. The fins of a missile carried externally by a combat
aircraft may vibrate and hit the fuselage due to the airflow beneath the plane.
A leaf spring in a relay switch may respond with vibrations that cause it to
contact its envelope, etc.

Contact problems involve many undesirable structural effects. They certainly
create a geometric nonlinearity, as the boundary conditions of the problem are
changed during the vibrations. They are associated with impacts that give rise
to stress wave propagation phenomena. When impacts occur, there is also a
rebound, associated with the law of conservation of impulse at the impact time.

Practical solutions to contact problems are usually difficult to be general-
ized, and in most cases, such problems have to be analyzed with different
tools for each problem. Sometimes, a closed-form formulation can be for-
mulated, but usually the solution for these formulations must be performed

146
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using numerical algorithms. In many cases, the use of contact elements that
exist in the commercially available finite elements computer codes are the
best way to obtain a solution to these problems. Use of contact elements in
these programs is often tricky, and calls for a lot of experience from the design
engineer. In many cases, the designer or the analysts spend more time solving
numerical convergence problems rather than concentrating on the physical,
structural behavior.

In this chapter, an attempt is made to familiarize the designer with the
expected phenomena and the expected difficulties involved. When the solu-
tion is done using a finite element code, the ANSYS® is used and the relevant
file is quoted in the Appendix.

4.1.1 AN EXAMPLE OF A STATIC CONTACT PROBLEM

At a distance of DEL = 3 cm above the tip of the cantilever beam, in the
positive Y direction, there is an anvil with rigidity much higher than the rigid-
ity of the beam. This is achieved by a Young modulus 10,000 larger than the
beam’s Young modulus. As stresses at the tip are required when the beam
touches the anvil, beam elements are not suitable for this purpose, and the
beam is modeled by solid (plate) elements. A force of 20 kgf is applied at
the tip. In order to avoid tip cross-section distortion, this force is divided
equally to five nodes at the tip. The computed configuration is shown in
Figure 4.1. The input data text file for the ANSYS is given by plate2.txt (see
Appendix).

The force is increased from 0 to 20 kgf; thus, the distance between the tip and
the anvil decreases. From the static beam formulas, the force required to get
a 3 cm deflection can be calculated explicitly [26]. A value of force of 7.3 kgf
is obtained. Thus, when the external total force is 7.3 kgf, contact between
the beam and the tip is obtained. For the larger values of force (up to 20 kgf),
there is no movement of the tip, and local stresses are developed in the tip
elements, particularly in the Y direction. The ANSYS is run with the file
plate2.txt described in the Appendix, and the tip deflection as a function of
the external total load is shown in Figure 4.2.

The contact elements in ANSYS are quite tricky. A contact stiffness is to be
applied (KN in ANSYS contact 48 element), which influences the convergence
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FIGURE 4.1 Static example configuration.
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FIGURE 4.2 Tip deflection as a function of the external load.

of the numerical nonlinear analysis. In addition, a tolerance on the contact
“depth” is required. These are described in the real constants of the contact
elements, as depicted in file plate2.txt (see Appendix). Larger contact stiffness
is more realistic, but this sometimes causes the solution not to converge.
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Sometimes, several attempts are to be run in order to obtain a converged
solution. Therefore, the point of initial contact may present some fluctuations,
as seen (not so clearly) in Figure 4.2.

It is of interest to plot the stresses in the Y direction at the tip of the beam.
In Figure 4.3, Y stresses (in the direction of the thickness of the beam) are
shown for two nodes. Node 51 is on the lower side of the tip cross-section,
where 1/5 of the total force is applied. Node 151 is on the upper side of
the tip cross-section, where the beam contacts the anvil. Because of the
total stress field in the beam (described with plate elements, including Pois-
son ratio effects), there are stresses in the Y direction even when the beam
does not reach contact with the anvil. Then, the stresses on the upper face
start to decrease toward negative values (compression due to the contact),
and the stresses on the lower face start to increase toward tension, due to
the total behavior of the tip cross-section. The noncontinuous behavior is
due to the load steps and the iterations for convergence of the numerical
procedure.

In Figure 4.4, the bending stresses at the lower and upper faces of the clamped
cross-section are shown as a function of the tip applied force. This cross-
section is far enough from the tip where contact occurs, and only some
numerical effect is observed at the value of the external force in which
contact begins.
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FIGURE 4.4 Bending stresses at the clamped cross-section.

4.2 ANALYTICAL SOLUTION FOR A DYNAMIC

CONTACT PROBLEM

Dynamic contact problems appear when a structural subsystem is packed
inside another structural system. In many cases, the structural subsystem is
pre-pressed by some elastic elements toward the enveloping structure. When
the whole system is excited by vibrations, gaps can be opened between the two
elements in part of the process, while collisions occur in other instances. These
collisions create local dynamic stresses against which the structural elements
should be designed for.

The phenomenon is better understood if a simple model is applied and solved.
The best simple models can be created, solved, and understood if a SDOF or
MDOF system replaces the actual structure. Although the solution of such a
“replacement” system may not be rigorous, it provides a much better insight
into the physical interpretation of the phenomena that occur. This statement
is good for any dynamic problem, and not only to the described dynamic
contact issue.

The following example provides insight to the dynamic contact problem.
Analytical expressions can be written, and any of the mathematical solver com-
puter programs (i.e., MATLAB®, TK SolverTM) can be used to numerically
solve these expressions. These solutions usually take only seconds.
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In Figure 4.5, the demonstrated system is shown. The mass m is connected
through a spring k to an external rigid frame. The spring k is initially com-
pressed by a length δ0 so that an initial force Fin is formed in the spring. The
movement of the base is xb, and the movement of the mass is xs. The whole
system—the rigid frame and the base—is acted by a static acceleration field
a0. The “base”—the rigid frame—is moved by an external excitation so that

xb = 1
2

a0 · t2 + xb0 sin(ωit) (4.1)

ωi is the excitation frequency, and b0 is an amplitude selected so that the
base has a given value of harmonic acceleration amplitude. The movement of
the mass is

xm = xm0 + xmv = 1
2

a0 · t2 + xmv (4.2)

xm0 is the movement due to the static acceleration a0, and xmv is the move-
ment due to the harmonic acceleration. Using this model, it can be concluded
that the mass moves relative to the base only when xm > xb. If xm < xb, there
is no relative movement between the mass and the base. The force applied
on the mass by the spring k is ↓ Fk = kδ0 + k(xm − xb), considered positive
when acting downward. Force equilibrium on the mass requires

mẍm + kδ0 + k(xm − xb) = 0 (4.3)

m

k

xb

xb

xm

a0

FIGURE 4.5 The model.
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UsingEqs. (4.1), (4.2), and(4.3), thefollowingdifferentialequation isobtained
for xmv:

m · ẍmv + k · xmv = k · xb0 · sin(ωit) − k · δ0 − m · a0 (4.4)

This equation has a general solution comprised of a homogenous solution
and three particular solutions:

xmv = A sin(ωr t) + B cos(ωr t) + ω2
r

ω2
r − ω2

i

xb0 sin(ωit) + δ1 cos(ωr t) − δ1

(4.5)

δ1 = δ0 + a0

ω2
r

; ωr =
√

k
m

The model does not include damping. The resulting movement comprise
many “one cycle” excitations, where the damping effect is negligible. To also
allow excitation when ωi = ωr , the DLF (which include the damping effect)
is introduced, so that

xmv = A sin(ωr t) + B cos(ωr t) + DLF · xb0 sin(ωit) + δ1 cos(ωr t) − δ1 (4.6)

where

DLF = + 1⎡
⎣(1 − ω2

i

ω2
r

)2

+ 4ζ2 ω2
i

ω2
r

⎤
⎦

1/2 when ωi ≤ ωr

DLF = − 1⎡
⎣(1 − ω2

i

ω2
r

)2

+ 4ζ2 ω2
i

ω2
r

⎤
⎦

1/2 when ωi > ωr (4.7)

Substituting Eqs. (4.6), (4.1), into (4.2), the following solution is obtained:

xm = 1
2

a0t2 + A sin(ωr t) + B cos(ωr t) + DLF · xb0 sin(ωit) + δ1 cos(ωr t) − δ1

(4.8)

The velocity is

ẋm = a0t + Aωr cos(ωr t) + Bωr sin(ωr t)

+ DLF2 · xb0ωi cos(ωit) + δ1ωr sin(ωr t) (4.9)
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When, in any initial stage, the mass has a displacement xm0 and a velocity
ẋm0 , the coefficients A and B can be calculated using

A =

∣∣∣∣∣ xm0 − DLF2 · xb0 sin(ωit) + δ1 − δ1 cos(ωr t) − 1
2 a0t2 cos(ωr t)

ẋm0 − DLF2 · ωi · xb0 cos(ωit) + δ1ωr sin(ωr t) − a0t −ωr sin(ωr t)

∣∣∣∣∣
−ωr

B =

∣∣∣∣∣ sin(ωr t) xm0 − DLF2 · xb0 sin(ωit) + δ1 − δ1 cos(ωr t) − 1
2 a0t2

ωr cos(ωr t) ẋm0 − DLF2 · ωi · xb0 cos(ωit) + δ1ωr sin(ωr t) − a0t

∣∣∣∣∣
−ωr

(4.10)

where | · | represents a determinant.

The algorithm for solution of the mass movement is as follows:

1. At time t = 0, ẋm0 = xb0ωi, xm0 = 0 and A and B are calculated using
Eq. (4.10).

2. For given values of �t, a new value of xm is computed. If xm < xb, then
ẋm = ẋb, xm = xb, and recalculation of A and B is performed. When
xm > xb, the mass leaves the rigid support and a gap is formed. This
gap increases and decreases (with the addition of time steps �t) until
xm = xb. This is the first collision.

3. Denoting vm−, vb− the velocity of the mass and the base just before
this collision, respectively, and vm+, vb+ the velocity after collision,
the following relation exists (due to conservation of impulse): (vm+ −
vb+) = −ε · (vm− − vb−), where ε is the coefficient of resilience. From
this expression, vm+ can be calculated.

4. With the new initial velocity vm+ and the known mass displacement,
new values of A and B can be calculated, and the computation is
repeated until the next collision.

5. The process is repeated until a given time and/or number of collisions.

This algorithm was programmed with the TK Solver mathematical solver file
contact7.tkw (see the Appendix). The capabilities of the TK Solver program
are described in Chapter 8. More details about the program can be found in
[41]. The following example describes some of the results. The data used for
the example is
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W = 20 kgf; Weight of the mass

k = 72.5 kgf/mm; Spring constant

ζ = 0.02; Damping coefficient

nv = 1 g; Input acceleration amplitude

fin = 40 Hz; 60 Hz; Input frequency (4.11)

ε = 1; 0.4; Coefficient of resilience

nf = 0; 0.25; 0.5; 0.75; Ratio of initial force

E = 21000 kgf/mm2; Young’s modulus (steel)

γ = 7.8 · 10−6 kgf/mm3(steel)

The mass and the spring were selected so that the resonance frequency is
fr = 30 Hz. Two values of excitation frequencies, two values of coefficient
of resilience, and four values of the initial pressing force were selected. In
Figure 4.6, the base and the mass movement for an harmonic input of 1 g, with
a frequency of 40 Hz and a coefficient of resilience = 1, is shown. In Figure 4.7,
the same data is applied, but the input frequency is 60 Hz, which is twice the
resonance frequency. In Figure 4.8, the data applied for Figure 4.7, with a
coefficient of resilience = 0.4, is shown.

It is interesting to note the divergence of the mass movement in Figure 4.7,
where the excitation frequency is twice the resonance frequency and the
coefficient of resilience is 1 (perfectly elastic collision). This occurs because
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FIGURE 4.6 Displacement of the base (light line) and the mass (heavy line).
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FIGURE 4.8 Displacement of the base (light line) and the mass (heavy line).
(Coefficient of Resilience = 0.4)

in each collision, the mass is “falling” on the base while the latter is in the
maximum upward velocity, adding momentum to the mass in a perfectly elastic
collision. This is the “worst case” for the mass displacement. When the col-
lision is partially plastic (coefficient of resilience smaller than 1, Figure 4.8),
there is a stabilization of the amplitude toward a finite one.

It can be shown that for a perfectly elastic collision, with a frequency of exci-
tation twice the resonance frequency, the local peaks of the mass movement
lie on a straight line so that
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xmvmax (n) = 8 + 16(n − 1)
3

· xb0 (4.12)

When the collision is not perfectly elastic, the maximal amplitude tends to

xmvmax (n → ∞) = 8
3

· 1 + ε

1 − ε
· xb0 (4.13)

which is obtained after a relatively small number of collisions.

When the initial force is equal or larger than the amplitude of the input
acceleration, multiplied by the weight of the mass, no gap (and therefore
no collision) occurs. When this force is less than this, “partial gaps” (and
therefore less intense collisions) occur. In Figure 4.9, the effects of forces
25%, 50%, and 75% of the “no gaps” force are demonstrated.

In a point mass, there are no stresses. In the spring, there are three kinds
of stresses: the initial stress due to the initial force (the shortening of the
spring in δ0), the “vibrational” stress due to the changes in the distance of
the mass from the base, and collision stresses that create stress waves in the
spring. The order of magnitude of these stresses can be estimated using the
one-dimensional stress wave relation [42]

σ = ρc�V = ρ
√

E/ρ · �V = √ρE · �V (4.14)

where c =√E/ρ is the speed of sound in the material, E is the Elastic
(Young’s) modulus, ρ is the mass density of the material, and �V is the relative
velocity between the two colliding surfaces, which can be calculated from the
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FIGURE 4.9 Effect of initial force on the collisions.
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velocities of the mass and the base. It can be shown that when ε < 1 (partially
plastic collisions), the maximum value of this one-dimensional stress is:

σmax(n → ∞) = ρ · c · 8
3

1
1 − ε

· xb0 · ωi (4.15)

The described example was also solved using ANSYS file with contact ele-
ments. The contact elements are nonlinear, and therefore the use of the
harmonic excitation solutions in ANSYS cannot be performed. In addition,
response to random excitation cannot be performed, as these two modules
accept only linear elements. The only way to solve such a problem with the
finite element code is to use the transient module, in which many transient
load steps replace the harmonic excitation. Such a procedure is easily sus-
ceptible to numerical divergence. The results obtained are similar, but not
exactly identical. The reason is that the numerical contact elements of the
ANSYS have a finite rigidity, and finite contact accuracy must be defined.
Thus, small penetration exists. When the contact parameters are changed,
many times a numerical divergence occurs. Solutions of contact problems
with a finite elements program may therefore be quite tricky and demands
much experience, and much patience.

4.3 THE TWO DOF CONTACT PROBLEM

In the previous section, a very simple case (described in Figure 4.5) was
demonstrated. The analytical solution performed by building the differential
equations for this case and solved numerically seems quite long and tiresome.
When more complex structural systems are involved, it is impossible to form
the differential equations of the case, and therefore an analytical solution is
impossible. In Section 4.4, a more complex case, although relatively simple,
is demonstrated. In this section, numerical solution of the system described
in Figure 4.5 is demonstrated, using a two DOF equivalent system.

It should be noted that in many practical cases the use of an equivalent MDOF
system to practical complex cases should be encouraged. Performing an anal-
ysis on a simplified MDOF system can give the designer insight on the general
behavior of the analyzed system. Such models are suitable for use in the pre-
liminary design phase, where the influence of relevant parameters can be
investigated without performing a complex analysis, and with a possibility of
parametric quick checks.
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The system described in Figure 4.5 is replaced by the one described in
Figure 4.10. Although three masses are described in the figure, there are
practically two masses, as the upper half and lower half of the “external” mass
is considered as one in the numerical analysis, by forcing the two halves to
move completely together. The file describing this case is named two2.txt, and
is listed in the Appendix.

The spring element between the central mass and the upper half mass is
replaced, in the numerical analysis, by a rod of given length and cross-section,
in such a way that the spring constant is simulated by the rod. The use of a rod
element in ANSYS allows initial preloading easily. A point-to-point contact
element is introduced between the lower half of the external mass and the
internal mass.

The following values were assumed for the parameters of the problem:

W1 = 10 kgf; W2 = 5 kgf; W3 = 10 kgf
K = 100 kgf/cm; E = 2.1 · 106 kgf/cm2; L = 10 cm

(4.16)

Values of Wn (n = 1, 2, 3) are the weight of the masses, K is the rigidity of the
spring, E is the Young’s modulus of the spring material, and L is the initial
length of the rod-spring. The area of the rod cross-section is calculated within
the ANSYS file using

A = K · L
E

(4.17)

X

Y

Half of external mass

Half of external mass

Internal mass

“Spring” – Rod

Contact element

21

31

11

FIGURE 4.10 An equivalent two DOF system to the one described in Figure 4.5.
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It can be found that the frequency of the internal mass on the spring is
22.28 Hz. As was shown in the previous section, the maximal response of
the mass is obtained when the excitation is double this value. An excitation of
the external mass by an imposed harmonic acceleration of 5g’s in a frequency
of 44.56 Hz was first calculated.

In Figure 4.11, the displacements of both the external and the internal masses
are shown. Note the nature of the results, which are identical to the nature of
the response shown in Section 4.2. In Figure 4.12, the gap opened between the
external and internal masses during excitation is shown. Because the acceler-
ation input was assumed to start with positive values, the displacements start
at negative values; therefore, there is no gap in the beginning of the process.

As described in Section 4.2, the initial force required for the internal mass
not to move is

Minimal Finitial = n · W2 (4.18)

For the given data, this force is 25 kgf. An initial force of 20 kgf was applied,
with the same forcing parameters of the previous case. In Figure 4.13, the
displacements of the two masses are shown, and Figure 4.14 depicts the gap
opened between the masses. It can be seen that as the initial force is smaller
than the minimum required, there is still a relative movement between the
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FIGURE 4.11 Displacements of the two masses; input acceleration 5 g’s at
44.56 Hz.



160 • Chapter 4 / Contacts in Structural Systems

1.8

1.6

1.4

1.2

1

0.8

V
al

u
e

0.6

0.4

0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20.2

Time

(× 1021)
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3.2

2.8

2.4

2

1.6

1.2

V
al

u
e

0.8

0.4

0

20.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20.8

Time

(× 1021)

(× 1021)

FIGURE 4.13 Displacements of the two masses; input acceleration 5 g’s at
44.56 Hz, initial force is 20 kgf.

masses. When an initial force of 25 kgf and larger was applied, there was no
relative movement between the masses.

To complete the numerical example, a harmonic acceleration input of 5 g’s
in a frequency of 100 Hz was applied, without an initial force. Displacements
are shown in Figure 4.15, and the gap in Figure 4.16.
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FIGURE 4.15 Displacements of the two masses; input acceleration 5 g’s at 100 Hz.
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FIGURE 4.16 Gap generated between the masses; same input as in Figure 4.15.

4.4 NUMERICAL SOLUTION OF A DYNAMIC CONTACT

PROBLEM—FORCE EXCITATION

As already stated, the contact element in the finite elements codes is nonlin-
ear. Therefore, all the modules that are capable of only linear analysis cannot
be used. Thus, the response of a structural model, which has contact ele-
ments to harmonic excitation, cannot be solved by using either the harmonic
response module or the spectral analysis module. The way to solve such prob-
lems is to “translate” the harmonic excitation into a transient one, by solving
numerous load steps whose magnitudes follow the harmonic time behavior
of the external excitation. This is done easily by a “do-loop” inside the finite
element program.

When doing so, much experience is required from the designer in order to
select the appropriate time step between solution points. This is added to
the experience required to select the (arbitrary) contact rigidity. In addition,
the time step should allow the description of the harmonic excitation. The
ANSYS manual recommends that the selected time step will be such as to get



4.4 Numerical Solution of a Dynamic Contact Problem • 163

at least 30 points in a cycle of the excitation, thus

�t ≤ 1
30 · f

(4.19)

where f is the frequency of the excitation.

Another point to consider when doing a transient analysis with contact ele-
ments is the wave propagation phenomena that can be captured with the finite
elements solution, as long as the time step is small enough. In order to cap-
ture the stress wave propagation, the time step size multiplied by the speed of
sound in the material must be much smaller than the selected element size.
The speed of sound can be obtained by

c =
√

E
ρ

(4.20)

for steel, this speed is approximately 5140 m/sec.

Usually, these effects are not required, and the very small time step required
to capture those will lead to a very long and time-consuming computation.

In the following example, the response of the cantilever beam with an
harmonic tip force excitation of 20 kgf (divided between five tip nodes),
with a frequency of the first resonance of the beam ( f = 11.525 Hz, the
period is 0.087 sec), is computed using the ANSYS program. The input file
plate3.txt is described in the Appendix. In the solution phase of the file, note
the introduction of an initial time t0, the time step dt, the expression for the
applied “transient” force, and the “do-loops” for which N steps are given.
These can be changed between computation runs to check for more precise
behavior.

In Figure 4.17, the vertical displacement of the beam’s tip is shown.

The tip amplitude is increasing, until the beam touches the anvil. At this
moment, there are two opposing effects. There is a rebound because the beam
hits the anvil with a finite velocity, but the external force is still increasing.
Several rebounds can be traced in the figure. When the contact occurs the
second time, the rebounds are more distinguished. It should be emphasized
that the accuracy of the behavior at times closed to the contact is influenced
by the resolution of the solution; i.e., the time step selected.
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FIGURE 4.17 Tip deflection of the beam (contact side).
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FIGURE 4.18 Y stress at the upper center of the tip cross-section (time scale
differs from Figure 4.17).

In Figure 4.18, the Y stress (in the direction of the thickness) at node 151—the
node at the center of the tip—is shown. In Figure 4.19, the X stress (bending)
at node 141 (upper center of the clamped cross-section) is shown.

A better insight into the behavior of the beam at contact can be obtained
when the time step is decreased to �t = 0.000125 sec. In Figure 4.20, the tip
deflection at the first contact is described. Tip rebounds and the effects of
wave propagation can be seen.
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FIGURE 4.19 Bending stress at the upper center of the clamped cross-section.
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FIGURE 4.20 Tip displacement, node 51.

In Figure 4.21, the Y stress (the direction of the thickness of the beam) is
shown at node 151 (the contact side). In Figure 4.22, the bending X stress at
the upper side of the clamped cross-section is shown. It is interesting to note
the “ripple” in the bending stress. The period of this ripple is the time required
for a stress wave to go from the tip to the clamped edge, thus it represents the
behavior of the stress waves reaching the clamped edge. Each time there is
a contact, or an impact of the tip, there is an effect on the bending stress of
the clamped edge.
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FIGURE 4.21 Y stress, node 151, tip of the beam.
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FIGURE 4.22 X stress (bending stress), node 141, clamped cross-section.

Use of a “regular” finite element program is not recommended for tracing the
stress wave propagation in structures. There are special-purpose programs to
apply when the stress wave’s analysis is the main issue of a structural pro-
gram. These programs are outside the scope of this book. These effects were
demonstrated here just to emphasize that the commercially available finite
element programs are capable of describing the phenomena, and sometimes
it is required to check the dynamic effects of contacts and impact during a
design.



4.5 Numerical Solution of a Dynamic Contact Problem • 167

4.5 NUMERICAL SOLUTION OF A DYNAMIC CONTACT

PROBLEM—BASE EXCITATION

When the imposed excitation on the structure is a displacement, velocity, or
acceleration, solution with the finite element program can be done by con-
verting acceleration or velocity excitation to a displacement, and using this
displacement as imposed at the relevant nodes. Usually, imposed excitations
in realistic structures are given by an acceleration excitation. Such problems
are encountered when a substructure is “packed” in another (external) struc-
ture, and both are subjected to acceleration input described by an external
acceleration.

As contact elements are nonlinear, harmonic and spectral response modules
cannot be used in the finite element programs. A harmonic signal can then
be described as a “harmonic transient,” using the transient analysis module
of these codes.

In the example demonstrated in this chapter, the external structure is excited
by a harmonic acceleration

a = a0 sin(�t) (4.21)

� is the angular frequency of the excitation, a0 is the amplitude of the accel-
eration, sometimes given in units of g (the gravitational acceleration), thus

a0 = ng g (4.22)

where ng is the number of g’s of the amplitude of the acceleration. When the
excitation is harmonic, the displacement is given by

x = x0 sin(�t) = − a0

�2 sin(�t) = −ngg
�2 sin(�t) (4.23)

When the acceleration excitation is not harmonic, the acceleration signal
should be transformed into a displacement signal by double integration, in
order to use it in the finite element programs.

The cantilever beam described in the previous section (by solid plate ele-
ments) is clamped on one side. Above it, there is an anvil. Suppose that the
anvil and the clamp are parts of an external fixture and are connected. For
example, there is not a real connection, but in the excitation input, both
the anvil and the clamp are excited by the same displacement excitation. Such
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connection means that the external fixture is very rigid compared to the beam.
This is not a required demand, as the external fixture can also be modeled
by finite elements of any rigidity. In order to avoid long periods of the time
variable, the distance between the anvil and the beam is set to DEL = 1 cm,
instead of the value DEL = 3 cm in the previous example.

The frequency of the harmonic excitation is the first resonance frequency
of the beam; thus, � = 11.525 Hz. The fixture is excited by an acceleration
whose amplitude is −3 g. The minus sign means that the displacement of the
fixture starts toward the positive direction of the Y -axis. In Figure 4.23, the
modified model is shown.

In the Appendix, the ANSYS file (plate4.txt) for the solution is described.
The model file is very similar to the file plate3.txt, except for a few more
parameters that were introduced in order to describe the excitation. In the
solution phase, first an initial displacement is introduced in an initial, very
small time value, as suggested by the ANSYS manual. Then, a “do-loop” for
other times in the “harmonic transient” is run, with a time step also described
in the file. The smaller the time step, the more wave propagation phenomena
are included in the solution.

Y

Z

DEL 5 1 cm

Anvil

Beam

Clamp

x0(t )

X

FIGURE 4.23 The model.
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In Figure 4.24, the displacement excitation is shown. Of course, it is a harmonic
sine.

In Figure 4.25, the absolute displacement of the mid-point of the tip cross-
section is shown. The quantity of interest is the relative displacement between
the clamp and the beam’s tip. This is obtained in the “time history post-
processor,” by subtracting the clamp displacement from the tip displacement.
The result is shown in Figure 4.26.
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FIGURE 4.24 The displacement of the fixture (the excitation).
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FIGURE 4.25 The displacement of the tip cross-section (node 51).
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FIGURE 4.27 Y stress at the middle of the tip cross-section.

Contact between the beam and the tip can be seen at times: 0.04 seconds,
0.11 seconds, and 0.18 seconds, when the relative displacement is equal to
DEL = 1 cm. Rebounds and wave effects can also be traced, although the
time step selected is 0.0003 seconds. Whenever there is a contact (or con-
tacts), there is an impact that influences the stresses which show spikes as
can be seen in Figure 4.27 (vertical stress at the middle of the tip cross-
section) and with less severity in Figure 4.28 (bending stress at the upper side
of the clamped cross-section, this cross-section being far from the points of
impact).
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FIGURE 4.28 X (bending) stress at the middle upper face of the clamped
cross-section.
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FIGURE 4.29 The displacement of the tip cross-section (node 51).

The example was run for an excitation frequency equal to the first resonance
frequency of the beam, but the excitation frequency is a parameter that can
be changed in the model file plate4.txt shown in the Appendix.

In Figure 4.29, the absolute displacement of the mid-point of the tip cross-
section is shown. The quantity of interest is the relative displacement
between the clamp and the beam’s tip. This is obtained in the “time history
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FIGURE 4.30 The relative displacement of the tip.

post-processor,” by subtracting the clamp displacement from the tip displace-
ment. The results are shown in Figure 4.30.

Contact phenomena are presented in a practical design. Therefore, they
should be analyzed in the design procedure. The use of contact elements
in a finite elements code enables the designer to take into account the possi-
bility of collisions during the operational life of the designed structure. When
blast loads exist, it is recommended not to use finite elements codes, but other
programs that are more suitable for the description of such phenomena. These
programs are available, but are outside the scope of this publication.
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Behavior of Structures

5.1 PROBABILISTIC ANALYSIS OF STRUCTURES

An engineering design is a process of decision-making under constraints of
uncertainty. This uncertainty is the result of the lack of deterministic knowl-
edge of different physical parameters and the uncertainty in the models with
which the design is performed. Such uncertainties exist in all engineering dis-
ciplines such as electronics, mechanics, aerodynamics, as well as structural
design.

The uncertainty approach to the design of systems and subsystems was
advanced by the engineering and scientific communities by introducing the
concept of reliability. Every system is now supposed to be analyzed for possi-
ble failure processes and failure criteria, probability of occurrence, reliability
of basic components used, redundancy, possibilities of human errors in the
production, and other uncertainties. Using this approach, a total required
reliability of a given design is defined (usually it is a part of the project
contractual or market demands), with proper reliability appropriations for
subsystems. The required reliability certainly influences both the design cost
and the product cost.

Nevertheless, in most cases structural analysts are still required to produce
a structural design with absolute reliability, and most structural designs are
performed using deterministic solutions, using a factor of safety to cover for
the uncertainties. The use of a safety factor is a de facto recognition of the
random characters of many design parameters. Another approach is to use
a worst-case analysis in order to determine the design parameters.

173
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During the last two decades, the need for application of probabilistic
methods in structural design started to gain recognition and acceptance within
the design communities. Structural designers started to use the stochastic
approach and the concepts of structural reliability, thus incorporating the
structural design into the whole system design. By the beginning of the 21st

century, these approaches start to dominate many structural analysis proce-
dures, incorporating the structural design in the total system design. In the
last 30 years, theoretical and applied researches were developed to the extent
that the probabilistic analysis of structures can use design tools (methods, pro-
cedures, computing codes) to apply the probabilistic design to all practical
industrial designs. The development of commercially available computer pro-
grams, which can be incorporated with the “traditional” tools, like the finite
elements computer codes, has contributed vastly to this practical progress.
Dozens of textbooks dealing with the probabilistic approach are now available,
hundreds of new papers on the subject are published every year, and confer-
ences that include nondeterministic approaches are held. Thus, the field has
reached a maturity, which justifies its routine use in the design process.

It is not the purpose of this book to describe the theoretical and practical
advances of probabilistic structural analysis. Many basic concepts and proce-
dures can be found in the list of references (e.g., [15, 43–47]). In the present
publication, practical aspects of the use of these methods are presented and
demonstrated in order to encourage the users to use these methods. Most
of the demonstrations are simple, and use one of the commercially available
probabilistic analysis computer codes. It is assumed that the reader can find
at least a demonstration version of one of these codes. In fact, the ANSYS®

program, as well as the NASTRAN®, has, in its latest versions, a probabilistic
module, which can solve these problems in one of two basic methods—the
Monte Carlo simulation and the response surface methods. Methods for
closed form solutions of simple problems (with a small number of random
variables) can be found in [16]. Many computer programs are now commer-
cially available; i.e., NESSUS® [48] (developed and maintained by Southwest
Research Institute in San Antonio, TX), ProFES® [49] (developed and main-
tained by Applied Research Associates, in Raleigh, NC), and PROBAN® [50]
(developed and maintained by Det Norske Veritas in Oslo, Norway).

The safety factor and worst-case approaches are demonstrated in the follow-
ing simple example. Suppose that the cantilever beam, with the data given
in Table 2.1 of Chapter 2 has three parameters that have tolerance ranges.
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TABLE 5.1 Parameters with tolerances (gray rows).

Parameter Value Range

Length 60 cm(deterministic) N/A
Width 8 cm(deterministic) N/A
Thickness 0.5 ± 0.06 cm 0.44–0.56
Young modulus 2100000 ± 150000 kgf/cm2 1950000–2250000
Applied force 10 ± 1 kgf 9–11
Max. allowed displacement 7 ± 1 cm 6–8

They are listed in Table 5.1. Two other parameters (L and b) are considered
deterministic, without any loss of generality, just in order to simplify the exam-
ple. The beam has to be designed so that its tip deflection is not larger than a
prescribed value, δ0, and the required factor of safety is (at least) 1.2.

Note that the applied force is usually part of the project requirements,
included usually in the technical specifications defined by a customer, or com-
puted by, say, the aerodynamics group. In addition, the maximum allowed
displacements depends usually on contractual requirements.

The tip deflection for the cantilever beam is obtained by [26]:

δtip = 4PL3

Ebh3 (5.1)

The nominal value is obtained using the nominal values of the parameters,
thus

δtip,nominal = 4 · 10 · 603

2.1 · 106 · 8 · 0.53 = 4.114 cm (5.2)

The ratio between the allowed displacement and the nominal result is the
nominal factor of safety of the nominal design:

Nominal factor of safety = 6
4.114

= 1.46 (5.3)

which fulfill the requirement of a factor of safety larger than 1.2.

The worst-case design is obtained by using the maximum values of the
parameters in the nominator of Eq. (5.1) and the minimum values for the
parameters in the denominator, thus:

δtip,worst case = 4 · 11 · 603

1.95 · 106 · 8 · 0.443 = 7.152 cm (5.4)
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The factor of safety is now

Worst-case factor of safety = 6
7.152

= 0.839 (5.5)

This value clearly does not meet the requirement (it even means a sure failure,
as it is smaller than 1), and the designer has to change the design parameters.
There are many ways to change the design, to list a few:

1. The nominal thickness of the beam can be increased. The result is a
heavier and more expensive structure.

2. The nominal Young’s modulus can be increased by selecting a better
material. The result is usually a more expensive structure.

3. The nominal external force can be decreased. This means a better
definition of the loads, and usually involves negotiations with the cus-
tomer, and more efforts in defining the external loads (say by the
aerodynamicists). The cost of the project is increased.

4. Tolerances on all or part of the parameters can be decreased. This
means a more expensive production and quality control, resulting in a
more expensive product.

5. A combination of part or all the above measures.

The preceding nominal and worst-case designs have demonstrated that two
different design approaches resulted in different conclusions. According to
the nominal approach, the nominal design is safe and has the required factor
of safety, while the worst-case design (which seems more appropriate as it
incorporates knowledge on the expected tolerances) results in a design that
has to be modified. Nevertheless, the described worst-case design is based
on a major pessimistic assumption that all “worst values” occur simultane-
ously. This is a rare event (and therefore has some probability of occurrence),
so it seems that a better procedure is to use a probabilistic approach. We
assume that each parameter of Table 5.1 that has tolerances is a random
variable, with a given distribution. We also assume (for this simple exam-
ple, without any loss of generality) that the distribution is normal (Gaussian)
and that the tolerance range is ±3σ. Thus, the standard deviation of each
parameter is a third of the tolerance described. Table 5.1 is modified to form
Table 5.2.

Using this data, the problem was solved using the Lagrange multiplier
method, described in [16, Ch. 9], for the probability of failure. This explicit
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TABLE 5.2 Random variables, means, and standard deviations.

Parameter Dist. Mean Standard Deviation

Length N/A 60 cm N/A
Width N/A 8 cm N/A
Thickness normal 0.5 cm 0.02
Young modulus normal 2100000 kgf/cm2 50000
Applied force normal 10 kgf 0.33333
Max. allowed displacement normal 7 cm 0.33333

method can be used when a small number of random variables (four, in this
case) are involved. The result is

Pf = Probability of failure = Pr(δtip > δ0) = 0.000108637 = 0.010864%
(5.6)

Thus, the reliability of this structure (to the defined failure criterion) is

Reliability = 1 − Pf = 99.989136% (5.7)

These numbers mean that there is an expected failure of one structure (spec-
imen) out of approximately 9200 cases. Such a result should be studied
carefully. Does it fulfill the requirement? A direct answer is not possible, as
the requirement is not expressed in a probabilistic form, but with a determin-
istic demand—the traditional factor of safety. Until now, only a small number
of official codes and requirements specifications are based on the probabilis-
tic approach, and most of these are in the civil engineering community. The
adaptation of probabilistic requirements is a process that will be enhanced in
the near future, as the benefits gained by such an approach, which ensure for
better-optimized designs, are significant. The standardization official system
has a very large “inertia” and is very conservative, especially when legal con-
siderations are involved. Meanwhile, it is recommended to use a bridging
approach, which incorporates the traditional factor of safety definitions with
the probabilistic approach, as described in Chapter 7, Section 7.2.

5.1.1 THE BASIC STRESS-STRENGTH CASE

In probabilistic analysis of structures, frequent use is made of the basic “stress-
strength” model, which is used extensively in reliability analysis. Suppose there
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is a component or a system with strength R, on which stresses S are applied.
Then, a failure surface can be defined, which divides the (R, S) space into two
parts—“safe” and “fail” regions. A failure function is defined as

Failure function ≡ g(R, S) = R − S = 0 (5.8)

The region g(R, S) ≤ 0 is defined as the failure range, and g(R, S) > 0 is
the safe range. The words “strength” and “stress,” although originating from
structural analysis, do not necessarily belong to this discipline. The “strength”
is in fact the resistance capability of the system, and the “stress” is the exist-
ing conditions. For instance, “strength” may be the highest voltage Vmax an
electronic component may take, and the “stress” may be the actual voltage
Vactual on this component. The failure function is then g(Vmax, Vactual) =
Vmax − Vactual, and when this quantity is equal or smaller than zero, the com-
ponent fails. The “strength” term may be the income of a business, and the
“stress” the expenses. When (income-expenses) are equal or smaller than
zero, the business loses money (“fails”).

The failure function in Eq. (5.8) is a straight line in the (R, S) plane. Practically,
R and S may both be functions of many other system parameters. In struc-
tures, the “stress” is usually a function of the geometry, dimensions, boundary
conditions, material properties, and loads, each of which may be random, and
some may be correlated. The “strength” can also be a function of structural
parameters (as will be demonstrated in some examples). Thus, the failure
function is a surface in a multidimensional space, which will be referred to as
hyper-surface. When the failure function is linear in all the parameters, this
surface is a hyper-plane.

There are many textbooks in which evaluation of the basic concepts of prob-
abilistic analysis of structures is described and demonstrated. The interested
reader should consult these books (e.g., [15, 44–47]) to understand the basic
concepts. In this book, only very basic analyses are presented and basic
examples are demonstrated.

In Figure 5.1, the (R, S) space is shown. The Probability Density Function
(PDF) of the R is given by φR(r), and the PDF of S is given by φS(s), both
shown on the R and S axes, respectively. The joint PDFs of S and R are shown
as ellipses, which represent a “hill” perpendicular to the (R, S) plane. The
total volume of this “hill” is 1. The volume of the “hill” over the “fail” space
represents the probability of failure of this example.
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FIGURE 5.1 The R − S space (stress-strength model).

In many published works (e.g., [16, 44]), the advantage of working in a trans-
formed u-space was demonstrated. The “physical” variables R and S are
transformed into a u-space. When the marginal distributions of R and S are
mutually independent, and also normal, the following transformation is made:

uR = R − μR

σR

uS = S − μs

σS

(5.9)

where μ(·) is the mean and σ(·) is the standard deviation of the relevant vari-
able. The failure function g(R, S) = 0 is then transformed to G(uR, uS) = 0 in
the u-space. In the u-space, the point on G(uR, uS) = 0 closest to the origin
is called “the most probable point of failure,” sometimes designated MPP.
The distance of the MPP to the origin is called the reliability index β, and the
probability of failure is obtained, using linear approximations, by

Pf = �(−β) (5.10)

where � is the standard normal CDF—a variable of zero mean with a standard
deviation of 1. When nonlinear approximations are used, expressions similar
to Eq. (5.10) exist, which include the curvature of the failure function. In some
earlier works, the MPP is called the design point. It is somewhat incongruous
to call the point of most probable failure such a misleading name.
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When the random variables are not normally distributed, and/or are not
mutually independent, there are other expressions for the transformation
into the u-space, many of which are described in [16]. All the commercially
available computer codes for probabilistic structural analysis contain internal
algorithms that do the transformation into the u space and solve the problem
in the u space. Then, an inverse transformation is done back to the physical
random variables.

In some simple cases, there is a possibility to use closed form formulations
for the computation of the reliability index β. One of these methods—the
Lagrange multiplier method, described in [16]—was used in the beginning
of this chapter, and is described in the next section. Other methods are also
described there.

When both R and S are normally distributed and mutually independent,
the reliability index can be written directly in the physical variables R
and S as

β = μR − μS√
σ2

R + σ2
S

(5.11)

and the probability of failure is then calculated using Eq. (5.10).

5.2 SOLUTIONS FOR THE PROBABILITY OF FAILURE

5.2.1 ANALYTICAL SOLUTION—THE LAGRANGE
MULTIPLIER METHOD

When the failure function (of physical variables Xi, i = 1, 2, . . . , N is given
by a closed form expression, it can be easily transformed to the u space by
using

ui = Xi − μi

σi
; i = 1, 2, . . . , N (5.12)

where μi and σi are the mean and the standard deviation of the random vari-
able Xi. Then, the failure function g(X1, X2, . . . , XN ) = 0 is transformed to:

G(u1, u2, . . . , uN ) = 0 (5.13)
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The reliability index β is the minimum distance between the origin of the u
space and the MPP. This minimum is expressed as

β =
√

u∗2
1 + u∗2

2 + · · · + u∗2
N (5.14)

where u∗
n is the value of un at the MPP.

The following expression is constructed:

D = β2 − λ · G(u1, u2, . . . , uN ) (5.15)

where λ is a Lagrange multiplier. Eq. (5.15), plus the following N equations

∂D
∂ui

= 0; i = 1, 2, . . . , N (5.16)

provide N +1 equations for n values of un, plus the value of λ. As G(u1,
u2, . . . , uN ) is not necessarily a linear function, the N + 1 algebraic
equations obtained are not necessarily linear. A general closed form solu-
tion is not possible, but many numerical tools can be used to solve this
set of equations, like the TK+ Solver and the MATLAB®. Once the
numerical values of u∗

n are obtained, the reliability index is calculated with
Eq. (5.14), and the probability of failure is obtained using Eq. (5.10). Then
the values of the physical variables X∗

i at the MPP can be obtained using
Eq. (5.12).

As an example, the problem described in Table 5.2 is solved using the
Lagrange multiplier method. In this problem, the loading force P, the Young
modulus E, and the thickness h are considered random variables. The allowed
tip deflection δ0 is also a random variable. The data given in Table 5.2 is
adopted.

The failure function is

g = δ0 − 4PL3

Ebh3 = δ0 − 4L3

b
· P

Eh3 = δ0 − K · P
Eh3 = 0 (5.17)

Using Eq. (5.12), one can write

δ0 = σδ0 · u1 + μδ0

P = σP · u2 + μP

E = σE · u3 + μE

h = σh · u4 + μh (5.18)

where the μ’s stand for means and σ’s stand for standard deviations.
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In the u space, the failure function is

G = σδ0 · u1 + μδ0 − K
(σP · u2 + μP)

(σE · u3 + μE) · (σh · u4 + μh)3 = 0 (5.19)

Thus

D = u2
1 + u2

2 + u2
3 + u2

4 − λ

{
σδ0 · u1 + μδ0 − K

(σP) · u2 + μP

(σE · u3 + μE) · (σh · u4 + μh)3

}

(5.20)

Careful derivations according to Eq. (5.16) provide four nonlinear equations.
These four plus Eq. (5.19) are solved to give

u∗
1 = −1.2224258

u∗
2 = 0.785329

u∗
3 = −0.58375338

u∗
4 = −3.3501706

(5.21)

From these values, the reliability index is

β = 3.69803716 (5.22)

Thus the probability of failure—i.e., the probability that the tip deflection is
equal or greater than δ0 (using Eq. (5.10))—is

Pf = 0.000108637 = 0.010864% (5.23)

The physical combination of the structural parameters at the MPP is

δ∗
0 = 6.59253 cm

P∗ = 10.2618 kgf

E∗ = 2.070812 · 106 kgf/cm2

h∗ = 0.433 cm

(5.24)

This is the combination of physical random variables for which the probability
of failure is maximal.

