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Natural hazard mitigation is one of the most important issues facing civil
engineers today. Many ol us have experienced the feeling of helplessness when
our homes or offices were shaken uncontrollably by earth tremors. All of us
have witnessed through television and other news media the vast destruction
of properties and tragic loss of lives caused by an earthquake, a hurricane, a
fire or a flood. In structural engineering, one of the constant challenges is to
find new and better means of protecting structures and constructed facilities
[rom the damaging effects ol destructive environmental forces. One avenue
open to the researchers and designers is to introduce more conservative
designs so that structures such as buildings and bridges are better able to
cope with large external loads. This approach, however, can be untenable
both technologically and economically. Another possible approach is to make
structures behave more like machines, aircralts, or human beings in the sense
that they can be made adaptive or responsive to external forces. Structural
muscles, 50 to speak, can be flexed when warranted, or appropriate adjustments
can be made within the structure as environmental conditions change. This
latter approach has led to active structural control rescarch and has opened
up a new field of investigation, which began more as an intellectual curiosity
in the early 1970s but now is at the stage where large-scale experimentation
is underway and actual active control systems have been desizned and
insialled in [ull-scale structures.

Another reason that active structural control has been receiving an
increasing amount of attention has to do with rapid advances that have been
taking place in allied technologies. The development of the active conirol
concept must go hand-in-hand with advances in areas such as computers,
electronics, measurement techniques, instrumentation, controllers, actuators,
materials, etc. Current phenomenal advances in all these areas have given
added impetus to the development of active control technology. They also
reflect favourably on the ail-important cost {actor.

On the basis of the analytical and experimental results obtained to date,
it appears evident that, technologically, fully antomated active systems are