When performing these computations, the derivation phase (Eq. (5.16)) is
very cumbersome and sensitive to algebraic errors as well as the solution of
the n + 1 algebraic equation. This is the reason why this method should be
applied carefully only for cases with a small number of random variables. Of
course, when a probabilistic computer code is available, it can be done directly
on the code.
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5.2.2 THE MONTE CARLO SIMULATION

For many years, nondeterministic structures were tested using the Monte
Carlo (MC) simulation. According to this method, the failure function is
computed many times, each time with a set of the random variables selected
randomly from the legitimate variables space. In some of the simulations, a
safe state is obtained (failure function > 0) and in some of the simulations
a failure is detected (failure function ≤ 0). The number of the failed simula-
tions to the total number of simulations is approaching the true probability
of failure, as the number of simulations increases. The MC method gives the
exact solution when the number of simulation is infinite. The disadvantage of
the MC method is the large number of simulations required. It was shown in
the statistics literature that to estimate a given normal probability p within an
error of ± D with confidence level of 95%, the required number of simulations
is at least

N = 2p(1 − p)
D2 (5.25)

As the required probability of failure of structures is very low, the required
number of simulations is very large. For the example solved earlier,
p = 0.0001086. Suppose an error of 3% is acceptable, D = 0.0001086 · 0.03 =
3.258 · 10−6 and N = 1.884 · 107. Thus, more than 18 million simulations
are required. When one simulation run of a complex structure (using finite
element program, for example) is in the order of several minutes to hours, the
use of the MC method becomes prohibitive for practical industrial applica-
tions as a result of the large computation time that interferes with the schedule
of any project. Naturally, the number of required simulations decreases 100
times when the expected probability of failure is increased 10 times.

Simulations other than the MC method were also developed. One of these
is a directional simulation, in which the simulations are performed not on all
the random variables space, but in a smaller region that is in the vicinity of
the MPP. This decreases significantly the number of required simulations, but
a good estimation of the MPP is required.

In the last two decades, numerical algorithms that use nonsimulative methods
were developed (see, e.g., [43–46,51–53]). These resulted in several computer
codes that solve the probabilistic structural analysis problem within a very rea-
sonable and practical time frame, and therefore are suitable for industrial use.
These programs use First Order Reliability Methods (FORM), Second Order
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Reliability Methods (SORM), and other algorithms for the required solution.
Such methods are described in the theoretical manuals of such programs.

5.2.3 SOLUTION WITH A PROBABILISTIC ANALYSIS
PROGRAM

The problem solved by the Lagrange multiplier method is also solved using
the ProFES code, a commercially available structural probabilistic program
developed by ARA (Applied Research Associates). The preparation of the
input file is done interactively, and so are the required internal functions,
which are written using the program’s GUI (Graphical User Interface) and
compiled by a compiler included in the program. After defining the random
variables, the failure function and the limit state functions, the user can select
to solve the problem using many analysis options—FORM and Monte Carlo
simulation are just two of these options. Performing a FORM solution using
the same data used in the previous section, one obtains the following solution
for the reliability index, the probability of failure, and the MPP:

β = 3.69815

Pf = 0.00010862

P∗ = 10.2618 kgf (5.26)

E∗ = 2.07083 · 106 kgf/cm2

h∗ = 0.432938 cm

δ0 = 6.59505 cm

which compares very well with the Lagrange multiplier results given in
Eqs. (5.22) and (5.23).

The failure criterion for which the previous examples were solved is only one
of the possible failure modes of the cantilever beam. Another failure criterion
may be the existence of a bending stress at the clamped edge that is higher than
a given stress, say the yield stress. For this, another failure function must be
written. From slender beam theory (see Chapter 2), the stress at the clamped
edge can be written [26] as

σb = 6PL
bh2 (5.27)
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When the yield stress of the beam’s material is σy, the failure function can be
written as

g = σy − σb = σy − 6PL
bh2 ≤ 0 (5.28)

σy may also be a random variable. Suppose the yield stress has a normal
distribution, with mean σy,mean = 3000 kgf/cm2 and a standard deviation of
σy,std = 270 kgf/cm2, one can compute the probability of failure of this case
by adding this random variable and the relevant failure function (Eq. (5.28))
to the ProFES program. The following solution is obtained:

β = 3.71155

Pf = 0.000103028

P∗ = 10.2604 kgf

E∗ = 2.1 · 106 kgf/cm2

h∗ = 0.458134 cm

δ∗
0 = 7 cm

σ∗
b = 2199.81 kgf/cm2

(5.29)

It can be seen that E and δ0 are the nominal values of the problem, as these
parameters do not influence the stresses at the clamped edge.

Listing and computing all the possible failure modes of the structure is the
most important thing in the design process, even when a totally deterministic
analysis is performed. The experience and skills of the designers can be
“measured” by the way this “list of possible failures” is prepared. The more
complete the list, the better and safer the design. In a separate section,
structures with more than one failure modes are treated.

5.2.4 SOLUTIONS FOR CASES WHERE NO CLOSED-FORM
EXPRESSIONS EXIST

In most practical cases treated in realistic design process, no closed-form
expression is available for the failure surface. In many cases, this failure
surface is known only by an algorithm; e.g., a finite element code.

It was suggested (e.g., [54]) that an approximated closed-form expression can
be constructed by a finite number of deterministic solutions in the desired
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random variables space, and by best fitting a Taylor series based expression.
This approximated closed-form expression can then be treated probabilis-
tically with the methods used for this purpose. Demonstrations of Taylor
series expansions of the failure surface and the use of these approximations
in structural probabilistic analysis are shown in [55].

When there are n random variables and the failure surface is approximated by
a second order Taylor series, the minimal number K of required deterministic
solutions is

K =
[

1
2

n(n + 3)
]

+ 1 (5.30)

In many practical cases, mixed terms (like xi · xj) in the Taylor series can be
neglected. The required number of deterministic solutions is then

K = 2n + 1 (5.31)

It is very important to properly select the evaluation point, around which the
Taylor series is expanded. The best point to select is, of course, the MPP,
but this point is not known in advance. Suggestions of best ways to select the
evaluation point and a practical criterion for its validation are described in
[16, Ch. 10].

In the last decade, the expansion of the approximated failure surface was
automated in the large finite elements computer codes (e.g., NASTRAN and
ANSYS). These programs now include a probabilistic module (called “prob-
abilistic analysis” in ANSYS, “stochastic analysis” in NASTRAN). A finite
number of deterministic runs of these programs (which include the variation
of the random variables in their distribution range) are performed automati-
cally, and the approximated closed-form expression for the “response surface”
is automatically computed. Then, MC simulations are run using this approxi-
mated expression and the probability of failure is computed within these finite
elements programs. The process is usually quite fast, although the accuracy
depends, naturally, on the number of MC simulations used in the process.

In the commercially available structural probabilistic programs (e.g., Pro-
FES, NESSUS), there is a possibility to introduce deterministic results for
the “stress” term as computed separately using any other algorithm, and the
programs automatically create the approximated failure surface that can then
be solved using some of the algorithms used by these programs.
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In addition, the developers of these programs now include an “interface
module” between the structural probabilistic code and the finite element code
of the interested user. The programs call the finite element code, perform
solution iteration, change the required parameters, and then call again the
finite element code, etc., until a required solution is obtained. This process
is the most efficient, although it almost doubles the user’s licensing cost, and
sometimes may be “tricky” to an inexperienced user.

To demonstrate the Taylor series expansion method, the cantilever beam
solved earlier with the Lagrange multiplier method was used again. Suppose
the tip deflection of the beam (Eq. (5.1)) is not known explicitly, and the solu-
tions for the tip deflection are obtained using a finite element program. The tip
deflection is expressed by a second order Taylor expansion around an evalua-
tion point E, neglecting mixed terms. There are three random variables—the
tip force P, the Young modulus E, and the thickness h. The Taylor series
expansion is

ytip = α0 + α1(P − PE) + α2(E − EE) + α3
(
h − hE

)
+ α4(P − PE)2 + α5(E − EE)2 + α6

(
h − hE

)2 (5.32)

where the index E marks the evaluation point. The coefficients αi, i = 0, 1,
2, 3, 4, 5, 6 are determined by the procedure described below.

The evaluation point is selected at the following values:

PE = 10 kgf
EE = 2000000 kgf/cm2

h = 0.48 cm
(5.33)

The reason for this selection will be explained shortly. Seven (2∗3 + 1) deter-
ministic solutions are created. The first is at the evaluation point. Then, two
additional deterministic solutions are created for variation in each of the ran-
dom variables, while the other variables are kept at their evaluation point.
These are performed for

P = 10.166665 kgf; 10.33333 kgf
E = 2050000 kgf/cm2; 2100000 kgf/cm2

h = 0.46 cm; 0.44 cm
(5.34)

In Table 5.3, the seven deterministic cases are listed, together with the finite
element results for the tip deflection δtip,FE. The last column in the table is
the value computed later using the Taylor series, for comparison.
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TABLE 5.3 Seven deterministic cases.

Case P E h δtip,FE δtip,Taylor

1 10 2000000 0.48 4.88281250 4.88281250
2 10.166665 2000000 0.48 4.96419189 4.96419189
3 10.33333 2000000 0.48 5.04557129 5.04557129
4 10 2050000 0.48 4.76371951 4.76371951
5 10 2100000 0.48 4.65029762 4.65029762
6 10 2000000 0.46 5.54779321 5.54779321
7 10 2000000 0.44 6.33921863 6.33921863

The solution vector is given (according to Eq. (5.32)) by

{
δtip,FE
} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtip,FE,0

δtip,FE,1

δtip,FE,2

δtip,FE,3

δtip,FE,4

δtip,FE,5

δtip,FE,6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= [Y ] ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0

α1

α2

α3

α4

α5

α6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.35)

where [Y ] is the matrix of differences from the evaluation point. It has m = 7
columns and k rows, where k is the number of deterministic cases solved. In
the demonstrated case the number of the deterministic solutions is equal to
the number of coefficients in Eq. (5.32), and this is the minimum required.
Sometimes, in order to increase accuracy, more than 2n + 1 deterministic
cases are performed.

The structure of the [Y ] matrix for this case is

[Y ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 � X1,1 0 0 � X 2

1,1 0 0
1 � X1,2 0 0 � X 2

1,2 0 0
1 0 � X2,1 0 0 � X 2

2,1 0
1 0 � X2,1 0 0 � X 2

2,1 0
1 0 0 � X3,1 0 0 � X 2

3,1
1 0 0 � X3,1 0 0 � X 2

3,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.36)

where � Xi,1 and � Xi,2 are the first and the second modification of the ith

variable, respectively. For the given example, the numerical values of the
[Y ] matrix are
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[Y ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 0.166665 0 0 0.1666652 0 0
1 0.33333 0 0 0.333332 0 0
1 0 50000 0 0 500002 0
1 0 100000 0 0 1000002 0
1 0 0 −0.02 0 0 (− 0.02)2

1 0 0 −0.04 0 0 (− 0.04)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.37)

The optimal set of coefficient {α} for Eq. (5.35) (based on minimum least-
square error) is obtained by solving [56]:

[Y ]T [Y ]{α} = [Y ]T {δtip, FE
}

(5.38)

which can easily be done using MATALB. The results obtained are

{α} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.8828125
0.48828119281

−2.4385708 · 10−6

−30.08791775
1.80003596 · 10−7

1.13422 · 10−12

158.0558875

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.39)

Substituting these values into Eq. (5.32) provides an approximate, close-
form expression for the tip deflection of the cantilever beam. In the last
column of Table 5.3, the tip deflections δtip,Taylor calculated with the Taylor
series expression are shown. There is no difference between these values and
the tip deflections calculated with the finite element program. Not always
can such accuracy be obtained. The accuracy of the approximated closed-
form solution depends on the complexity of the basic phenomena and on the
selection of the evaluation points. When the response surfaces have complex
shapes, with local extremis and highly curved shapes, their approximation by
a Taylor surface can be very inaccurate. The selection of the evaluation point
requires a qualitative analysis of the influence of each random variable. In the
described case, it is clear that in the MPP, P must be higher that the nominal
value of 10 kgf. The values selected for the approximation are the nominal
values +0.5σ and 1σ. It is also clear that at the MPP, E will be smaller than
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the nominal; thus, the evaluation point was selected at E = 2000000 kgf/cm2,
with 1σ and 2σ above it. It is also clear that at the MPP, h is smaller than
the nominal. As h influence tip deflections in a cubic manner, the evaluation
point selected was lower (−1σ) from the nominal, with two more values at
−2σ and −3σ from the nominal value. Experience may provide means to
the selection of the evaluation point, together with some other criteria that
can be found in [16].

Once an approximate expression is found for δtip, a closed-form expression
can be written for the failure surface. This expression is called the response
surface of the structure. In the present case, failure occurs when

g = (δ0 − δtip,Taylor) ≤ 0 (5.40)

This expression was introduced to the NESSUS program (developed and pro-
vided by Southwest Research Institute) and a FORM analysis was performed.
The results obtained are

β = 3.675495
Pf = 0.0001187258

δ∗
0 = 6.582 cm

P∗ = 10.20 kgf
E∗ = 2.079 · 106 kgf/cm2

h∗ = 0.4325 cm

(5.41)

These results are quite similar to those in Eqs. (5.22), (5.23), (5.24), (5.26), and
(5.29), but not identical. The accuracy can be improved if a second iteration
is made, selecting the values obtained in Eq. (5.41) for P∗, E∗, and h∗ as a new
evaluation point, and selecting two more values for each P, E, and h, as plus
or minus values around the evaluation points. Then a new set of {α} can be
obtained, and a new probabilistic solution performed. This procedure is not
repeated here, and is left to the interested reader.

It is clear that advanced knowledge of the MPP is of great benefit to the
designer and the analyst. In [57], a method was suggested for the determi-
nation of the MPP using the optimization module of the ANSYS, without
the need to apply any structural probabilistic program. This method is based
on finding the maximum of a Modified Joint Probability Density Function
(MJPDF). Use of this method also enables the computation of the FORM
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probability of failure using only the finite element code. The method is not
described in this publication, and the interested reader can find a complete
description in ([16], Ch. 11).

5.3 SOLUTION WITH A COMMERCIAL FINITE

ELEMENT PROGRAM

In both most “popular” commercially available finite elements programs,
NASTRAN and ANSYS, there is a “probabilistic analysis module” that
enables a probabilistic analysis of finite elements based solutions. The solution
is performed by either a direct or Latin Hypercube Monte Carlo simulation,
or by generating a response surface and then doing Monte Carlo simulations
using this response surface. An algorithm for optimizing the required number
of sampling is used when the response surface method is used. The direct MC
simulations are done by looping the case file many times, and then a statisti-
cal analysis of the results is performed. Generation of a response surface is
done by a suitable sampling of the relevant structure, thus creating an approx-
imate function for the desired random parameter (similar to the Taylor series
expansion described in a previous section). This evaluation can be linear, pure
quadratic, or quadratic with cross terms.

The looping file is prepared at the beginning of the analysis, and has to
include all the random input variables as parameters. The analysis and the
post-processing phases are to be included in the looping file, and then the
required response random variables can be defined. One of these parame-
ters must be the failure function, and the probability of failure is obtained by
calculating the probability that this variable is less than or equal to zero.
A looping file can also be prepared for a mathematical expression, thus
using the ANSYS probabilistic module as a tool for computing the statistics
of any mathematical failure function, with no finite elements computations
at all.

The number of MC simulations may be very large for practical cases where
the probability of failure is small, as mentioned previously. Performance of
a very large number of simulations by a repeated solution of the looping file
takes a lot of computer time. On the other hand, doing MC simulations of the
fitted response surface usually takes a very short time, and therefore is more
recommended.
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ANSYS file (probeam4.txt) for a cantilever beam is provided in the Appendix.
As the described problem has a very low probability of failure, millions of MC
simulations are required. The results of this file run are not shown here, and
are left for the reader to test. The file probeam4.txt in the Appendix is full of
comments so the assumption is that there are no difficulties in understanding
and running it. It should be emphasized again that a looping file is to be writ-
ten first. This looping file is demonstrated in the listing of probeam4.txt. In
addition, our experience showed that the most efficient procedure to apply
the statistical results using the ANSYS probabilistic method is to use the GUI
of the program. Instructions for such a procedure are also listed in the file.
This module provides an extensive choice of statistical analysis of computa-
tion results. The reader can plot CDFs of variables, compute probabilities of
failure, demonstrate the history of the sampling of each variable, and print a
final report on the solved problem. Users of finite elements code should be
encouraged to use this module.

In order to show that the ANSYS probabilistic module can also solve a math-
ematical “stress-strength” model, file math.txt was written, and listed in the
Appendix. In this file, which is also self-explanatory due to the comments
included, a solution of a mathematical problem is performed, without any
reference to a specific structure and without any finite elements. Readers are
encouraged to make use of this benefit.

The finite elements program probabilistic modules do not allow FORM and
SORM analyses. Sensitivity and trend analyses are possible.

5.4 PROBABILITY OF FAILURE OF DYNAMICALLY

EXCITED STRUCTURES

In a previous section, the probability of failure of structures with random vari-
ables (dimensions, material properties, loading) subjected to static load was
described. In Chapter 3, the deterministic dynamic behavior of a determinis-
tic structure subjected to random dynamic loads (for which a PSD function is
given) was explored. In this chapter, the probability of failure of a nondeter-
ministic structure subjected to random loads is discussed. The discussion is
limited to a stationary Gaussian excitation process, in which the behavior of
the system at a given time depends only on the time difference between the
present and a previous time. A Gaussian process with zero mean is common
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to many practical structures, which vibrate as a result of external random
loads. This case can be solved by explicit expressions so the phenomena can
be demonstrated and, therefore, clearly explained. It can be shown that when
the excitation is a Gaussian process, the response is also Gaussian. The statis-
tical behavior of a Gaussian response is treated. A response of a structure can
be a displacement in a selected location, a certain stress, a certain reaction
force, certain acceleration, and many other structural parameters that may
be of interest to the designer. Assume a certain response S(t) that can be
described by a Gaussian process with zero mean and a PSD function GS(ω),
where 0 ≤ ω ≤ ∞. The absolute value of the maximum of this process during
a period τ is of interest to the designer, who can calculate the probability
of the structure to have a response higher than a defined failure limit. The
value of the response S(t) is a function of several random variables {z}. Some
basic literature results for the behavior of a Gaussian stochastic process are
repeated here.

Assume s is a threshold value (which may also be random and, therefore, is
a part of the vector {z}). It is shown that the conditional probability that the
process is equal or higher than s after a time τ, for a given set of {z} is given
by ([16, 58])

Pf (z) = 1 −
[

1 − exp

(
− s2

2λ0

)]
· exp[−ν(z)τ] (5.42)

In Eq. (5.42), v(z) is the rate of crossing upward the value s:

ν(z) = ν+s = 1
2π

√
λ2

λ0
· exp

(
− s2

2λ0

)
(5.43)

and

λm =
∞∫

0

ωmGs(ω) · dω m = 0, 1, 2 (5.44)

The values λm are called spectral moments of the process. It can be seen that
λ0 is the mean square value of the process, and λ2 is the mean square value
of the velocity of the process. The PSD of the response Gs(ω) is a function
of the PSD of the excitation, and some other parameters of the structure that
are included in the structure’s transfer function H(ω).
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In the problem described in Section 3.2 of Chapter 3, assume (without a loss
of generality) that there are three random variables—the thickness h, the
Young’s modulus E, and the damping coefficient ζ—and all of them normally
distributed, with means and standard deviations given in Table 5.4.

Using the nominal data of the other structural parameters, it can be shown
that for this case the following relations exist for this system (in kgf, cm,
radian, and seconds). Only the response of the first mode is considered, as it
was shown that the contribution of the other modes is negligible.

ω1 = 0.099937527 · h · √
E

λ0 = 712.1539 · π

4ζ1h2ω3
1

λ2 = 712.1539 · π

4ζ1h2ω1

(5.45)

When these values are introduced into Eq. (5.42), the values of the conditional
probability to get a tip amplitude equal or higher than a given threshold s at
a given time t is shown in Figure 5.2.

TABLE 5.4 Random variables for the dynamic problem.

Variable Mean SD Range ± 3σ

H, Thickness (cm) 0.5 0.02 0.44 → 0.56
E, Young (kgf/cm2) 2100000 50000 1.95 · 106 → 2.25 · 106

ζ, Damping coefficient 0.02 0.001 0.017 → 0.023
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FIGURE 5.2 Conditional probability of threshold passage.
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It can be seen that as time increases, the conditional probability to cross a
given threshold is increased.

It was suggested ([59]) that the nonconditioned probability could be calcu-
lated using the following limit (failure) function:

g
(
z, un+1
) = un+1 − �−1[Pf(z)] (5.46)

where un+1 is a standard normal variable added to the structural random
variables (in this case, h, E, and ζ) and �−1 is the inverse standard normal
distribution function. With Eq. (5.46) the probability of crossing a threshold
value s at time t can be computed for the dynamic problem. At this moment it is
not possible to use most of the commercially available structural probabilistic
computer codes, as most of them do not include an external function �−1.
At the author’s suggestion, ARA (Applied Research Associates, developer
and provider of ProFES [49]) introduced this function to a beta version of the
code. To the user who does not have access to such a program, a nondirect
method is used, and then compared to the ProFES beta version. The PDF
function of Pf (z) is computed separately and then approximated by a PDF
function fapprox(z). Then the inverse of this function, finv is computed with
any mathematical solver, and the commercially available codes can then be
used to compute the probability of failure (threshold crossing) of the limit
function

gappr = un+1 − finv (5.47)

In Figure 5.3, the PDF of Pf (z) is shown for t = 100 sec, and for a threshold
value of s = 2.5 cm. This PDF was calculated by 10,000 Monte Carlo simula-
tions using MATLAB.

In Figure 5.4, the inverse transformation�−1[Pf (z)] obtained from the simula-
tions depicted in Figure 5.3 is shown. In the same figure, normal distributions
with the same mean and standard deviation are also shown.

Although the obtained PDF is not exactly normally distributed (in fact it looks
more like a lognormal distribution), normal distribution was used, for the case
of simplicity. Then, the reliability index β was calculated using the Stress-
Strength model described in Section 5.2, and the probability of threshold
crossing Prcross was computed using

Prcross = �(−β) (5.48)
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FIGURE 5.3 PDF of Pf (z); Mean = 0.10007, Standard deviation = 0.1685.
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FIGURE 5.5 Probability of threshold crossing at t = 100 sec; solid line: indirect
computation, symbols: ProFES program.

Results for different threshold levels, at time t = 100 sec, are shown in
Figure 5.5.

The “automatic” solution of dynamic problems (i.e., the use of commercially
available probabilistic computer codes) with many variables must wait until
the formulation in Eq. (5.46) is incorporated in these programs. The inter-
ested reader should check whether this formulation has already entered
these codes when this book is published.

As mentioned, the author was able to get access to a version of ProFES
in which the inverse transformation �−1(P) is included. The PDF function
obtained running this version for �−1 [Pf (z)] is shown in Figure 5.6. The
general shape, the mean, and the standard deviation of the results are quite
similar to those shown in Figure 5.3. The probability of crossing a threshold
s = 2.5 cm at t = 100 seconds can then obtained directly with the program,
without the need to directly assume a probability for �−1 [Pf (z)]. Results for
this probability are shown in Table 5.5, and compared to the relevant value
from the previous analysis (Figure 5.4).

Results of ProFES computations for other values of S are also shown in
Figure 5.5. It can be seen that the indirect method, in which the distribution of
�−1 [pf (z)] was assumed normal, yields quite good results. Nevertheless, the
use of a direct computation, which takes into account the true distribution,
is much more recommended. Such a computation allows also computing the
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TABLE 5.5 Probability of crossing s=2.5 cm at t=100 seconds.

MC (5000) MC (20000) FORM Indirect
Method

Prcross 0.1018 0.09501 0.09134 0.1008
β −1.27153 −1.29495 −1.29345 −1.27701

distributions of the frequency, the statistical moments, and the upward rate
of crossing. In addition, correlations between all the participating variables
are obtained.

5.5 STRUCTURAL SYSTEMS

A structural element can fail in more than one possibility, according to the
design criteria set on a specific problem. The cantilever beam described earlier
fails, according to the design criteria set in the design specifications, when
its tip deflection is larger than a specific threshold value. However, there is
another possibility of failure that cannot be ignored—when the bending stress
at the clamped edge is higher than a given value, say the yield stress. Suppose
the beam has a hole in it, which gives rise to a stress concentration at its
edge. Then, the designer can set yet another failure criterion, which is the
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demand that the stresses around the hole should be smaller than a specific
value. Additional design criteria can be set to incorporate fatigue or crack
propagation possibilities, etc.

The determination of the failure criteria of a design is the most important step
in a successful design process. This is the stage where the skills and experience
of the designer and the experience of the organization are mostly required in
order to create a successful, safe design.

Sometimes, the design criteria are combined. It may happen that there is more
than one failure mode that can cause failure to the structure. Then, combined
criteria can be formulated. Such criteria may be: “the structure fails when both
the tip deflection is larger than a given threshold and the stress at the clamp is
higher than a prescribed value,” or it may be: “the structure fails when either
the tip deflection is larger than a given threshold or the stress at the clamp is
higher than a prescribed value.”

In order to set up the required design criteria, the fault tree analysis that
is used extensively by safety and reliability experts can be adopted, using
the tools that were established and used for many years in these important
fields, and integrating these into the structural design process. Fault tree
analysis is outside the scope of this book, and the interested reader can look
at relevant textbooks of safety analysis. In order to understand the concepts,
some background is described here, and examples based on the previous cases
are demonstrated.

When building a fault tree, basic failure events can be listed as base event. Base
event 1 is defined as “The structure fails when the tip deflection is larger than
a given threshold.” Base event 2 is defined as “The structure fails when the
stress at the clamp is higher than a prescribed value.” Two possibilities exist.
The first possibility is the series combination, where system failure occurs
when either of these events happens. The second is parallel failure, where the
system fails only when both events occur. The fault trees for both cases, as
well as the compatible “flow” diagrams, are shown in Figure 5.7.

A more complex structural fault tree is described in Figure 5.8. It depicts a
structural system with three structural elements. The first structural element
has three failure modes, and this element fails only when all of them occur,
designated FS1. The second element has two failure modes, and it fails if
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either of one occurs, the failure designated FS2. The third element has two
failure modes, and it fails if either of them occurs, designated FS3. If FS1
occurs or both FS2 and FS3 occur, the whole structural system fails.

It should be noticed that the base events depicted at the bottom of the fault
tree depend on the structural parameters, which include geometry, dimen-
sions, material properties, and loading conditions, all of which can be random
variables. In addition, the base events may be correlated with each other, and
are not necessarily independent.

In many cases, failure of one of the elements does not mean that the whole
system fails. In these cases, after the failure of one element, the loads are
redistributed, and a new system with the new conditions should be analyzed.
It is clear that although the whole system does not fail, the probability of
failure of the new system will be higher than the original system.

Both the ProFES [49] and the NESSUS [48] probabilistic codes can calculate
the probability of structural systems. The systems can be modeled using the
limit state functions of the base events, and combinations of and/or gates can
be inserted.

In Section 5.2, the probability that the cantilever beam has a tip deflection
equal to or higher than a given threshold was calculated using ProFES, with
the following results (from Eq. (5.26)):

Pr1 = 0.00010862; β1 = 3.69815 (5.49)

The probability of having a bending stress equal or higher than the yield stress
was also calculated (from Eq. (5.29)):

Pr2 = 0.000103028; β2 = 3.71155 (5.50)

The probability that both failures occur simultaneously (and condition) is
calculated with ProFES and the result is

Pr(1&2) = 1 · 10−5; β(1&2) = 4.26484 (5.51)

and the probability that either of them occurs (or condition) is

Pr(1|2) = 0.0001342; β(1|2) = 3.55375 (5.52)

The two failure cases are interdependent through the random variables h and
P that appear in both failure functions (Eqs. (5.17) and (5.28)).
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It can be seen that the probability of occurrence of either of the events is
higher than the probability of occurrence of both, a conclusion that may be
easily explained intuitively.

In the following example, a structural system of three structural elements
is described and solved. The structure is described in Figure 5.9. This is an
undetermined hinged truss comprised of three members, each with a circu-
lar cross-section. The lengths of the members are L1, L2, and L3, and the
diameters are d1, d2, and d3, respectively. L1 and L2 are of random values.
The length L3 is determined by the lengths of the first and the second mem-
bers; therefore, it is assumed that the third member has some device that
allows small changes in the length during installation of the system. All three
diameters are considered random.

The location of the support hinges is deterministic as shown in Figure 5.9.
The structure is loaded by a force F, which is also random, at the common
hinge. The Young’s modulus of all three members is E, a random value. The
maximum allowable stress in the second member is σ2,max, and the maximum

L3,d3

L2,d2

L1,d1

F

223.0

111.5

FIGURE 5.9 Three members truss.
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allowable stress in the third member is σ3,max. The buckling load of the first
member is given [60] by the following equation:

Pcr,l = Pratio · π2EI1

L2
1

; I1 = πd4
1

64
(5.53)

Pratio is a parameter described in Section 5.5, which takes into account the
fact that a simply supported compressed beam fails at a compressive force
that is smaller than the Euler’s calculated buckling load.

In Table 5.6, data for the random variables is given.

When loaded, the first member is under compression, while the other two
are under tension. Therefore, failure of the first member is when it buckles
(Pcr,l ≤ ⏐⏐F1

⏐⏐), and failure of the second and third members is when σ2,max

≤ σ2, σ3,max ≤ σ3, respectively. When either member fails, the whole sys-
tem does not fail because the other two members can still support the load,
although a redistribution of the forces takes place. Failure of at least two
members is required for the system to fail.

In order to do a probabilistic analysis, expressions for the forces F1, F2, and F3

in the three members as functions of the structural parameters are required.
Although this problem can be solved analytically by applying equilibrium and
displacement compatibility—the three members elongate to the same point—
this is not always the case in practical problems. Therefore, this example was
solved by formulating an approximate Taylor expansion expression for the

TABLE 5.6 Data for the random variables.

Units Distribution Mean Standard Mean±3σ

Deviation

1 L1 cm Normal 100 1 100±3

2 L2 cm Normal 200 1 200±3

3 d1 cm Normal 2 0.003333 2±0.01

4 d2 cm Normal 0.2 0.003333 0.2±0.01

5 d3 cm Normal 0.9 0.003333 0.9±0.01

6 E kgf/cm2 Normal 2 · 1 · 106 5 · 104 2 · 1 · 106 ± 1.5 · 105

7 F kgf Normal 1200 33.333 1200±100

8 Pratio – Weibull 0.8 0.03 0.08±0.09

9 σ2,max kgf/cm2 Normal 1500 120 1500±360

10 σ3,max kgf/cm2 Normal 2100 120 2100±360
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TABLE 5.7 Deterministic cases solved with ANSYS.

L1 L2 d1 d2 d3 E F F1 F2 F3

1 100 200 2 0.2 0.9 2.1 · 106 1200 1056.866 38.73481 1163.098
2 97 200 2 0.2 0.9 2.1 · 106 1200 1025.861 37.28883 1150.945
3 103 200 2 0.2 0.9 2.1 · 106 1200 1087.947 40.24299 1175.392
4 100 197 2 0.2 0.9 2.1 · 106 1200 1057.279 37.33972 1136.112
5 100 203 2 0.2 0.9 2.1 · 106 1200 1056.467 40.12630 1189.825
6 100 200 1.99 0.2 0.9 2.1 · 106 1200 1056.853 38.76050 1163.069
7 100 200 2.01 0.2 0.9 2.1 · 106 1200 1056.878 38.70950 1163.126
8 100 200 2 0.19 0.9 2.1 · 106 1200 1058.695 35.07713 1167.198
9 100 200 2 0.21 0.9 2.1 · 106 1200 1054.956 42.55341 1158.817

10 100 200 2 0.2 0.89 2.1 · 106 1200 1056.472 39.52147 1162.216
11 100 200 2 0.2 0.91 2.1 · 106 1200 1057.247 37.9728 1163.952
12 100 200 2 0.2 0.9 1.95 · 106 1200 1056.866 38.73481 1163.098
13 100 200 2 0.2 0.9 2.25 · 106 1200 1056.866 38.73481 1163.098
14 100 200 2 0.2 0.9 2.1 · 106 1100 968.7936 35.50691 1066.173
15 100 200 2 0.2 0.9 2.1 · 106 1300 1144.938 41.96271 1260.022

forces in the system’s members, with deterministic solutions obtained using
the ANSYS finite elements program. The file for a deterministic ANSYS
solution is truss1.txt (see Appendix). The parameters that influence the
magnitude of the three forces in the systems are the first seven variables
of Table 5.6. Therefore, at least 2 · 7 + 1 = 15 deterministic cases must be
solved with the ANSYS in order to get a quadratic Taylor expansion series
(without mixed terms, see Section 5.2). The deterministic cases solved with
the resulting forces are shown in Table 5.7.

The following Taylor series are expressed for the forces F1, F2, and F3:

F1 = α1 + α2(L1 − L1,0) + α3(L2 − L2,0) + α4(d1 − d1,0)

+ α5(d2 − d2,0) + α6(d3 − d3,0) + α7(E − E0) + α8(F − F0)

+ α9(L1 − L1,0)2 + α10(L2 − L2,0)2 + α11(d1 − d1,0)2

+ α12(d2 − d2,0)2 + α13(d3 − d3,0)2 + α14(E − E0)2 + α15(F − F0)2

F2 = β1 + β2(L1 − L1,0) + β3(L2 − L2,0) + β4(d1 − d1,0)

+ β5(d2 − d2,0) + β6(d3 − d3,0) + β7(E − E0) + β8(F − F0)

+ β9(L1 − L1,0)2 + β10(L2 − L2,0)2 + β11(d1 − d1,0)2

+ β12(d2 − d2,0)2 + β13(d3 − d3,0)2 + β14(E − E0)2 + β15(F − F0)2
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F3 = γ1 + γ2(L1 − L1,0) + γ3(L2 − L2,0) + γ4(d1 − d1,0)

+ γ5(d2 − d2,0) + γ6(d3 − d3,0) + γ7(E − E0) + γ8(F − F0)

+ γ9(L1 − L1,0)2 + γ10(L2 − L2,0)2 + γ11(d1 − d1,0)2

+ γ12(d2 − d2,0)2 + γ13(d3 − d3,0)2 + γ14(E − E0)2 + γ15(F − F0)2

(5.54)

where {α} , {β}, and {γ} are vectors of the Taylor series coefficients. The val-
ues (parameter)i,0 are the evaluation point, and the values of the first row
of Table 5.7 (the nominal case) were selected for this point. Applying the
procedures described in Section 5.2, these coefficients were solved using
MATLAB.

{α} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1056.866
10.3477

−0.135333
1.25

−186.95
38.75

0
0.880722
0.004222
0.0007778

−5.0
−405.0
−65.0

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; {β} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

38.73481
0.49236
0.46443
−2.550
373.814

−77.4335
0

0.032279
0.0034556
−0.0002

1.90
804.60
123.25

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; {γ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1163.098
4.0745

8.95217
2.85

−419.05
86.80

0
0.969245
0.0078333

−0.0143889
−5.0

−905.0
−140.0

0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.55)

It is interesting to note that the three forces do not depend on E and E2

(because all the members have the same Young modulus) and not on the
square of the applied force F (as the analysis is linear).

The approximate expressions for the forces (Eq. (5.54)) with the coefficients
in Eq. (5.55), and the expression for the critical buckling load, Eq. (5.53), were
introduced into the ProFES program, with the random variables described in
Table 5.1. Stresses in the second and the third members were calculated using
the cross-section area obtained by the given random diameters, as well as the
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cross-section moment of inertia I1, also described in Eq. (5.53). Three limit
state functions were formulated for the failure of a single member:

Limit State 1 : Pcr ≤ F1

Limit State 2 : σ2,max ≤ σ2 = F2/area2

Limit State 3 : σ3,max ≤ σ3 = F3/area3

(5.56)

In the first runs, the probability of failure of a single member was performed.
This is not the probability of failure of the system, as failure of at least two
members is required for a system failure. The computations were done by
both the FORM method and 100,000 Monte Carlo simulations. Results are
summarized in Table 5.8.

The reliability index obtained using the FORM analysis is quite close (2% and
less) to those of the MC simulation. A larger error is observed for the prob-
ability of failure, because results are obtained in the tail of the distribution.
Results obtained for Limit State 1 using FORM are less accurate, because the
buckling load is proportional to the random diameter to the power of four
and inversely proportional to the square value of the length; thus, they are
more nonlinear than the other two limit states.

Although Monte Carlo simulations take more computation time, they have
some extra benefits that allow better understanding of the behavior of the
dependent random parameters of the problem. Histograms of the different
variables (such as the forces in the members and the buckling load) can be
obtained, and correlation coefficients between any couple of random variables
are also computed. These coefficients may help the designer when a change
in the design is required.

TABLE 5.8 Probability of Failure and Reliability Index for each member.

Limit State 1 Limit State 2 Limit State 3

100000 MC pf = 0.00198 pf = 0.01792 pf = 0.01335
Simulations β = −2.88167 β = −2.11369 β = −2.21632
Confidence Pf,5% = 0.0018 Pf,5% = 0.0167624 Pf,5% = 0.0128855
Level Range Pf,95% = 0.00216 Pf,95% = 0.0178176 Pf,95% = 0.0138145
FORM pf = 0.0016346 pf = 0.017699 pf = 0.0128212

β = −2.94124 β = −2.10377 β = −2.23159
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In some cases, it may be more convenient to solve the probability of failure of
a single member using the probabilistic module, which exists in both ANSYS
and NASTRAN. Thus, these probabilities are obtained without using any
program except for the finite element code, and it is not necessary to write an
approximate Taylor expansion of the forces in the members. The disadvantage,
of course, is that system analysis is not possible with the existing modules.

When one of the members fails (with the probabilities shown in Table 5.8),
the remaining system is a two-member truss. There are three new cases: (a)
a truss with members 1 and 2; (b) a truss with members 2 and 3; and (c) a
truss with members 1 and 3. In each case, failure of one member is a system
failure. All the cases are of determined systems and can be easily formulated
analytically. Each new case has to be analyzed separately.

In order to calculate the probability of failure of the system, three more system
limit states were defined:

LS1 & LS2 ≡ Failure of member 1 and member 2
LS1 & LS3 ≡ Failure of member 1 and member 3
LS2 & LS3 ≡ Failure of member 2 and member 3

(5.57)

The case was solved with the help of the ProFES program using the FORM
method. The results are shown in Table 5.9.

It can be seen that although the probability of failure of a single tension
element is rather high (Table 5.8, 1.8% for member 2, 1.3% for member 3),
the probability of two of the system failure modes (1&2, 1&3) is much smaller.
This system (with this set of data—nominal and dispersion values) fails when
the two tension members (2&3) fail together. The probability for this to
happen is 0.00026 = 0.26%. The described analysis should also include the
probability of failure of all the three members simultaneously, but this case
was not examined here, as it was estimated qualitatively that this probability
is very low.

TABLE 5.9 System probabilities of failure.

LS1 & LS2 LS1 & LS3 LS2 & LS3

pf 7 · 10−5 2 · 10−5 0.00026
β −3.80825 −4.10748 −3.47042
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5.6 MODEL UNCERTAINTIES

The importance of probabilistic analysis in the design process of structural
elements and structural systems is well recognized today. Analytical methods
and computational algorithms were developed, and are used in many design
establishments and in R&D institutes. Randomness in structural geometric
and dimensional parameters, material properties, allowable strength, and
external loads can now be treated during the design process.

All of the methods described in this publication and in many others are based
on a model that is built for the designed structure, either by a closed form
expression (which may be analytical or approximated) or an algorithm, like a
finite element computer code. A question may be asked about the validity of
the model itself, which certainly has some uncertainties in it. The model used
in the solution of a problem doesn’t always truly describe the behavior of the
observed system, and in many cases the discrepancy between the observed
results and the model presents a random behavior. A well-known example
is the buckling of a simply supported beam-column. The classical buckling
load predicted by using the Euler model (based on the solution of an eigen-
values equation (e.g., [60, 61]) is never met when experimental results are
analyzed. We now know that this happens because of the initial imperfections
of the original beam-column, which is never perfectly straight. The imperfect
geometry is the reason for bending moments that are created in the beam.
Consequently, bending stresses are created and induce a nonlinear behavior
of the structure, causing the collapse of the beam-column when the compres-
sive external force is (sometimes) much lower than the Euler buckling load.
These imperfections, which are created during the manufacturing phase of
the beam, may be random in their magnitudes. Results from experiments of
many “identical” specimens show dispersion in the value of the buckling load.
Similar phenomena are observed in experimental results of plates and shells
buckling [60].

There is no way to avoid modeling in an intelligent design process. This is
especially true for large projects in which many subsystems comprise the final
product, where time to design and manufacture a prototype is long, and when
the number of tests is limited. In the aerospace industry, products are fre-
quently manufactured in small quantities (e.g., the space telescope, a satellite
for a given mission, a small number of space shuttles, the Martian Lander, a
special purpose aircraft). The problem of the verification of their reliability
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is not similar to the reliability verification of consumer goods, where a large
number of tests can be conducted and statistical estimates can be verified.
In some cases, complete ground tests are not possible at all, as is the case
with spacecrafts. Therefore, in large projects of this kind, the importance
of models is enhanced. Once a model is built and verified, simulations that
use it can be conducted instead of real tests. The collection of a product’s
performance data can be replaced by these “model simulations,” including
extreme points in the required performance envelope that cannot usually
be tested due to technical difficulties, time schedule reasons, and budget
limitations.

The use of probabilistic models enables the determination of the probability
of failure of structural elements and structural systems; thus, the reliabil-
ity of the structure can be estimated and verified through the model, and
incorporated into the reliability analysis of the system as a whole. It is clear
that in such cases, incorporation of model uncertainties is extremely impor-
tant. When building a model, many assumptions are made. Sometimes, the
influence of some parameters is intentionally neglected, with the proper jus-
tification. In many cases there are parameters whose influence cannot be
evaluated due to ignorance. Suppose that nobody ever thought about the
initial imperfections and their ability to influence the buckling load of a
beam-column. Then, the available model (e.g., the Euler buckling load)
is unable to describe the real behavior of the structure, as observed from
experiments. These experiments show dispersion in the buckling load, with
a mean value smaller than the Euler load. When there is a discrepancy
between carefully controlled experiments and a model, the chances are that
something is wrong with the model, and not with the experiments. These
discrepancies can originate from some (unknown?) parameters or physi-
cal phenomena that were not included in the model, and the designer is
unaware of.

In many cases this uncertainty in the model can be formulated using an
additional random variable or random process. Using this methodology, the
model, which includes now a “device” that takes care of the model uncer-
tainties, can predict probabilistic behavior of the structure that will be in
agreement with the experimental result.

The proposed approach is first demonstrated on the Euler buckling model dis-
cussed previously. A beam-column of length L, width b, and thickness h made
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PW

FIGURE 5.10 A simply supported beam-column under axial compression.

of a material with Young’s modulus E is subjected to an axial compressive
force P. The model is shown in Figure 5.10.

When the beam is perfectly straight, the buckling load is given by the Euler
critical load (e.g., [60, 61]), which is a solution of the eigenvalues equation

Pcr = π2EI
L2 (5.58)

where I is the cross-section moment of inertia, which in this case is

I = bh3

12
(5.59)

According to this solution, the column will not have any lateral deflections
when the force P is increased from zero to Pcr, and will collapse when the
force reaches the critical value Pcr. The lateral deflection at this point will
tend suddenly to infinity.

If the beam has an initial lateral deflection w0, increase of the load creates
lateral deflection w. Assuming the initial deflection is half sine wave with
amplitude a0:

w0 = a0 sin
πx
L

(5.60)

It can be shown that in this case, the lateral deflection w is given by

w = a0 sin
πx
L

·
P

Pcr

1 − P
Pcr

(5.61)

For any given x, Eq. (5.61) describes a nonlinear relation between the lateral
deflection w and the applied force P. Due to the lateral deflection there is
a bending moment in the beam that has a maximum at the beam center,
x = L/2. This moment creates bending stresses. In addition to these are
compression stresses due to the axial force itself. Suppose that the material
fails when the total local stress reaches a value of σmax. When σmax is reached,



5.6 Model Uncertainties • 211

the beam fails while the acting force P is still smaller than the Euler critical
value Pcr.

In reality, initial imperfections may be a combination of many sine waves
along the beam, but they can be described by a Fourier series of amplitudes
(that may be random) for many wave lengths. In what follows, only one half
sine wave is used, without a loss of generality, because expressions similar to
Eq. (5.61) can be obtained for every combination of waves.

In Figure 5.11, the absolute maximum stress in the mid-length is described
as a function of P for several values of a0. The Euler solution is shown in the
thicker L-shaped line. The numerical values used for the example are

L = 60 cm = 0.6 m = 23.62"

b = 8 cm = 0.08 m = 3.15"

h = 0.5 cm = 0.005 m = 0.197"

E = 2100000 kgf/cm2 = 2.058 · 105 MPa = 29842 ksi

σmax = 5000 kgf/cm2 = 490 Mpa = 71 ksi

(5.62)

The Euler buckling force in this case is

Pcr = 479.77 kgf = 1056.76 lbs (5.63)

As we do not have experimental results for this case, such results will be “manu-
factured”artificially. It isassumedthatthespecimensinthe“experiments”have
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FIGURE 5.11 Stress in mid-beam for three values of imperfection; Euler load =
479.77 kgf.
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FIGURE 5.12 PDF of the amplitude of imperfection (log-normal); mean =
0.15, SD = 0.07.

a half sine wave initial imperfection, with amplitude a0, which has a lognormal
distribution with mean = 0.15 cm and standard deviation = 0.07 cm. The
location and shape parameters (another pair of parameters sometimes used
to define a log-normal distribution) for this case are m = −1.9956338 and
s = 0.443878028. The distribution of the imperfection amplitudes is shown in
Figure 5.12.

With this distribution, “virtual experimental data” can be created for a pa-
rameter Pratio—the ratio of the collapse force (the force that creates a stress
of 5000 kgf/cm2 in the beam) to the Euler buckling force. The computa-
tions were done using 5000 Monte-Carlo simulations in a MATLAB program.
The histogram of the results is shown in square symbols in Figure 5.13. The
mean of these results is μ = 0.958 and the standard deviation is σ = 0.01803.
A Weibull distribution with the same mean and standard deviation was fitted
to this data, and is shown by curved line in Figure 5.13. The parameters of the
Weibull distribution obtained are

μ = mean = 0.958
σ = standard deviation = 0.01803
α parameter = 67.42607
β parameter = 0.9660698

(5.64)

It can be seen that the fitted distribution agrees very well with the “experi-
mental” generated results.
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A model for the collapse load based on the Euler buckling load and includes
the model uncertainty can now be written as

Pcollapse = π2EI
L2 · Pratio (5.65)

Pratio is an added random variable, which has a Weibull distribution shown in
Figure 5.13, with the parameters given in Eq. (5.64).

Assuming that E, L, and I are deterministic, and the only random variable is
Pratio (only model uncertainty exists), one can calculate the probability that
the collapse load will be lower than a given value Plower. Results computed
using NESSUS [46] are shown in Figure 5.14. The same computation can be
performed assuming that the geometry parameters (L, b, and h) and material
property (E) are also random.

The next example treats the crack growth rate model, which is further dis-
cussed in more detail in Chapter 6. Some of it will be repeated here, for the
completeness of the model uncertainties subject treated here.

Models for crack growth have been the subjects of thousands of papers pub-
lished over the past 40 years. These range from simplified to more advanced
models, most of which are based on experimental observations. The most
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FIGURE 5.14 Probability that collapse load is lower than Plower.

basic model is the one suggested by Paris and Erdogan [62], where the rate of
crack growth is described by

da
dN

= C · (�KI)
n (5.66)

where a is the crack length, N is the number of load cycles, � KI is the
stress intensity factor, and C and n are material properties extracted from
tests. There are models that include the effects of the stress ratio R (i.e.,
Forman equation, which is used in the NASGRO® computer code [63]),
with corrections for crack closure phenomena, and the “unified” approach
model suggested by Vasudevan et al. (e.g., [64, 65]). All these models are
deterministic.

When tests are performed on many “identical” specimens, typical results look
like those in Figure 5.15 (e.g., [66, 67]).

These results are characterized by three major properties:

1. The behavior of crack length is random, even when very carefully
controlled experiments are performed with “identical” specimens.

2. The crack length behavior is nonlinear.

3. The curves of different specimens intermingle.

When the growth rate da/dN is plotted against the stress intensity factor,
experimental results yield the experimental circles depicted in Figure 5.16.
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FIGURE 5.16 Crack growth rate vs. stress intensity factor.

On a log-log scale, the straight line shown is, in fact, the Paris Law. Other
propagation models described in Chapter 6 model the rise toward infinity at
the fracture toughness value. Thus, these are models that describe the mean
behavior of the experimental data, but not the randomness expressed by the
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scatter in the experimental results, and therefore there is an uncertainty in
the model.

There were many attempts to formulate a stochastic crack growth law. In
some of them (e.g., [44, 68]), the material constants C and n were con-
sidered as random variables. This approach suffers from a serious physical
interpretation—randomizing these constants also randomizes their units. In
addition, the use of this approach does not describe the intermingling of the
curves (Figure 5.15), which is observed experimentally.

Similar to the approach demonstrated for the Euler buckling model in the
previous section, it was suggested (e.g., [69, 70]) to write the crack growth
model in the following form:

da
dN

= Q · ab · X (t) (5.67)

where Q and b are deterministic constants obtained by a best straight line fit
(on a log-log scale) of the data as depicted in Figure 5.16, and X (t) is a stochas-
tic process that describes the dispersion of the experimental results around this
straight line. As the crack growth is a local phenomenon, the stochastic process
is correlated only within a certain distance near the crack tip. There are some
suggestions (e.g., [69, 71, 72]) on how to select this correlation time. When
the stochastic approach is applied, results obtained show both the nonlinear
behavior of the crack’s length and the intermingling phenomena (e.g., [16,73]),
and thus better describe the experimental results.

Once again it was demonstrated that, in this case, a stochastic process rather
than a stochastic variable could be used to include a model’s uncertainties in
the evaluation of models. The parameters of either the stochastic variable or
the stochastic process can be determined from experimental results; thus, they
can represent properly, in a probabilistic way, the uncertainties in the model.
This can be done even when the reasons for these uncertain outcomes are not
completely understood, and the effects of uncertainties are introduced in an
“integral” way.
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6.1 CRACK PROPAGATION IN A STRUCTURAL ELEMENT

Failure of a structural element due to an initial crack, which propagates during
loading until the element fails, is the major reason for catastrophic failure
of aerospace and other structures. The description of this phenomenon is
the subject of many textbooks, and is the main reason for the tremendous
development of fracture mechanics in the last three decades.

Cracks are very small voids in the internal microscopic crystalline structure
of the material, and form small discontinuities (flaws) inside the material.
They are created either in the production process or due to environmental
effects, such as corrosion and wear. When a cracked structure is loaded, stress
concentrations are formed at the “tip” of the crack, and due to the material
failure mechanism, they propagate through the structure. The phenomenon
can occur due to an increasing static load. When the structure cannot carry
more loads by the remaining uncracked material, it fails. Such crack prop-
agation also occurs when the structure is loaded with a constant amplitude
repeated load, when every additional load cycle causes the crack to “propa-
gate.” The crack propagation due to a repeated load is the explanation (given
by fracture mechanics) of fatigue failure. In the literature, the terms “crack
propagation” and “crack growth” are used synonymously.

For many years, failures due to fatigue were treated using the empirical S-N
well-known curves, where the repeated stress to failure vs. the number of
loading cycles required to cause this failure were mapped experimentally.

217
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Handbooks for properties of materials include these S-N curves for many
structural materials, especially metals [74].

In Figure 6.1, a generic experimental S-N curve is shown. In a log-log scale,
these curves are described as straight lines. For some materials (but not all),
there is a lower limit stress (endurance stress) below which no fatigue occurs.
The experimentally determined points on this curve usually exhibit disper-
sion that, although seems to be small, is really large because the scales are
logarithmic.

For many years, only experimental laws treated the fatigue of aerospace
structural elements. Only when fracture mechanics began to develop some
theoretical aspects were introduced, and it was possible to explain the fatigue
failures by the fracture mechanics theories.

Models for crack growth (sometimes called crack propagation) have been the
subjects of thousands of papers published over the last 40 years. These range
from simplified models (e.g., [62]) to more advanced models (e.g., [75, 76]).
In [77], an excellent list of 217 references is provided.

Today, theoretical and experimental terms of fracture mechanics are well
covered and well explained in textbooks, papers, and conferences, and only
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FIGURE 6.1 A generic S-N curve with random dispersion.
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some of the basic concepts will be repeated here. Most of this chapter is
concentrated on the random effects of crack growth. As the initial flaws and
cracks in structural materials result from manufacturing and environmen-
tal effects, they are inherently random in nature, and using random analysis
is called for even if the macro-structure and the loadings are determinis-
tic. The cracks are propagating in and between material grains boundaries,
which are highly random due to the randomness of the processes that initi-
ate them. Although fracture mechanics today is well developed, most of the
material properties entering the analysis must still be the results of extensive
and expensive experimental work.

The failure of a structure due to the existence of a small crack starts when
internal nucleation begins to form as a result of a very small and local yield-
ing, and is expressed in a slip between the material’s atom layers. This is
a process whose laws are still not well understood. These nucleations form
microcracks, which then start to interconnect to form macro-cracks. These
macro-cracks grow until a structural failure occurs. The order of magnitude
of cracks in each step is described in Figure 6.2.

A major important parameter in fracture mechanics is the stress intensity
factor (SIF). This is a parameter that incorporates the applied stress, the
dimensions of the crack, and the geometry of the structural specimen. There
are SIFs in opening, shearing, and tearing of cracks, denoted KI, KII, and KIII,
respectively. When a repeated stress �S is applied to a structural element the
change in the opening SIF is

�KI = Y (a)�S
√

πa (6.1)

Nucleation
Micro-crack

growth
Macro-crack

growth
Final failure

Full life

10 Ang 1 mm 10 mm 100 mm 1 mm

FIGURE 6.2 Nucleation, micro-crack, macro-crack, and crack growth to failure.
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where Y (a) is a geometry function and a is the crack length. Similar
expressions can be written to the shearing and tearing SIFs. There are three
major reasons for the indeterministic nature of the crack growth process:

1. The macro-properties of different structural specimens, which are the
geometry, dimensions, and material properties, may differ slightly
between specimens. Thus, the whole structural systems may be non-
deterministic, as demonstrated in Chapter 5.

2. The external loadings in practical engineering cases are usually
random, as demonstrated in Chapter 3.

3. The micro-properties of the structure or a specimen are random, which
means that the microstructure is not homogenous, even for strictly
controlled material production conditions. This random behavior is
demonstrated in this chapter.

When tests are performed on many “identical” specimens, typical results look
like those in Figure 6.3 (e.g., [66, 78, 79]).

These results are characterized by three major properties:

1. The behavior of crack length is random, even when very carefully
controlled experiments are performed with “identical” specimens;

t –time or N–cycles
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FIGURE 6.3 Generic curves for crack size as a function of time.
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2. The crack length behavior is non-linear in time;

3. The curves of different specimens intermingle.

Four sets of basic experimental results are frequently quoted in the literature.
In [80], two series of experiments for aircraft fasteners holes are described. In
[66], a very well controlled test is described for a centrally cracked finite plate.
More experimental results are shown in [67]. All results have characteristics
similar to those shown in Figure 6.3.

When the growth rate da/dN is plotted against the stress intensity factor,
experimental results yield the experimental circles depicted in Figure 6.4. On
a log-log scale, the straight line shown is, in fact, the range of Paris Law [62].
The rise toward infinity at the fracture toughness value is modeled by Forman
type laws. These laws are discussed later in this chapter. These are models that
describe the mean behavior of the experimental data, but not the randomness
expressed by the scatter in the experimental results, and therefore there is an
uncertainty in the model, already discussed in Chapter 5.

In a large part of Figure 6.4, the data lies “around” a straight line. This
observation is the origin of the Paris-Erdogan law, which states that

da
dn

= C · (�K)n (6.2)
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FIGURE 6.4 Crack growth rate vs. stress intensity factor.
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C and n are material properties, obtained from data reduction of experimental
curves as the one shown in Figure 6.4.

Stochastic models for crack growth were suggested in many publications. (see,
e.g., [69, 78, 79, 81–83]). These models include evolutionary probabilistic
models (Markov chain, Markov diffusion models), cumulative jump models
(Poisson process, birth process, jump correlated models), and differential
equation models. A comprehensive summary of the state of the art is given in
[77]. From these, the models that can be easily used in practical engineering
problems are the differential equation (DE) models.

Two major groups of models are used to investigate the random behavior of
the crack growth:

1. Use of deterministic DE for the crack propagation, while assuming
that different parameters in these equations are random variables
(RV methods).

2. Use of a modified DE for the crack growth rate, where the stochastic
nature of this rate is expressed by a random process (RP methods).

In the simplest case, the Paris-Erdogan equation (Eq. (6.2)), one assumes
that C and n are random variables and therefore da/dn is also random. Use
of such methods has two major disadvantages:

1. No intermingling of the crack lengths curves (as observed in
experiments shown in Figure 6.3) is obtained, thus the results do not
represent one of the experimentally observed phenomenon.

2. When C and n are assumed to be random variables, their units become
also random. This conclusion has no physical meaning. It can be
avoided only if a nondimensional equation is used, so that C and n are
nondimensional parameters. In other words, the crack growth should
be expressed as

da
dn

= D ·
(

�K
�K
)m

(6.3)

where �K is a normalizing factor (which can be random) with units of
the SIF. In this case, reported experimental results should refer to
such a normalizing factor. At present, all the reported experimental
parameters C and n do not include such information.
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In the RP method, the crack growth law is expressed by adding a random
process to the deterministic law:

da
dn

= C · (�K)n · X (t) (6.4)

where X (t) is the random process. According to this approach, C and n are
deterministic material constants that are determined by regression of the
experimental results, and the dispersion in the experimental results is intro-
duced through the stochastic process. Such a description does reproduce the
intermingling effects depicted in Figure 6.3. Experimental results were tested
using a stochastic process with log-normal distributions and a correlation time
and excellent results were obtained [69]. Suggestions for the determination
of the correlation time can be found in [69, 71, 72]. Practical examples of this
approach are described in [16].

6.2 EFFECTS OF A STATIC BIAS ON THE DYNAMIC

CRACK GROWTH

In a practical design process, the structural element is subjected to both static
and dynamic loads. The presence of a static load has an influence on the
dynamic crack propagation.

The effects of static load together with a dynamic, harmonic loading is
described in the literature using the load ratio R, which is defined as

R = σmin

σmax
(6.5)

where σmin, σmax are the minimum and the maximum values, respectively, of
the applied stress. Thus, when R = 0, the loading is harmonic between 0 and
σmax, with a mean value of 0.5 · σmax. This is equivalent to a static load of
0.5 · σmax, plus a harmonic load with amplitude ±0.5 · σmax. When R = −1,
σmin = −σmax, and the loading is purely harmonic. When R > 0, the static
“bias” is positive (tension) and the harmonic loading is positive.

In both fatigue and fracture mechanics analyses it was shown experimentally
that the existence of a positive bias (tension) decreases the life of the structure,
compared to a R = 0 loading, while the existence of compressive stresses dur-
ing the dynamic loading increases its life. Thus, S-N curves for different values
of R may be found in the fatigue literature, and da/dn vs. SIF curves (like the
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one depicted in Figure 6.4) also reflect the effects of R. The crack closure
theory explains that during compression phase of the loading the crack does
not propagate, as the faces of the crack are pressed one against the other and
no stress concentrations occur. Crack closure theories are widely documented
in the literature and references are quoted in Section 6.5. Another explana-
tion for the effects of the static “bias” loads on crack growth are described
by a well-documented literature (see references in the text of Section 6.5),
in which it is argued that two driving forces are required in order to cause
propagation of the crack. The interested reader is encouraged to check these
references.

The simplest form of Paris-Erdogan propagation law, Eq. (6.2) does not
include the effects of the load ratio R. Nevertheless, these effects are included
in most of the crack growth computer codes. The most famous of these codes
is NASGRO® [63] (see Chapter 7).

The general crack growth equation used in NASGRO is

da
dN

= C
[

1 − f
1 − R

�K
]n
(

1 − �Kth

�K

)p

(
1 − Kmax

Kc

)q (6.6)

�K —stress intensity factor (depends on stress, crack length, geometry
factor)

f —crack opening function for plasticity induced crack closure, given
in NASGRO [63]

�Kth —threshold stress intensity factors
Kc —critical stress intensity factor

Kmax = �K
1 − R

p and q are constants of a given material. This formula contains the crack
opening function in order to incorporate fatigue crack closure analysis. For
materials that are less sensitive to crack closure, the crack growth equation
can be written as

1
fs

da
dt

= da
dN

=
C�Kn
(

1 − �Kth

�K

)p

(
1 − K max

KC

)q 0 ≤ R < 1
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1
fs

da
dt

= da
dN

=
CKn

max

(
1 − �Kth

�K

)p

(
1 − K max

KC

)q R < 0 (6.7)

K max = �K
1 − R

where fs · dt replaces N . These equations are sometimes called Foreman
equations. In order to demonstrate a numerical solution of Eq. (6.7), these
equations were used for an Aluminum 2024 alloy. Because this material is
sensitive to crack closure, Eq. (6.7) was used. These equations can be solved
using a MATLAB® numerical procedure (described in the Appendix), while
use of Eq. (6.6) requires the use of the much more expensive NASGRO pro-
gram. A plate of width b = 80 mm has a central through initial crack whose
length is 4 mm, thus the half initial crack length is a0 = 2 mm. In NASGRO
help files [63], it can be seen that for tension loading of �S, the SIF is given by
the following expression, which includes a geometric correction for the result
of an infinite plate:

�K = �S
√

secant
(πa

b

)
· √

πa (6.8a)

When the plate is loaded in bending, the SIF is

�K = 1
2
�S
√

secant
(πa

b

)
· √

πa (6.8b)

Assume that the stress (tension or bending at the crack location) is given by

S = ±200 MPa ⇒ �S = 400 MPa

R = −1 ⇒ Smax = 200 MPa (6.9)

Also assume that the frequency of the harmonic loading is fs = 10 Hz, thus
the dynamic load factor is 1 (DLF = 1). For Aluminum 2024 T3, the following
data is obtained from the NASGRO database:

C = 0.2382 · 10−11

m = 3.2

p = 0.25 (units are in MPa, mm) (6.10)

q = 1

KC = 2604

�Kth = 200



226 • Chapter 6 / Random Crack Propagation

Note the importance of declaring the system of units in the crack growth
models. Results of any analysis may be distorted due to mistreating of the
units!

Two MATLAB files are required for the solution: file prop1.m (see Appendix)
is for the solution of the ordinary differential equation (ODE), and file
crack2.m (also shown in the Appendix), which has the required data and
calls file prop1.m during the solution phase.

In Figure 6.5, the crack length as a function of the bending load cycles as
obtained using the MATLAB solution (Eq. (6.7)) is shown. In Figure 6.6,
results for the tension loading are shown.

In Figure 6.7, the crack length as a function of the bending load cycles as
obtained using the NASGRO demonstrator solution (Eq. (6.6)) is shown.
In Figure 6.8, results for the tension loading obtained using the NASGRO
demonstrator are shown.

The results obtained using the approximate formula (Eq. (6.7)) present
shorter life (about 50% less) than those obtained using the NASGRO code.
Remembering that the demonstrated case has R = −1, with a relatively high
input stress (200 MPa, relative to yield of 365.4 MPa, UTS of 455.1 MPa for
this material), this means that for the tension-compression case, half of the
time is spent in high value compression and half of it in tension. The same
goes for the bending case, where one side of the through crack is under
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FIGURE 6.5 Crack length vs. bending load cycles, obtained using Eq. (6.7);
failure—at 19000 bending load cycles.
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FIGURE 6.6 Crack length vs. tension load cycles obtained using Eq. (6.7);
failure—at 1600 tensile load cycles.
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FIGURE 6.7 Crack length vs. bending load cycles, obtained using NASGRO
(Eq. (6.6)); failure—at 44000 bending load cycles.
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FIGURE 6.8 Crack length vs. tension load cycles obtained using NASGRO
(Eq. (6.7)); failure—at 3770 tensile load cycles.
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compression when the other half is in tension. This can explain the large
error introduced when using the approximate equations. As the NASGRO
contains much more effects and these effects are based on extensive exper-
imental results, one can conclude that the use of NASGRO is preferred to
the application of the approximate formulas. These effects include empirical
equations for the threshold stress intensity factor and empirical expressions
for KC

KIC
. In any case, designers should be cautious when using any of the models,

and include a suitable (large) factor of safety in this kind of problems.

6.3 STOCHASTIC CRACK GROWTH AND THE

PROBABILITY OF FAILURE FOR HARMONIC

EXCITATION

Stochastic behavior of crack length with time (or with applied load cycles)
can be solved by using the (modified) Foreman equations, multiplied by
a stochastic process X (t), similar to what was written in Eq. (6.4) for the
Paris-Erdogan law.

1
fs

da
dt

= da
dN

= C�Km(
1 − �K

(1 − R) K IC

)q · X (t) 0 ≤ R < 1

1
fs

da
dt

= da
dN

=
C
(

�K
(1 − R)

)m
(

1 − �K
(1 − R) K IC

)q R < 0 (6.11)

K IC is the material fracture toughness.

These equations were used for their simplicity, without a loss of generality. As
the solution is performed using numerical solution of the differential equation
for the crack length a, any equation can be used.

In order to include the geometry factor (which is shown in Eq. (6.8) for a finite
plate) the SIF can be expressed as

�K = �S · (geom
) · √

πa (6.12)

where (geom) is a geometry factor. Geometry factors can be found in [84].
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Failure occurs when the crack growth rate tends to infinity, and it can be shown
that the critical crack length (e.g., the length in which a violent crack growth
occurs) is

a∗ =
[

(1 − R) K IC(
geom
)

Sallow

]2

(6.13)

Sallow is the maximum stress that the structural element can carry (its UTS),
and K IC is the material fracture toughness, which is a material property given,
for instance, in the NASGRO materials database.

Eq. (6.11) was solved numerically using MATLAB, where at any time point
the random process was created by a random numbers generator. Normal and
lognormal stochastic processes were used in the demonstration.

Solving Eq. (6.11) many times is similar to performing many “virtual tests.”
Many curves of crack length a as a function of time are obtained. Then a
statistical analysis of the results can be performed; for instance, the distri-
bution of crack length for a given time point. In a “stress-strength” model,
these results are the “stress” of the problem. The strength and its distribu-
tion can be obtained by finding the distribution of the critical crack length
(Eq. (6.13)), assuming Sallow and K IC may also be random variables. Using
the “stress-strength” model, one can find the probability of failure at a given
time point. As the variable a obtained from solving Eq. (6.11) and the vari-
able a∗ obtained from Eq. (6.13) both depend on K IC, they are correlated,
and this correlation has to be considered when the probability of failure is
computed.

A diagram that describes the computation algorithm is shown in Figure 6.9.
Two kinds of stochastic processes (normal and log-normal) are possible. Also
there is a possibility to consider K IC and Sallow as either deterministic or
normally random distributions. The MATLAB required m-files can be found
on the CD-ROM attached to this publication (see also the Appendix). Names
of the relevant files are shown in Figure 6.9.

The calculated model is an infinite plate (thus geom = √
π) with an initial

half crack of length a0 = 0.1 mm. The plate is loaded with a uniform stress
with S = 554.38 MPa at a frequency of fs = 150 Hz. The material is 4340 steel
with a UTS value of 165 ksi. Data taken from NASGRO is summarized in
Table 6.1.
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Log-normal process Normal process

KIC normal

UTS normal

KIC & UTS

deterministic

KIC normal

UTS normal

KIC & UTS

deterministic

corcrack4 corcrack3

virtest3virtest4

ODE  files

Data and
solution
files

corcrack2 corcrack1

virtest1virtest2

Compute a vs. and write down correlation coefficients

cracknorm1Data analysis

cracklognfit
For a given time, 
compute distribution
parameters

Result: “stress” term at a given time

astar1

Result: “strength” term

Compute probability of failure

Compute a*

FIGURE 6.9 Flowchart for the computations (files are included on the CD-ROM
and their names are written in the blocks of the flowchart).

When K IC was assumed random, a normal distribution was assumed, with the
mean value given in Table 6.1 and a standard deviation of 155 MPa · √

mm.
When SUTS was assumed random, again a normal distribution was assumed
with a mean value given in Table 6.1 and a standard deviation of 40 MPa.

First, a small number of 10 random cases were run, with R = 0, thus the
loading is between S = 0 and S = 554.38 MPa, with a frequency of 150 Hz and
assuming the stochastic process is normally distributed. In Figure 6.10, the
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TABLE 6.1 Data for 4340 steel with UTS = 165 ksi.

Parameter Value

Syield—Yield stress 1069 MPa
SUTS—Ultimate tensile strength 1172 MPa
K IC—Fracture toughness 4691 MPa

√
mm

C—Material constant 0.298 · 10−11 (compatible units)
m—Material constant 2.7
q—Material constant 0.25
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FIGURE 6.10 Half crack length vs. time, normal stochastic process, R = 0, 10
cases.

half crack length vs. time is shown for this case. In Figure 6.11, a zoom on
part of Figure 6.10 is shown. The intermingling of the curves can be clearly
observed. Then the same case was computed for 500 random cases (with
the same data). Results of crack length vs. time are shown in Figure 6.12.
The standard deviation of the half crack length at a given time is shown in
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FIGURE 6.11 A zoom on part of Figure 6.10.

Figure 6.13. In Figure 6.14, the mean value of the half crack length plus and
minus three standard deviations is described. In Figure 6.15, a histogram for
the half crack length at t = 84 seconds is shown, and a lognormal distribution
is fitted to this histogram.

The critical half crack length a∗ was also computed for R = 0 and R = 0.25,
by running 20,000 Monte Carlo simulations. The results are

For R = 0:

μa∗ = mean = 5.119212 mm

σa∗ = standard deviation = 0.49068 mm

parameters for the log − normal distribution: (6.14)

ξa∗ = 1.62843

εa∗ = 0.095632
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FIGURE 6.12 Half crack length vs. time, normal stochastic process, R = 0, 500
cases.
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FIGURE 6.13 Standard deviation of half crack length as a function of loading
time.
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FIGURE 6.16 Histogram of critical half crack length, R = 0 (20,000 samples)
and a fitted log-normal distribution.

Similar results can be obtained for R = 0.25. In Figure 6.16, a histogram of
the results for R = 0 is depicted, and a fitted log-normal distribution is also
shown.

Note that in both Figures 6.15 and 6.16, the fitted lognormal distributions can
easily be replaced by normal distribution.

The distributions shown in Figures 6.15 and 6.16 were introduced into a
“stress-strength” model, and the probability of failure was calculated using
ProFES®. In Figure 6.17, this probability is shown for both values of R as a
function of time.

The same computations were performed for a log-normal stochastic pro-
cess. In Figure 6.18, the probability of failure for the two different stochastic
processes is shown for R = 0.

The demonstrated crack length behavior with time (or number of loads)
includes a correlation between the crack length and the critical length,
due to the dependence of both lengths on the random K IC. It does not
include a correlation, which may exist in the stochastic process used for the
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FIGURE 6.17 Probability of failure as a function of time, normal stochastic
process.
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FIGURE 6.18 The probability of failure for two stochastic processes, R = 0.

demonstration. Correlation times for the stochastic process are discussed and
described in [69, 71], and can be easily added to the solution process. The
randomness of K IC and SUTS was described by both normal and lognormal
distributions. There is no difficulty in applying other distributions to these
parameters. The distribution is treated in the MATLAB files through the
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relevant random number generator and thus can be modified. In addition,
other geometric factors can be used to solve other structural geometries. Such
factors can be found in [84].

6.4 INITIAL CRACKS AND FLAWS

The propagation of cracks depends on the size of the initial cracks that are
contained in the structural element. Several reasons are responsible for the
existence of such initial cracks. All of the initial cracks formations are random
in nature. Different values of small initial cracks may cause different propa-
gation of these cracks. These small cracks are typically caused and affected by
material and treatment factors (particles and inclusion), manufacturing pro-
cesses (scratches and dents), working and loading conditions (corrosion), and
geometrical factors (holes and corners). This is the reason why much effort
is invested in the definition and the mapping of the statistical distributions of
the initial cracks. Some of the research efforts are described in [85–87].

One of the most applicable methods to define the initial cracks distribution is
the Equivalent Initial Flaw Size (EIFS), where cracks are measured in a cer-
tain time in the history of the structure, and a backward process is performed
in order to estimate the initial flaws’ sizes that existed at the beginning of the
propagation process. In the last two decades, a significant amount of prelim-
inary experimental work has begun to be carried out to build raw databases
for accurate determination of EIFS values.

In [80], experimental results obtained at Wright Patterson Air Force Base were
published, for two sets of fastener holes. The two tested configurations are
called WPF series (33 specimens) for single fastener hole (no load transfer),
and XWPF series (38 specimens) for double fastener hole (15% load transfer).

In [88, 89], the Time To Crack Initiation (TTCI) of the cracks described in
[80] was statistically evaluated. It was found that the statistical distribution of
the TTCI results is a Weibull distribution.

The classical expression for the cumulative probability function (CDF) of a
Weibull distribution is

FT (t) = P [T ≤ t] = 1 − exp
{
−
(

t − ε

β

)α}
; t ≥ ε (6.15)
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α and β are the distribution parameters. In some cases, the Weibull
distribution is described in another form:

FT (t) = 1 − exp( − aEt bE ); (for ε = 0) (6.16)

This is the form used, for instance, by MATLAB. Therefore, depending on
the tool that is applied to create random numbers, one should be careful as
to what distribution parameters are used. It is easily shown that

aE =
(

1
β

)α

bE = α

(6.17)

The Weibull parameters found for the TTCI distribution are listed in
Table 6.2.

Also, the probability density function (PDF) can be computed using the
equation (in the “MATLAB” form)

fT (t) = aEbEt bE−1 exp(−aEt bE ) (6.18)

Results for the TTCI values distributions are shown in Figure 6.19 (CDF) and
Figure 6.20 (PDF) for the two series of experimental data. Calculations were
done using the MATLAB m-file weib1.m, included in the Appendix.

The CDF of the EIFS for both cases are also obtained by [88, 89]. A value
of a0 = 0.03" (initial crack size) was assumed by Yang. These results were
plotted using a MATLAB m-file weib2.m, listed in the Appendix. The
CDF functions were plotted on a semi-logarithmic paper (this is how
they are shown in [88, 89]) in Figures 6.21 and 6.22 for both series of
experiments.

TABLE 6.2 Weibull parameters for TTCI
distributions of WPF and XWPF series.

WPF Series XWPF Series

α 4.9174 5.499
β 15936 11193
ε 0 0
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FIGURE 6.19 CDF of TTCI, as calculated by [88]; time axis in hours.
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FIGURE 6.21 CDF of EIFS, WPF series; crack lengths are in inches.
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FIGURE 6.22 CDF of EIFS, XWPF series; crack lengths are in inches.
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FIGURE 6.23 PDF of EIFS, WPF series, regular paper; crack lengths are in
inches.

Then, the PDF functions were obtained by numerical differentiation of the
CDF functions, and are shown in Figures 6.23 and 6.24.

The distributions obtained are not exactly Weibull, but Weibull distributions
were approximated by a trial and error procedure. The parameters of these
approximated distributions are listed in Table 6.3. The values of the Weibull
distribution parameters depend on the units used for the crack length. The
table refers to length given in inches. The approximated distributions with
the original ones are described in Figures 6.25 and 6.26 for the WPF and the
XWPF cases, respectively.

The preceding fitted Weibull distributions can be used in the probabilistic
analysis of these kinds of structures, as these distributions provide an analytical
expression.

Another source of data for initial flaws distribution can be found in [90]. In this
paper, the initial flaws depth and width for Aluminum 2024-T3 is described, as
shown in Figures 6.27 and 6.28, respectively. These distributions can be easily
approximated by log-normal distributions. Results for Aluminum 7075-T6 and
2524-T3 are also available.
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FIGURE 6.24 PDF of EIFS, XWPF(37), regular paper; crack lengths are in
inches.

TABLE 6.3 Parameters for Weibull approxi-
mation (for crack length in inches).

WPF(33) XWPF(37)

α 0.918 1.0
β 7.320582 g10−4 8.38062 g10−4

aE 755.696012 1193.22914
bE 0.918 1.0

In [91], EIFS distributions for corroded and noncorroded aircraft fuselage
splices are described. The distribution can be approximated by a Weibull
distribution, as shown in Figure 6.29.

In [86], EIFS of inclusions in aluminum 7050-T7451, which can be approxi-
mated by a log-normal distribution, is shown in Figure 6.30.

It can be seen that the magnitudes and the distributions of initial flaws are
not always the same. In some results, a Weibull distribution is a good fit to
the experimental result. In other cases, a lognormal distribution is a better
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FIGURE 6.25 A fitted Weibull distribution (bolder line) to the EIFS CDF of
Figure 6.21; crack lengths are in inches.
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FIGURE 6.26 A fitted Weibull distribution (bolder line) to the EIFS CDF of
Figure 6.22; crack lengths are in inches.
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FIGURE 6.27 PDF of EIFS depth for Aluminum 2024-T3; depth is in microns.
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FIGURE 6.29 CDF of corroded (grey) and noncorroded (black) aluminum; crack
length is in inches, values in microns are also shown.
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approximation. It seems that every case should be treated separately, with a
good inspection of the experimental results. Anyway, experimental results are
essential to the characterization of the initial cracks in a given structure. Such
experiments are very expensive and time consuming. The best thing to do is to
initiate a joint research effort through the academy and the industry, in order
to create a common database for the probabilistic analysis of certain types of
structures.

6.5 PROBABILISTIC CRACK GROWTH USING THE

“UNIFIED” APPROACH [92, 93]

The problem of crack growth is a major issue in the prediction and main-
tenance of aerospace structures, as well as other structural elements in
mechanical and civil engineering projects. Prediction of expected life of a
structural element due to constant (static) and alternating loading (fatigue)
is of major concern to the designers. Prediction of remaining life of the struc-
tural elements influences the decisions of maintenance engineers (checking
intervals, corrections, replacements).

For the last three decades, fracture mechanics have been the main tool with
which such problems have been treated. During the last three decades, frac-
ture mechanics scientists and engineers have made tremendous advances,
from the basic practical approach dominated by Paris-Erdogan law to increas-
ingly sophisticated crack growth models. Mathematical and metallurgical
models (both deterministic and probabilistic), and experimental analysis of
simple models and testing of complex structures have resulted in thousands
of publications, dozens of models for crack growth and life prediction, main-
tenance decision-making processes, and numerous computer codes for crack
growth analysis.

A major concern of fracture mechanics is the influence of the load ratio on the
behavior of cracks. In “real life,” both static and alternating (i.e., vibrations)
loadings exist simultaneously. This is expressed in the load ratio R, which is
classically defined as

R = Smin

Smax
(6.19)
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Smin and Smax are the minimal and maximal applied stresses, respectively, in
the far field. Thus, R = −1 refers to “pure” vibrations (mean value of the load
is zero), and R = 0 is a loading between zero level (Smin = 0) and a maximum
value (Smax).

Experiments have shown that the value of R influences the crack growth rate
(da/dn, where a is the crack length and n is the number of load cycles). It was
argued that the reason for this influence is the crack closure effect. Basically,
this approach claims that the crack is not propagating while the crack’s faces
are compressed to each other. Crack closure was first introduced by Elber
[94, 95]. Since then, many publications treated the phenomena, suggesting
models for the closure phenomena (e.g., [96]) and methods to measure the
driving force due to crack closure. The ASTM introduced a standard method
(ASTM standard E647) for its measurement, and a number of numerical
codes for its computation were developed (e.g., [97, 98]). The crack closure
is also claimed to be the reason for the different (and sometimes contradict-
ing) behavior of very short cracks and micro-structural cracks. In the last
decade, some experimental results have shown that the role of closure in the
crack growth process might have been exaggerated. Measurements of closure
stresses were done in 10 separate labs (i.e., [99, 100]), with completely differ-
ing results. Experiments done in vacuum did not show the R effects on the
results (i.e., [64, 101, 102]). Some approaches, which are considered contro-
versial, have been published, claiming that the crack growth driving forces
depend not only on the change in the stress intensity factor (SIF) �K , but on
additional (mainly local internal) stresses.

One of these approaches, the so-called “unified” approach, is described in
many papers by the NRL research group (i.e., [65, 103–107] and cited refer-
ences). According to these works, the growth of the crack depends on both
�K and K max, and in order for a crack to grow, two thresholds values must
be met. According to this approach, the local driving force of short cracks
is comprised of two stresses—one originated from the far field stress inten-
sity factor and one from local internal stresses close to the crack tip. These
local stresses “create” local R values near the crack tip, which are different
from the far field R value. The internal stresses were measured [108] and
compared to finite element computations. By using this approach, the behav-
ior of both short cracks and long cracks can be treated using one “unified”
growth law. This approach is supported by data analysis of many previous
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experimental results for many materials described by numerous authors and
laboratories.

Another approach, which somehow emerges from the previous one, is
described in many publications of Kujawski (i.e., [109–111]). According to
this approach, the driving force for crack growth is not the stress intensity
factor alone, but a combined parameter

(
�K+ · K max

)0.5, where �K+ is the
positive part of the applied stress intensity factor. When plotting previously
published experimental results for aluminum, steel, and titanium alloys, the
curves of da/dn vs. this combined parameter were collapsed into an almost
single curve (for a given material), showing almost no effects of R.

In this section, these two approaches are used in order to write two empirical
crack growth models for an Aluminum 2024-T351 (but can be performed for
any other material for which experimental results are available), which are
different from those used in industry today. The main tool used today for
crack propagation analysis in the industry is the NASGRO 4 code, which
was developed by NASA and is maintained presently by Southwest Research
Institute in San Antonio, TX. After these empirical rules (which best fit the
experimental results) are written, they are used to demonstrate the prediction
of the crack length as a function of the load cycles, without the need to use
crack closure based methods.

The experimental raw data for long and short cracks in Al 2024-T351 is taken
from [110], quoted from [112] and [113]. The data presented here were taken
from [110] for 8 values of da/dn and are shown in Figures 6.31 and 6.32. For
clarity, the sampled data points are connected by straight lines in a log-log
scale, which do not represent all of the intermediate results. Crack length
histories for two pairs of (�S; R) were taken directly from [112], and are
shown and discussed later in this section.

The data from the regular tests (long cracks) were plotted on a �K − K max

plane in Figure 6.33. This is a planar projection (on the �K − K max plane) of
a 3-D plot, where the Z-axis is da/dn. On this plot, points of equal R lie on
straight lines, whose slope is (1 – R). Three R lines are also shown. A family
of experimental data points for the L-shaped curves is thus obtained. Such
models were successfully depicted in the past for many dozens of materials in
the works described in [104–108].
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(values of da/dn for each family of symbols are shown in boxes).

In Figure 6.34, the experimental results of Figure 6.33 were smoothed. The
L-shaped curves were drawn for the smoothed data, and “virtual data points”
from the smoothed curves were selected. These are shown in Figure 6.34.
A straight line was made through the corners of the L-shaped curves, whose
slope is 0.73. Thus R ∗ = 0.27. The asymptotic values of �K ∗

th were plotted
against K ∗

maxth
(where the subscript “th” stands for “threshold”), and are

shown in Figure 6.35. In the same figure, the straight line

�K ∗
th = 0.73 · K ∗

maxth
(6.20)

is also plotted. The single straight line obtained suggests that the crack growth
physical mechanism is not changed (for this material) during the propagation
process. For each level of da/dn there are asymptotes for K ∗

maxth
and �K ∗

th,
the values of which are shown in Figure 6.35. Also shown are best fits to a
second order function of log (da/dn):

K ∗
maxth

= 84.914 + 16.503 · log
(

da
dn

)
+ 0.8252 ·

[
log
(

da
dn

)]2

�K ∗
th = 61.793 + 12.005 · log

(
da
dn

)
+ 0.6002 ·

[
log
(

da
dn

)]2 (6.21)

This is in agreement with Eq. (6.20).
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FIGURE 6.36 Threshold values as a function of da/dn.

The thresholds below which a crack arrest is obtained were defined arbitrarily
when da

dn = 1 · 10−10, and the following values were obtained:

�K ∗
th(lowest) = 1.75 MPa

√
m

K ∗
maxth

(lowest) = 2.4 MPa
√

m
(6.22)

These threshold values are also shown as limits in Figure 6.34. An optimal
surface was fitted to the smoothed results described in

da
dn

= A · (K max − K ∗
maxth

)n · (�K − �K ∗
th
)m

Figure 6.34. This is given by

A = 1.08033356 · 10−7; n = 1.968271; m = 1.680724;

K max and �K are in MPa
√

m,
da
dn

is in
m

cycle
(6.23)

Eq. (6.23) is the differential equation for the “unified” approach model. Note
that K ∗

maxth
and �K ∗

th depends on da/dn, according to Eq. (6.21), and �K ∗
th

can be expressed as a function of K ∗
maxth

with Eq. (6.20).
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The experimental raw data of Figure 6.31 was processed for a da/dn vs.(
�K+ · K max

)0.5 presentation, using the following rules:

K max = �K
1 − R

;

�K+ = �K for R ≥ 0;

�K+ = K max for R < 0

(6.24)

Results are shown in Figure 6.37. The previously smoothed results were also
processed, and are shown in Figure 6.38. The results of both Figures 6.37
and 6.38 were approximated by the following equation:

da
dn

= C · (PK)m

PK = (�K+ · K max
)0.5

C = 7.648179 · 10−12

m = 4.05

PK units are MPa
√

m,
da
dn

are
m

cycle

(6.25)
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FIGURE 6.37 Collapsed experimental data for different values of R.
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FIGURE 6.38 Collapsed smoothed experimental results for different values of R.

In log-log scale, this is a straight line, which is also plotted in the figures.
Eq. (6.25) is the differential equation for the

(
�K+ · K max

)0.5 approach
model.

In describing the NASGRO model, some of the equations already written are
repeated for clarity.

The general crack growth equation used in NASGRO is

da
dN

= C
[

1 − f
1 − R

�K
]n
(

1 − �K th

�K

)p

(
1 − K max

K c

)q (6.26)

where C, n, p, and q are material properties and

�K —stress intensity factor (depends on stress, crack length, geometry
factor)

f —crack opening function for plasticity induced crack closure
�K th —threshold stress intensity factors
K c —critical stress intensity factor

K max = �K
1 − R



6.5 Probabilistic Crack Growth • 255

p and q are material constants. A more simplified model, which does not
include crack closure effects, is given by the following Forman equation:

da
dn

= C (�K)n(
1 − �K

(1 − R) K c

)q for 0 ≤ R < 1 (6.27)

For Aluminum 2024-T351, the following material data are given in the
NASGRO database:

C = 6.054 · 10−12

n = 3

q = 1

K c = 1181 MPa
√

mm

da
dn

is in mm/cycle

(6.28)

Eq. (6.27) can also be solved numerically, using the TK Solver™ program
(see Chapter 7) to produce curves of the crack length a as a function of the
load cycles n. These computations are not presented here, as the procedure
was demonstrated in [73]. Nevertheless, in the NASGRO database, the slope
of the straight line fitted to the experimental data results of da/dn vs. �K is
smaller than the slope of the experimental results depicted in Figures 6.34 and
6.35, and suggests that the number of cycles required reaching a critical crack
length is higher, and therefore NASGRO predicts longer life to the cracked
structure.

The experimental results on which the NASGRO material data is based (i.e.,
[114, 115] and internal industry reports) are different from those described
in [112, 113]. The experimental points lie in the same region described in
Figure 6.31, but the slope is smaller. This will yield a slower growth of the
crack, and consequently a higher value for the life of the structural element
is obtained. The fact that different experimental results presented in the lit-
erature are sometimes inconsistent was already pointed out in the past [116],
and should be further investigated in the future.

Eq. (6.23) describes the “unified” crack growth model. It should be noted that
both K∗

max and �K∗
th of this equation are functions of da/dn, as described in

Eq. (6.21). Therefore, a numerical solution was applied in order to compute
the crack length as a function of the load cycles. Without loss of generality,
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a 2-D crack in an infinite plate was numerically solved. Therefore, a and
a∗ refer to half crack lengths. The numerical solution was performed using
the TK Solver program [41]. Eq. (6.25) describes the

(
�K+ · K max

)0.5 driving
force approach, and was also numerically solved using the TK Solver program.
Computations were performed until a half crack length 0.005 m (5 mm) was
obtained.

In Figure 6.39, these two methods are shown for �S = 200 MPa, R = 0. In
Figure 6.40, a smaller stress is applied, �S = 75 MPa, for R = 0.5. Both meth-
ods agree very well. Nevertheless, it should be noted that the results of the(
�K+ · K max

)0.5 method are very sensitive to the “best” slope calculated from
the data points described in Figures 6.37 and 6.38, and therefore should be
examined with extreme care.

The model described in Eq. (6.23) was compared to experimental results
described in [112]. In the latter, crack length vs. load cycles curves for
single edge notched specimens under bending are shown. The model pre-
dictions and experimental results for the crack growth (length above the
initial crack length) are shown in Figure 6.41, for two pairs of �S; R. Good
agreement is demonstrated for the first half lifetime of the specimens,
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FIGURE 6.39 Crack length propagation for �S = 200 MPa, R = 0, calculated
with two methods.
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while somewhat less agreement exists for the second half lifetime (toward
failure).

The “unified” approach states that unless
(
K max − K∗

maxth

)
> 0 and(

�K − �K∗
th

)
> 0, there will be no growth in the crack length (as can also be

seen from Eq. (6.23)). A value of a critical initial crack length a∗ below which
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no crack growth can occur can be computed by using the numerical algorithm
developed for the computation of the crack growth (based on Eq. (6.23)).
Such values are shown in Figure 6.42, for different values of applied stress �S
and stress ratio R. In Figure 6.43, a∗ values for the right end of Figure 6.42
are shown, in microns (1 micron = 1 micrometer = 1 × 10−6 meter).

The threshold values of a∗ shown in Figures 6.42 and 6.43 can be used to check,
in future experiments, the validity of the controversial “unified” approach.
According to this approach, initial cracks with lengths smaller than a∗ should
not propagate during a loading with the compatible �S and R values.

The use of Eq. (6.28) yields a longer lifetime for the cracked structural ele-
ment. Typically, about twice the load cycles were required using the NASGRO
model (to get a given crack length) than those required by the models
described by Eq. (6.23) or Eq. (6.25). Thus, this model seems to be less
conservative in a design process.

To demonstrate the probabilistic analysis, one has to know or to estimate the
initial values of crack lengths. In the previous section, the EIFS method was
described, and results based on [88] and [89] were depicted. Care must be
taken as to what units are used in the analysis. In Section 6.4, crack lengths
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FIGURE 6.42 Critical crack length a∗ (below which crack will not propagate).
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were shown in inches. In this section, most of the length units are in meters and
microns (10−6 meter). Therefore, for the numeric example some conversion
of the EIFS must be performed.

In Figure 6.44, the EIFS of the WPF series experiments (see Section 6.4) is
plotted on a regular paper. The values in this figure are identical to those in
Figure 6.22 (EIFS), which was on semi-log paper. Then, values are changed
into meters. In Figure 6.45, the results for the CDF and PDF of crack length
in meters are described.

The Weibull distribution for the EIFS (in meters) is given by

FA0 (a0) = 1 − exp
(
−AE · aBE

0

)
AE = 22014.4; BE = 0.918

or

FA0 (a0) = 1 − exp
[
−
(

a0

β

)α]

α = 0.918; β = 0.000018594

(6.29)
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FIGURE 6.44 Calculated CDF of Yang’s results (diamonds) and approximated
Weibull distribution (line); regular scales.

where a0 is the initial crack length (in m), and AE and BE (or α and β) are the
Weibull distribution parameters.

The mean value μa0 and the standard deviation σa0 of the EIFS value of a0

are given by

μa0 = β · �

(
1
α

+ 1
)

= 0.00001936 m = 19.36 micron

σa0 = β2
[
�

(
2
α

+ 1
)

− �2
(

1
α

+ 1
)]

= 0.0000211 m = 21.1 micron

Coefficient of variation = 1.09 (6.30)

The crack growth model (Eq. (6.23) and Eq. (6.21)) was numerically solved
using the TK Solver program by UTS [41]. Solution was done for the following
2-D case: an infinite plate with a hole of radius R = 0.005 m (5 mm), and
symmetric double through cracks of lengths a, under tension (see Figure 6.46).
The stress intensity factor for this case is [33]:

�K = �S · √
a · √

π ·
[

1 + 2.365
(

R
R + a

)2.4
]

(6.31)

Other cases can be solved by introducing a suitable expression for the stress
intensity factor. Stress intensity factors for numerous cases can be found in
Murakami et al. [84].
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FIGURE 6.45 Approximated Weibull distribution (a) CDF, (b) PDF.

The EIFS CDF is approximated by Eq. (6.29). These values were obtained
for a three-dimensional case. Nevertheless, for demonstration purposes, these
EIFS values were used in the numerical computations described here, as the
2-D case is very similar to the 3-D case.

A reciprocating tensile load added to a static tension was used for the
numerical example described. A value of �S = 75 MPa and a stress ratio
R = 0.5 were selected. Deterministic analysis of such a case (accord-
ing to [92]) showed that the deterministic initial crack threshold (the
value below which the crack will not propagate) is a∗ = 0.0000168 m =
16.8 microns.
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FIGURE 6.47 100 sampled initial crack lengths (diamonds) and the compatible
trimmed Weibull CDF.

A sample of 100 initial crack values with the distribution given by Eq. (6.29)
was created during the program run. In Figure 6.47, these initial values are
shown in ascending order as diamond symbols. On the same figure, the cor-
responding Weibull distribution (Eq. (6.29), approximated from [88]), is also
shown in full line.
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FIGURE 6.48 Crack length growth for 100 samples (35 of which propagate).

In Figure 6.48, the crack lengths vs. load cycles curves for these 100 cases are
plotted as a function of the load cycles. Out of the 100 initial cracks, only
35 cracks were propagating, while 65 cracks (65%) were below the threshold
value and did not show any growth. It should be noted that due to the random
aspects of the solution, every computation provides different results, although
mean and variance should be similar, converging to real values as the number
of samples increases. A large dispersion of the crack growth behavior can be
seen in Figure 6.48. In order to analyze the dispersion in the 35 propagating
cracks, the number of load cycles required to reach a length of a = 0.005 m =
5 mm was extracted from the computations. The distribution of the load cycles
required to produce this length of crack was analyzed statistically. Although
a large dispersion is shown in the figure, the dispersion in the load cycles
required to get a given crack length is smaller than the dispersion in the initial
crack lengths. The mean number of required load cycles is 47,215 cycles, with
a standard deviation of 12,363 cycles. The COV is 0.262, while the COV in
Eq. (6.30) is 1.09, thus the dispersion in load cycles (to obtain a given crack
length) is smaller than the dispersion of the initial EIFS values. Nevertheless,
it should be noted that a factor of more than 3.3 exists between the maximum
number of load cycles shown (75,100 cycles) and the minimum value (22,500
cycles). Such dispersion in “life cycles” should certainly be taken into account
during any design process.

The number of nonpropagating cracks in the computed sample should tend,
for an infinite number of samples, to the CDF of the Weibull distribution for
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FIGURE 6.49 Crack length growth for 500 samples (182 of which propagate).

the threshold value a∗ = 0.0000168 m = 16.8 microns, which is 0.598. Thus,
for the EIFS distribution described by [88], about 60% of the flaws will not
propagate. This was also checked by running a sample of 500 specimens. In
Figure 6.49, the propagation of 182 cracks of this computation is shown. The
number of nonpropagating cracks is 318, which is 64% of the total number
of specimens. This percentage should approach 60% for an infinite number
of specimens. For this case, the number of load cycles required to obtain a
crack of length 0.005 m = 5 mm for the 182 propagating cracks has a mean
value of 49,123 cycles, and the standard deviation is 12,671 cycles. The COV
is 0.258, very similar to the results of 100 specimens. The ratio between the
highest value to the smallest one is 3.65.

Statistical analysis of the results shown in Figure 6.49 was described in [93].
Suppose that the structure fails when the cracks reach a value of 0.005 m
(5 mm). Then the time in which the curves intersect this length is the time to
failure. But only X% of the cracks propagate, which means that (100 – X)% do
not propagate; i.e., their life expectancy is infinite. This concept is depicted
in Figure 6.50. In this sketch, a distribution is shown for the time to fail-
ure, whose integral is not 1, but X%. The other part of the distribution
is at time = ∞, and is very similar to the known delta function. The area
under the spike is (100 – X)%, thus the two parts together add to a 100%
probability.
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FIGURE 6.50 Distributions of cycles to failure and crack length (at given time).

Another cut can be made vertically; i.e., the crack length distribution at a
given number of cycles, or a given time. This distribution has a probability of
X%, while all the cracks that do not propagate are in a spike at a value of
crack length that is the initial crack length (practically zero compared to the
lengths of the propagating cracks). On this cut, the critical value of the crack
(length of crack in which the structure fails) can also be plotted, because this
quantity is also a statistical parameter. Then, a “Stress-Strength” model is
created, from which probability of failure can be calculated.

The demonstrated numerical example is for a specific configuration.
Nevertheless, any other 2-D configurations may be computed using the same
approach. This can be done by replacing the expression for the SIF (Eq. (6.27))
in the numerical solution program with another expression. Also, the EIFS
values were approximated by a Weibull CDF. When experimental results show
clearly that the distribution is of another kind, the numerical procedure can
be updated very easily.

No attempt was made in this section to include the stochastic behavior of the
crack’s growth except the random behavior of the EIFS values. In order to
include such effects, a stochastic process based on the experimental results
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FIGURE 6.51 Flowchart of the demonstrated computation process.

can also be incorporated into the computation tool by multiplying the crack
model (Eq. (6.23)) with a stochastic process of given distribution and statistical
moments.

In Figure 6.51, a schematic flowchart of the demonstrated procedure is
described. In this chart, the rectangular elements represent the basic pro-
cedure, while the “balloons” represent the specific methods used in the
demonstrated procedure.

6.6 STOCHASTIC CRACK GROWTH AND THE

PROBABILITY OF FAILURE FOR RANDOM

EXCITATION [118]

Practically all the dynamic excitation of aerospace structure is random, and
not harmonic. Harmonic excitation can be found only in a small number of
cases, such as rotating machinery (e.g., propeller and jet engines, helicopter
blades rotation), but the main excitation originates from the turbulent flow
around the structure. Therefore, the use of harmonic alternating loads of
constant amplitude in both fatigue and fracture mechanics may be impractical.
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Even the case of several harmonic loadings, each having different amplitude
and acting for a different number of load cycles, may present difficulties to
the analyst.

Suppose that a structure is loaded by a stress S1 for n1 cycles, S2 for n2 cycles,
etc. From the S-N curves of the relevant material one can find N1, the number
of cycles to failure in stress S1, N1 the number of cycles to failure in stress
S2, etc. A well-known law, the Miner equation, was set up to define the
accumulated damage in the structure. Miner’s law states that

D =
m∑
1

ni

Ni
≤ 1 (6.32)

This means that as long as the sum D is smaller than 1, the structure does
not fail.

There are many limitations to Miner’s law. It treats several harmonic loadings
(and not random loads), it does not take into account the order of the loading,
and experimental results showed that sometimes structures fail when D does
not reach the value of 1, and sometimes they fail with values of D larger than 1.
Some design codes state, to be on the safe side, that the structure is considered
to fail when D = 0.25. With all the advances in fatigue and fracture mechanics
analyses, there is still no practical law better than Miner’s law, and thus it is
used extensively in industry.

When trying to establish some rules to the failure of structures under random
loading, a direct use of Miner’s law is impractical, mainly because there are
no well defined expressions that connect the applied stress to the number of
cycles, which does not exist for a random load. There are several methods to
express an equivalent number of load cycles; the best known is the “rain fall”
analysis, which is frequently used in practical structures analysis.

The method described in this chapter, based on suggestions of [77], may
give some reasonable results for the random loading cases. It is based on
the method described for harmonic excitation (described earlier), where
harmonic loads are replaced with some equivalent load, the stress ratio R
is replaced by another expression, and analysis is made for time to failure
rather than cycles to failure. The computation of the equivalent parameters
is based on the analysis of stochastic processes; therefore, some basic results
are presented here.
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A stochastic loading cycle may be wide band or narrow band loadings, with
power spectral density function (PSD) similar to those shown in Chapter 3.
A wide band excitation presents randomness in both the local peaks of the
stress and the frequency (a wide range of frequencies exists, see Figure 3.3),
and the rate of crossing the time axis (also called zero crossing) is random.
A narrow band process is random in its local peaks, but there is one major
frequency, and the rate of zero crossings is almost constant (see Figure 3.4).

One should remember that a structure behaves like a filter to random exter-
nal excitation. It responds to wide band external excitation with narrow band
responses, centered on the resonance frequencies of the structure. Also, the
stress response of a practical structure is usually centered on the first reso-
nance frequency. Therefore, in many practical cases, narrow band stresses are
the reason for the structure stress response, even when the external loading
is wide-banded. Spectral moments λi were described in Chapter 5, Eq. (5.44).
A stochastic signal can be characterized by a spectral width parameter ε

ε =
√

1 − α2 (6.33)

α is the regularity parameter, defined with the spectral moments:

α = λ2√
λ0λ4

(6.34)

For a narrow band process, ε → 0 and α → 1.

It can be shown that the mean value of the number of local maximum points
per unit of time, which are above a given value u, is given by [77]:〈

Mu(0, T)
〉

T
= ν2

[
1 − �

(
u

ε
√

λ0

)]
+ ν0 · exp

(
− u2

2λ0

)
· �

(
u

ε
√

λ0
· ν0

ν2

)
(6.35)

In this equation, � is the cumulative distribution function (CDF) of the
standard normal distribution and

ν0 = 1
2π

·
(

λ2

λ0

)1/2

; ν2 = 1
2π

·
(

λ4

λ2

)1/2

(6.36)

ν0 is the zero upward crossing rate of the process.

For a narrow band process (ε → 0), Eq. (6.35) becomes〈
Mu(0, T)

〉
T

= 1
2π

√
λ2

λ0
· exp

(
− u2

2λ0

)
(6.37)
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For a stationary Gaussian (normal) process with zero mean and a variance
λ0, the probability density function of the peaks’ heights is given by

fmax(z) = ε√
λ0

φ

(
z

ε
√

λ0

)
+
√

1 − ε2 · z
λ0

· exp

(
− z2

2λ0

)
· �

(
z
(
1 − ε2)1/2

ε
√

λ0

)

(6.38)

where φ is the probability density function (PDF) of the standard normal
process. For a narrow band process (ε → 0), Eq. (6.38) becomes

fmax (z) = z
σ2

s
· exp

(
− z2

2σ2
s

)
, z ≥ 0 (6.39)

This function describes a Rayleigh distribution for the peaks’ heights. If α is
small (ε → 1); i.e., a wide band process the PDF of the peaks’ heights is

fmax (z) = 1

σs
√

2π
· exp

(
− z2

2σ2
s

)
(6.40)

which describes a normal distribution of the peaks’ height. For a narrow
band process, the peaks and valleys are in the range between Smax = ms + Z
and Smin = ms − Z, where Z is the peak’s height, distributed according to
Eq. (6.38). The range �S = H = Smax − Smin is equal to 2Z.

To demonstrate the use of the preceding equations, two random stress
processes are defined. Both processes have a RMS value of Srms =
2000 kgf/cm2 = 196.13 MPa. One is a wide-band process, with constant PSD
between 20 Hz and 2000 Hz, and the other is a narrow-band process, between
145 Hz and 155 Hz. In Figure 6.52, the PSD functions for both processes are
shown.

In Table 6.4, some statistical parameters for both examples are described.
The average number of peaks per unit time is obtained using Eqs. (6.39) and
(6.40). Results are shown in Figure 6.53.

In Figure 6.54, the PDF of the peaks’ heights is shown for the narrow band
(Rayleigh) process, and the wide-band process. For comparison, PDF is
shown also for a white noise process (white noise has a constant PDF on
the frequency range −∞ < ω <+ ∞).

In [77] it was suggested to use the tools and expressions developed for a
harmonic excitation for the computation of crack propagation in a structure
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FIGURE 6.52 Two PSD functions for numerical examples.

subjected to random excitation, but to change the stress difference as follows:

Smr = 〈�S〉 = 〈Smax〉 − 〈Smin〉
Smax = ms + Z

Smin = ms − Z

(6.41)
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TABLE 6.4 Statistical parameters for the examples (units
are in kgf, cm, sec, radians).

Parameter Narrow-Band Process Wide-Band Process

λ0 4000000 4000000
λ2 3.5545 · 1012 2.1268 · 1014

λ4 3.1634 · 1018 2.0151 · 1022

ν0 150.03 1160.52
ν2 150.14 1549.19
α 0.99924 0.7491
ε 0.038882 0.6624
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FIGURE 6.53 Mean number of peaks above a given level, per unit time.

Smr is the mean value of the applied stress difference, where Z is the random
heights of the peaks as described in Eq. (6.38). Also Smr = 2〈Z〉, and by
integration of Eq. (6.38) the following expression is obtained:

Smr = 2 · Srms ·
√

π

2
· (1 − ε2

)
(6.42)

The frequency fs in the equations is the number of the maximums per unit
time above all the values of the stochastic process, which means the value of
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the plateau in Figure 6.53. The stress ratio R in the harmonic loading crack
propagation equations is replaced by

Q = 〈Smin〉
〈Smax〉 = ms − 〈Z〉

ms + 〈Z〉 (6.43)

The following example demonstrates the application of the described proce-
dure. A plate of infinite width with a centered initial crack of width 2a0 is
loaded perpendicular to the crack direction. The plate is made of 4340 steel,
unnotched with UTS = 158 ksi. The S-N curve for this material is shown in
Figure 6.55. The crack propagation parameters are described in Table 6.1. The
plate is loaded by a narrow band according the PSD described in Figure 6.52.
An initial half crack length a0 = 0.1 mm is assumed. Results for different
values of R are described in Table 6.5.
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FIGURE 6.54 PDF of peaks’ heights for the two examples, and for a white noise
process.

TABLE 6.5 Results for narrow-band excitation.

0.5 0.3 0 −0.1 −0.2 −1 R

490.9 490.9 490.9 490.9 490.9 490.9 Smr
245.5 245.5 245.5 245.5 245.5 245.5 〈Z〉
736.4 455.9 245.5 200.8 163.6 0 Smean
981.9 701.4 490.9 446.3 409.1 245.5 Smax
1.27 2.5 5.1 6.2 7.3 20.4 a∗
93 108 120 159 204 887 Time to Failure (sec)
13500 16200 18000 23850 30600 133050 Cycles to Failure
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The values of the cycles to failure for the different R values are depicted in
Figure 6.55, together with the S-N curve of the material for R = 0. A good
agreement can be seen for R = 0.

For a wide-band excitation with the same parameters, results are described
in Table 6.6.

Note that in Table 6.6, the peaks to failure are written, as there is no meaning to
cycles to failure. The time to failure is smaller than the one found for narrow-
band excitation. Although the loading is generally smaller, more peaks exist,
and these may be equivalent to more loading cycles.
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FIGURE 6.55 S-N curve for 4340 steel (squares) and results for random loading
(diamonds).

TABLE 6.6 Results for wide-band excitation

0.5 0.3 0 −0.1 −0.2 −1 R

368.1 368.1 368.1 368.1 368.1 368.1 Smr
184.0 184.0 184.0 184.0 184.0 184.0 〈Z〉
552.1 341.8 184.0 150.6 122.7 0 Smean
736.1 525.8 368.1 334.6 306.7 184.0 Smax
1.27 2.5 5.1 6.2 7.3 20.4 a∗
19.95 22.75 25.35 33.53 43.25 187.8 Time to Failure (sec)
30903 35240 39267 51938 66994 290902 Peaks to Failure
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In Figure 6.56, a flowchart for the computation process is described.

2.  Calculate the number of stress peaks above a given value (Eqs. (6.35),
(6.37)) using numbwb.tkw (see Appendix) or an equivalent program. Define
the equivalent frequency fs.

1.  For the given process, calculate statistical moments using Eq. (5.44).
Calculate a and e using Eq. (6.33), (6.34). Calculate n0, n2, using Eq. (6.36). 

3.  Calculate peaks distribution using zdistr.tkw (see Appendix) or an
equivalent program. This program computes also n0, n2, a, and e.

4.  For the relevant material find crack propagation parameters (NASGRO)
and geometric factor to the relevant geometry.

5.  Calculate Smr using Eq. (6.42). 

6.  Knowing the mean static stress and mean of the peaks Z calculate Q2the
equivalent R value, using Eq. (6.43).

7.  Calculate a* using Eq. (6.13). 

8.  For 0 , Q , 1 use the MATLAB file crack2.m. For Q , 0 use crack3.m. In the 
MATLAB file, the relevant data should be introduced for [tspan] and for a0. 
Calculate crack length a vs. time t. 

9.  Find the time to failure when a 5 a*.

FIGURE 6.56 Flowchart for the computation of time to failure under random
stress.
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7.1 DYNAMIC DESIGN CRITERIA

Real practical structures are seldom subjected to static-only or dynamic-only
excitation. Usually, both kinds of excitation exist simultaneously. An airplane
structure is subjected to quasi-static loads during maneuvering, together with
random vibration excitation of boundary layer noise. A bridge or a building is
subjected to static loads due to structural weight and to dynamic winds (and
other dynamic excitations, like base movements) loads. An automobile is
subjected to static load due to weight and passengers’ loads, and to a dynamic
(vibration) excitation of rough roads. The structural design has to answer both
kinds of loads. A good, optimal design is the one where the acting stresses
are lower than the allowable stresses with a pre-determined factor of safety.
When this factor of safety is higher than the one required, the design is too
conservative, not optimal, and may be too expensive. Of course, when the
stresses are higher than the allowables, the structure fails and this design is
bad for all purposes.

Usually, structures are designed according to input specifications. These spec-
ifications may be formal (like military standards or civil engineering design
codes). They also may be based on past experience of the designers (both per-
sonal and institutional experience), or based on data collected on previous
models’ designs. It is quite advisable that a new model design of an existing
structural system will be based as much as possible on knowledge collected
in the previous design, as well as feedback from field experience and tests of
this previous design.

275
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It is essential that the design criteria set at the beginning of a project will be the
best and clear as possible. Erroneous criteria lead to a bad designs. Bad design
is not only the one that fails, but also the one that is too conservative—too
heavy, too expensive.

Many young engineers and many design firms use the following criterion for
the combination of static and dynamic loadings:

“Design the structure to an equivalent static load which is equal to the existing
required static load + 3 standard deviations of the dynamic loads.” This, they
think, will take care of the static-dynamic combination and will include at least
99.73% (3σ) of the dynamic excitation, while doing only a static analysis. It is
done mainly because these people are afraid of the structural dynamics anal-
ysis! This approach will be called “the equivalent static input design criteria,”
and is well criticized here. This design criterion may lead to an erroneous
design. The following two examples demonstrate the problematic nature of
this criterion.

7.1.1 CASE OF UNDER-DESIGN

Suppose the cantilever beam whose parameters are listed in Table 2.1 of
Chapter 2 is loaded by the random tip force described in Chapter 3,
Section 3.5 and in Figure 3.5. A static load of 1 g is also applied to the same
beam. The loads on the beam are therefore a static load of 1 g, perpendicular
to the beam, and a random tip force whose RMS value is 1 kgf. Using the pre-
vious “equivalent static input design criterion,” one has to statically compute
the beam to the following loads:

Equivalent static load = 1 g in the y direction
(7.1)+ 3 · RMS of vertical tip force

Solving each loading of the right-hand side of Eq. (7.1) results with the
bending stress distribution shown in Figure 7.1, and designated “design cri-
terion.” The ANSYS® input file is stat1.txt (see Appendix) for both static
cases.

The “true” dynamic solution for the random tip load case was given in
Section 3.5. The three times RMS of the dynamic stress (3σ) covers 99.73%
of the design history. This can be added to the static solution (which is part
of the previous solution).
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FIGURE 7.1 True solution and “design criterion” solution, static + dynamic
loads, cantilever beam, a case of under-design!

Total bending stress = Stress due to 1 g + 3 · RMS of dynamic stress (7.2)

The resulting bending stresses, marked “true solution,” are also shown in
Figure 7.1.

This is clearly a case of a dangerous under-design, where the structure is
designed to withstand stresses that are lower than those that exist in the life
cycle of the product. A structure designed with the “equivalent static input
criterion” will fail during its life cycle.

7.1.2 CASE OF OVER-DESIGN

In this example, a concentrated mass whose weight is 1 kgf (and therefore
its mass is Mtip = 1/980 = 0.001020408 kgf · sec2/cm) is added to the tip of
the cantilever beam. This structure is also subjected to a gravitational field
of 1 g plus a random tip force excitation with the PSD given in Figure 3.5,
whose RMS value is 1 kgf. Two kinds of computations are done using the
ANSYS files listed in the Appendix. In the first computation (file stat2.txt of
the Appendix), an equivalent static loading of 1 g over the whole structure
plus a static tip force of 3 kgf (3σ) is applied. Results are shown in Figure 7.2,
designated “design criterion.” Next, the true response of the new structure
is done, using file stat3.txt of the Appendix. Results for the RMS values
are multiplied by 3, and added to the static results of 1 g loading. These are
depicted in Figure 7.2 and designated “true solution.”
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FIGURE 7.2 True solution and “design criterion” solution, static + dynamic
loads, beam with tip mass, a case of over-design.

In the solution of the beam with the tip mass, new sets of resonance frequen-
cies are obtained, which are compatible with the new structure. These new
frequencies are determined during the modal analysis that is performed using
file stat3.txt. This structure has the same rigidities as the cantilever beam, but
has a different mass distribution.

This is clearly a case of over-design, where the structure is designed to with-
stand stresses that are higher than those that exist in the structure during a
combined design loading. Although this design will not fail, an over-design is
usually heavier and more expensive.

The Correct Criterion

Using the “equivalent static input design criterion,” it was possible to present
two completely different simple examples, which resulted in an over-design
case and in (the much more dangerous case) an under-design case. Thus,
the effect of using this criterion is not in one direction. The correct design
criterion should never be based on the input, although inputs are usually the
outcome of the product design specifications, and are part of the contract
between the customer and the designers.

When a combination of static and vibration loads exists, the right design
criterion to adopt is the one based on the outputs rather than the inputs.

Combined output = Static output + 3σ of the dynamic output (7.3)
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Of course, in order to use an output criterion, a model of the system should
be built and solved (analytically or numerically). However, some kind of
model is also required when the erroneous “equivalent static input design
criterion” is used! The only difference is that use of the erroneous criterion
implies a static analysis, whereas the use of the correct criterion demands per-
formance of a dynamic analysis—something that many engineers prefer not
to do.

Today, most of the structural analyses performed in the industry for a variety
of structures are done using a finite element commercial code. Therefore,
a model of the structure is built anyway for every case. It seems that many
engineers fear to do dynamic analysis, even when the work is done in a finite
element code. There are no reasons for such a “fear.” The efforts required
to build a model for a structural element or a structural system in order to
perform a static analysis are almost identical whether only a static analy-
sis is done, or both static and dynamic analyses are performed. For both
cases, the main effort is to build the initial model, introduce the correct
geometry, material properties, and boundary conditions, and decide on the
failure criteria. Once this is done, running a dynamic analysis is a marginal
effort!

A more realistic example, which may represent a practical design issue, is
described here. The designed structure represents a payload carried externally
by an aircraft. It is connected to the carrying vehicle by two hooks, and has
three major structural elements: a nose structure, a main structure, and a
tail structure, connected by two interconnections—one between the nose and
the main structure, the other between the main structure and the tail. It is
assumed that the load on the carried structure originates from two sources—
the static maneuvering of the carrying aircraft, and vibrations transmitted
to the external structure through the connecting hooks. Note that these are not
the complete excitation in the real case. There is also the random vibrations
major input with which the external aerodynamic flow excites the external
payload. This input is not treated here, but the reader should remember to
take it into account when solving the real structural design.

The external payload is described in Figure 7.3, and is treated as a
beam. The stresses at the interfaces are the design criteria for the inter-
connections. The system is made of steel (E = 2100000 kgf/cm2, ρ = 7.959 ·
10−6 kgf · sec2/cm4, ν = 0.3), with a square cross-section (h = 10 cm).
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FIGURE 7.3 Geometry of the model for an external payload.
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FIGURE 7.4 PSD of external excitation applied to the hooks.

The external loads applied on the structure are:

1. A static maneuver of 5 g.

2. A random acceleration input applied simultaneously to the two hooks.
The PSD of the external load is shown in Figure 7.4.

The structure was calculated as a beam, using ANSYS (env5.txt, see
Appendix) static and spectrum modules. Results for displacements (relative to
the hooks) and bending stresses due to static loading are shown in Figure 7.5.
Results for dynamic response are shown in Figure 7.6.

In Figure 7.6, RMS values of displacements and accelerations at the front
and end tips of the structure are marked, as well as the RMS of the bending
stresses at the two connections, which are required for the design of these
connections.

From the outcome of these calculations, the design requirements for the two
connections can be written as follows:
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FIGURE 7.5 Displacements and bending stresses due to static loading.

For the nose-main structure connection:

Static stress of Stresss = 117 kgf/cm2;

Dynamic narrow-band response with RMS value of Stressrms =
374 kgf/cm2;

For three standard deviations, a total of Stress = 117 + 3 · 374 =
1239 kgf/cm2.

For the tail-main structure connection:

Static stress of Stresss = 168 kgf/cm2;

Dynamic narrow-band response with RMS value of Stressrms =
350 kgf/cm2;

For three standard deviations, a total of Stress = 168 + 3 · 350 =
1218 kgf/cm2.
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FIGURE 7.6 Displacements and bending stresses due to random vibration
loading.

If the equivalent static input design criterion is used, the static computation
should be done for a static load of g (static equivalent) = 5 g + 3 · 3.045 g =
14.91 g. Results for this computation, together with the results for the correct
combination of static and dynamic loading are shown in Figure 7.7.

It can be seen that the use of the equivalent static input design criteria results
in a significantly under-design, and using it in the design process will clearly
result in a structural failure.

The importance of pre-determination of design criteria is an essential part
of the design. A lot of thought and engineering efforts should be invested in
the process of determination of these criteria.
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7.2 THE FACTOR OF SAFETY

7.2.1 FACTOR OF SAFETY

The factor of safety was introduced into the design process hundreds of
years ago. It really was introduced in order to compensate the designers for
unknown design parameters, or in other words, uncertainties. Thus, although
structural probabilistic analysis started to gain access to design procedures
only in the last 30–40 years, the early designer used de facto a “device” to com-
pensate for uncertainties in their knowledge of the models and the structures’
properties, especially the allowable stresses.

This book is not intended to describe all the aspects of the factor of safety.
An extensive treatment of the subject, including history from ancient days,
can be found in a recently published book [119]. Some of the reasons for the
introduction of the safety factors are quoted here:

1. “To allow for accidental overloading … as well as for possible inaccur-
acies in the construction and possible unknown variables …” etc.

2. “A better term for this ratio is the factor of ignorance …” etc.

3. “Stresses are seldom uniform; materials lack the homogenous prop-
erties theoretically assigned to them; abnormal loads …” etc.
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4. “Uncertainties in loading, the statistical variation in material strength,
inaccuracies in geometry and theory and the grave consequences of
failure of some structures …” etc.

5. “Personal insurance for the design companies …” etc.

Usually, factors of safety are part of formal design codes and of the customer’s
specifications. Although the probabilistic approach to safety factors has many
benefits over the classical approach, not many of the present aerospace for-
mal design codes and specifications have yet adopted this approach. As design
establishments are formally tied to the formal requirements, the probabilistic
approach is used today only in part of the design processes. Nevertheless, a
combination of the classical safety factor approach with the structural prob-
abilistic methods can be adopted in order to both comply with the formal
requirements and enjoy the benefits of the probabilistic safety factor analyses.

The classical and the probabilistic safety factor procedures can best be
explained using the “Stress-Strength” model used by many statisticians, and
described in Chapter 5. Suppose a structure is under a load S, and has
strength R. The load S is not necessarily the external load acting on the struc-
ture. S is understood as a required result of a structural parameter obtained
in a structure of certain dimensions, material properties, and external loads.
It can be the stress in a critical location, the displacement obtained in the
structure, the stress intensity factor due to crack propagation, the acceler-
ation in a critical mount location, etc. The strength is not necessarily the
material allowable. It can be the yield stress, the ultimate stress, the maxi-
mum allowed displacement due to contact problems, the fracture toughness
of a structure, the buckling load of compressed member, etc. One can define
a failure function

g(R, S) = R − S (7.4)

and define a failure when
g(R, S) ≤ 0 (7.5)

Both R and S can be functions of other structural parameters, thus the failure
function, which describe a line in a 2-D space is, in general, a hyper-surface
of n dimensions, which include all the variables on which R and S depend.

Using these notations, there are several possible definitions for the safety
factor. The classical definition is

FSClassical = R
S

(7.6)



7.2 The Factor of Safety • 285

When this number is larger than 1, there is no failure. The design codes
demand a minimum value for FSClassical to avoid failure when uncertainties
exist, say FSClassical ≥ 1.2.

Another possible definition for the safety factor is for a worst-case design:

FSWorstCase = Rminimum

Smaximum
(7.7)

In this case, the minimum possible value of R (which may be a function of sev-
eral variables, or a number with known dispersion) is computed, and divided
into the maximum possible value of S. It is clear that FSWorstCase is smaller than
FSClassical. The advantage of FSWorstCase is that it takes into account known
dispersions in the structure’s parameters. Its disadvantage is that it assumes
that all the worst-case parameters exist simultaneously (although this may be a
rare case, with a very low probability), and therefore the resulted design is very
conservative. Examples of the use of FSClassical and FSWorstCase were described
in Chapter 5, which demonstrated that two different design procedures
can lead to inconsistent consequences, and also discussed the modifications
required for a certain design when the worst-case safety factor is used.

Another possible definition for the safety factor is for a mean value design,
sometimes called a central design:

FSCentral = E(R)
E(S)

(7.8)

E(.) is the expected value (the mean) of a parameter (.). In many cases, the
mean values coincide with the nominal values, and the classical safety factor
is identical to the central safety factor. For other cases where they do not
coincide, the reader can explore the examples described in [119].

All the three safety factors defined (Eqs. (7.6–7.8)) are using deterministic
values and the safety factor obtained is deterministic.

The stochastic safety factor was first introduced in [120, 121]. The same
concept was adopted later by others and is sometimes named probabilistic
sufficiency factor. The definition is

SFStochastic =
(

R
S

)
(7.9)
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As both R and S may be random variables (and can depend on many structural
parameters that are assumed random), the obtained stochastic safety factor
is also a random number. Using the stochastic safety factor, one may
answer the question, “What is the probability that a structure (with given
uncertainties) has a factor of safety smaller than a given value?”

The preceding definitions are demonstrated by a simple “Stress-Strength”
example. Suppose R has a normal distribution with mean μR = 1.2 and
standard deviation of σR = 0.06. S has a mean μS = 1.0 and a standard
deviation σR = 0.05. For both variables, the coefficient of variation is 5%.
The classical safety factor is

FSClassical = 1.2
1.0

= 1.2 (7.10)

which is an acceptable safety factor. For the worst-case design, assume that
±3σ are the upper/lower limits of the variables. The worst-case safety factor
is

FSWorst Case = 1.2 − 3 · 0.06
1 + 3 · 0.05

= 0.887 (7.11)

which is unacceptable for the design.

The stochastic safety factor was computed using the ProFES® probabilistic
program. Results for the CDF of this safety factor obtained using FORM are
shown in Figure 7.8. The probability that the stochastic safety factor is equal
or smaller than 1.2 is 0.5. The probability that it is equal or smaller than 1.0 is
0.0052226. It is interesting to check how the latter probability is changed if the
distribution of the parameters is a truncated normal distribution, where trun-
cation is done at ±3σ values. In this case, the probability that the stochastic
safety factor is smaller than 1 is 0.0048687, a relatively small decrease in the
probability of failure. Truncated normal distribution for a normally distributed
variable means that a screening process is performed, and all specimens
outside the ±3σ range are screened out. The designer can do a cost effective-
ness analysis to determine whether the decrease obtained in the probability
of failure is worth the much more expensive screening process.

When the coefficient of variation of both R and S is decreased, the effect
of decreasing the dispersion in the random variables can be demonstrated.
A decrease in the dispersion means tighter tolerances in the design and the
production. In Figure 7.9, this effect demonstrates a significant decrease in
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FIGURE 7.9 The effect of COV on the probability of failure.

the probability of failure (defined here as the probability that the stochastic
safety factor is less than 1.0).

In Chapter 5, the probability of failure of a cantilever beam was demonstrated.
The failure criterion of the problem was that the tip displacement of the beam
does not exceed a given value. The random variables of the problem are the
thickness of the beam, the Young’s module of the beam’s material, the applied
external tip force, and the maximum allowable tip displacement. The length of
the beam and its width were considered deterministic. Data for the variables
are given in Table 5.2.
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Here, the stochastic safety factor approach for the same problem is demon-
strated. The tip deflection of a cantilever beam under a tip load P is ([26],
from slender beam theory)

δtip = 4PL3

Ebh3 (7.12)

For the “stress-strength” model, R is the allowed tip deflection δ0, and S is
the actual tip deflection δtip, and the stochastic safety factor is therefore

FSStochastic = δ0

δtip
= δ0[

4PL3

Ebh3

] (7.13)

The data and the definitions of the stochastic safety factors were introduced
into the ProFES program. The CDF of the stochastic safety factor is shown
in Figure 7.10. The probability of failure, defined as the probability that the
stochastic safety factor is equal or less than 1.0, is 0.00010868 = 0.010868%,
which is similar to the result obtained in Chapter 5 (see Eqs. (5.6), (5.23),
(5.26)). The probability that the stochastic safety factor is equal or less than
1.702 (the nominal value, see Chapter 5) is 0.5 = 50%.

In Figure 7.11, the importance factors are shown in a pie chart. It can be
seen that the most important design parameter for this case is the thickness,
and the second one is the allowed tip displacement. When changes of the
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FIGURE 7.11 Importance factors of the random variables.

design are required, these two variables are those on which the designer
should focus his efforts. The thickness is a direct design parameter, while
the allowed displacement may be part of the customer specification, which
might be negotiated when a design change is required. Changes in the data of
the applied force (usually part of the specifications) and the Young’s modulus
(material replacement) will be much less effective.

Although the Stochastic Safety Factor is not included in most of the design
specifications, it is good practice to compute it. It may build a bridge between
the presently used factor of safety and the modern probabilistic approach.
This bridge should be effective until probabilistic design criteria is introduced
into the project’s requirements.

7.3 RELIABILITY DEMONSTRATION OF STRUCTURAL

SYSTEMS

A structure is designed as a part of a whole system. In aircrafts, the sys-
tem includes the disciplines of structures, aerodynamics, propulsion, control,
electronics, chemical engineering, avionics, human engineering, production
and maintenance, as well as others. In missiles, explosives’ technologies are
also added to include the warhead design. During the design process of any
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system, a final reliability is required. This final reliability is obtained by a
combination of the reliabilities of all the components, subassemblies and
subsystems, as well as production processes and methods.

The progress of probabilistic analysis of structures achieved during the last
three decades enables one to incorporate structural reliability in the system
design process. The classical approach of the structural safety factor should
be replaced with the reliability of the structure and its probability of fail-
ure. More on safety factors can be learned in the previous section of this
chapter.

There are some unique features that characterize aerospace systems (as well
as large civil engineering projects) from consumer goods that clearly have
to be reliable. The main difference is that these large projects are of large
scale and of multidiscipline efforts. Another major difference is that in many
cases, the final design is manufactured in a very small number of products (or
systems). There is a very small number of space shuttles. Only one Hubble
space telescope was manufactured. Many satellites are “one of a kind” prod-
ucts. Only a small number of SR-71 intelligence aircrafts were manufactured.
A relatively low number of ICBMs were produced. Only about seven dozen of
Cargo C-5 (Galaxy) aircrafts were originally manufactured. The designers of
such projects cannot rely on statistical results obtained by testing many spec-
imens, contrary to the designers and manufacturers of consumer goods. For
the latter, statistical data can be obtained in both the design and the manufac-
turing phase, and a tremendous amount of experience feedback is obtained
from consumers. As the number of final products is small, the development
costs highly increase the unit price of an aerospace product, preventing (eco-
nomically) the possibility to perform large amounts of tests during this phase.
Sometimes, the nature of the projects prevents testing in the final designed
conditions; for instance, testing satellites in their space environment. In
many cases, frequent modifications are introduced after the “end” of the
development phase, and two manufactured specimens can differ. Perfor-
mance envelopes are usually very large and varying for different carriers.
Usually, the cost of failure is high, in both performances and costs—and
sometimes, in lives.

The true problem of these projects is not the computation of their reliability
by mathematical tools, but the verification of the reliability values, sometimes
called “reliability demonstration.”
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The demands for end product reliability are traditionally expressed in a
“required reliability” and a “required confidence level.” It is common to
find, in the customer’s product specifications, a demand like “the required
reliability is 90% with 90% confidence level.” Although reliability engineers,
statisticians, and mathematicians may understand such a sentence, it is not
clear to design engineers and project managers. For instance, it is well
known to statisticians and reliability engineers that when 22 successful tests
of a system are performed, the 90% reliability with 90% confidence level
is “demonstrated.” It is less emphasized (and less commonly understood
by project managers) that all these 22 tests should be performed using the
same conditions. When the project performance envelope is wide, several
extreme “working points” should be tested (each with 22 successful tests),
and this emphasizes the limitation of the classical demonstration process for
such projects.

Reliability of subsystems can be calculated (“predicted”) today by many tech-
niques and methodologies. Then, the total reliability can be evaluated and
predicted by combining the individual contributions of these subsystems and
sub-assemblies, declaring that the predicted “reliability of 90% with 90% con-
fidence level” is reached. Nevertheless, the real problem is not the prediction
or the computation of the reliability by mathematical tools, but the verification
of the reliability values, sometimes called “reliability demonstration.” There
is no way to “prove” or demonstrate that this reliability is really obtained. It is
also hardly possible to convince customers, project managers, and designers
that the “confidence level” (a term they really do not understand) was also
obtained.

It is well known that aerospace structures fail in service in spite of the exten-
sive (and expensive) reliability predictions and analyses in which much engi-
neering effort is spent. A recent example is the failure of the Columbia space
shuttle in 2003. Regretfully, two space shuttles failed in a total number of
100 flights. These failures set the shuttle flight project back many years, with
a tremendous financial penalty, on top of the life and morale costs. Anal-
ysis of failures in many aerospace projects usually reveals that more than
80% of “field failure” are the result of a “bad” design that could have been
avoided. Thus, improving the design process may significantly cut the amount
of product failures, increase the reliability, increase a product’s safety, and
tremendously decrease the costs. The main reasons for an erroneous design
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process are the use of inadequate design methodology and a wrong design of
tests and experiments during the development (design) process.

A different approach to reliability demonstration of aerospace structures is
required. Such an approach should be incorporated in the design process, by
modeling the structural elements and structural systems, and by performing
tests to validate the model, and not the product.

The reliability of the final product should be deeply incorporated in the
design process; thus, the tremendously important role of the design engi-
neers in the reliability demonstration process. The methodology of a highly
improved design-to-reliability process must incorporate the expertise of the
design engineers together with the expertise of the statisticians and reliability
engineers.

The design to reliability methodology suggested is based on the following
principles:

1. Incorporation of reliability demonstration (verification) into the
design process.

2. Building of models for the structural behavior, and verifying them in
tests.

3. Verification of the problem’s parameters by experience, tests, and data
collection.

4. Analysis of failure mechanism and failure modes.

5. Design of development tests in such a way that failure modes can be
surfaced.

6. Design of development tests so that unpredicted failure modes can
also be surfaced.

7. “Cleaning” failure mechanism and failure modes inside the required
performance envelope.

8. Determination of required safety margins and the confidence in the
models and the parameters.

9. Determination of the demonstrated reliability by “orders of mag-
nitude” while applying engineering, and not merely mathematical
considerations.
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The first eight principles are self explanatory, while the last one may presently
be controversial.

The “design-to-reliability” methodology suggested, based on these principles,
is described and discussed below.

7.3.1 RELIABILITY DEMONSTRATION (VERIFICATION)
IS INTEGRATED INTO THE DESIGN PROCESS

This principle implies a design team, which includes designers and reliability
engineers, working together during the development phase. The reliability of
the final product should be deeply incorporated in the design process; thus,
there is a tremendously important role to the design engineers in the reliability
demonstration process, a role that is usually neglected today. The method-
ology of a highly improved design-to-reliability process must incorporate the
expertise of design engineers together with that of statisticians and reliabil-
ity engineers. The approach of “we designers will design and you, reliability
engineers, will compute the reliability” should be discouraged. A methodology
for a design process, which includes the reliability prediction and verification
during the development phase, is thus suggested.

7.3.2 ANALYSIS OF FAILURE MECHANISM AND
FAILURE MODES

This is the most important phase in the design process, as it determines the
design main features and failure criteria. The first analysis should be done
during the conceptual design phase by the system engineers with the parti-
cipation of the designers, and updated during the full development phase. It
is highly recommended that an additional independent failure analysis will
also be performed by experts who are not part of the project team, in order
to use their experience. The project’s system engineers and the design engi-
neers are the professionals who can best contribute to the process of failure
mechanism and failure modes analyses, and not the reliability engineers. The
latter can contribute from their experience to the systematic process of failure
mode analysis and direct the design engineers when performing this important
design phase, but it is the responsibility of the designers to do the analysis. The
failure modes analysis should direct the design process so that these failures
will be outside the required performance envelope of the designed project.
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Even when failure mode analysis is done by teams of experts, clearly there
will still remain some unpredicted failure modes, mainly due to lack of knowl-
edge (“we didn’t think about it”). This implies that structural tests should be
designed in configurations that would best simulate the mission profile of the
system. This mission profile, whose preparation is also of major importance,
should be prepared as early as possible in the project history, and should be
based on the project’s specification and experience with similar products and
projects gained in the past.

7.3.3 MODELING THE STRUCTURAL BEHAVIOR,
AND VERIFYING THE MODEL BY TESTS

During the development tests, special experiments for model’s verification
(rather than product’s verification) are to be defined, designed, and per-
formed. In many cases, it is relatively simple to prepare a structural model
(analytical or numerical) with which the structural behavior is examined. The
model is then corrected and updated by the results obtained in these tests.
In addition, the parameters that influence the structural behavior should be
defined and verified by tests, data collection, and the experience of both the
design establishment and its designers. In cases where the structural model is
not available, an empirical model can be built based on very carefully designed
experiments that can check the influence of as many relevant parameters as
possible. “Virtual tests” can then be performed using the updated model to
check the structural behavior in many points of the required working envelope.
Results of these “virtual tests” can be included in the information required to
establish the structural reliability.

7.3.4 DESIGN OF STRUCTURAL DEVELOPMENT TESTS
TO SURFACE FAILURE MODES

Structural tests must be designed to surface one or more possible failure
modes. The design of structural tests is an integrated and important part of
the structural design process. It is hardly possible to perform one structural
test that can simulate all the real conditions of the “project envelope” in
the laboratory. Static loadings can be separated from dynamic (vibration)
loadings, if the experimental facilities available cannot perform coupled tests,
as usually is the case. It seems advantageous to perform coupled tests in
which many failure modes can be surfaced simultaneously, but usually these
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kinds of tests are more complex and more expensive, and results from one
failure mode may obscure the outcomes of other failure modes. Some of the
structural tests that cause failure modes to surface may be common to the
tests for the model verification, in order to decrease costs of the structural
specimens and decrease the structural testing schedule.

It is also recommended to establish experimentally a safety margin for the
tested failure mode, as this margin can point out the extent of the structural
reliability for the tested mode. Thus, structural tests should be continued until
failure is obtained, unless a very high safety factor is demonstrated (when this
happens, the design is not optimal).

This approach may look too expensive and time consuming to many project
managers. In such cases, they should be encouraged to consider the price of
failure at the more advanced stages of the development process, or after the
product was already supplied to the customer.

7.3.5 DESIGN OF STRUCTURAL DEVELOPMENT TESTS
TO SURFACE UNPREDICTED FAILURE MODES

Tests should be conducted in “as real as possible” conditions. Thus, load
locations, experimental boundary conditions, and the tested structure should
be designed as realistically as possible. The main difficulties may rise when
vibration tests of subassemblies and a complete structure are performed. The
need to introduce test fixtures contradicts the wish to perform realistic tests.
Therefore, a new approach is called for the vibration tests methodology used
presently and dictated by present specifications. This issue is a subject for
quite a different discussion and will not be evaluated here, although some of
the difficulties in performing realistic vibration tests was discussed in some
detail in previous chapters.

7.3.6 “CLEANING” FAILURE MECHANISM AND
FAILURE MODES

When failure in test occurs within the performance envelope (or outside it,
but without the required safety factor), the design should be modified to
“clean out” the relevant failure mode and the structure should be re-tested in
order to verify the success of the “cleaning” process. The process of updating
the design and its model must be repeated until no failure modes exist in
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the required performance envelope. This process may include “virtual tests”
performed with the relevant model, verified by development tests. Such a
process can assure, at the end of the development phase, that the reliability
of the designed structure is very high, and qualitatively verified.

7.3.7 DETERMINATION OF THE REQUIRED SAFETY
MARGINS, THE CONFIDENCE IN THE MODELS
AND THE RELEVANT PARAMETERS

Safety margins or safety factors are defined at the beginning of a project,
and depend on its characteristics, the formal specifications, and the past
experience of the designers. It is recommended that in future projects, the
approach of the stochastic safety factor [119–121], sometimes called proba-
bilistic sufficiency factor, should be applied. Such an approach can bridge the
gap between the classical safety factor used presently in most of the speci-
fications, and the probabilistic approach that starts to gain recognition in
the design community. The stochastic approach can provide a “translation
method” between safety factors and reliability numbers. The confidence level
is interpreted here as the confidence of the designer in the structural reliability
obtained by the tests. This is not really a mathematical “statistical defini-
tion,” but a design concept that has an engineering meaning, understood by
customers, project managers, and designers.

7.3.8 DETERMINATION OF THE DEMONSTRATED
RELIABILITY BY “ORDERS OF MAGNITUDE”

The demonstrated reliability should be determined by “orders of magnitude”
and not by “exact” numbers, while applying engineering considerations. The
concept, which may be controversial but starts to gain supporters in the design
communities, is further discussed here.

In Figure 7.12, a flowchart of the design process is described using very general
definitions. Of course, each of the blocks described in this chart can be further
evaluated.

The demand for reliability demonstration defined by “order of magnitude”
may be controversial, as it differs from the traditional “numerical demands”
for reliability. Nevertheless, such a definition is much more realistic and
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FIGURE 7.12 Flowchart of structural design to reliability process.

provides a much better engineering-oriented approach to the issue of reli-
ability demonstration. Traditionally, customers define, in their requirements,
a numerical value for the product’s reliability and for the reliability confidence
level (i.e., reliability of 90% with 90% confidence level). Reliability engineers
also use the same definition. For the large aerospace projects discussed, there
is no meaning for such requirements, as it is impossible to demonstrate, ver-
ify, or prove such values under the limiting circumstances of these projects. In
addition, project managers and designers have some difficulties in translating
the “confidence level” concept into practical engineering understanding.
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Therefore, it is highly suggested to define reliability by “order of magnitude”
like “very high (A),” “high (B),” “medium (C),” and “low (D).” The “con-
fidence level” concept can be replaced by the “designer confidence in the
estimated reliability” (engineering confidence), like “high confidence (a),”
“medium confidence (b),” and “low confidence (c).” These definitions form
a matrix, which is shown in Table 7.1.

The purpose of a high reliability oriented design is to “push” for the upper-left
corner of the matrix. It can be argued that in order to “move” upward in the
table, design modifications are required, while in order to “move” leftward
in the table, more tests of the system and more evaluations of the model are
required. There are no distinct sharp borders between the reliability levels
and the confidence estimates in this matrix. In the last three rows of the table,
numbers for traditional estimated reliability requirements are written. There
is a difference in the demands from a subassembly, a subsystem (which com-
prise several subassemblies), and a system (several subsystems). The numbers
are depicted in light gray to emphasize they are not supposed to be “exact,”
and are only a required estimate for the required reliability. There is really no
difference between a system whose reliability was estimated to be 99.9% and a
system with an estimated reliability of 99.8%. On the other hand, it is certain
that when the reliability of two different optional systems is examined, the
first one showing a reliability of 99% while the second one shows a reliability
of 75%, then the first system is more reliable than the second. Exact numbers
should therefore be used only as a qualitative comparison tool and not as an
absolute quantitative tool.

There are no distinct borders between the reliability levels and the confidence
estimates, as shown by the “undefined” lines in the table.

TABLE 7.1 Reliability and engineering confidence matrix.

Confidence High Medium Low Sub- Sub- System
Reliability (a) (b) (c) Assembly System

Very High(A) (A;a) (A;b) (A;c) 99.9 99 95
High (B) (B;a) (B;b) (B;c) 99 95 90
Medium (C) (C;a) (C;b) (C;c) 95 90 85
Low (D) (D;a) (D;b) (D;c) 90 85 80



7.3 Reliability Demonstration of Structural Systems • 299

The described approach is much more realistic than the classical one, which
cannot be verified (“proved”) for the kind of projects described. It put much
more emphasis on engineering considerations and concepts, therefore it is
much easier for designers to understand and practice. The role of tests and
experiments is major in the development process, and the importance of
models and their verification becomes an important issue in the process.

The described (somehow controversial) approach was presented before an
international audience in [122], and was well accepted by representatives of
the industry in the audience. It was also applied successfully in the author’s
establishment.



C h a p t e r 8 / Some Important
Computer Programs for
Structural Analysis

8.1 FINITE ELEMENTS PROGRAMS

Computer codes are the main tools of the modern engineering design process.
There are thousands of computer programs developed during the last several
decades for the use of engineers in the design establishments and the R&D
institutes. Many programs were developed in the academic institutes, but
these are generally undocumented and unsupported. On the other hand, com-
mercially available codes for finite elements solutions, probabilistic analysis,
and mathematical evaluations are well supported, debugged, and updated.
Few of the most commonly used programs (most of them were used in the
examples described in this book) are described here. The opinions expressed
in this chapter are the author’s, based on his experience with the described
programs, and are not a recommendation to lease or purchase any of them.
As these programs are updated periodically, the opinions expressed here are
not updated, and are based on the situation that existed when this manuscript
was prepared.

Most of the large computer codes used for the dynamic and probabilistic
analyses have to be leased from the developer for an annual fee, which usually
includes updates and technical support. Most of the mathematical solvers
must be purchased with a specific license. Web site addresses of the codes
providers are listed, and the interested reader should consult these sites for
updated information.

The basic tools for structural dynamic analyses are the large finite ele-
ments codes. Two major programs are used today in more than 80% of the
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market—the ANSYS® and the NASTRAN®. Nevertheless, there are some
other finite elements codes used in the industry, like ADINA™, ABAQUS®,
and SESAM. The latter are not reviewed here. Usually, a specific design estab-
lishment leases only one finite element code, with the appropriate licensing
agreement. The specific user must adjust other computational tools to comply
with the finite element program used in his establishment.

Both ANSYS and NASTRAN can perform static, modal, buckling, transient,
harmonic, and spectral analyses, as well as optimization algorithms. Both have
a probabilistic module that can be used for structural probabilistic analysis
using Monte Carlo simulation or a response surface analysis directly from the
finite elements database file.

The NASTRAN is leased by the MSC Company (http://www.mscsoftware.com),
which is also the provider of many other important programs. Consult the
company web site for this and other programs.

The ANSYS is leased by the ANSYS Company (http://www.ansys.com), which
is also the provider of many other important programs. An Educational Ver-
sion, limited in modules, number of nodes, and elements is available for
students and academic staff.

8.2 PROBABILISTIC ANALYSIS PROGRAMS

There are many structural probabilistic analysis codes. Many of them were
developed for special-purpose researches in the academy, and are not avail-
able to the common user in the industry. One of the first available programs is
the CalREL, developed in UC Berkeley by Professor Armen Der Kiureghian
and his students in the Department of Civil & Environmental Engineer-
ing. CalREL is a general-purpose structural reliability analysis program. It
is designed to work on its own or to operate as a shell program in conjunction
with other structural analysis programs. Structural failure criteria are defined
in terms of one or more limit-state functions. The specification is by the user
in user-defined subroutines. CalREL is capable of computing the reliability of
structural components and systems. Specific macro commands are available
for the following types of analyses:

1. First-order component and system reliability analysis.

2. Second-order component reliability analysis by both curvature-fitting
and point-fitting methods.
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3. First-order reliability bounds for series systems.

4. First-order reliability sensitivity analysis with respect to distribution
and limit-state function parameters.

5. Directional simulation for components and general systems, employ-
ing first or second-order fittings of the limit-state surfaces.

6. Importance sampling and Monte Carlo simulation for components
and general systems.

CalREL has a large library of probability distributions for independent and
dependent variables. Additional distributions may be included through a user-
defined subroutine. CalREL is available for purchase from UC Berkeley
in both object and source code. Details on the program’s capabilities are
available at http://www.ce.berkeley.edu/∼adk/, where a contact address is given.

One of the first commercially available and technically supported probabilis-
tic analysis programs is the PROBAN®, developed by DNV (Det Norske
Veritas), a Norwegian nonprofit R&D organization. This is a general-purpose
program for probabilistic, reliability, and sensitivity analysis, which was avail-
able for users many years before any U.S. developed programs were in the
market. By complementing the hydrodynamic and structural analysis features,
PROBAN forms a part of the powerful suite of SESAM (finite elements) pro-
grams for maritime and offshore engineering analysis. PROBAN contains
state-of-the-art computational methods needed to perform sensitivity, reli-
ability, and probability distribution analysis for components and systems. The
methods include first and second order reliability methods (FORM/SORM),
Monte Carlo simulation, Latin Hypercube sampling, and a number of other
simulation methods. It contains an extensive statistical distribution library.
PROBAN also contains the necessary features to perform Bayesian updating
and parameter studies. PROBAN can be executed via an interactive graphi-
cal user interface. See http://www.dnv.com/software/safeti/safetiqra/proban.asp.
This address may be changed frequently. In this case, the reader is encouraged
to conduct a search on DNV.

A very famous and commonly used probabilistic computer code is the
NESSUS®, developed under a contract from NASA Glenn Research Center
at the Southwest Research Institute (SwRI) in San Antonio, TX. NESSUS
is a modular computer software system for performing probabilistic analysis
of structural/mechanical components and systems. NESSUS combines state-
of-the-art probabilistic algorithms with general-purpose numerical analysis
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methods to compute the probabilistic response and reliability of engineered
systems. Uncertainty in loading, material properties, geometry, boundary
conditions, and initial conditions can be simulated. Many deterministic mod-
eling tools can be used such as finite element, boundary element, hydro-codes,
and user-defined Fortran subroutines. NESSUS offers a wide range of capabil-
ities, a graphical user interface, and is verified using hundreds of test problems.
NESSUS was initially developed by SwRI for NASA to perform probabilistic
analysis of space shuttle main engine components. SwRI continues to develop
and apply NESSUS to a diverse range of problems, including aerospace
structures, automotive structures, biomechanics, gas turbine engines, geo-
mechanics, nuclear waste packaging, offshore structures, pipelines, and rotor
dynamics. To accomplish this, the codes have been interfaced with many
well-known third-party and commercial deterministic analysis programs, like
NASTRAN and ANSYS. A demonstration version of NESSUS is available for
evaluation purposes at http://www.nessus.swri.org/ for a period of three months.

Another commercially available probabilistic code is the ProFES®, developed
and leased by ARA (Applied Research Associates Inc.), Southeast Division,
located in Raleigh, NC. ProFES allows the user to quickly develop proba-
bilistic models from his own model executables, analytical formulations, or
finite element models. The user may use ProFES independently to perform
probabilistic simulations using functions internal to ProFES, or functions he
manually types in. He may use ProFES as an add-on to his own model executa-
bles so he can perform probabilistic studies from his deterministic models; he
may also use ProFES as an add-on to the commercial finite element codes
ANSYS and NASTRAN or to the commercial CAD package PATRAN; and
he can assess the uncertainty inherent in any design or analysis situation
and relate this uncertainty to product failure rates. The ProFES graphical
user interface (GUI) is designed to make it easy to perform probabilistic
analyses, especially for nonexperts. Random variables can be assigned to any
of the variables that make up the analytical model or are input to the model
executable. In the case of finite element analyses, random variables can be
assigned to loads, material properties, element properties, and boundary con-
ditions. In the case of CAD analyses, as is the case with PATRAN, random
variables can also be given to geometry features (the features are obtained
by importing non-graphic parts into PATRAN). Failure criteria (limit-states)
are used to define failure as a function of the user’s model results (e.g., out-
put variables from user’s own models, displacements, strains, stresses, etc.),
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programmed and compiled within the ProFES. ProFES also includes utilities
for seamlessly post-processing the results (e.g., for probabilistic fatigue anal-
ysis). ProFES also provides a library of random variables and utilizes state-of-
the-art probabilistic analysis methods. Probabilistic finite element analysis has
advanced to the point that specialists can solve very complex problems. Com-
putational methods for probabilistic mechanics are well developed and widely
available, including FORM/SORM methods, static and adaptive response
surface methods, simulation methods, and adaptive importance sampling.
ProFES places these tools in the hands of practitioners and makes them usable
without extensive re-training and software development. ProFES includes
an innovative data-driven architecture that has the look and feel of com-
mercial CAD and pre-processing packages. The ProFES approach supports
transparent interfaces to commercially available finite element packages and
allows the user to build his deterministic model in his preferred commercial
pre-processing package. ProFES has been integrated with several major prob-
abilistic computational methods along with an extensive library of random
variable distributions. ProFES is designed to work with commercially available
finite element software like the ANSYS and NASTRAN. Customer support
is very efficient and prompt. See http://www.profes.com for more details.

8.3 CRACK PROPAGATION PROGRAMS

For computations of crack growth and other fracture mechanics problems,
the most applied program is the NASGRO®. NASGRO 4.0 is a pro-
gram developed by NASA Johnson Center in the 1980s. The first version,
NASA/FLAGRO, was completed in 1986. The program was distributed by
COSMIC since 1990, and was also included in the European Space Agency
(ESA) crack propagation program ESACRACK. Currently, the program is
maintained, updated, and distributed by the Southwest Research Institute
(SwRI) in San Antonio, TX. NASGRO is an envelope program, which con-
tains internal programs for fracture mechanics principles (NASFLA), critical
crack size (NASCCS), stress intensity factors (NASSIF), glass-like material
behavior (NASGLS), boundary elements for 2-D geometries (NASBEM),
and material properties bank (NASMAT). An international consortium of
users was founded, where each member contributes from its experience to
the program. More technical details and leasing information are available
at http://www.nasgro.swri.org/. A demonstration version of NASGRO 4.0 can
be downloaded from this web site. The demonstration version is limited to
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two geometries and one material. Material properties for hundreds of mate-
rials and heat treatments in the program’s data bank can be viewed in this
demonstration version.

A very efficient computer code for the determination of 3-D crack propaga-
tion is under constant development in the Center for Aerospace Research
and Education (CARE), in the Department of Mechanical and Aerospace
Engineering in the University of California at Irvine, under the direction of
Prof. S. N. Atluri. The program, named AGYLE, is based on a combina-
tion of finite elements (FE) and boundary elements (BE). The structure is
modeled only once by finite elements, while the crack surface is modeled by
a relatively small number of boundary elements. When loads are applied,
3-D crack propagation is computed, and for each load step (or cycle) only
the boundary elements are modified automatically. This makes the AGYLE
a very efficient program, with 3-D capabilities that cannot be found in any
other crack propagation program. The AGYLE is not yet commercially avail-
able, and is still not supported for potential customers. It is believed that in
the future this program (when development is completed) will replace many
of the commercially available programs. Details can be obtained from Prof.
Atluri, satluri@uci.edu.

8.4 MATHEMATICAL SOLVERS

When mathematical expressions are created, they can be solved using one
of the many mathematical solvers that exist in the market. Most of these
programs allow the user to solve for the numerical values of mathematical
expressions, and to program the user’s own programs inside the envelope of
these codes. The mathematical numerical solutions performed in this book
use two programs, MATLAB® and TK Solver™.

The well-known MATLAB program is a high-level technical computing
language and interactive environment for algorithm development, data
visualization, data analysis, and numerical computation. Using MATLAB,
technical computing problems can be solved faster than with traditional
programming languages, such as C, C++, and Fortran. MATLAB can be
used in a wide range of applications, including signal and image processing,
communications, control design, test and measurement, financial model-
ing and analysis, and computational biology. Add-on toolboxes (collections
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of special-purpose MATLAB functions, available separately) extend the
MATLAB environment to solve particular classes of problems in these
application areas. A toolkit for symbolic mathematics can also be included
in the program, making it possible to evaluate analytically very complex
mathematical expressions.

The MATLAB is a well-known mathematical tool, used by millions of users,
whose experience can be shared through online forums. Details on MATLAB
and its capabilities are shown in http://www.mathworks.com/matlab/ and the
various links provided in this site. There is a student edition of the MATLAB,
(limited in capabilities but very inexpensive), which can later be upgraded to
a full version. Users can join a Users’ Forum, where many people contribute
special-purposes files and where one can consult with many expert and other
members of the MATLAB community.

TK Solver from Universal Technical Systems, Inc. (UTS) is one of the
longest standing mathematical equation solvers on the market today. TK
Solver readily solves simultaneous equations using iteration to significantly
reduce computation and design hours. The user does not need to decide
what variables will be inputs and which ones will be outputs when creating a
mathematical model. This unique capability completely eliminates tedious
“busy work” allowing the user to accomplish more in less time. The user
can program his internal function within the TK Solver. The library of the
TK Solver includes, among many others, computerized interactive version
of Roark’s Formulas for Stress and Strain [26], and a Dynamics and Vibra-
tion module that is a complete, fully computerized interactive version of
Belvins’ Formulas for Natural Frequencies and Mode Shapes. These mod-
ules can also be purchased as standalone software. Details can be found at
http://www.uts.com/software.asp. There is an academic and student version,
which is the full version (less the special libraries), under a special license
agreement. This program is used quite extensively in some of the cases pre-
sented in this publication. A Users’ Forum enables users to consult with
experts and colleagues.



C h a p t e r 9 / Conclusions—Do
and Don’t Do in Dynamic
and Probabilistic Analyses

In this chapter, some practical recommendations, as learned from the
previous chapters, are summarized. These recommendations, when applied,
will result in better design methodologies and procedures—and hopefully, a
better structural product.

It is our belief that the following two major recommendations are the main
consequences of the material presented in this publication, and should be
adopted by young engineers:

1. Do not be afraid of a structural dynamics analysis. Structural dynamics
is a major cause in structural failures. Once understood physically,
there are no reasons to avoid it in the design procedure of aerospace
structures. In fact, performance of a structural dynamic analysis is no
more complex than doing a classical static analysis.

2. Do not be afraid of a probabilistic analysis. Although much less fre-
quent in a regular design procedure, probabilistic analysis of structures
has many major benefits in understanding the practical behavior of a
designed structure, the influence of design parameters on the struc-
ture behavior, and the estimation of the structural reliability. Such
analysis should be an important building stone in a structural design
methodology.

At the beginning of a structural design, when the structure’s main features are
determined, do a structural failure analysis. This is a major part of a correct
design methodology, which determines the structural model and influences
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the design of structural computations and designed structural experiments
during the development phase.

When you numerically analyze a structural system, be sure to invest the proper
amount of effort in the preparation of the input data file. In fact, prepar-
ing the data input is the equivalence of preparing the structural model of
the relevant design. At this stage, the modeled properties are determined,
including geometry, material properties, boundary conditions, and loadings.
It is emphasized again that the preparation of numerical data file for a struc-
ture is identical whether a static or any dynamic analysis is desired, and once
such a file is prepared for static analysis, it can be used for structural dynamics
analysis.

Do not be intimidated by high acceleration responses. A structure fails (stat-
ically or dynamically) due to high stresses and/or strains and not due to high
accelerations. In many cases, structural solutions (and experimental results)
show high accelerations in many locations. These high accelerations may be
the result of the existence of high frequency resonances, and while these high
accelerations exist in the structure (and may be responsible for a noisy behav-
ior), the stresses (or strains) caused by them are very low and do not always
endanger the structure—they do not cause failures. When a response to ran-
dom excitations is required, be sure to compute the PSD of the stresses and/or
strains, and not merely the PSD of the accelerations. High stresses and strains,
either static or dynamic, are the reason for structural failure.

When computing a mean square value from a PSD curve, do not use trape-
zoidal areas as depicted in the PSD specification curves, which are usually
described on a log-log paper. The straight lines in these curves are not straight,
and the results for the mean square values will be erroneous.

Be consistent with the units used in an analysis. No matter which system
of units is used, it is important to use the same unit throughout the whole
analysis. Designers are warned to make a clear distinction between units of
mass and units of force, and to be very clear in the definition of frequencies—
circular frequencies given in cycles per second, or angular frequencies given
in radians per second. Errors of a factor of 2π (and its powers) may result in an
inconsistent use of these units. When analytical (or semi-analytical) solutions
are performed, it is recommended to check in advance the units of the results
in the mathematical (algebraic) equations to ensure the proper units of the
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required result are obtained. This may save the reader a lot of trouble when
long algebraic evaluations are involved.

Be especially careful with the units used in crack growth problems. Because
of the “strange” units of the Stress Intensity Factor (SIF) and the way data is
given in many manuals and numerical codes, it is quite easy to “lose the way”
and produce erroneous results.

Be aware of the behavior of a SDOF system, whether it is force or base
excited. As the solution of an elastic structure may be performed by the use
of numerous uncoupled SDOF equations, understanding the behavior of the
SDOF system can give a tremendous insight into the behavior of the elastic
system.

Most of the analyses described in this book are linear. Practical structures may
include nonlinear effects, either in the material properties or in the geometry.
Nevertheless, it is important to perform a linear analysis even in cases of a
nonlinear system, as the linear behavior provides a tremendous insight into
the behavior of the analyzed system.

Try to build a MDOF model of your structural element. The behavior
of structural systems can often be described by a MDOF system. While
such a description may sometimes be only approximate, it may yield quick
approximate solutions in the early stages of the design, approximations
that may give insight into the physical behavior of the structure, and into
the influence of many structural parameters on the behavior of the true
system.

It is important that you know the modal damping in order to get reliable
results from a dynamic analysis, whether analytical or numerical solutions
are performed. There is no reliable analytical method to compute realistic
damping coefficients. Modal damping depends on the nature of the struc-
ture. They are usually small (order of magnitude of few percent) for “pure”
metallic parts and higher for structures with riveted and bolted structures,
and for composite materials and plastics. The best practical method to detect
the damping coefficients of a structure is to measure them experimentally
by one of the methods used for this purpose (e.g., ground vibration tests).
It is imperative for a design establishment to collect and store results from
such tests in order to use them in similar designs.
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When designing a vibration test (on the laboratory shaker), it is important
to take into account the fixture that connects the structural system to the
shaker. There is no totally rigid fixture, and the elastic behavior of the fixture
usually introduces “strange” behavior during the test. The fixture should be
introduced also to the structural models!

When designing field tests (such as flight tests) to prototypes, insist on mea-
suring accelerations (which is the “traditional way”), and strain measurements
(with strain gages). Such measurements used to be difficult in the past, but
are much simpler with today’s equipment. Mount the strain gages at locations
where failure is expected following the failure modes analysis.

You can solve static and dynamic contact problems with an existing finite
element program only for a linear behavior. When you have to solve a dynamic
contact problem, it is very important to measure experimentally the coeffi-
cient of resilience between the two contacting materials. This coefficient is
also impossible to be analytically calculated, and has a major influence on
the dynamic behavior of such structures. Caution: the finite elements codes
do not take into account the coefficient of resilience, and assume perfectly
elastic collisions. This means that results of finite elements runs are usually
conservative.

When you analyze the dynamic behavior of any structure, compute the
resonance frequencies and the normal modes. Usually, it is difficult to theo-
retically estimate the rigidities of clamps and interconnections between parts
of a structural system. In these cases, the model should be updated using
experimental results of ground vibration tests, usually by measuring the res-
onance frequencies and correcting the rigidities of the model. Stress modes
and generalized masses should also be computed, as the knowledge of their
relative magnitudes gives insight into the physical behavior of the structure.
It also helps in the determination of the number of the modes that are to
be included in the analysis of a given system, according to the nature of the
system. One should know how the normal modes are normalized in an ana-
lytical solution or a numerical computation, and should be consistent in such
definition throughout the design process. One should also bear in mind that
static deformations and normal modes are not the same for a given struc-
ture. In order to understand the modal behavior of a structural element, use
the animation provided by the finite elements code. This animation provides
an excellent insight into the structural behavior.
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If you set a design criterion for a combination of static plus dynamic
loads, be sure to use the “output criterion” and not the “input” one. There-
fore, the “equivalent static load” criterion described in Chapter 7 should be
avoided.

Be aware that when a structure is subjected to base excitation or to a dis-
placement excitation on one or more of its points, the resonance frequencies
of the structure are obtained by assuming that the points of displacement
excitations (whether on the base or any other location) are of a structure
with constrained supports in these locations.

Design structural experiments according to the failure analysis, so that failure
modes can be surfaced during the development phase. Try to persuade project
managers to fail the structure in the structural development tests; otherwise,
no factor of safety will be provided.

There is no chance that you will be able to simulate flight loads with the con-
ventional equipment of an environmental test laboratory. This equipment is
built traditionally to be controlled by acceleration or displacement excitation,
while most of the flight excitation is originated from random forces or ran-
dom pressure fluctuations. New environmental laboratory equipment may
now enable force control of the tests. Sometimes, it is possible to simulate
the real conditions only at certain locations and not on the entire structure.
In such cases, design such an experiment so that only critical locations are
tested. In order to cover all failure modes, several different tests may be
required.

Update the structural models according to structural tests on subsystems,
subassemblies, and prototypes. When a carefully performed experiment does
not agree with the structural model, the latter is not correct, and should be
updated.

In case the inspected structure has a small number of random variables, and
you have no access to a probabilistic structural program, try to analyze the
structure using the Lagrange multiplier or the Taylor expansion method.

When doing a probabilistic analysis in which Weibull and lognormal distribu-
tions are involved, be sure to check the distribution constants provided. There
are different definitions in different books, and especially in computer codes.
You may easily end with the wrong probability!



312 • Chapter 9 / Do and Don’t Do in Dynamic Probabilistic Analyses

You can do a probabilistic analysis using the probabilistic module of either
NASTRAN® or ANSYS®. You can also do a response surface analysis rather
than a Monte Carlo computation, to save time for the project.

When experimental results agree in trend with the structural model, but
dispersion in experimental results is observed, try to introduce an addi-
tional random variable or a stochastic process to the model. The distribution
and the statistical moments of this variable should be determined from the
dispersed data.

Try to reconstruct the examples presented in this book by using the files on the
accompanying CD-ROM. If you do not have access to the ANSYS program,
you can construct equivalent NASTRAN or another finite element program
files by following the commands in the Notepad text files presented in the
Appendix. After you do these examples, try to build a data file for your case
by inserting your pre-processor file instead of the simple data file (and of
course adjusting the solution and post-processing to your case).

Some small tips can make your finite element analysis easier:

1. Prefer to write a batch file as a filename.txt, and try to avoid using the
graphical user’s interface (GUI) when preparing the data file.

2. Use parametric language in such a file so changes in the structural
parameters are easier, especially in the first phases of an analysis. In
case there are some options to the desired computations, try to include
them in your text file, and use the exclamation mark (!) to avoid
performing the commands that do not belong to the analysis you do.

3. When performing a repeated analysis in cases where external force is
involved, zero the previous load before applying another load. If this
is not done, you may get a solution to a problem in which the previous
load, and the present one, are included.

4. Insert as many comments as possible into the text file. This will help
tremendously in an additional computation that is done later (“What
did I do then?”).

5. Use, if possible, a five-button mouse. You can program the two addi-
tional buttons for “copy” (from the text file) and “paste” into the finite
element’s command window.

The author will be glad to assist the reader in further understanding of the
issues discussed in this book. Try the address gioram@netvision.net.il.



Appendix / Computer Files
for the Demonstration
Problems

A.1 INTRODUCTION

Computer files used in the numerous demonstration problems are included
on the CD-ROM attached to this book. In this Appendix, methods to use the
files, and a list of them, are described. This Appendix is also included on the
CD-ROM, in the “Introduction” folder. The listings of the files may provide
users who are using other finite elements programs rather than the ANSYS®

to prepare compatible files for the other programs.

There are three types of files in this book and in the present Appendix:

1. Text files (in NOTEPAD) for ANSYS. These can be run by the ANSYS
command /input,filename,txt. Each file has a /eof command at the end
of the database. Also included, after the /eof command, the relevant
commands for the solution and the post-processing phases of the rele-
vant example. These can be copied from the NOTEPAD file and pasted
into the reader’s ANSYS working directory when required. Users of
other finite elements codes may construct the suitable files by a proper
“translation” of the listed files. Access to a licensed ANSYS program
is required. The files should be copied to the working directory of the
ANSYS, as defined by the user. All files can work with the ANSYS
educational version.

2. MATLAB® m-files. The extension of these files is filename.m. These
must be copied into the MATLAB working directory of the user.
Access to a licensed MATLAB program (version 5.3 and higher) is
required. In the MATLAB environment, a proper path to the directory

313
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where the files are saved should be defined. Typing the m-file name
in the MATLAB command window runs the files. Some information
about the MATLAB program can be found in Chapter 8.

3. TK Solver™ files. The extension of these files is filename.tkw. These
must be copied into the TK Solver working directory of the user. Access
to a licensed TK Solver program is required. An inexpensive educa-
tional version of TK Solver is available to authorized persons in the
academy—students and academic staff. Some information about the
TK Solver program can be found in Chapter 8. The TKW files are not
listed in this Appendix. When TK Solver is installed on the reader’s
computer, clicking on the relevant filename.tkw file will initiate the
program and the relevant data.

In all the files, data of the last used example are listed. The user should correct
these values to the parameters relevant to the required problem.

A.2 LIST OF FILES

FILES FOR CHAPTER 1

1. duhamel1.tkw, for analytical solution of the transient problem using
Duhamel’s integral.

2. duhamel2.tkw, an example of a numerical procedure for Duhamel’s
integral.

FILES FOR CHAPTER 2

1. beam1.txt, an ANSYS file for modal analysis of a cantilever
beam.

2. beamharm.txt, an ANSYS file for the response of a cantilever beam
to tip harmonic force.

3. commass1.txt, an ANSYS file for a beam with mounted mass.

4. ssbeam.txt, an ANSYS file for modal analysis of simply supported
beam.

5. ssplate.txt, an ANSYS file for modal analysis and harmonic respone
of simply supported plate.

6. shell1.txt, an ANSYS file for modal analysis of cylindrical shell.
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FILES FOR CHAPTER 3

1. beamrand_1.txt, an ANSYS file for the response of a cantilever beam
to tip random force.

2. beamrand_2.txt, an ANSYS file for the response of a cantilever beam
to random base excitation.

3. beamrand_3.txt, an ANSYS file for the response of a cantilever beam
to random tip displacement excitation.

4. wing1.txt, an ANSYS file for computation of a cantilevered skewed
plate under random forces.

5. bbplate.txt, an ANSYS file for the response of a beam-plate to acoustic
excitation.

6. frame1.txt, an ANSYS file for the response of a frame to a random
force excitation.

7. commass1.txt, an ANSYS file for a beam with mounted mass (random
loading).

8. ssplaterand.txt, an ANSYS file for the computation of a simply
supported rectangular plate.

FILES FOR CHAPTER 4

The following files were solved with ANSYS version 8.0. In the latest versions
(V10 and V11), some of the contact elements of the programs no longer exist.
The reader should check his version, and change the contact elements, where
required.

1. plate2.txt, an ANSYS file for static contact problem of a cantilever
beam.

2. plate3.txt, an ANSYS file for a dynamic contact problem, tip force
excitation of a cantilever beam.

3. plate4.txt, an ANSYS file for a dynamic contact problem, base
excitation of a cantilever beam.

4. contact7.tkw, a TK Solver file for an analytical solution of a SDOF
problem with contacts.

5. two2.txt, an ANSYS file for a dynamic contact problem of two masses:
collisions and gaps.
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FILES FOR CHAPTER 5

1. truss1.txt, an ANSYS file for static solution of 3-members truss.

2. probeam4.txt, an ANSYS file for a probabilistic analysis using ANSYS.

3. math.txt, an ANSYS file that demonstrates solution of a “Stress-
Strength” mathematical model, without using any finite elements.

FILES FOR CHAPTER 6

1. corcrack1.m, corcrack2.m, corcrack3.m, and corcrack4.m, MATLAB
files for stochastic crack propagation (see Figure 6.9).

2. virtest1.m, virtest2.m, virtest3.m, and virtest4.m, MATLAB files for
stochastic crack propagation (see Figure 6.9).

3. cracknorm1.m, data analysis for the stochastic crack propagation
problem (see Figure 6.9).

4. cracklognfit.m, fitting a log-normal distribution to the stochastic crack
growth problem.

5. astar1.m, computation of the random critical length of the crack.

6. prop1.m, a MATLAB file.

7. weib1.tkw, a TK Solver file for the distribution of local peaks in a
stationary normal stochastic process.

8. weib2.tkw, a TK Solver file for the computation of the number of peaks
above a given level.

9. crack2.m, solution of deterministic crack growth process for 0 < R < 1.

10. crack3.m, solution of deterministic crack growth process for R < 0.

FILES FOR CHAPTER 7

1. stat1.txt, an ANSYS file for a static response of a cantilever beam to
1g static load.

2. stat2.txt, an ANSYS file for the dynamics of a cantilever beam to with
tip mass.

3. stat3.txt, an ANSYS file for the random response of a cantilever beam
with tip mass.

4. env5.txt, an ANSYS file for an aircraft carried beam.
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A.3 FILES LISTING

CHAPTER 1

All files are of TKW+ program, and therefore are not listed.

CHAPTER 2

beam1.txt

!file beam1 for cantilever beam

/filnam,beam1

/title, Vibration of a cantilever beam

!units in kgf, cm, seconds

g = 980 !gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass density
W = L*b*h*ro*g !total weight (reference only)
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia
¤
/prep7
mp,ex,1,E !materials property
mp,dens,1,ro !material property

et,1,beam3 !type of element
r,1,A,I,h !real constants

!nodes
n,1,0,0
n,11,L,0
fill,1,11
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!elements
en,1,1,2
engen,1,10,1,1,1,1

!boundary conditions
d,1,ux,0
d,1,uy,0
d,1,rotz,0
!d,11,uy,0

save
fini
/eof !end of input file

!modal analysis
/solu
antyp,modal
modop,subs,3 3! modes
mxpand,3„,yes
solve
fini
/post1 !general purpose post-processor
set,1,1 !first mode
pldisp,2
set, 1,2 !second mode
pldisp,2
set, 1,3 !third mode
pldisp,2

fini
!animation of modes is possible using GUI

beamharm.txt

!file beamharm for cantilever beam

/filnam,beamharm

/title, Harmonic Respone of a cantilever beam
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!units in kgf, cm, seconds

g = 980 !gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass density
W = L*b*h*ro*g !total weight (reference)
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7

mp,ex,1,E !material property
mp,dens,1,ro !material property

et,1,beam3 !type of element
r,1,A,I,h !real constant

!nodes

n,1,0,0
n,11,L,0
fill,1,11

!elements

en,1,1,2
engen,1,10,1,1,1,1

!boundary conditions
d,1,ux,0
d,1,uy,0
d,1,rotz,0
!d,11,uy,0

save
fini
/eof !end of input file
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/solu !Harmonic Respone, full
antyp,harmic
hropt,full
hrout,off !Magnitude and Phase
outpr,all,1
harfrq,10,250 !Frequency range
nsubs,240 !Number of substeps
dmpr,0.02 !Damoing coefficient
kbc,1 !Stepped input each step
d,11,uy,1 !1 kgf force at tip
save
solve
fini

/post1 !General post-processor
set,list !see list of frequencies
fini

/post26 !Frequency domain post processor
nsol,2,8,u,y,Y8 !displacement at tip
!nsol,3,1,u,y,Uclamp !displacement at clamp
/grid,1
/axlab,x,Frequency Hz
/axlab,y,Displacement cm
plvar,2 !plot displacement at tip
!esol,4,1,1,ls,3,Sbend !Bending stress at clamp
!/axlab,y,Bending Stress kgf/cm2

!plvar,3 !plot stress at clamped edge
fini

commass1.txt

!file commass1 for cantilever beam

/filnam,commass1

/title,Cantilever beam with 1 Mounted Mass

!DATA

L = 60 !length, cm
b = 8 !width, cm
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h = 0.5 !thickness, cm
E = 2.1e6 !Young modulus
ro = 7.959e−6 !density
g = 980 !value of g
W = L*b*h*ro*g !total weight of the beam
q = W/L !beam weight per length
A = b*h !beam cross section area
I = b*h**3/12 !area moment of inertia
g = 980 !g = 980 cm/sec 2

w1 = 1 !mounted weight, node 14 (below node 4)
m1 = w1/g !mounted mass
k1y = 4 !vertical spring, 4 to 14, case (a)
!k1y = 65 !vertical spring, 4 to 14, case (b)

!a high rigidity spring in the x direction is added
!in order to avoid horizontal vibrations of the mass
k1x = 50000 !horiz. spring, 4 to 14 - very high stiffness

/prep7 !pre-processor
mp,ex,1,E !material property, beam
mp,dens,1,ro !material property, beam

et,1,beam3 !beam element
et,2,mass21„0,4 !first mass element
et,3,combin14,0,2 !spring y direction
et,4,combin14,0,1 !spring x direction

!real constants
r,1,A,I,h !beam
r,2,m1 !mass
r,3,k1y !vertical spring
r,4,k1x !horizontal spring

!nodes for the beam
n,1,0,0
n,11,L,0
fill,1,11

!node for the mass
n,14,0.3*L,0 !node for mass
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!elements
!for the beam
type,1
real,1
mat,1
en,1,1,2
engen,1,10,1,1,1,1

!first mass, element 11
type,2
real,2
en,11,14 !at node 14

!vertical spring y, element 12
type,3
real,3
en,12,4,14 !between 4–14

!horizontal spring x, element 13
type,4
real,4
en,13,4,14

!constrains (boundary conditions)
d,1,ux,0
d,1,uy,0
d,1,rotz,0

save
fini
/eof !end of input file

/solu !Modal Solution
antyp,modal
modop,subs,4 4! modes, subspace method
mxpand,4„,yes !expand 4 modes, calculate stresses
solve
fini
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!RESPONSE TO HARMONIC EXCITATION-TIP FORCE
/solu
antyp,harmic
hropt,full
hrout,on
kbc,1

harfrq,2,250 !frequency range 2–250 Hz
nsubs,496 !every 0.5 Hz
f,11,fy,1 !unit vertical tip force
solve
fini

!frequency domain post-processor
/post26
numvar,200
/grid,1 !grid on
/axlab,x,Frequency, Hz
/axlab,y,Quantity
nsol,2,10,u,y,Y11 !disp. at tip
nsol,3,4,u,y,Y4 !disp. at node 4
nsol,4,14,u,y,Ymass !disp at added mass

!RESPONSE TO RANDOM EXCITATION

/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,3,yes !psd with 3 modes, stresses also

computed
psdunit,1,forc !input in PSD of force (kgf 2/Hz)
psdfrq,1„5,250 !input between 5 to 250 Hz
psdval,1,0.004081632,0.004081632 !values of PSD
kbc,1

psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations
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dmprat,0.02 !damping 2% for all modes
f,11,fy,1 !random input at tip
pfact,1,node !nodal excitation
mcomb,psd !modal combination for psd

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements

!use this for stresses
!for beam elements an element table is required(!!!)

set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980 = acel. in g’s
fini

!frequency domain post processing
/post26
keep !keep post results for another glance
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,y,Wtip !disp. of tip
nsol,3,14,u,y,wmass !disp. of mass
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element
rpsd,12,2„1,2,Wtip !PSD of rel.disp.-tip
rpsd,13,3„1,2,wmass !PSD of rel disp.-mass
rpsd,14,4„1,2,bend !PSD of Bend stress.

rpsd,22,2„3,1,ACtip !PSD of Acceleration, node 11 (in cm/sec 2/Hz)
!for g 2/Hz—divide by 980 2

rpsd,23,3„3,1,ACmass !PSD of bending stress, node 1
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ssbeam.txt

!file ssbeam for simply supported beam

/filnam,ssbeam

/title, Modes of a simply supported beam

!units in kgf, cm, seconds

g = 980 !gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e−6 !mass density
W = L*b*h*ro*g total weight (reference only)
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7
mp,ex,1,E !material property
mp,dens,1,ro !material property

et,1,beam3 !beam element
r,1,A,I,h !real constant

!nodes
n,1,0,0
n,11,L,0
fill,1,11

!elements
en,1,1,2
engen,1,10,1,1,1,1

!boundary conditions
d,1,ux,0 !left end
d,1,uy,0



326 • Appendix / Computer Files for the Demonstration Problems

d,11,uy,0 !right end
d,11,ux,0

save
fini
/eof !end of input file

/solu !modal analysis
antyp,modal
modop,subs,3 !3 modes
mxpand,3„,yes
solve
fini

/post1 !look at mode shapes
set,1,1 !first mode
pldisp,2
set,1,2 !second mode
pldisp,2
set,1,3 !third mode
pldisp,2
fini

!loading can be performed in static or dynamic
!solution phase using the specific input of the problem

ssplate.txt

!file ssplate for simply supported plate

/filnam,ssplate

/title, Simply Supported Plate

/config,nres,2000

!units-cm, kgf, sec.

g = 980 !value of g
pi = 4*atan(1) !value of pi
a = 40 !length (x)
b = 30 !width (y)
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h = 0.5 !thickness
E1 = 2.1e6 !Young modulus,x direction
E2 = 2.1e6 !Young modulus,y direction
E3 = 2.1e6 !Young modulus,z direction
nu = 0.3 !Poisson ratio

ro = 7.959e-6 !specific density

W = ro*g*a*b*h !total weight (for reference only)

/prep7 !Prepare the model

et,1,shell63 !3-D shell (plate) element

r,1,h !thickness

!material properties
mp,ex,1,E1 !E in 3 directions
mp,ey,1,E2
mp,ez,1,E3
mp,dens,1,ro
mp,nuxy,1,nu
mp,nuyz,1,nu
mp,nuxz,1,nu

!Nodes
n,1,0,0
n,21,a,0
fill,1,21

ngen,17,100,1,21,1,0,b/16,0

!Elements
type,1
mat,1
real,1

en,1,1,2,102,101
engen,1,20,1,1,1,1
engen,100,16,100,1,20,1

!Boundary conditions
!edges are simply supported and don’t move in plane
nsel,s,node„1,21,1
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d,all,uz,0
d,all,uy,0
nsel,all

nsel,s,node„1601,1621,1
d,all,uz,0
d,all,uy,0
nsel,all

nsel,s,node„1,1601,100
d,all,uz,0
d,all,ux,0
nsel,all

nsel,s,node„21,1621,100
d,all,uz,0
d,all,ux,0
nsel,all

save
fini
/eof !end of input file

!Modal Solution for 6 first 6 modes
/solu
antyp,modal
modop,subs,6 !6 modes, subspace method
mxpand,6„,yes !expand 6 modes, for stress calculations
solve
fini

!Response to vertical harmonic loads, 4 cases

/solu
antyp,harmic
hropt,full
hrout,on
kbc,1

harfrq,200,1250 !frequency range
nsubs,525 !number of frequencies calculated
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dmpr,0.02 !damping ratio for all modes
fdel,all !required for consecutive runs

!for the required case, delete the relevant ! mark

!f,811,fz,1 !case 1

f,416,fz,1 !case 2

!f,416,fz,1 !case 3
!f,1206,fz,1

!f,416,fz,1 !case 4
!f,1206,fz,−1

solve
save
fini

!Frequency domain response
/post26
numvar,200
/grid,1
/axlab,x,Frequency, Hz
/axlab,y,Quantity

nsol,2,811,u,z,Z811
nsol,3,416,u,z,Z416
nsol,4,1206,u,z,Z1206

esol,5,315,416,s,x,SX !sigma-x at element 315,node 416
esol,6,315,416,s,y,SY !sigma-y at element 315,node 416

shell1.txt

!file shell1 for simply supported cylindrical shell

/filnam,shell1

/title,Simply Supported Cylindrical Shell

/config,nres,2000

!units - cm,kgf,sec.
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g = 980 !value of g
pi = 4*atan(1) !value of pi

a = 10 !radius
b = 60 !height
h = 0.1 !thickness

E1=2.1e6 !Young modulus,x direction
E2 = 2.1e6 !Young modulus,y direction
E3 = 2.1e6 !Young modulus,z direction
nu = 0.3 !Poisson ratio

ro = 7.959e-6 !specific density

/prep7 !Prepare the model

et,1,shell63 !3-D shell(plate) element

r,1,h !thickness

!material properties
mp,ex,1,E1 !E in 3 directions
mp,ey,1,E2
mp,ez,1,E3
mp,dens,1,ro
mp,nuxy,1,nu
mp,nuyz,1,nu
mp,nuxz,1,nu

csys,1 !cylindrical coordinate system

!first layer of nodes
n,1,a,0,0
n,7,a,90,0
fill,1,7

n,13,a,180,0
fill,7,13

ngen,7,1,13,13,1,0,15,0
ngen,6,1,19,19,1,0,15,0
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!next layers
ngen,17,100,1,24,1,0,0,b/16

!Elements
type,1
real,1
mat,1

!first layer,24 elements
en,1,1,2,102,101
engen,1,23,1,1,1,1
en,24,24,1,101,124

!next layers
engen,100,16,100,1,24,1

!boundary conditions
nsel,s,node„1,24,1
d,all,ux,0
d,all,uy,0
d,all,uz,0
nsel,all
nsel,s,node„1601,1624,1
d,all,ux,0
d,all,uy,0
!d,all,uz,0 !held axially
nsel,all
save
fini
/eof !end of input file

!Modal Solution for 6 first 6 modes
/solu
antyp,modal
modop,subs,10 !10 modes, subspace method
mxpand,10„,yes !expand 10 modes, for stress calculations
solve
fini
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CHAPTER 3

beamrand_1.txt

!file beamrand for cantilever beam

/filnam,beamrand_1

/title, Random Respone of a Cantilever Beam

!units in kgf, cm, seconds

g = 980 !gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e−6 !mass density
W=L*b*h*ro*g !total weight (reference only)
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7 !same pre-processing as previous examples
mp,ex,1,E
mp,dens,1,ro
et,1,beam3
r,1,A,I,h

!nodes
n,1,0,0
n,11,L,0
fill,1,11

!elements
en,1,1,2
engen,1,10,1,1,1,1

!boundary conditions
d,1,ux,0
d,1,uy,0
d,1,rotz,0
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save
fini
/eof !end of input file

/solu !Modal Solution
antyp,modal
modop,subs,3 !3-D modes, subspace method
mxpand,3„,yes !expand 3 modes, calculate stresses
solve
fini

/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,3,yes !psd with 3 modes,

stresses also computed
psdunit,1,forc !input in PSD of force (kgf 2/Hz)
psdfrq,1„5,250 !input between 5 to 250 Hz
psdval,1,0.004081632,0.004081632 !values of PSD

psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes
f,11,fy,1 !random input at tip
pfact,1,node !nodal excitation
mcomb,psd !modal combination for psd

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc.

for resonances)
set,3,1 !for rms of displacements

!use this for stresses
!for beam elements an element

table is required!
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set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980 = acel. in g’s
fini

/post26
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side

of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,y,Wtip !disp. node 11
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element

rpsd,12,2„1,2,Wtip !PSD of rel. disp. node 11
rpsd,13,2„3,1,ACtip !PSD of Acceleration,

node 11 (in cm/sec2/Hz)
!for g 2/Hz—divide by 9802

rpsd,14,4„1,2,BEND !PSD of bending stress, node 1

!integrals of above variables give Mean Square values
int1,22,12,1„MStip !Mean square of tip displacement
int1,23,13,1„MSaccel !Mean square of tip accel.
int1,24,14,1„MSbend !Mean square of clamp bending stress.

beamrand_2.txt

!file beamrand_2 for cantilever beam

/filnam,beamrand_2

/title, Random Response of a Cantilever Beam to Base Excitation

!units in kgf, cm, seconds

g = 980 !gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e−6 !mass density
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W = L*b*h*ro*g !total weight (reference only)
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7 !same preprocessing as in beamrand_1.txt
mp,ex,1,E
mp,dens,1,ro
et,1,beam3
r,1,A,I,h

n,1,0,0
n,11,L,0
fill,1,11

en,1,1,2
engen,1,10,1,1,1,1

d,1,ux,0
d,1,uy,0
d,1,rotz,0

save
fini
/eof !end of input file

/solu !Modal Solution
antyp,modal
modop,subs,3 !3 modes, subspace method
mxpand,3„,yes !expand 3 modes, calculate stresses
solve
fini

/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,3,yes !psd with 3 modes,

stresses also computed
psdunit,1,disp !input in PSD of displacement (cm2/Hz)
psdfrq,1„5,250 !input between 5 to 250 Hz
psdval,1,0.000054128,0.000054128 !values of PSD



336 • Appendix / Computer Files for the Demonstration Problems

psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes
d,1,uy,1 !random disp. input at clamp
pfact,1,base !base excitation
mcomb,psd !modal combination for psd

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements. Use also for stresses

!for beam elements an element table is required!
set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980 = acel. in g’s
fini

/post26
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,y,Wtip !disp. node 11
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element

rpsd,12,2„1,2,Wtip !PSD of rel.disp. node 11
rpsd,13,2„3,1,ACtip !PSD of Acceleration, node 11 (in cm/sec2/Hz)

!for g2/Hz—divide by 9802

rpsd,14,4„1,2,BEND !PSD of bending stress, node 1

int1,22,12,1„MStip !Mean Square of tip displacement
int1,23,13,1„Msaccel !Mean Square of tip accel.
int1,24,14,1„Msbend !Mean Square of clamp bending stress.



A.3 Files Listing • 337

beamrand_3.txt

!file beamrand_3 for cantilever beam

/filnam,beamrand_3

/title, Random Respone of a Cantilever Beam to Tip Disp. Exc.

!units in kgf, cm, seconds

g = 980 !gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass density
W = L*b*h*ro*g !total weight (reference only)
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7 !same preprocessing as in beamrand_1
mp,ex,1,E
mp,dens,1,ro
et,1,beam3
r,1,A,I,h

n,1,0,0
n,11,L,0
fill,1,11

en,1,1,2
engen,1,10,1,1,1,1

d,1,ux,0
d,1,uy,0
d,1,rotz,0

save
fini
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/solu !Modal Solution
antyp,modal
modop,subs,3 !3 modes, subspace method
mxpand,3„,yes !expand 3 modes, calculate stresses
d,11,uy,0
solve
fini

/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,3,yes !psd with 3 modes, stresses also computed
psdunit,1,disp !input in PSD of displacement (cm2/Hz)
psdfrq,1„5,250,250.001 !input between 5 to 250 Hz
psdval,1,0.00119152,0.00119152,0.0000001
kbc,1
psdres,disp,abs !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes
d,11,uy,1 !random disp. input at tip
pfact,1,base !base excitation
mcomb,psd !modal combination for psd

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc.

for resonances)
set,3,1 !for rms of displacements

!use this for stresses
!for beam elements an element

table is required!
set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980 = acel. in g’s
fini
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/post26
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side

of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,y,Wtip !disp. node 11
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element

rpsd,12,2„1,1,Wtip !PSD of rel.disp. node 11
rpsd,13,2„3,1,ACtip !PSD of Acceleration,

node 11 (in cm/sec 2/Hz)
!for g 2/Hz—divide by 980 2

rpsd,14,4„1,1,BEND !PSD of bending stress, node 1

int1,22,12,1„MStip !Mean Square of tip displacement
int1,23,13,1„Msaccel !Mean Square of tip accel.
int1,24,14,1„MSbend !Mean Square of clamp bending stress.

wing1.txt

!file wing1 for cantilevered wing

/filnam,wing1

/title,Cantilever Skewed Plate Under Random Forces

/config,nres,2000

!units-cm, kgf, sec.

g = 980 !value of g
pi = 4*atan(1) !value of pi
a = 40 !chord at clamp
b = 30 !cantilever length
h = 0.5 !thickness
E1 = 2.1e6 !Young modulus,x direction
E2 = 2.1e6 !Young modulus,y direction
E3 = 2.1e6 !Young modulus,z direction
nu = 0.3 !Poisson ratio
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ro = 7.959e-6 !specific density

W = ro*g*1.5*a*b*h !total weight (for information only)

/prep7 !Prepare the model
et,1,shell63 !3-D shell (plate) element
r,1,h

!material properties
mp,ex,1,E1
mp,ey,1,E2
mp,ez,1,E3
mp,dens,1,ro
mp,nuxy,1,nu
mp,nuyz,1,nu
mp,nuxz,1,nu

!NODES
n,1,0,−a,0
ngen,9,10,1,1,1,0,a/8,0

n,9,b,−a/2,0
ngen,9,10,9,9,1,0,a/16,0

fill,1,9
fill,11,19
fill,21,29
fill,31,39
fill,41,49
fill,51,59
fill,61,69
fill,71,79
fill,81,89

!ELEMENTS
type,1
mat,1
real,1
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en,1,1,2,12,11
engen,1,8,1,1,1,1
engen,10,8,10,1,8,1

!BOUNDARY CONDITIONS
nsel,s,node„1,81,10
d,all,ux,0
d,all,uy,0
d,all,uz,0
d,all,roty,0
nsel,all
save
fini
/eof

!Modal Solution for 4 modes only
/solu
antyp,modal
modop,subs,4 !4 modes, subspace method
mxpand,4„,yes !expand 4 modes, for stress calculations
solve
fini

!response to random 2 forces
/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,4,yes !psd with 4 modes,

stresses also computed

!select the relevant input and delete the ! marks and change as required
!psdunit,1,force !input in PSD of force (kgf2/Hz)
!psdunit,2,force
!psdunit,1,accg,g
!psdunit,1,acel
psdunit,1,disp

!random force at node 89, 2 kgf rms
!psdfrq,1„20.5,500
!psdval,1,4/479.5,4/479.5
!psdg,1
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!random force at node 49, 1 kgf rms
!psdfrq,2„20.5,500
!psdval,2,1/479.5,1/479.5
!psdg,2

!random base excitation for tip displacement
!psdfrq,1„20.5,30,40,50,60,70,80
!psdfrq,1„90,100,105,110,120,140,160
!psdfrq,1„180,188.5,200,220,230,240,252.5
!psdfrq,1„270,280,290.5,310,324,350,375
!psdfrq,1„400,420,440,463,480,500

!psdval,1,0.000002469803,0.000001886208,0.000001298731,0.000000823921,
0.000000478475,0.000000251142,0.000000116346
!psdval,1,0.000000044353,0.000000015751,0.000000012934,0.000000015918,
0.000000035884,0.000000125390,0.000000353305
!psdval,1,0.000002283391,0.000011624921,0.000000799697,0.000000038448,
0.000000009721,0.000000001847,0.000000000155
!psdval,1,0.000000000904,0.000000001271,0.000000001346,0.000000000913,
0.000000000642,0.000000002499,0.000000012463
!psdval,1,0.000000046337,0.000000133019,0.000000498817,0.000003810632,
0.000000825332,0.000000169769
!psdg

psdfrq,1„20.5,40,55,65,80,90,100
psdfrq,1„105,111.5,130,140,150,158,165
psdfrq,1„180,200,220,250,280,303,310
psdfrq,1„320,344,370,400,430,439,450
psdfrq,1„470,500

psdval,1,0.000030829827,0.000002206463,0.000000684833,0.000000327368,
0.000000136399,0.00000007709,0.000000042684
psdval,1,0.000000032634,0.000000027426,0.000000096991,0.000000208414,
0.00000031121,0.000000321516,0.000000278609
psdval,1,0.000000151223,0.000000056499,0.0000000226,0.000000006911,
0.000000002411,0.000000001070,0.000000000844
psdval,1,0.000000000568,0.000000000303,0.000000000812,0.000000006122,
0.000000124764,0.000000268451,0.000000114167
psdval,1,0.000000029178,0.000000009212
psdg
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psdres,disp,abs !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes

!f,89,fz,1 !force at node 89
!pfact,1,node

!f,89,fz,0 !remove first force
!f,49,fz,1 !force at node 55
!pfact,2,node

nsel,s,node„1,81,10
d,all,uz,1
nsel,all
pfact,1,base

psdcom„4 !modal combination for 4 modes

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements

!use this for stresses
set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!rms of accelerations/980 = acel. in g’s
save
fini

/post26
numvar,40 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1

/axlab,x,Frequency Hz
/axlab,y,PSD
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nsol,2,89,u,z,Z89 !disp at node 89 (tip-rear)
nsol,3,49,u,z,Z49 !disp at node 49 (tip-midlle)
nsol,4,59,u,z,Z9 !disp at node 9 (tip-forward)
!esol,5,5,5,s,x,Sbend1 !sigmax at mid clamp
esol,6,61,71,s,eqv,SEQV1 !sigmax at forward clamp
!nsol,7,51,u,z,Wy !repeated...

rpsd,12,2„1,1,Z89
rpsd,13,3„1,2,Z49
rpsd,14,4„1,2,Z9
rpsd,22,2„3,1,A89
rpsd,23,3„3,1,A49
rpsd,24,4„3,2,A9

!for g2/Hz - divide by 9802

prod,32,22„,g89„,0.00000104123
prod,33,23„,g49„,0.00000104123
prod,34,24„,g9„,0.00000104123

!rpsd,15,5„1,2,Sbend1
rpsd,16,6„1,2,SEQV1
!rpsd,17,7„3,1,Ay !acceleration, node 51

/solu !harmonic response solution
antyp,harmic
hropt,full
hrout,on
kbc,1

harfrq,20,500 !frequency range
nsubs,960 !number of substeps-each 0.5 Hz
dmpr,0.02 !damping ratio uniform for all modes

!f,89,fz,1 !force excitation, node 89
!f,49,fz,1 !force excitation, node 49
!base excitation
nsel,s,node„1,81,10
d,all,uz,1
nsel,all
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solve

save
fini

/post26
numvar,200
/grid,1
/axlab,x,Frequency, Hz
/axlab,y,Quantity
nsol,2,89,u,z,Z89
nsol,3,49,u,z,Z49
nsol,4,9,u,z,Z9
esol,5,61,71,s,eqv,SEQV

!results for response to a unit excitation provide
!transfer function between the input (force or displacement)
!and the response required.

!for printing or plotting the results of the transfer function,
!remember that there are Real and Imaginary parts.
!look at commands plcplx and prcplx in the help file.

bbplate.txt

/filnam,bbplate

!simply supported beam plate subjected to acoustic excitation

/title,Simply Supported Beam Plate,under acoustic excitation

!units in cm, kgf, seconds

/prep7

E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass density
nu = 0.3 !Poisson’s ratio
xi = 0.01 !damping coefficient

L = 40 !length of beam
b = 5 !width of beam
h = 0.5 !thickness of beam
I = b*h*h*h/12 !cross section moment of inertia
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prms = 0.03130 !rms of external pressure
!for its calculation, see text

q = prms*b !force per unit length
!this parameter is required
!for the calculation of equivalent
!discrete forces calculation

!data on external uniform psd of excitation
!see text for the computations

psd=1e−6 !value of uniform psd
f1 = 20 !lower frequency of excitation
f2 = 1000 !upper frequency of excitation
delf = f2–f1 !delta frequencies
prms1 = sqrt(psd) !rms value per 1Hz band
prms = sqrt(psd*delf) !total rms of external pressure

!static deflection of beam under uniform load/cm
ymax = 5*q*L*L*L*L/(384*E*I) !y at center (i.e. from Ref. [26])

ftot = prms*b*L !total force

!the equvivalent rms force per node fn is obtained
!by equating the mid-beam deflection under
!uniform pressure and discrete equivalent forces
!these are computed using two static analysis shown at
!the end of the file, and searching (by trial and error)
!for the coefficient (1.0526 in this case) that
!match the two cases

fn = ftot/(38*1.0526) !force at node (corrected)

psdf = fn*fn/delf !uniform psd value for force excitation

et,1,shell63 !beam is described by shell element

!material properties
mp,ex,1,E
mp,dens,1,ro
mp,nuxy,1,nu
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!real constant (uniform thickness)
r,1,h,h,h,h

!nodes
n,1,0,−b/2,0
n,101,0,b/2,0
ngen,21,1,1,1,1,L/20,0,0
ngen,21,1,101,101,1,L/20,0,0

!elements
type,1
real,1
mat,1
en,1,1,2,102,101
engen,1,20,1,1,1,1

eplot !plot model

!boundary conditions:Simply Supported edges
!support at left edge
nsel,s,node„1,101,100
d,all,uz,0
d,all,uy,0
d,all,ux,0
nsel,all

!support at right edge
nsel,s,node„21,121,100
d,all,uz,0
d,all,uy,0
nsel,all

save
fini
/eof !end of data file

!the model can be loaded to ANSYS by /inp,bbplate,txt

!FIRST SOLUTION:RESPONSE TO PRESSURE LOADING
!for the second case, load AGAIN the input file and
!go to the SECOND SOLUTION
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!modal analysis for pressure excitation
/solu
antype,modal
modopt,subs,4 !only 4 modes in the 20–1000 frequency range
mxpand,4„,yes
sfe,all,1,pres„prms1 !command required for pressure loading
solve
fini

!spectral analysis for pressure excitation
/solu
antyp,spectrum
spopt,psd,4,on !4 modes superposition
psdunit,1,pres !units of psd are pressure

psdp = 1 !a value of 1 is introduced
!scaling was prepared in the modal analysis

psdfrq !This command is required only
!for next computation. If introduced
!in the first computation, a warning
!is given. IGNORE IT!

psdfrq,1„f1,f2
psdval,1,psdp,psdp
psdgraph,1

dmpr,xi !the same damping ratio for all resonances

lvscale,1 !scaling was performed already in modal anal

pfact,1,node !participation factors computation

psdres,acel,abs !absolute accelerations
psdres,velo,rel !relative velocities
psdres,disp,rel !relative displacements
solve

psdcom„4 !4 modes combination
solve
fini

!from here move to the post-processor commands
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!SECOND SOLUTION:RESPONSE TO DISCRETE FORCES LOADING
!modal analysis for force excitation

/solu
antype,modal
modopt,subs,4 !4 modes in the 20–1000 range
mxpand,4„,yes
solv
fini

!spectral analyses for force excitation
/solu
antyp,spectrum
spopt,psd,4,on
psdunit,1,force

psdfrq !This command is required only
!for next computation. If introduced
!in the first computation, a warning
!is given. IGNORE IT!

psdfrq,1„f1,f2
psdval,1,psdf,psdf
psdgraph

dmpr,xi !the same damping ratio for all resonances

nsel,s,node„2,20,1
nsel,a,node„102,120,1
f,all,fz,1
nsel,all

pfact,1,node !participation factors computation

psdres,acel,abs
psdres,velo,rel
psdres,disp,rel
solve

psdcom„4
solve
fini
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!POST PROCESSING (for both cases)
!general post-processor
/post1
set,3,1 !for displacements, stresses-rms values
set,4,1 !for velocities, stress rates-rms values
set,5,1 !accelerations rms values

!rms for accelerations in g’s obtained
!by dividing with g value

!plot and/or list rms values of parameters using GUI

!FREQUENCY DOMAIN post-processor
/post26
numvar,40 !increase number of variables
store,psd,10

!variables definitions
nsol,2,11,u,z,CENTER !disp. of mid-beam
nsol,3,6,u,z,QUART !disp. of mid-beam
esol,4,10,11,s,x !longitudinal stress at mid-beam

!psd computation
rpsd,12,2„1,2,CENTER
rpsd,13,3„1,2,QUART
rpsd,14,4„1,1,SXCENTER

plvar,12
plvar,13
plvar,14

int1,22,12,1„CENTER
int1,23,13,1„QUART
int1,24,14,1„SXCENTER

plvar,22
plvar,23
plvar,24

***************************************************!

!commands for the static load equivalent forces
!static load of discrete forces
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!it is recommended to run these two sets of commands
!separately (each time with new input file)
!or delete the first case pressures before
!solving the second load, to avoid getting
!a superimposed case of the two cases together
!static load of prms
/solu
antyp,stat
sfe,all,1,pres„prms
solv
fini

!discrete forces loading
/solu
antyp,stat
nsel,s,node„2,20,1
nsel,a,node„102,120,1
f,all,fz,fn
nsel,all
solve
fini

***************************************************!

frame1.txt

!file frame1 for a frame

/filnam,frame1,txt

/title,Vibration of a frame

!units are in cm, kgf, seconds

!CASE DATA

!data for left member
L1 = 60 !length
b1 = 8 !width
h1 = 1 !height
E1 = 2.1e6 !Young’s modulus
ro1 = 7.959e-6 !mass density
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A1 = b1*h1 !cross section area
I1 = b1*h1**3/12 !moment of inertia

!data for right member
L2 = 60
b2 = 8
h2 = 1
E2 = 2.1e6
ro2 = 7.959e-6
A2 = b2*h2
I2 = b2*h2**3/12

!data for top member
L3 = 60
b3 = 8
h3 = 1
E3 = 2.1e6
ro3 = 7.959e−6
A3 = b3*h3
I3 = b3*h3**3/12

/prep7

!elements types
et,1,beam3
et,2,beam3
et,3,beam3

!material properties for the 3 members
mp,ex,1,E1
mp,dens,1,ro1

mp,ex,2,E2
mp,dens,2,ro2

mp,ex,3,E3
mp,dens,3,ro3

!real constants for the 3 members
r,1,A1,I1,h1
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r,2,A2,I2,h2
r,3,A3,I3,h3

!nodes
n,1,0,0
n,11,0,L1
fill,1,11

n,21,L3,L1
fill,11,21

n,31,L3,L1–L2
fill,21,31

!elements
type,1
mat,1
real,1

en,1,1,2
engen,1,10,1,1,1,1

type,3
mat,3
real,3

en,11,11,12
engen,1,10,1,11,11,1

type,2
mat,2
real,2

en,21,21,22
engen,1,10,1,21,21,1

!boundary conditions
!built in left support
d,1,ux,0
d,1,uy,0
d,1,rotz,0
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!simply supported right support
d,31,ux,0
d,31,uy,0

save
fini
/eof !end of input file

!solution for modal analysis
!modal analysis
/solu
antyp,modal
modop,subs,6 !6 modes
mxpand,6„,yes
solve
fini

!examination of normal modes

/post1 !postprocessing, modal analysis
set,1,1 !first mode
pldisp,2

set,1,2 !second mode
pldisp,2

set,1,3 !third mode
pldisp,2

set,1,4 !fourth mode
pldisp,2

set,1,5 !fifth mode
pldisp,2

set,1,6 !sixth mode
pldisp,2

save
fini
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!solution for random force excitation
/solu !Solution phase
antyp,spect !analysis type - spectral
spopt,psd,4,yes !psd with 4 modes, only 4 modes in the input range,

!stresses are also computed
psdunit,1,forc !input in PSD of force (kgf 2/Hz)
psdfrq,1„5,250 !input between 5 to 250 Hz
psdval,1,0.004081632,0.004081632
psdgraph !plot input PSD

psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

!for uniform damping for all modes use the following command
!dmprat,0.02 !damping 2% for all modes

!for different damping coefficient for 4 modes
mdamp,1,0.03,0.01,0.005,0.01

f,11,fx,1 !random horizontal random force at upper left corner
pfact,1,node !nodal excitation
psdcom„4 !modal combination for psd
solve
save
fini

!postprocessing of random loading
!general postprocessing
/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements

!use this for stresses
!for beam elements an element table is required!

!prepare element table for the bending stress in i&j nodes
etable,SBENDi,ls,3
etable,SBENDj,ls,6
pret !print element table
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set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980=acel. in g’s
fini

!frequency domain postprocessing
/post26
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,x,Wtip !disp. node 11
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element
esol,5,10,11,ls,3,Sben11 !bend. str. at element 10, node 11

rpsd,12,2„1,2,Wtip !PSD of rel. disp. node 11
rpsd,13,2„3,1,ACtip !PSD of Acceleration, node 11 (in cm/sec2/Hz)

!for g 2/Hz—divide by 9802

rpsd,14,4„1,2,BEND1 !PSD of bending stress, node 1
rpsd,15,5„1,2,BEND11 !PSD of bending stress, node 11

int1,22,12,1„MStip !Mean Square of tip displacement
int1,23,13,1„Msaccel !Mean Square of tip acceleration
int1,24,14,1„MSbend1 !Mean Square of clamp bending stress.
int1,25,15,1„MSbend11 !Mean Square of tip bending stress.

commass1.txt

!file commass1 for cantilever beam

/title,Cantilever beam with 1 Mounted Mass

!units in kgf, cm, seconds

g = 980 !value of g
L = 60 !length, cm
b = 8 !width, cm
h = 0.5 !thickness, cm
E = 2.1e6 !Young modulus
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ro = 7.959e−6 !mass density
W = L*b*h*ro*g !beam total weight, kgf
q = W/L !beam weight per length
A = b*h !beam cross section area
I = b*h**3/12 !beam area moment of inertia
g = 980 !g = 980 cm/sec 2

w1 = 1 !first mass, node 14 (below node 4)
k1y = 65 !vertical spring, 4 to 14
k1x = 50000 !horiz. spring, 4 to 14 - very high stiffness

m1 = w1/g !mounted mass

/prep7 !pre-processor
mp,ex,1,E
mp,dens,1,ro

et,1,beam3
et,2,mass21„0,4 !first mass element
et,3,combin14,0,2 !spring y direction
et,4,combin14,0,1 !spring x direction

r,1,A,I,h !beam
r,2,m1 !mass
r,3,k1y !ver. spring
r,4,k1x !hor. spring

!nodes for the beam
n,1,0,0
n,11,L,0
fill,1,11

!node for the mass
n,14,0.3*L,0 !node for mass

!elements
!for the beam
type,1
real,1
mat,1
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en,1,1,2
engen,1,10,1,1,1,1

!first mass, element 11
type,2
real,2
en,11,14 !at node 14

!spring y, element 12
type,3
real,3
en,12,4,14 !between 4–14

!spring x, element 13
type,4
real,4
en,13,4,14

!constrains
d,1,ux,0
d,1,uy,0
d,1,rotz,0

save
fini
/eof !end of input file

/solu !Modal Solution
antyp,modal
modop,subs,4 !4 modes, subspace method
mxpand,4„,yes !expand 4 modes, calculate stresses
solve
fini

/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,3,yes !psd with 3 modes, stresses also computed
psdunit,1,forc !input in PSD of force (kgf 2/Hz)
psdfrq,1„5,250 !input between 5 to 250 Hz
psdval,1,0.004081632,0.004081632
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kbc,1
psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes
f,11,fy,1 !random input at tip
pfact,1,node !nodal excitation
mcomb,psd !modal combination for psd

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements

!use this for stresses
!for beam elements an element table is required

set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980=acel. in g’s
!fini

/post26
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,y,Wtip !disp. of tip
nsol,3,14,u,y,wmass !disp. of mass
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element
rpsd,12,2„1,2,Wtip !PSD of rel.disp.-tip
rpsd,13,3„1,2,wmass !PSD of rel disp.-mass
rpsd,14,4„1,2,bend !PSD of Bend str.
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rpsd,22,2„3,1,ACtip !PSD of Acceleration, node 11 (in cm/sec2/Hz)
!for g2/Hz—divide by 9802

rpsd,23,3„3,1,ACmass !PSD of bending stress, node 1

ssplaterand.txt

!file ssplaterand for simply supported plate

/filnam,ssplaterand

/title, Simply Supported Plate

/config,nres,2000

!units-cm, kgf, sec.

g = 980 !value of g
pi = 4*atan(1) !value of pi
a = 40 !length x
b = 30 !width y
h = 0.5 !thickness
E1 = 2.1e6 !Young modulus,x direction
E2 = 2.1e6 !Young modulus,y direction
E3 = 2.1e6 !Young modulus,z direction
nu = 0.3 !Poisson ratio
ro = 7.959e-6 !specific density
W = ro*g*a*b*h !total weight (for reference only)

/prep7 !Prepare the model
et,1,shell63 !3-D shell (plate) element

r,1,h !thickness
!material properties
mp,ex,1,E1 !E in 3 directions
mp,ey,1,E2
mp,ez,1,E3
mp,dens,1,ro
mp,nuxy,1,nu
mp,nuyz,1,nu
mp,nuxz,1,nu

!Nodes
n,1,0,0
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n,21,a,0
fill,1,21

ngen,17,100,1,21,1,0,b/16,0

!Elements
type,1
mat,1
real,1

en,1,1,2,102,101
engen,1,20,1,1,1,1
engen,100,16,100,1,20,1

!Boundary conditions
!edges are simply supported and don’t move in plane
nsel,s,node„1,21,1
d,all,uz,0
d,all,uy,0
nsel,all

nsel,s,node„1601,1621,1
d,all,uz,0
d,all,uy,0
nsel,all

nsel,s,node„1,1601,100
d,all,uz,0
d,all,ux,0
nsel,all

nsel,s,node„21,1621,100
d,all,uz,0
d,all,ux,0
nsel,all

save
fini
/eof !end of input file
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!Modal Solution for 6 first 6 modes
/solu
antyp,modal
modop,subs,6 !6 modes, subspace method
mxpand,6„,yes !expand 6 modes, for stress calculations
solve
fini

/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,6,yes !psd with 6 modes, stresses also computed

psdunit,1,force !input in PSD of force (kgf2/Hz)

!psdfrq !for a second run, erase the previous frequencies!!!

psdfrq,1„200,1250 !input between 200 to 1250 Hz
psdval,1,0.00095238,0.00095238 1! kgf rms value

!this is the place for another set of PSD if more nodes are excited:
!psdfrq,2„200,1250
!psdval,2,0.00095238,0.00095238

psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes

f,416,fz,1 !random input at node 416
pfact,1,node !nodal excitation

!f,416,fz,0 !zero the previous case
!f,1206,fz,1 !add random force at node 1206
!pfact,2,node !nodal excitation (from table 2 above)
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!REMEMBER TO ZERO IF A SECOND DIFFERENT RUN IS
REQUIRED
psdcom„6 !modal combination for 3 modes
solve
save
fini

!DATA PROCESSING for RMS values
/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements
set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!rms of accelerations/980 = acel. in g’s
save
fini !use this for stresses

!Data processing in the frequency domain
/post26
numvar,50 !prepare space for 50 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,Quantity

nsol,2,811,u,z,Z811 !displ. at mid-plate
nsol,3,416,u,z,Z416 !displ. under force
esol,4,315,416,s,x,SX !X stress under force
esol,5,315,416,s,y,SY !Y stress under force

rpsd,12,2„1,2,Z811
rpsd,13,3„1,2,Z416
rpsd,14,4„1,2,SX416
rpsd,15,5„1,2,SY416
rpsd,16,3„3,1,AC416

!for g2/Hz—multiply by 1/9802

prod,17,16„,g2/Hz„,0.00000104123



364 • Appendix / Computer Files for the Demonstration Problems

CHAPTER 4

contact7.tkw

A TKW+ file, not listed

plate2.txt

!file plate2 for cantilever beam with contact elements

/filnam,plate2

/title,Cantilever Beam by Plate Elements, with Contacts

!units kgf, cm, seconds

g = 980 !value of g
!beam data
L = 60 !length
b = 8 !width
h = 0.5 !thickness
E1 = 2.1e6 !Young’s modulus
ro1 = 7.959e-6 !mass density
nu = 0.3 !Poisson coefficient
W = L*b*h*ro1*g !total weight
q = W/L !weight/length
A = b*h !cross section
I = b*h**3/12 !moment of inertia
P = 20 !total tip force
del = 3 !initial distance beam-anvil

!anvil data
b1 = 1.25*b !anvil’s width
h1 = b1/5 !anvil’s height
E2 = 2.1e10 !anvil’s Young’s modulus
ro2 = 7.959e-2 !anvil’s density

!contact data
k1 = 1000 !KN for contact
tn = 0.001 !penetration tolerance
ts = 5 !5% geometry change
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/prep7
mp,ex,1,E1 !material properties, beam
mp,dens,1,ro1
mp,nuxy,1,nu

mp,ex,2,E2 !material properties, anvil
mp,dens,2,ro2
mp,nuxy,2,nu

mp,mu,3,0 !material property, contact
r,3,k1„tn„ts !real constants, contact

et,1,solid45,0„,1
et,2,solid45,0„,1
et,3,contac48,0,1,0„„1 !contac48 elements

!nodes for beam
n,1,0,−h/2,b/2
n,11,L,−h/2,b/2

fill,1,11
ngen,5,20,1,11,1,0,0,-b/4
ngen,2,100,all„,0,h,0

!nodes for anvil
n,301,L−b/4,del+h/2,b/2
ngen,5,1,301,301,1,0,0,−b/4
ngen,2,10,301,305,1,b/2,0,0
ngen,2,50,301,305,1,0,b/2,0
ngen,2,50,311,315,1,0,b/2,0

!elements for beam
type,1
real,1
mat,1

en,1,1,2,22,21,101,102,122,121
engen,1,10,1,1,1,1
engen,10,4,20,1,10,1
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!elements for anvil
type,2
real,2
mat,2

en,101,301,311,312,302,351,361,362,352
engen,1,4,1,101,101,1

!contact elements
type,3
real,3
mat,3

en,201,311,301,111
en,202,312,302,131
en,203,313,303,151
en,204,314,304,171
en,205,315,305,191

!boundary conditions for beam
nsel,s,loc,x,−0.001,0.001
d,all,all,0
nsel,all

!boundary conditions for anvil
nsel,s,loc,y,(del+h/2+b/2−0.01),(del+h/2+b/2+0.01)
d,all,all,0
nsel,all

save
fini
/eof !end of input file

/solu !static analysis
antyp,stat
neqit,75 !max # of iterations
f,11,fy,P/5 !force at tip is P (total
f,31,fy,P/5 !divided to 5 nodes)
f,51,fy,P/5
f,71,fy,P/5
f,91,fy,P/5



A.3 Files Listing • 367

nsubs,100 !number of sub steps
!autots,on
outres,all,all

solve
fini

!/post1
!this post-processor is used to check
!state of the solution in a given
!external force (load step). Remove ! marks as required

!/post26
!this post-processor is used to check
!behavior as a function of the external force.
!ANSYS interprets this force as “time”
!and proper adjustment is to be made
!so that the last “time” is at the last
!force.

!nsol,2,51,u,y,Y51 means that
!variable 2 is the y displacement
!at node 51, mid tip node()

!esol,3,20,51,s,y,SY51
!variable 3 is the Y stress at element 20, node 51

plate3.txt

!file plate3 for cantilever beam with contact elements

/filnam,plate3

/title,Cantilever Beam by Plate Elements, Dynamics:Tip Force Excitation

/config,nres,10000

!units kgf, cm, seconds

g = 980
!beam data
L = 60 !length
b = 8 !width
h = 0.5 !thickness
E1 = 2.1e6 !Young’s modulus of plate
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ro1 = 7.959e-6 !density
nu = 0.3 !Poisson
W = L*b*h*ro1*g !total weight
q = W/L !weight/length
A = b*h !cross section
I = b*h**3/12 !area moment of inertia
PP = 20 !total tip force
pi = 4*atan(1) !value of pi
freq = 11.525 !frequency of excitation
om = 2*pi*freq !angular frequency
del = 3 !distance beam-anvil

!anvil data
E2 = 2.1e10 !anvil’s Young’s modulus
ro2 = 7.959e-2 !anvil’s mass density

!contact data
k1 = 1000 !KN for contact
tn = 0.001 !penetration tolerance
ts = 5 ! 5% geometry change

/prep7
mp,ex,1,E1 !material properties, beam
mp,dens,1,ro1
mp,nuxy,1,nu

mp,ex,2,E2 !material properties, anvil
mp,dens,2,ro2
mp,nuxy,2,nu

mp,mu,3,0 !material property, contact
r,3,k1„tn„ts !real constants, contact

et,1,solid45,0„,1
et,2,solid45,0„,1
et,3,contac48,0,1,0„„1

!nodes for beam
n,1,0,−h/2,b/2
n,11,L,−h/2,b/2



A.3 Files Listing • 369

fill,1,11
ngen,5,20,1,11,1,0,0,−b/4
ngen,2,100,all„,0,h,0

!nodes for anvil
n,301,L−b/4,del+h/2,b/2
ngen,5,1,301,301,1,0,0,−b/4
ngen,2,10,301,305,1,b/2,0,0
ngen,2,50,301,305,1,0,b/2,0
ngen,2,50,311,315,1,0,b/2,0

!elements for beam
type,1
real,1
mat,1

en,1,1,2,22,21,101,102,122,121
engen,1,10,1,1,1,1
engen,10,4,20,1,10,1

!elements for anvil
type,2
real,2
mat,2

en,101,301,311,312,302,351,361,362,352
engen,1,4,1,101,101,1

!contact elements
type,3
real,3
mat,3
en,201,311,301,111
en,202,312,302,131
en,203,313,303,151
en,204,314,304,171
en,205,315,305,191

!boundary conditions for beam
nsel,s,loc,x,−0.001,0.001
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d,all,all,0
nsel,all

!boundary conditions for anvil
nsel,s,loc,y,(del+h/2+b/2−0.01),(del+h/2+b/2+0.01)
d,all,all,0
nsel,all
save
fini
/eof !end of input file

/solu !transient excitation analysis
antyp,trans
trnop,full
t0 = 0.0001 !initial time (very small !!!)
neqit,75 !max number of iterations
time,t0
dt = 0.000125

PP = P*sin(om*t0) !force at t0

f,11,fy,PP/5 !force at tip is PP
f,31,fy,PP/5 !divided to 5 nodes
f,51,fy,PP/5
f,71,fy,PP/5
f,91,fy,PP/5

nsubs,1 !number of sub steps for initial load
!autots,on
outres,all,all
solve

!looping for “transient sine wave”
*do,n,1,200,1

tc = t0+n*dt
time,tc
PP = P*sin(om*tc)
f,11,fy,PP/5
f,31,fy,PP/5
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f,51,fy,PP/5
f,71,fy,PP/5
f,91,fy,PP/5
nsubs,1
outres,all,all
solve

*enddo

save
fini
/eof !end of input file

!general purpose post-processor
/post1
set,list !for examination of load steps
set,X,1 !where X is the required step
!see disp, stresses etc. at a given time t.

!time domain post processor
/post26
numvar,30
!displacement at the mid-tip node
nsol,2,51,u,y,Y51

!Y stresses at node 51
esol,3,20,51,s,y,SY51

!Y stresses at node 151
esol,4,20,151,s,y,SY151

!X stress at node 141
esol,5,11,141,s,x,SX141
!etc...

/grid,1
plva,2
plva,3
plva,4
!etc....
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plate4.txt

!file plate4 for cantilever beam with contact elements

/filnam,plate4

/title,Cantilever Beam by Plate Elements, Dynamics:Base Excitation

!units kgf, cm, seconds

g = 980 !value of g
!beam data
L = 60 !length
b = 8 !width
h = 0.5 !thickness
E1 = 2.1e6 !Young’s modulus
ro1 = 7.959e-6 !mass density
nu = 0.3 !Poisson coefficient
W = L*b*h*ro1*g !total weight
q = W/L !weight/length
A = b*h !cross section
I = b*h**3/12 !area moment of inertia
del = 1

!excitation data
pi = 4*atan(1) !value of pi
freq = 2*11.525 !frequency of excitation
om = 2*pi*freq !angular frequency
ng = −3 !excitation with ng
a0 = ng*g !amplitude of input acceleration
dd = −a0/om**2 !amplitude of input displacement
del = 1 !distance beam-anvil

!anvil data
E2 = 2.1e10 !anvil’s Young’s modulus
ro2 = 7.959e-2 !anvil’s mass density

!contact data
k1 = 1000 !KN for contact
tn = 0.001 !penetration tolerance
ts = 5 !5% geometry change
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/prep7
mp,ex,1,E1 !material properties, beam
mp,dens,1,ro1
mp,nuxy,1,nu

mp,ex,2,E2 !material properties, anvil
mp,dens,2,ro2
mp,nuxy,2,nu

mp,mu,3,0 !material property, contact
r,3,k1„tn„ts !real constants, contact

et,1,solid45,0„,1
et,2,solid45,0„,1
et,3,contac48,0,1,0„„1

!nodes for beam
n,1,0,−h/2,b/2
n,11,L,−h/2,b/2

fill,1,11
ngen,5,20,1,11,1,0,0,−b/4
ngen,2,100,all„,0,h,0

!nodes for anvil
n,301,L−b/4,del+h/2,b/2
ngen,5,1,301,301,1,0,0,−b/4
ngen,2,10,301,305,1,b/2,0,0
ngen,2,50,301,305,1,0,b/2,0
ngen,2,50,311,315,1,0,b/2,0

!elements for beam
type,1
real,1
mat,1

en,1,1,2,22,21,101,102,122,121
engen,1,10,1,1,1,1
engen,10,4,20,1,10,1
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!elements for anvil
type,2
real,2
mat,2

en,101,301,311,312,302,351,361,362,352
engen,1,4,1,101,101,1

!contact elements
type,3
real,3
mat,3

en,201,311,301,111
en,202,312,302,131
en,203,313,303,151
en,204,314,304,171
en,205,315,305,191

!boundary conditions for beam
nsel,s,loc,x,−0.001,0.001
d,all,all,0
nsel,all

!boundary conditions for anvil
nsel,s,loc,y,(del+h/2+b/2−0.01),(del+h/2+b/2+0.01)
d,all,all,0
nsel,all

save
fini
/eof !end of input file

/solu !transient analysis
antyp,trans
trnop,full
t0 = 0.0001 !initial time (very small !!!)
neqit,75 !max number of iterations
dt = 0.001
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!initial time
time,t0
ddd = dd*sin(om*t0) !initial displacement

nsel,s,node„301,305,1
nsel,a,node„311,315,1
nsel,a,node„351,355,1
nsel,a,node„361,365,1
nsel,a,node„1,81,20
nsel,a,node„101,181,20

d,all,uy,ddd
nsel,all
nsubs,2
outres,all,all
solve

!additional times (transient)
*do,n,1,200,1

tc = t0+n*dt
time,tc
nsel,s,node„301,305,1
nsel,a,node„311,315,1
nsel,a,node„351,355,1
nsel,a,node„361,365,1
nsel,a,node„1,81,20
nsel,a,node„101,181,20
ddd = dd*sin(om*tc)
d,all,uy,ddd
nsel,all
nsubs,1
outres,all,all
solve

*enddo

fini

/post1 !general purpose post processor
set,list !for examination of load steps
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set,X,1 !where X is the required step
!see disp, stresses etc at a given time

/post26
numvar,30
/grid,1
!displacement at the mid-tip node
nsol,2,51,u,y,Y51

!displacement at the mid-anvil
nsol,3,303,u,y,Y303

!displacement of the clamp
nsol,4,41,u,y,Y41

!relative displacement between tip and clamp
add,5,2,4„dist„,1,−1

!Y stresses at node 51
esol,6,20,51,s,y,SY51

!Y stresses at node 151
esol,7,20,151,s,y,SY151

!X stress at node 141
esol,8,11,141,s,x,SX141
!etc...

plva,2
plva,3
plva,4
!etc....

CHAPTER 5

probeam4.txt

!probeam4 for probabilistic analysis of a cantilever beam

!units in kgf, mm, seconds
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!the looping file is the one between *create command and

! *end command, after the post processor!!!

/filnam,probeam4

*create,probeam4,pdan !begin probeam4.pdan, end with *end command

*set,b,10.0000 !width, mean value
*set,h,8.0000 !height, mean value
*set,L,400.0000 !length, mean value
*set,E,21000.0000 !Young’s modulus, mean
*set,F,10.0000 !applied tip force, mean
*set,Yallow,27.0000 !allowed tip displacement, mean
*set,Sallow,40.0000 !allowed clamp stress

In = b*h*h*h/12 !area moment of inertia
Area = b*h !cross section area

/prep7
et,1,beam3 !2-D beam element
mp,ex,1,E !material properties
r,1,area,In,h !real constants
n,1,0,0 !first node, clamp
n,11,L,0 !last node, tip
fill,1,11
en,1,1,2 !elements
engen,1,10,1,1,1
d,1,ux,0 !boundary conditions, clamped edge
d,1,uy,0
d,1,rotz,0
f,11,fy,F !applied force
fini

/solu !solution phase
antyp,stat
solve
fini

/post1 !post-processing phase
etab,SBEN,nmisc,1 !prepare element table
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*get,Smax,elem,1,etab,SBEN !get bending stress at clamp
*get,Ymax,node,11,u,y !get tip displacement

GF1 = Yallow-Ymax !first failure function (tip deflection)
GF2 = Sallow-Smax !second failure function (clamp stress)
SFSy = Yallow/Ymax !stochastic safety factor, displacement
SFSS = Sallow/Smax !stochastic safety factor, clamp stress
fini

*end !end of probeam4.pdan
/eof !end of file for /inp,probeam4,txt

/inp,probeam4,pdan !define which is the loop file
/pds !enter probabilistic module (can be done in GUI)
/pdanl,probeam4,pdan !use GUI!!!! Prob Design > Analysis File > assign

!definition of random variables (RV). Easily done with GUI
pdvar,b,gaus,10.0000,0.1 !define RV b
pdvar,h,gaus,8.0000,0.1 !define RV h
pdvar,L,gaus,400.0000,2.0000 !define RV L
pdvar,E,gaus,21000.0000,700.0000 !define RV E
pdvar,F,gaus,10.0000,0.3 !define RV F
pdvar,Yallow,gaus,27.0000,0.25 !define RV Yallow
pdvar,Sallow,gaus,40.0000,0.5000 !define RV Sallow
!RV’s can now be plotted by pdplot command

!define response variables - random outputs in GUI
pdvar,Smax,resp !maximum stress at clamp
pdvar,Ymax,resp !maximum tip deflection
pdvar,GF1,resp !first failure function
pdvar,GF2,resp !second failure function
pdvar,SFSy,resp !stochastic safety factor, tip displ.
pdvar,SFSS,resp !stochastic safety factor, clamp stress.

!define probabilistic method. MC for Monte Carlo, lhs for latin hypercube
pdmeth,mcs,dir !probabilistic method - MC
pddmcs,1000„all„„123457 !1000 simulations
pdexe ! execute simulations, solution takes time!!!
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!Analysis of results. Done with GUI in Ansys Main Menu > Prob Design:
!Prob Results > Statistics > Cumulative DF !CDF of results
!Prob Results > Statistics > Histograms !Sampling Histograms
!Prob Results > Statistics > Sample History !Sampling History

!prob Results > Statistics > Sample Probability !select the variable
!in the NAME window

!probability of Ymax>Yallow
!is obtained, same for GF2.

!many other properties can be calculated.
!response surface method also available. See HELP file

math1.txt

!use of ANSYS Probabilistic Module for Mathematical Application
!Stress is given by S = x12+ x2*x3
!Failure function is GF1 = R-S, Failure if GF1 is
!smaller or equal zero

/filnam,math
*create,math,pdan !begin creation of loop file
*set,x1,10.000 !mean of x1
*set,x2,5.000 !mean of x2
*set,x3,4.000 !mean of x3
*set,R,125.000 !mean of “strength”

/prep7
S = x1**2+x2*x3 !expression for “stress”
GF1 = R-S !failure function

finish
*end

/eof
!run nominal case by /inp,math,txt
!then:

/inp,math,pdan
/pds
psanl,math,pdan
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!definition of random variables
pdvar,x1,gaus,10.000,0.1
pdvar,x2,gaus,5.000,0.05
pdvar,x3,gaus,4.000,0.05
pdvar,R,gaus,125.000,1.4

!definition of response variables
pdvar,S,resp
pdvar,GF1,resp

!definition of analysis method
pdmeth,mcs,dir
pddmcs,1000„all„„123457

!execution of computation
pdexe

!NO FINITE ELEMENT COMPUTATIONS ARE INVOLVED!!!

truss1.txt

!file truss1 for 3 member truss

/filnam,truss1

/title, Three Members Truss

!geometry parameters
pi = 4*atan(1) !value of pi
L0 = 223 !length, L0
L1 = 100 !length, first member
L2 = 200 !length, second member

!computation of required terms, including L3
ca = (L2*L2+L0*L0−L1*L1)/(2*L2*L0)
cb = (L1*L1+L0*L0−L2*L2)/(2*L1*L0)
sa = sqrt(1−ca**2)
sb = sqrt(1−cb**2)
L3 = sqrt((0.5*L0)**2+L1**2−L1*L0*cb)

!diameter of members
d1 = 2.00
d2 = 0.2
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d3 = 0.9
I1 = pi*d1**4/64 !area moment of inertia, member 1
a1 = pi*(d1**2)/4 !cross section areas
a2 = pi*(d2**2)/4
a3 = pi*(d3**2)/4

!Material properties (parameters)
E1 = 2.1e6 !Young’s modulus
E2 = 2.1e6
E3 = 2.1e6

ro1 = 7.959e−6 !mass density
ro2 = 7.959e−6
ro3 = 7.959e−6

!nodes location (parameters)
x1 = 0
y1 = 0

x2 = L1*sb
y2 = L1*cb

x3 = 0
y3 = L0

x4 = 0
y4 = 0.5*L0

/prep7
et,1,link1 !elements types
et,2,link1
et,3,link1

!real constants
r,1,a1
r,2,a2
r,3,a3

!materials properties
mp,ex,1,E1
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mp,ex,2,E2
mp,ex,3,E3

mp,dens,1,ro1
mp,dens,2,ro2
mp,dens,3,ro3

!nodes
n,1,x1,y1
n,2,x2,y2
n,3,x3,y3
n,4,x4,y4

!elements
type,1
mat,1
real,1
en,1,1,2

type,2
mat,2
real,2
en,2,3,2

type,3
mat,3
real,3
en,3,4,2

!three supports
d,1,all,0
d,3,all,0
d,4,all,0

save
fini
/eof !end of input file

/solu !static analysis
antype,stat
f,2,fy,−1200 !applied force at node 2
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solve
fini

/post1
etab,sax,ls,1
*get,s1,elem,1,etab,sax
*get,s2,elem,2,etab,sax
*get,s3,elem,3,etab,sax

!Fcr = 0.9*pi**2*E1*I1/L1**2 (not required)
F1 = −s1*a1 !force in member 1 (absolute)
F2 = s2*a2 !force in member 2
F3 = s3*a3 !force in member 3
S1x = −s1 !stress in member 1
S2x = s2 !stress in member 2
S3x = S3 !stress in member 3
fini

CHAPTER 6

Because of text width difficulties, some program lines had to be broken. The
reader should pay attention to these breaks in the listing lines. Please remem-
ber that a % sign marks a comment, and sometimes the second line of the
comment is not preceded by the % sign. The reader should remember that in
the attached CD-ROM, these lines are not broken.

astar.m

%astar1.m calculate a* from closed form equation.
%KIC is a normal random variable with mean=muk and
%sd=sigk. Suts is random variable with mean=mus and
%sd=sigs. acrit is the critical crack length. Its
%distribution is fitted by a lognormal distribution.
%mr is the mean and sr is the standard deviation
%of the data. xi and eps are the mean and standard
%deviation of log(data).

muk=4691; %mean of KIC

sigk=155; %SD of KIC

mus=1172; %mean of UTS

sigs=40; %SD of UTS

R=0.0; %value of R
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geom=sqrt(pi); %expression for (geom)

K=20000; %number of calculated points

for k=1:K

acrit=((1-R)*normrnd(muk,sigk,1,1)/

(geom*normrnd(mus,sigs,1,1)))ˆ2;

ac(k,:)=acrit;

end

data=ac;

[row,col] = size(data);

nbins = ceil(sqrt(row));

[n,xbin]=hist(data,nbins);

acm=mean(data);

acs=std(data);

sks=skewness(data);

mu=mean(data); %mean of data

lnmu=log(mu); %LN of mu

sig=std(data); %standard deviation of data

lnsig=log(sig); %LN of sig

dd=lnsig-lnmu;

dd2=2*dd;

ee=exp(dd2)+1;

epssq=log(ee);

eps=sqrt(epssq); %epsilon in lognormal pdf

(”standard deviation”)

xi=lnmu-0.5*epssq; %xi in lognormal pdf(”mean”)

mr = mean(data);

sr = std(data);

x=(-3*sr+mr:0.1*sr:3*sr+mr)’; % Evenly spaced samples

of the expected

%data range.

hh = bar(xbin,n,1); % Plots the histogram.

No gap between bars.

np = get(gca,’NextPlot’);

set(gca,’NextPlot’,’add’)
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xd = get(hh,’Xdata’); % Gets the x-data of the bins.

rangex = max(xd(:)) - min(xd(:));% Finds the range of

% this data.

binwidth = rangex/nbins;% Finds the width of each bin.

y = lognpdf(x,xi,eps);

y = row*(y*binwidth); % Normalization necessary to

overplot the histogram.

hh1 = plot(x,y,’r-’,’LineWidth’,2); % Plots density

line over histogram

mr %mean of data

xi %”mean” of log-normal

sr %standard deviation of data

eps %”std” of log-normal

sks %skewness of data

set(gca,’NextPlot’,np)

cocrack1.m

%corcrack1 is an ODE file for solution the correlated

%problem of normal stochastic process, with normally

%distributed KIC, where correlation between the

‘‘load’’ w

%and the ‘‘strength’’ astar is taken

%into account (through

%a common variable KIC). This file is called by

virtest1.

function wd=corcrack1(t,w,flag,KIC,UTS)

switch flag

case”

end

m=2.7; %m from literature

C=0.298e-11; %C from literature

fs=150; %circular frequency

q=0.25;
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S=554.38; %Smr-equivalent stress

geom=sqrt(pi); %geometry factor %parameter=B*sqrt(pi),

%B=1(infinite plate)

R=0.25; %stress ratio

C1=C*fs*geomˆm;

C2=(1-R)*KIC;

C3=geom;

mu=1; %mean of stochastic normal %process

sigma=0.1; %std of stochastic normal %process

wd(1)=((C1*(S ˆm)*(w(1)ˆ(m/2)))/(1-(C3*S*(w(1)ˆ0.5))/

((1-R)*KIC))ˆq)*(normrnd(mu,sigma,1,1));

cocrack2.m

%corcrack2 is an ODE file for solution the correlated

%problem of normal stochastic process, with

deterministic

%KIC and UTS where correlation between the ‘‘load’’

w and

%the ‘‘strength’’ astar is taken into account

(through a

%common variable KIC). This file is called by

%virtest1.

function wd=corcrack2(t,w,flag,KIC,UTS)

switch flag

case ”

end

m=2.7; %m from literature

C=0.298e-11; %C from literature

fs=150; %circular frequency

q=0.25;

S=554.38; %Smr-equivalent stress

geom=sqrt(pi); %geometry parameter=B*sqrt(pi),

%B=1(infinite plate)

R=0.25; %stress ratio
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C1=C*fs*geomˆm;

C2=(1-R)*KIC;

C3=geom;

mu=1; %mean of stochastic normal %process

sigma=0.1; %std of stochastic normal %process

wd(1)=((C1*(Sˆm)*(w(1)ˆ(m/2)))/(1-(C3*S*(w(1)ˆ0.5))/

((1-R)*KIC))ˆq)*(normrnd(mu,sigma,1,1));

cocrack3.m

%corcrack3 is an ODE file for solution the correlated

%problem of log-normal stochastic process, with

normally

%distributed KIC, where correlation between the

‘‘load’’ w

%and the ‘‘strength’’ astar is taken into account

(through

%a common variable KIC). This file is called by

virtest3.

function wd=corcracktest4(t,w,flag,KIC,UTS)

switch flag

case ”

end

m=2.7; %m from literature

C=0.298e-11; %C from literature

fs=150; %circular frequency

q=0.25;

S=554.38; %Smr-equivalent stress

geom=sqrt(pi); %geometry parameter=B*sqrt(pi),

%B=1(infinite plate)

R=0.0; %stress ratio

C1=C*fs*geomˆm;

C2=(1-R)*KIC;

C3=geom;



388 • Appendix / Computer Files for the Demonstration Problems

mu=0; %mean of stochastic log-normal %process

sigma=0.1; %std of stochastic log-%normal %process

wd(1)=((C1*(Sˆm)*(w(1)ˆ(m/2)))/(1-(C3*S*(w(1)ˆ0.5))/

((1-R)*KIC))ˆq)*(lognrnd(mu,sigma,1,1));

cocrack4.m

%corcrack4 is an ODE file for solution the correlated

%problem of log-normal stochastic process, with

%deterministic KIC and UTS where correlation between

the

%‘‘load’’ w and the ‘‘strength’’ astar is taken into

account

%(through a common variable KIC). This file is called

by

%virtest4.

function wd=corcrack4(t,w,flag,KIC,UTS)

switch flag

case ”

end

m=2.7; %m from literature

C=0.298e-11; %C from literature

fs=150; %circular frequency

q=0.25;

S=554.38; %Smr-equivalent stress

geom=sqrt(pi); %geometry parameter=B*sqrt(pi),

%B=1(infinite plate)

R=0.25; %stress ratio

C1=C*fs*geomˆm;

C2=(1-R)*KIC;

C3=geom;

mu=0; %mean of stochastic log-normal %process

sigma=0.1; %std of stochastic log-normal %process

wd(1)=((C1*(Sˆm)*(w(1)ˆ(m/2)))/(1-(C3*S*(w(1)ˆ0.5))/

((1-R)*KIC))ˆq)*(lognrnd(mu,sigma,1,1));
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crack2.m

%crack2.m for deterministic crack propagation

according to Forman Law

%modified according to ESACRACK, with R greater than

0. m not equal to 2!

%C, m, q and KIC - material constants. w is crack

length. initial crack length

%is a0, inserted in the run command as w0:

%[t,w]=ode23(’crack2’,tspan,w0);

function wd=crack2(t,w)

m=2.7; %m from literature

C=0.298e-11; %C from literature

fs=150; %circular frequency

q=0.25;

S=554.38; %Smr-equivalent stress

geom=sqrt(pi); %geometry parameter=B*sqrt(pi),

B=1(infinite plate)

%geom=2/sqrt(pi); %for cylinder in tension,

center crack

KIC=4691; %fracture thoughness

R=0.0; %stress ratio

C1=C*fs*geomˆm;

C2=(1-R)*KIC;

C3=geom;

[rows,cols]=size(w);wd=zeros(rows,cols);

wd(1)=(C1*(Sˆm)*(w(1)ˆ(m/2)))*C2ˆq/

((C2-C3*S*(w(1)ˆ0.5))ˆq);

cracklognfit.m

%cracklognfit.m fits a lognormal distribution to the

%crack half length at time = nt. Data is obtained

after

%running cracknorm1.m
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%the data of 500 virtual tests is put in nbins=number

of

%bins. The distribution is fitted by a lognormal

%distribution. mr is the mean and sr is the standard

%deviation of the data at time nt.

%xi and eps are the mean and standard deviation of

log(data).

nt=149;

ac=a(:,nt);

data=ac;

[row,col] = size(data);

nbins = ceil(sqrt(row));

[n,xbin]=hist(data,nbins);

acm=mean(data);

acs=std(data);

sks=skewness(data);

mu=mean(data); %mean of data

lnmu=log(mu); %LN of mu

sig=std(data); %standard deviation of data

lnsig=log(sig); %LN of sig

dd=lnsig-lnmu;

dd2=2*dd;

ee=exp(dd2)+1;

epssq=log(ee);

eps=sqrt(epssq); %epsilon in lognormal pdf

(”standard deviation”)

xi=lnmu-0.5*epssq; %xi in lognormal pdf(”mean”)

mr = mean(data);

sr = std(data);

x=(-3*sr+mr:0.1*sr:3*sr+mr)’; %Evenly spaced samples of

%the expected data range

hh = bar(xbin,n,1); %Plots the histogram.

No gap between bars.
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np = get(gca, ’NextPlot’);

set(gca,’NextPlot’,’add’)

xd = get(hh,’Xdata’); % Gets the x-data of the bins.

rangex = max(xd(:)) - min(xd(:)); % Finds the range

of this data.

binwidth = rangex/nbins; % Finds the width of each bin.

y = lognpdf(x,xi,eps);

y = row*(y*binwidth); % Normalization necessary to

overplot the histogram.

hh1 = plot(x,y,’r-’,’LineWidth’,2); % Plots density

%line over the

%histogram

mr %mean of data

xi %”mean” of log-normal

sr %standard deviation of data

eps %”std” of log-normal

sks %skewness of data

set(gca,‘NextPlot’,np)

cracknorm1.m

%cracknorm1.m is a procedure that calculate, after

crackstat2.m was run, the

%mean and standard deviations of the a vs. t lines

at a given time t.

%It also compare the amean vs. t to the deterministic

solution.

a=transpose(y);

amt=mean(a); %row vector

am=amt’; %column vector of MEANS

ast=std(a); %row vector

as=ast’; %column vector of STANDARD

DEVIATIONS

er=(yd-am)*100./yd; %error between mean and

deterministic
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plot(t,am,t,yd),grid,xlabel(’Time, sec’),

ylabel(’a_mean and a_deter.’)

figure

plot(t,as),grid,xlabel(’Time,sec’),

ylabel(’standard deviation’)

aupr=am+3.*as;

alwr=am-3.*as;

figure

plot(t,alwr,t,aupr,t,am),grid,xlabel(’Time,sec’),

ylabel(’-3sigma, +3sigma, mean’)

figure

plot(t,y),grid,xlabel(’Time, sec’),

ylabel(’Differential Equation Solution’)

%The command

%histfit(a(:,177))

%shows an histogram of a’s at time # 177, and also

shows a normal distribution

%with the same mean and standard deviation.

prop1.m

%prop1 is the crack propagation file for example in

crack chapter

clear %CAUTION: Clears the previous %workspace

[tspan]=[0:50:1800]; %time from 0 to 1800 sec, every

50 seconds

%[tspan]=[0:1:131]; %time from 0 to 131 sec, every

11 seconds (tension)

w0=2;

[t,w]=ode45(’crack2’,tspan,w0); %solve deterministic

case

yd=w; %deterministic solution

plot(t,yd,’k’),grid,xlabel(’Time, sec’),

ylabel(’Half Crack Length, mm (DE Solution)’)
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virtest1.m

%virtest1.m is a program that calculates the stochastic

%crack propagation using modified Forman equation and

%stochastic normal process (corcrack1.m). the solution

%{yd} to the deterministic crack propagation ODE is

%fitted with a k-th order polynom,and a column matrix

of

%the polynom’s coefficients is created. t is time,

tspan

%is the solution range in time, {w} is half crack

%length, [y] is a matrix of N solutions, {YD} is the

%approximated deterministic polynomial solution(a

%column). The deterministic problem is done with

crack2.m

%file next {y}’s are for stochastic problem, done with

%corcrack1.m file

clear %CAUTION: Clears the %Previous

Workspace

k=9; %order of polynom

M=1; %insert number of stochastic

solutions

[tspan]=[0:0.5:82]; %from 0 to 88 sec, every

%half second

%these numbers should be modified

for other computations

%by changing the numbers in the

command.

N=length(tspan); %number of time points

w0=0.1; %initial crack length, mm.

R=0.25

options=odeset(’AbsTol’,1e-6);

geom=sqrt(pi);

%solution of the deterministic case with crack2.m for R
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%between zero(included) and 1

[t,w]=ode45(’crack2’,tspan,w0); %solve deterministic

case

yd=w; %deterministic

solution

pd=polyfit(t,yd,k); %deterministic row of

%coefficients

YD=polyval(pd,t); %deterministic

polynomial

%approximation

%repeated solutions for normal stochastic process,

from m=1 to M

for m=1:M

muk=4691; %mean of KIC

sigk=155; %standard deviation of KIC

KIC=normrnd(muk,sigk,1,1); %fracture thoughness

mus=1172; %mean of UTS

sigs=40; %standard deviation of UTS

UTS=normrnd(mus,sigs,1,1); %UTS

[t,w]=ode45(’corcrack1’,tspan,w0,options,KIC,UTS);

acrit=((1-R)*KIC/(geom*UTS))ˆ2; %critical length of

crack

y(:,m)=w;

astar(:,m)=acrit;

end

%plot the crack length vs.time for all samples + the

%deterministic solution (black)

plot(t,y,’k’,t,yd,’k’),grid,xlabel(’Time, sec’),

ylabel(’Half Crack Length, mm (DE Solution)’)

%the following command plots the above information

+ the

%dispersion in astar.

%plot(t,y,t,yd,t(150),astar(150,:),’k+’),grid,xlabel

(’Time, sec’),ylabel(’Crack Length, mm (DE Solution)’)



A.3 Files Listing • 395

virtest2.m

%virtest2.m is a program that calculates the stochastic

%crack propagation using modified Forman equation and

%stochastic normal process (corcrack2.m). The solution

%{yd} to the deterministic crack propagation ODE is

%fitted with a k-th order polynom,and a column matrix

of

%the polynom’s coefficients is created. t is time,

tspan

%is the solution range in time, {w} is half crack

length,

%[y] is a matrix of N solutions, {YD} is the

approximated

%deterministic polynomial solution(a column).The

%deterministic problem is done with crack2.m file.next

%{y}’s are for stochastic problem, done with

corcrack2.m %file

clear %CAUTION: Clears the Previous Workspace

k=9; %order of polynom

M=1; %INSERT the number of

%stochastic solutions

[tspan]=[0:0.5:82]; %from 0 to 88 sec, every half

second

%these numbers should be modified for other

computations

%by changing the numbers in the command.

N=length(tspan); %number of time and

%cracklength points

w0=0.1; %initial crack length, mm.

R=0.25

options=odeset(’AbsTol’,1e-6);

geom=sqrt(pi);

%solution of the deterministic case with crack2.m for R
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%between zero(included) and 1

[t,w]=ode45(’crack2’,tspan,w0); %solve deterministic

case

yd=w; %deterministic

solution

pd=polyfit(t,yd,k); %deterministic row of

%coefficients

YD=polyval(pd,t); %deterministic

polynomial

%approximation

%repeated solutions for normal stochastic process,

from m=1 to M

for m=1:M

muk=4691; %mean of KIC

sigk=155; %standard deviation of KIC %(unused)

KIC=muk; %fracture thoughness

mus=1172; %mean of UTS

sigs=40; %standard deviation of UTS %(unused)

UTS=mus; %UTS

[t,w]=ode45(’corcrack2’,tspan,w0,options,KIC,UTS);

acrit=((1-R)*KIC/(geom*UTS))ˆ2; %critical crack

length

y(:,m)=w;

astar(:,m)=acrit;

end

%plot the crack length vs. time for all samples + the

%deterministic solution (black)

plot(t,y,’k’,t,yd,’k’),grid,xlabel(’Time, sec’),

ylabel(’Half Crack Length, mm (DE Solution)’)

%the following command plots the above information

+ the

%dispersion in astar.

%plot(t,y,t,yd,t(150),astar(150,:),’k+’),grid,xlabel

(’Time, sec’),ylabel(’Crack Length, mm (DE Solution)’)
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virtest3.m

%virtest3.m is a program that calculates the stochastic

%crack propagation using modified Forman equation and

%stochastic log-normal process (corcrack3.m).the

solution

%{yd} to the deterministic crack propagation ODE is

%fitted with a k-th order polynom,and a column matrix

of the

%polynom’s coefficients is created. t is time, tspan

%is the solution ramge in time, {w} is half crack

length,

%[y] is a matrix of N solutions, {YD} is the

approximated

%deterministic polynomial solution (a column).The

%deterministic problem is done with crack2.m file.next

%{y}’s are for stochastic problem, done with

corcrack3.m file

clear %CAUTION: Clears the %Previous Workspace

k=9; %order of polynom

M=500; %INSERT the number stochastic solutions

[tspan]=[0:0.5:86]; %from 0 to 88 sec, every %half

second

%these numbers should be modified for other

computations

%by changing

%the numbers in the command.

N=length(tspan); %number of time and crack-%length

points

w0=0.1; %initial crack length, mm.

R=0.0

options=odeset(’AbsTol’,1e-6);

geom=sqrt(pi);

%solution of the deterministic case with crack2.m for R
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%between zero (included) and 1

[t,w]=ode45(’crack2’,tspan,w0); %solve deterministic

case

yd=w; %deterministic

solution

pd=polyfit(t,yd,k); %deterministic row of

%coefficients

YD=polyval(pd,t); %deterministic

polynomial

%approximation

%repeated solutions for normal stochastic process,

from m=1 to M

for m=1:M

muk=4691; %mean of KIC

sigk=155; %standard deviation of KIC

KIC=normrnd(muk,sigk,1,1); %fracture thoughness

mus=1172; %mean of UTS

sigs=40; %standard deviation of UTS

UTS=normrnd(mus,sigs,1,1); %UTS

[t,w]=ode45(’corcrack3’,tspan,w0,options,KIC,UTS);

acrit=((1-R)*KIC/(geom*UTS))ˆ2; %critical crack

length

y(:,m)=w;

astar(:,m)=acrit;

end

%plot the crack length vs. time for all samples + the

%deterministic solution (black)

plot(t,y,’k’,t,yd,’k’),grid,xlabel(’Time, sec’),

ylabel(’Half Crack Length, mm (DE Solution)’)

%the following command plots the above information

+ the

%dispersion in astar.

%plot(t,y,t,yd,t(150),astar(150,:),’k+’),grid,xlabel

(’Time, sec’),ylabel(’Crack Length, mm (DE Solution)’)
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virtest4.m

%virtest4.m is a program that calculates the stochastic

%crack propagation using modified Forman equation and

%stochastic normal process (corcrack4.m).the solution

%{yd} to the deterministic crack propagation ODE is

%fitted with a k-th order polynom,and a column

%matrix of the polynom’s coefficients is created. t is

time, tspan

%is the solution range in time, {w} is half crack

length,

%[y] is a matrix of N solutions, {YD} is the

approximated

%deterministic polynomial solution(a column).The

%deterministic problem is done with crack2.m file.next

%{y}’s are for stochastic problem, done with

%corcrack4.m file

clear %CAUTION: Clears the %Previous Workspace

k=9; %order of polynom

M=500; %INSERT the number of %stochastic solutions

[tspan]=[0:0.5:82]; %from 0 to 88 sec, every %half

second

%these numbers should be modified for other

computations

%by changing the numbers in the Command.

N=length(tspan); %number of time and crack-length

points

w0=0.1; %initial crack length, mm.

R=0.25

options=odeset(’AbsTol’,1e-6);

geom=sqrt(pi);

%solution of the deterministic case with crack2.m

for R

%between zero (included) and 1
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[t,w]=ode45(’crack2’,tspan,w0); %solve deterministic

case

yd=w; %deterministic

solution

pd=polyfit(t,yd,k); %deterministic row of

%coefficients

YD=polyval(pd,t); %deterministic

polynomial

%approximation

%repeated solutions for normal stochastic process,

from m=1 to M

for m=1:M

muk=4691; %mean of KIC

sigk=155; %standard deviation of KIC (Unused)

KIC=muk; %fracture thoughness

mus=1172; %mean of UTS

sigs=40; %standard deviation of UTS %(Unused)

UTS=mus; %UTS

[t,w]=ode45(’corcrack4’,tspan,w0,options,KIC,UTS);

acrit=((1-R)*KIC/(geom*UTS))ˆ2; %critical crack

length

y(:,m)=w;

astar(:,m)=acrit;

end

%plot the crack length vs. time for all samples + the

%deterministic solution (black)

plot(t,y,’k’,t,yd,’k’),grid,xlabel(’Time, sec’),

ylabel(’Half Crack Length, mm (DE Solution)’)

%the following command plots the above information

+ the

%dispersion in astar.

%plot(t,y,t,yd,t(150),astar(150,:),’k+’),grid,xlabel

(’Time, sec’),ylabel(’Crack Length, mm (DE Solution)’)
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weib1.m

%weib1 generates Weibull distribution numbers for TTCI

in Yang’s paper

clear %clear workspace

alfaF=4.9174; %alfa from Yang paper for WPF(33)

betaF=15936; %beta from Yang paper for WPF(33)

alfaFB=5.499; %alfa from Yang paper for WPFB(37)

-XWPF(37) in the paper

betaFB=11193; %beta from Yang paper for WPFB(37)

-XWPF(37) in the paper

aF=(1/betaF)ˆalfaF; %a for standard MATLAB

computations, WPF(33)

bF=alfaF; %b for standard MATLAB

computations, WPF(33)

aFB=(1/betaFB)ˆalfaFB; %a for standard MATLAB

computations, WPFB(37)

bFB=alfaFB; %b for standard MATLAB

computations, WPF(37)

NN=5000; %number of samples

%Computations for WPF(33)

for n=1:NN

RF(n)=weibrnd(aF,bF,1,1); %Weibull random number

generator, WPF(33)

end

RWF=RF’; %transpose of line matrix to column

YF=log(RWF); %LN(t)

weibplot(RWF) %Weibull paper plot of random numbers

figure

hist(RWF,20),xlabel(’Time to Crack Initiation, hours,

WPF(33)’)%Histogram of random numbers

figure
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hist(YF,20),xlabel(’Y=LN(RW), WPF(33)’)

%Histogram of resulting Y

figure

%Computations for WPFB(37)

for n=1:NN

RFB(n)=weibrnd(aFB,bFB,1,1); %Weibull random number

generator, WPFB(37)

end

RWFB=RFB’; %transpose of line matrix to column

YFB=log(RWFB); %LN(t)

weibplot(RWFB) %Weibull paper plot of random numbers

figure

hist(RWFB,20),xlabel(’Time to Crack Initiation, hours,

WPFB(37)’)%Histogram of random numbers

figure

hist(YFB,20),xlabel(’Y=LN(RW), WPFB(37)’)

%Histogram of resulting Y

figure

%Computing CDF for Weibull distribution

t=[0:500:25000];

MM=length(t);

for m=1:MM

cdfF(m)=1-exp(-aF*t(m)ˆbF);

cdfFB(m)=1-exp(-aFB*t(m)ˆbFB);

pdfF(m)=aF*bF*t(m)ˆ(bF-1)*exp(-aF*t(m)ˆbF);

pdfFB(m)=aFB*bFB*t(m)ˆ(bFB-1)*exp(-aFB*t(m)ˆbFB);

end

plot(t,cdfF,’ko-’,t,cdfFB,’bx-’),grid,xlabel

(’Time to Crack Initiation, hours’),ylabel(’CDF’)

legend(’WPF’,’XWPF’,0)

figure

plot(t,pdfF,’ko-’,t,pdfFB,’bx-’),grid,xlabel

(’Time to Crack Initiation, hours’),ylabel(’PDF’)

legend(’WPF’,’XWPF’,0)
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weib2.m

%weib2 computes EIFS distribution from Yang’s results

%for WPF(33) and XWPF(37)

%Data from Table 3, Yang’s paper.

%for WPF(33), Y is added. For XWPF(37) X is added.

clear %clear workspace

a0=0.03; %inch. Crack initiation length

bY=0.9703;

bX=0.9620;

cY=bY-1;

cX=bX-1;

QY=0.0002381;

QX=0.000309;

alfaY=4.9174;

alfaX=5.499;

betaY=15936;

betaX=11193;

epsY=0;

epsX=0;

TTCIY=[6563;9312;10629;10892;

11357;11637;12053;13379;13544;13762;13773;13939;

14098;14123;14149;14262;14350;14400;14436;15499;

15600;15798;16128;16141;17109;17134;17185;17507;

17820;17839;18068;18357;19154];

NN=length(TTCIY);

TTCIX=[6106;6147;7457;7545;7721;

8425;8538;8636;8908;8968;9078;9085;9316;9973;

10253;10457;10908;11045;11051;11071;11370;11493;
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11564;11571;11698;11708;11920;12051;12062;12118;

12302;12389;12505;12629;12655;13339;16008];

MM=length(TTCIX);

%calculations for WPF(33)

for n=1:NN

EIFSYL(n)=a0/(1+a0ˆcY*cY*QY*TTCIY(n))ˆ(1/cY);

end

eifsY=EIFSYL’; %EIFS for WPF(33) data

%xYmax=1.2*max(eifsY); %range for computation is

20% higher than max value

of eifs

xYmax=6e-3;

xuY=(a0ˆ(-cY))ˆ(-1/cY); %upper limit of crack

(crack initiation length xu)

xYL=[0:(xYmax/500):xYmax]; %division to 100 values of

x, line matrix

xY=xYL’; %division to 100 values of

x, column matrix

LL=length(xY);

for l=1:LL

FaYL(l)=exp(-((xY(l)ˆ(-cY)-a0ˆ(-cY))/

(cY*QY*betaY))ˆalfaY); %probability,

line matrix

end

FaY=FaYL’; %probability (eifs=< xY)

%Figure 1 :CDF for EIFS, WPF(33),regular paper

plot(xY,FaY,’ko-’),grid,xlabel(’EIFS WPF(33), in.’),

ylabel(’CDF’)

title(’1:CDF for EIFS, WPF(33),regular paper’)

figure

%Figure 2 :CDF for EIFS, WPF(33),semilog paper

semilogx(xY,FaY,’ko-’),grid,xlabel(’EIFS WPF(33),

in.’), ylabel(’CDF’)

title(’2:CDF for EIFS, WPF(33),semilog paper’)
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figure

%Computing PDF function by numerical differentiation

dxY=xYmax/500;

dFaY(1)=0;

pdfY(1)=0;

for l=2:LL

pdfY(l)=(FaY(l)-FaY(l-1))/dxY;

end

%Figure 3 :PDF for EIFS, WPF(33),regular paper

plot(xY,pdfY,’ko-’),grid,xlabel(’EIFS WPF(33), in.’),

ylabel(’PDF’)

title(’3:PDF for EIFS, WPF(33),regular paper’)

figure

%Figure 4 :PDF for EIFS, WPF(33),semilog paper

semilogx(xY,pdfY,’ko-’),grid,xlabel(’EIFS WPF(33),

in.’), ylabel(’PDF’)

title(’4:PDF for EIFS, WPF(33),semilog paper’)

figure

%Computing the mean and std of EIFS for WPF(33) by

integration (integral x*pdf)

for l=1:(LL-1)

dmY(l)=(pdfY(l)+pdfY(l+1))*(xY(l)+xY(l+1))*dxY/4;

end

mY=sum(dmY)

for l=1:(LL-1)

dvY(l)=(pdfY(l)+pdfY(l+1))*(((xY(l)+xY(l+1))/

2-mY)ˆ2)*dxY/2;

end

vY=sum(dvY);

stdY=sqrt(vY)

%calculations for XWPF(37)

for m=1:MM

EIFSXL(m)=a0/(1+a0ˆcX*cX*QX*TTCIX(m))ˆ(1/cX);

end

eifsX=EIFSXL’; %EIFS for XWPF(37) data

%
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%xXmax=1.4*max(eifsX); %range for computation is

30% higher than max value

of eifs

xXmax=6e-3;

xuX=(a0ˆ(-cX))ˆ(-1/cX); %upper limit of crack

(crack initiation length

xu)

xXL=[0:(xXmax/500):xXmax]; %division to 100 values of

x, line matrix

xX=xXL’; %division to 100 values of

x, column matrix

KK=length(xX);

for k=1:KK

FaXL(k)=exp(-((xX(k)ˆ(-cX)-a0ˆ(-cX))/

(cX*QX*betaX))ˆalfaX); %probability, line matrix

end

FaX=FaXL’; %probability (eifs=< xX)

%Figure 5 : CDF for EIFS, XWPF(37), regular paper

plot(xX,FaX,’ko-’),grid,xlabel(’EIFS XWPF(37), in.’),

ylabel(’CDF’)

title(’5:CDF for EIFS, XWPF(37), regular paper’)

figure

%Figure 6 : CDF for EIFS, XWPF(37), semilog paper

semilogx(xX,FaX,’ko-’),grid,xlabel(’EIFS XWPF(37),

in.’),ylabel(’CDF’)

title(’6:CDF for EIFS, XWPF(37), semilog paper’)

figure

%Computing PDF function by numerical differentiation

dxX=xXmax/500;

dFaX(1)=0;

pdfX(1)=0;

for k=2:KK

pdfX(k)=(FaX(k)-FaX(k-1))/dxX;

end
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%Figure 7 : PDF for EIFS, XWPF(37), regular paper

plot(xX,pdfX,’ko-’),grid,xlabel(’EIFS XWPF(33), in.’),

ylabel(’PDF’)

title(’7:PDF for EIFS, XWPF(37), regular paper’)

figure

%Figure 8 : PDF for EIFS, XWPF(37), semilog paper

semilogx(xX,pdfX,’ko-’),grid,xlabel(’EIFS XWPF(33),

in.’),ylabel(’PDF’)

title(’8:PDF for EIFS, XWPF(37), semilog paper’)

figure

%Computing the mean and std of EIFS for XWPF(37) by

integration (integral x*pdf)

for k=1:(KK-1)

dmX(k)=(pdfX(k)+pdfX(k+1))*(xX(k)+xX(k+1))*dxX/4;

end

mX=sum(dmX)

for l=1:(KK-1)

dvX(k)=(pdfX(k)+pdfX(k+1))*(((xX(k)+xX(k+1))/

2-mX)ˆ2)*dxX/2;

end

vX=sum(dvX);

stdX=sqrt(vX)

xYt=4Y(2:501); %from 1 to 500

FaYt=FaY(2:501);

alfaeY=0.918;

%alfaeY=0.8952274;

betaeY=7.3205820401e-4;

epse=0;

for m=1:500

FWY(m)=1-exp(-(xYt(m)/betaeY)ˆalfaeY);

end

plot(xYt,FaYt,’k-’,xYt,FWY,’r-’),grid,xlabel(’EIFS,

in.’),ylabel(’CDF’)
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title(’9:CDF for EIFS, WPF(black), Weibull Appr.(red)’)

figure

semilogx(xYt,FaYt,’k-’,xYt,FWY,’r-’),grid,xlabel

(’EIFS, in.’),ylabel(’CDF’)

title(’10:CDF for EIFS, WPF(black), Weibull Appr.(red),

semilog paper’)

figure

xXt=xX(2:501); %from 1 to 500

FaXt=FaX(2:501);

alfaeX=1.;

betaeX=8.38062e-4;

epse=0;

for m=1:500

FWX(m)=1-exp(-(xXt(m)/betaeX)ˆalfaeX);

end

plot(xXt,FaXt,’k-’,xXt,FWX,’r-’),grid,xlabel(’EIFS,

in.’),ylabel(’CDF’)

title(’11:CDF for EIFS, XWPF(black),

Weibull Appr.(red)’)

%figure

%plot(xXt,FaXt,’k-’,xXt,FWX,’r-’),grid

%figure

%semilogx(xXt,FaXt,’k-’,xXt,FWX,’r-’),grid

%figure

%plot(xY,pdfY,’k-’,xX,pdfX,’r-’),grid,xlabel (’EIFS,

in.’),ylabel(’PDF’)

%title(’12:PDF of Both Cases, WPF(black), XWPF(red)’)

%figure

%mu=-7.57188784207213;

%mu=-2.55;

%sigma=0.8;

%sigma=0.90114406762865;

%ss=1/(sigma*sqrt(2*pi))
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%for n=1:500

%pdflog(n)=(ss/xYt(n))*exp(-(0.5/sigmaˆ2)

*(log10(xYt(n))-mu)ˆ2);

%end

%plot(xYt,pdfYt,’kx-’,xYt,pdflog,’ko-’),grid

CHAPTER 7

env5.txt

/filnam,env5

/title,Beam Under an Aircraft

/prep7

!Beam data, dimensions in cm, kgf, sec

L = 330 !length
ro = 7.959e-6 !mass density
E = 2.1e6 !Young’s modulus
nu = 0.3 !Poisson coefficient
b = 10 !width
h = 10 !height
A = b*h !area
I1 = b*h*h*h/12
g = 980 !value of g

et,1,beam3 !beam element

r,1,A,I1,h !real constants
mp,ex,1,E !material properties
mp,dens,1,ro
mp,nuxy,1,nu

!nodes
n,1,0,0
n,34,L,0
fill,1,34
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!elements
type,1
mat,1
real,1
en,1,1,2
engen,1,33,1,1,1,1

!boundary conditions (hooks)
d,12,ux,0
d,12,uy,0
d,20,ux,0
d,20,uy,0

save
fini
/eof !end of input file

!Modal analysis (6 modes between 20 to 800 Hz)
/solu
antyp,modal
modopt,subs,6
mxpand,6„,yes
solve
fini

!Static Analysis, 5g vertical loading
/solu
antype,stat
!acel„(5+3*3.3045)*g !(for equivalent loading)
acel„5*g
solve
fini

!static analysis data processing
/post1

etab,sdir,ls,4
etab,sbup,ls,5
etab,sbdn,ls,6
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pret
etab,eras

!spectral analysis, input-accelerations in the hooks (both equal)
/solu
antype,spectrum
spopt,psd,6,on

psdg1 = 0.0014
psdg2 = 0.014
psdunit,1,accg,980
psdunit,2,accg,980

psdfrq,1„19.999,20,800,800.001
psdval,1,0.00001,psdg1,psdg2,0.00001

psdfrq,2„19.999,20,800,800.001
psdval,2,0.00001,psdg1,psdg2,0.00001

dmprat,0.015

d,12,uy,1
pfact,1,base

d,12,uy,0 !zero previous d before inserting second d
d,20,uy,1
pfact,2,base

psdres,acel,abs !absolute accelerations
psdres,velo,rel !relative velocities
psdres,disp,rel !relative displacements
solve
psdcom„6 !combine 6 modes
solve
fini

!excitation of force in both ends, of the beam, for 4 modes
/solu
antype,spectrum
spopt,psd,4,on



412 • Appendix / Computer Files for the Demonstration Problems

psdf1=142
psdf2=144
psdunit,1,force
psdunit,2,force
!psdfrq !required only for additional run
psdfrq,1„19.999,20,400,400.001
psdval,1,0.00001,psdf1,psdf1,0.00001

psdfrq,2„19.999,20,400,400.001
psdval,2,0.00001,psdf2,psdf2,0.00001

dmprat,0.015
!f,34,fy,0 !zero f2 before running AGAIN f1
f,1,fy,1
pfact,1,node

f,1,fy,0 !zero f1 before applying f2
f,34,fy,1
pfact,2,node

psdres,acel,abs
psdres,velo,rel
psdres,disp,rel
solve

psdcom„4 !response combined, 4 modes
solv
fini

!view spectral analysis results for rms
/post1
set,3,1 !for displacements, stresses
!set,4,1 !for velocities, rate of stresses
!set,5,1 !for accelerations, rate of rate...
etab,bnup,ls,5
etab,bndn,ls,6
pret
etab,eras !erase e table

!Analysis in the frequency domain
/post26



A.3 Files Listing • 413

numvar,51
store,psd,5
nsol,2,1,u,y,n1
nsol,3,11,u,y,n11
nsol,4,22,u,y,n22
nsol,5,34,u,y,n34
esol,6,10,11,ls,5,bn11
esol,7,21,22,ls,5,bn22
nsol,8,12,u,y,nhook
rpsd,12,2„1,2,d1
rpsd,13,3„1,2,d11
rpsd,14,4„1,2,d22
rpsd,15,5„1,2,d34
rpsd,16,6„1,2,st11
rpsd,17,7„1,2,st22

rpsd,22,2„3,1,a1
rpsd,23,3„3,1,a11
rpsd,24,4„3,1,a22
rpsd,25,5„3,1,aa34
rpsd,28,8„3,1,aa12

quot,32,22„,g1„,1/980,980
quot,33,23„,g11„,1/980,980
quot,34,24„,g22„,1/980,980
quot,35,25„,g34„,1/980,980
quot,38,28„,ghook„,1/980,980

stat1.txt

!file stat1 for cantilever beam

/filnam,stat1

/title,cantilever beam, static load 1g

!also for tip,load of 3 kgf

!units in cm, kgf, seconds

g = 980 !value of gravity
L = 60 !length of beam
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b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass dendity
W = L*b*h*ro*g !weight of beam
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7
mp,ex,1,E
mp,dens,1,ro
et,1,beam3
r,1,A,I,h

n,1,0,0
n,11,L,0
fill,1,11

en,1,1,2
engen,1,10,1,1,1,1

d,1,ux,0 !boundary conditions
d,1,uy,0
d,1,rotz,0
!d,11,uy,0

save
fini

/solu !solution for inertia loading
antyp,stat
acel„−g
solve
fini

!/solu !solution for tip force loading
!antyp,stat
!f,11,fy,3
!solve
!fini
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stat2.txt

!file stat2 for cantilever beam with tip mass

/filnam,stat2

/title,cantilever beam+tip load static load 1g

!units in cm, kgf, seconds

g = 980 !value of gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass dendity
W = L*b*h*ro*g !weight of beam
q = W/L !weight per unit length
A = b*h !cross section area
I = b*h**3/12 !area moment of inertia

/prep7
mp,ex,1,E
mp,dens,1,ro
et,1,beam3
et,2,mass21„0,4

r,1,A,I,h
r,2,mtip

n,1,0,0
n,11,L,0
fill,1,11

type,1
real,1
mat,1
en,1,1,2
engen,1,10,1,1,1,1 !cantilever beam

type,2
real,2
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mat,2
en,11,11 !tip mass

d,1,ux,0
d,1,uy,0
d,1,rotz,0
!d,11,uy,0

save
fini

/!solu !inertia loading
!antyp,stat
!acel„−g
!solve
!fini

/solu !tip force loading
antyp,stat
f,11,fy,3
solve
fini

stat3.txt

!file stat3 for cantilever beam

/filnam,stat3,txt

/title,cantilever beam+tip mass, random response

!units in cm, kgf, seconds

g = 980 !value of gravity
L = 60 !length of beam
b = 8 !width of beam
h = 0.5 !height of beam
E = 2.1e6 !Young’s modulus
ro = 7.959e-6 !mass dendity
W = L*b*h*ro*g !weight of beam
q = W/L !weight per unit length
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A=b*h !cross section area
I=b*h**3/12 !area moment of inertia

/prep7
mp,ex,1,E
mp,dens,1,ro
et,1,beam3
et,2,mass21„0,4

r,1,A,I,h
r,2,mtip

n,1,0,0
n,11,L,0
fill,1,11

type,1
real,1
mat,1
en,1,1,2
engen,1,10,1,1,1,1 !cantilever beam

type,2
real,2
mat,2
en,11,11 !tip mass

d,1,ux,0
d,1,uy,0
d,1,rotz,0

save
fini

/solu !Modal Solution
antyp,modal
modop,subs,3 !3 modes, subspace method
mxpand,3„,yes !expand 3 modes, calculate stresses
solve
fini
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/solu !SPECTRAL ANALYSIS
antyp,spect !analysis type - spectral
spopt,psd,3,yes !psd with 3 modes, stresses also computed
psdunit,1,forc !input in PSD of force (kgf 2/Hz)
psdfrq,1„5,250 !input between 5 to 250 Hz
psdval,1,0.004081632,0.004081632

psdres,disp,rel !displacements relative to base
psdres,velo,rel !velocities relative to base
psdres,acel,abs !absolute accelerations

dmprat,0.02 !damping 2% for all modes
f,11,fy,1 !random input at tip
pfact,1,node !nodal excitation
mcomb,psd !modal combination for psd

solve
save
fini

/post1
set,list !see list of load steps (1,1;1,2 etc. for resonances)
set,3,1 !for rms of displacements

!use this for stresses
!for beam elements an element table is required!

set,4,1 !for rms of velocities
set,5,1 !for rms of accelerations

!accelerations/980 = acel. in g’s
fini

/post26
numvar,30 !prepare space for 30 variables
store,psd,10 !store frequencies, 10 to each side of resonance
/grid,1
/axlab,x,Frequency Hz
/axlab,y,PSD
nsol,2,11,u,y,Wtip !disp. node 11
esol,4,1,1,ls,3,Sben !bend. str. at element 1, node 1

!ls-3:bending, i side of element
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rpsd,12,2„1,2,Wtip !PSD of rel.disp. node 11
rpsd,13,2„3,1,ACtip !PSD of Acceleration, node 11 (in cm/sec 2/Hz)

!for g 2/Hz—divide by 980 2

rpsd,14,4„1,2,BEND !PSD of bending stress, node 1

int1,22,12,1„MStip !Mean square of tip displacement
int1,23,13,1„Msaccel !Mean square of tip accel.
int1,24,14,1„MSbend !mean square of clamp bending stress.
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ABAQUS®, 301
Acceleration meter, 84
Accelerations:

base, 5–6, 41
harmonic, 5, 35–7, 151, 167
MS values of, 90
PSD of, 71, 82, 95, 131, 145
RMS of, 80, 94, 123, 130, 134

Acoustic excitation:
computing process, 120
finite element model, 122
mid-beam displacement,

123–4
PSD curve, 119
RMS values, 122–3
structure response to, 116

ADINATM, 301
Aerodynamic forces, 70
Aerospace structure, 66, 218, 266,

291–2
AGYLE program, 305
Aircraft wing, 19, 70
Airplane structure, 275
Aluminum 2024-T3, 225

EIFS depth and width for, PDF
of, 241, 244

Aluminum 2024-T351, 255
crack growth models for, 248

Aluminum 7050-T7451, EIFS of
inclusions in, 242, 245

Analytical computation analysis,
35

ANSYS®, 10, 28, 40, 42, 78–9, 93,
147, 157–8, 162, 168, 174, 186,
191, 204, 276–7, 301, 312

ANSYS solutions:
of cantilever beam, 103
comparison of analytical and, 41

Anti-symmetric loads, 52–7
of aircraft fuselage-wings

combination, 57
response of mid-plate node to, 62

Anti-symmetric modes, 52–7
of aircraft fuselage-wings

combination, 56–7
Applied Research Associates

(ARA), 184, 195, 303
ASTM standard E647, 247

B

Base acceleration, 5–6, 41
Base excitation, 1, 4–6, 11, 37,

167–72
harmonic, 41
response of beams to, 37–8

Beam theory, basics of, 21–4
Belvins’ formulas, 306
Bending moment, 23–5
Bending stress, 23, 30, 33, 149–50,

277
at clamped edge of beam, 40–1
due to random vibration loading,

282
due to static loading, 281
lateral, 65

427
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Bending stress (continued)
MS of, 90, 92
PSD of, 82, 91, 95, 131, 140
RMS of, 81, 94, 124, 135

Boundary conditions, 122, 146
Boundary elements (BE), 305
Boundary layer excitation, 70

C

CalREL program, 301
Cantilever beam, 97, 147, 163, 167,

174–5, 187, 276
ANSYS solution of, 103
behavior of, 1, 42
CDF of stochastic safety factor

for, 288
to clamp displacement excitation,

88–92
clamped edge of, 40–1
data for, 22
deflection of, 24–5
discrete normalized tip force

deflection of, 26–7
displacement of, 49
dynamic response of, 21–69
eigenvectors of, 25
equivalent base excitation, 101
excitation force determination,

98–101
failure criterion of structure, 96
finite elements nodes of, 33
lateral deflection of, 35
length of, 22–3, 25–6, 38, 53
modal analysis of slender, 25–9
mode shapes of, 26, 34
modes of, 27, 32, 34
natural frequencies of, 26, 45
neutral axis, 22

normalized eigenvalues for
uniform, 26

normalized static deflection of, 26
PSD response, 97, 104
to random tip force, 78
resonance frequencies of, 26,

29, 43
response to base excitation, 37–8
response to harmonic base

excitation, 41–4
shear forces of, 23
slender, 22–3, 25
theory, 10
to tip displacement excitation,

92–5
vibration analysis of, 23, 26
vibration test, 97–105
weight of, 21, 38
Young’s modulus of, 21, 26

Cantilever delta plate, 105
equivalent excitation, 111
modal shapes, 107
PSD function, 106, 108, 112,

114–16
resonance frequencies, 106
RMS value, 106
squared transfer function, 109–11,

113
structure, elements and nodes,

106
CARE (Center for Aerospace

Research and Education), 305
CDF. See Cumulative distribution

function
Center for Aerospace Research and

Education (CARE), 305
Clamp displacement excitation:

accelerations, MS values of, 90
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beam’s tip acceleration, PSD of,
91

beam’s tip displacement, PSD of,
90

bending stress, MS of, 90, 92
bending stress, PSD of, 91
cantilever beam response to, 88
tip acceleration, MS of, 92
tip displacement, MS of, 89, 91

Cleaning failure mechanism, 295–6
Closed-form expression, 185–91
Closed form solution, 85–8
Collision stresses, 156
Compression stresses, 24
Computer programs:

crack propagation programs,
304–5

finite elements programs, 300–1
mathematical solvers, 305–6
probabilistic analysis programs,

301–4
Contact elements, 157, 162, 167

point-to-point, 158
use of, 147, 172

Contact problems:
DOF, 157–62
dynamic. See Dynamic contact

problems
solutions of, 146, 157
static, 147–50

Contacts:
static, 146–50
in structural systems, 146–72

Contact stiffness, 147–8
Continuous elastic structure, 76
Continuous systems, 12, 18, 20, 77
Crack, 217

in aluminum 2024-T351, 248–9

initial, statistical distributions of,
237

long, 247–9
properties of, 214
short, 247–9

Crack closure:
effects, 247
theory, 224

Crack growth, 214
computation process, 266
computer codes, 224
differential equation (DE) models

for, 222
driving force of, 247–8
equation, in NASGRO,

224, 254
to failure, 219
indeterministic nature of, 220
load ratio on, 246–7
parameters, 272
random behavior of, 222
random process (RP) methods,

222
random variables (RV) methods,

222
stochastic models for, 222, 228
in structural element, 217
vs. stress intensity factor, 215, 221

Crack growth model, 218
for aluminum 2024-T351, 248
computation process, 266
predictions and experimental

results for, 256–7
unified, 246, 254, 256
using TK Solver program, 260

Crack growth rate:
load ratio effects on, 246–7, 250
threshold values, 251–2
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Crack length:
for applied stress and stress ratio,

256–7
behavior of, 220–1
CDF of, 259
critical, threshold values of, 258–9
dispersion in, 263
as function of time, 220, 229
initial, 262
PDF of, 259
stochastic behavior of, 228
vs. bending load cycles, 226–7
vs. load cycles curves, 263
vs. tension load cycles, 227
and Weibull CDF, 262

Crack propagation. See Crack
growth

Crack propagation programs, 304–5
Critical crack length, threshold

values of, 258–9
Cross-spectral density function, 85
Cumulative distribution function

(CDF), 237
of corroded and noncorroded

aluminum, 245
of crack length, 259
of EIFS, 239–40
of inclusions in 7050-T7451

aluminum, 245
of standard normal distribution,

268
of stochastic safety factor, 287–8
of TTCI, 239
of Weibull distribution, 237, 262–3

D

Dampers, 11, 16, 20
structural, 2
viscous, 2

Damping coefficient, 7, 39, 42, 77
for metallic structural elements,

38
modal, 14, 18
nodal, 38

3-D crack propagation, 305
Degrees of freedom (DOF), 13, 158.

See also Multiple degrees of
freedom (MDOF) models;
Single degree of freedom
(SDOF) system

contact problem, 157–62
finite number of, 12
infinite number of, 12

Design criteria, 198, 275–99
correct, 278–83
equivalent static input, 283
dynamic. See Dynamic design

criteria
“Design-to-reliability”

methodology, principles, 292–3
Deterministic excitation, 70
Det Norske Veritas (DNV), 302
Differential equation (DE), 12, 25

of basic mass-spring-damper, 5
of beam, 25, 35
of excited beam, 37
model for crack growth, 222
of one-dimensional structural

element, 35
SDOF, 38
of thin elastic shells, 66

Digital control equipment, 105
Discretization methods, 12
Displacements:

of cantilever beam, 49
due to random vibration loading,

282
due to static loading, 281
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modes, 32
MS value of, 89
PSD of, 130, 133, 143
RMS of, 80, 93, 129, 133,

142–3
Dissipation energy, 36
DLF. See Dynamic load factor
DNV. See Det Norske Veritas
DOF. See Degrees of freedom
Duhamel’s integral:

flow chart for programming,
10–11

in Fourier transforms, 7
for harmonic excitations, 10

Dynamic contact problems, 310
analytical solution for, 150–7
base excitation, numerical

solution of, 167–72
force excitation, numerical

solution of, 162–6
model, 150–1

Dynamic crack growth. See also
Crack growth

static bias effect on, 223–8
Dynamic design criteria, 275–83

case of over-design, 277–83
case of under-design, 276–7

Dynamic load factor (DLF),
225

effect of, 29
of force-excited SDOF, 4
for undamped system, 8

Dynamic response:
of beams to deterministic

excitation, 21–69
of other structures to

deterministic excitation,
21–69

stress behavior of, 29

Dynamics analysis, reasons to avoid,
307

Dynamic stresses, 150

E

EIFS. See Equivalent initial flaw size
Eigenvalues, 13, 25

of undamped, unexcited system,
17

Eigenvectors, 36
of undamped, unexcited system,

17
Elastic collision, 154–5
Elasticity theory, 21–2
Elastic model, 22
Elastic structure, 12, 22, 78

acceleration, PSD of, 82
acceleration, RMS values of, 80
bending stress, PSD of, 82
bending stress, RMS values of, 81
deflection, PSD of, 81
displacements, RMS values of, 80
integral of PSD, 83–4
to random excitation, 78
resonance frequencies of, 20
stiffness distribution of, 19
stresses in, 5
tip excitation, PSD of, 79

Elastic systems, 9
continuous, 1, 12, 18
linear, 22

Equation of motion, 17–18, 36
for base-excited MDOF, 15
SDOF, 37

Equivalent initial flaw size (EIFS),
237

for aluminum 2024-T3, 244
CDF of, 240, 261
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Equivalent initial flaw size (EIFS)
(continued)

of inclusions in aluminum
7050-T7451, 242

PDF of, 241–2
Weibull distribution for, 259

Euler buckling model, 209, 216
European Space Agency (ESA), 304
Excitation, 159

acoustic. See Acoustic excitation
base, 1, 4–6, 11, 37, 167–72
boundary layer, 70
clamp displacement. See Clamp

displacement excitation
deterministic, 19, 21
external, PSD of, 280
force, 1–2, 4–5, 162–6
frame structure, 126
harmonic, 10, 20, 35, 45, 157, 162,

168
high frequency, 4
low frequency, 4
narrow-band, 268
PSD of, 280
random. See Random excitation
to resonance frequencies ratio, 6
tip deflection, 43
wide-band, 268, 273

Excitation forces, 3–5
amplitude of, 60
arbitrary transient, 8
equivalent, 5
external, 16, 35, 37
generalized, 38
in node, 64
PSD of, 101

Excitation pressure:
PSD function, 120

spectral response analysis, 121
External forces, 44–5

acting at tip of beam, 44
acting on beam, 44

External payload, geometry of
model for, 279–80

F

Factor of safety. See Safety factor
Failure mechanism:

analysis of, 293–4
cleaning, 295–6

Failure modes, 295–6
analysis of, 293–4
structural, 200
structural development tests to

surface, 294–5
Far field stress intensity factor,

247
Fastener hole, 221, 237
Fatigue failure, 217–18
Fault trees, 200
Finite element programs, 10, 12, 31,

50, 66, 78, 141, 147, 157, 162,
166–7, 172, 187, 191–2, 300, 312.
See also ANSYS®; NASTRAN®

Finite elements (FE), 305
Finite element solution, 32–3, 52,

68, 126
First order reliability methods

(FORM), 183–4
Fixture, 310
Flaws, 217, 237
Force:

dynamic, 4
elastic, 5
equilibrium equations, 16–17
excitation, 1, 3–5, 8, 16, 162–6
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generalized, 15, 19, 36–7,
39, 41, 44

harmonic tip, 38
shear, 23, 25
single harmonic, 53
static, 3, 10
transient, 8

Foreman equations, 225, 228
FORM. See First order reliability

methods
Fracture mechanics, 219, 223, 246
Fracture toughness value, 221, 229
Frame structure, 125–32

acceleration, PSD of, 131
acceleration, RMS values of, 130
bending stress, PSD of, 131
demonstration, 126–8
displacement, PSD of, 130
displacement, RMS value of, 129
excitation, 126
excitation force, PSD of, 127
geometry of, 127
material properties, 126
resonances of, 129
solution process, 126

G

Gaussian distribution, 74
Gaussian excitation process, 192–3
Generalized coordinates, 15, 18,

30–1, 35
amplitude of, 38
calculated by ANSYS, 40
maximal values of, 39
maximum absolute value of, 42
for modes, 40

Generalized forces, 15, 19, 36–7,
39, 44

Generalized masses, 13–15, 35, 39
computed, 34
infinite number of, 18
for resonance modes, 38

Grain boundaries, 219
Graphical user interface (GUI), 303
Ground vibration test (GVT), 4

H

Half crack length. See also Crack
length

critical, 232
histogram of, 232, 234–5
standard deviation of, 233
vs. time, 231–3

Harmonic accelerations, 5, 35–7,
151, 167

Harmonic displacement, at node, 42
Harmonic excitation, 10, 20, 35, 45,

140, 157, 162, 168
probability of failure for, 228
response of simply supported

plate to, 57–66
stochastic crack growth and, 228

Harmonic force, 42
Harmonic loadings, 223, 267, 272

I

Infinite degrees of freedom system,
18–19

Internal stress, 247

K

Kinetic energy, 36

L

Lagrange equation approach, 35–6
Lagrange multiplier method, 180–2,

311
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Latin hypercube Monte Carlo
simulation, 191

Linear elastic system, 22
Load ratio, 223

on crack growth, 246–7, 250
Log-normal distribution, 232,

234–5, 242, 311

M

Macro commands, 301–2
Macro-cracks, 219. See also Crack
Mass:

angular frequency of, 20
attached, 19–20, 49, 52
distribution, 19
elastically mounted on elastic

beam, 46
frequency of uncoupled, 20, 45
generalized, 18, 34, 36–8
infinite number of, 18
matrix, 18
mounted, 19–20
movement, algorithm for solution

of, 153
supported, 20

Mathematical solvers, 305–6
MATLAB®, 101, 150, 181, 225,

229–30, 236, 305
MDOF models. See Multiple

degrees of freedom models
Meansquare (MS) value, 73

of accelerations, 90
of bending stress, 90, 92
of displacement, 89
of tip acceleration, 92
of tip displacement, 89, 91

Microcracks, 219. See also Crack

Mid-beam displacement, PSD
function of, 123–4

Miner’s law, 267
MJPDF. See Modified joint

probability density function
Modal analysis, 35, 58

coupled, 52
numerical solution for, 35
of slender cantilever beam,

25–9
Modal damping, 14, 309
Modal displacement, 58, 67
Modal shapes, 15, 28

infinite number of, 18
non-normalized, 35
weighted sum of, 35

Modal superposition, 35
Model uncertainties, 208–16
Modes:

anti-symmetric, 52–7
damping ratio of, 57
displacement, 32
failure, analysis of, 293–4
frequencies of, 52, 58
normal, 13–15, 17, 30–2, 52
number, 13, 34–5, 52
resonance modes, 32, 38, 69
superposition, 35
symmetric, 52–7
vibration, 27, 29–31, 33–4, 40

Mode shapes, 15, 20. See also
Normal modes

analysis, 46
infinite number of, 19
normal, 52
orthogonality of, 36

Modified joint probability density
function (MJPDF), 190
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Monte Carlo simulations, 183–4,
186, 191, 232, 301

Mounted mass, 19–20
acceleration, PSD of, 139
bending stress, RMS of, 135
bending stress at clamp, PSD

of, 140
displacements, PSD of, 133, 137
frequency of uncoupled, 20
modal displacement of, 45
with mounting rigidities, 45
nodal displacement of, 46, 50–1
structure response with, 45
tip acceleration, PSD of, 132,

135, 138
tip displacements, PSD of, 136

MPP (Most probable point of
failure), 179, 183–4, 190

MS. See Meansquare value
Multiple degrees of freedom

(MDOF) models, 11–18, 76,
157, 309

analytical solutions, 77
base excited, 11
behavior of, 12
deflection of, 15
equivalent, 7
force excited, 11
free undamped vibration of, 12
modal angular resonance

frequencies of, 13
mode shapes of, 13

N

Narrow-band excitation, 268, 272
Narrow band random signal, 72, 74
NASA, 105, 248
NASA Glenn Research Center, 302

NASA Johnson Center, 304
NASGRO®, 214, 224, 226, 229, 248,

258, 304
crack growth equation in, 224,

254
NASTRAN®, 10, 28, 34, 78, 174,

186, 191, 301, 312
NESSUS®, 174, 186, 302–3
Nodal damping coefficients, 38
Nodal displacement, of mounted

mass, 46
Nodal lines, 58–9

of modes, 67
Nodal points, 26, 28, 38

in beam structure, 58
Node:

amplitude of, 53, 55–6
excitation at, 61
response of, 54–6, 60, 62, 64–5

Nondeterministic behavior, of
structures, 173–216

Normal modes, 13, 16–17, 44, 59
analytical expression for, 52
linear function of, 30
superposition, 14

Nucleation, 219
Numerical analysis, 12, 35, 57,

68, 158

O

Octave bandwidth, 117
One-dimensional structure, 105

P

Paris-Erdogan law, 221, 224,
228, 246

Paris law, 215
PDF. See Probability density function
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Plate:
lateral bending stresses of, 62
modal-deflected, curvature of, 65
modal index of, 59
modes of, 58
resonance frequencies of, 58–9
simply supported rectangular, 57
vibration of, 57

Point-to-point contact element, 158
Potential elastic energy, 36
Power spectral density (PSD), 72–3

of accelerations, 71, 82, 95,
131, 145

of base excitation, 115–16
of bending stress, 82, 91, 94, 131
of clamp displacement, 88
definitions, 71
of displacement, 80, 82, 108,

112, 143
equivalent base acceleration, 104
of external excitation, 280
integral of, 82–4
of mounted mass displacements,

137
for narrow-band process, 269–70
of σx stress, 144
of tip acceleration, 91, 94, 98, 138
of tip displacement, 90, 94, 98, 136
of tip excitation force, 79
for wide-band process, 269–70

Pressure fluctuations, 116
Probabilistic analysis, 301

benefits, 174, 307
importance of, 208
of structures, 173–80

Probabilistic analysis programs,
184–5, 301–4

CalREL program, 301

NESSUS®, 302
PROBAN®, 302
ProFES®, 303

Probabilistic crack growth, using
“unified” approach, 246, 256

Probabilistic models, 209
Probabilistic structural program,

186, 311
Probabilistic sufficiency factor, 296
Probability density function (PDF),

73, 178, 238
of crack length, 259
of EIFS, 241–2
for narrow band process, 269,

272
of standard normal process, 269
of TTCI, 239
for white noise process, 269, 272
for wide-band process, 269, 272

Probability of failure, 180–91
COV effect on, 287
of dynamically excited structures,

192–8
for harmonic excitation, 228
Lagrange multiplier method,

180–2
MC method, 183–4
for random excitation, 266
for stochastic processes, 235–6

PROBAN®, 174, 302
ProFES®, 184, 186, 235, 303–4
PSD. See Power spectral density

R

“Rain fall” analysis, 267
Raleigh-Ritz method, 31
Random displacements, 70
Random excitation, 20, 39, 48, 51, 70
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computation of time to failure
under, 274

elastic structure response to,
78–85

mounted mass to, 132–40
probability of failure for, 266
simply supported plate response

to, 140
stochastic crack growth and, 266

Random forces, 70
Random stress processes, 269
Random tip force, 45, 78
Rayleigh distribution, 269
Reliability demonstration, 290–1

integrated into design process,
293

by orders of magnitude, 296–9
of structural systems, 289–99

Reliability process, flowchart of
structural design to, 297

Resilience, coefficient of, 310
Resonance frequency, 25

coupled, 52
of damped system, 8
of elastic structure, 20
modal angular, 13
of modes, 45

Resonance modes, 32, 38, 69
Rigidity, 8–9

of connecting structure, 45
spring with, 20

RMS. See Root mean square
Root mean square (RMS):

of acceleration, 80, 94, 123,
130, 134

acoustic excitation, 122–3
of bending stress, 81, 94, 124, 135
of cantilever delta plate, 106

of displacements, 80, 93, 129, 133,
142–3

S

Safety factor, 173–4, 283–99
classical, 284–6
definition, 284–5
reasons for introduction of,

283–9
stochastic, 285–6, 288, 296
worst-case, 285–6

SDOF system. See Single degree of
freedom system

Second order reliability methods
(SORM), 183–4

SESAM programs, 302
Shear force, 23–5
Shear stresses, 23, 30
Shells, 57

cylindrical, 67
differential equations of, 66
simply supported, 67
thin elastic, 66
thin walled, 66
vibrations of, 66–9

SIF. See Stress intensity factor
Simply supported plate, 140

acceleration, PSD function of,
145

displacement, PSD function
of, 143

displacement, RMS value of,
142–3

PSD excitation function, 141
σx stress, PSD function of, 144

Single degree of freedom
(SDOF) system, 1–7, 15, 17,
39, 75–6, 309
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Single degree of freedom(SDOF)
system (continued)

advantage of, 7
applying constant step function

force to, 8
base-excited, 1, 5
behavior of, 1, 10
damped, 8
equation of motion, 37
equivalent, 7, 9, 12
force-excited, 1–2, 4
rigid, 4
static deflection of, 8
structural response analyses of, 1
undamped, 2, 8–9
zero excited, 10

Slender beam:
differential equation of, 25
stress modes of, 29–35
theory, basics of, 21–5
uniform, 25–6, 38

S-N curves, 223, 267
for 4340 steel, 273
with random dispersion, 218

SORM. See Second order reliability
methods

Sound pressure levels (SPL), 117
frequency range, 119

Southwest Research Institute
(SwRI), 302, 304

SPL. See Sound pressure levels
Spring, 12, 20

elastic forces in, 5
elastic stresses in, 6
extension of, 4, 6
internal structural damping of, 2
internal viscous damping of, 2
with stiffness, 45

Standard deviation (SD), 72–3
Static beam formulas, 147
Static contacts, 146–50

problem, 147–50
Static force, 3, 10
4340 steel, 229, 272

S-N curve for, 273
UTS of, 231

Stochastic crack growth. See also
Crack growth

and harmonic excitation, 228
and random excitation, 266

Stochastic process, 216, 229–30,
296

half crack length vs. time, 231
log-normal, 229, 235
normal, 229–30
probability of failure for, 235–6

Stochastic safety factor, 285–6, 296
for cantilever beam, 288
CDF of, 287

Strain gages, 310
Strain measurements, 310
Stresses, 147

bending. See Bending stress
at clamped edge of beam, 40, 42
collision, 156
compression, 24
distribution, 31
dynamic, 150
in eigenvector solution, 32
in elastic mount, 47
in elastic structure, 5
shear, 23, 30
in spring, 5

Stress intensity factor (SIF), 219,
225, 260, 309

vs. crack growth rate, 221
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Stress modes, 31
of slender cantilever beam, 29–35,

40
Stress-strength model, 177–80, 229,

235, 265, 284, 288
Structural development tests,

design of:
to surface failure modes, 294–5
to surface unpredicted failure

modes, 295
Structural failure:

analysis, 307–8
cause of, 85
criteria, 301
modes, 200

Structural parameter:
design criterion, 96
failure criterion, 96
simulation of, 96
in vibration test, 96

Structural systems, 150, 198–207
contacts in, 146–72
design analysis, 308
dynamic behavior, 310
fixture in, 310
nondeterministic behavior of,

173–216
probabilistic analysis of, 173–80
reliability demonstration of,

289–99
static contact configuration in,

148
unit analysis, 308

Surface failure modes, 294–5
Surface unpredicted failure modes,

295
Symmetric loads, 52–7
Symmetric modes, 52–7

of aircraft fuselage-wings
combination, 56–7

T

Taylor expansion method, 187,
311

TFS. See Transfer function squared
Thin walled shells, 66
Time to crack initiation (TTCI),

237
CDF of, 239
PDF of, 239
Weibull parameters for, 238

Tip deflection, 147–8, 175
of beam, 164
excitation, 43
PSD of base acceleration,

104
Tip displacement excitation,

92–5
accelerations, RMS of, 94
bending stress, PSD of, 95
bending stress, RMS of, 94
cantilever beam response

to, 92
displacements, RMS of, 93
tip acceleration, PSD of, 95
tip displacement, PSD of, 94

TK SolverTM, 150, 153, 255–6, 260,
305–6

crack growth model using, 260
Transfer function, 3, 51, 75
Transfer function squared (TFS),

99, 102
Transient force, 8
Transient load, SDOF response

to, 7–11
Trapezoidal areas, 74
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TTCI. See Time to crack initiation
Two-dimensional structure, 105

U

Ultimate tensile strength (UTS),
229, 231, 260, 272

of 4340 steel, 231
Uncertainty, 173

approach, 173
model, 208–16

“Unified” crack growth model, 246,
254, 256

Universal Technical Systems, Inc.
(UTS), 306

UTS. See Ultimate tensile strength

V

Vibrating structures, behavior of, 1
Vibrations:

analysis of beam, 23
free undamped, 12
of shells, 66–9
theory of, 1–20

Vibration tests, 85, 310
for cantilever beam, 97
equipment control, 105

ground vibration test, 4
purpose of, 96
typical acceleration input in, 72

Virtual tests, 229, 294
Viscous damping coefficient,

3–4, 7
Voids. See Crack
Von-Mises stress, 107

W

Weibull distribution, 237, 242–3, 261
CDF of, 237, 262–3
for EIFS, 259

Weibull parameters, 241
for TTCI distribution, 238

White noise, 72
Wide-band excitation, 268, 273
Wide band random signal, 73
Worst-case design, 175–6, 285
Worst-case safety factor, 285–6
WPF series, 237–8, 240

X

XWPF series, 237–8, 240

Y

Young’s modulus, 21
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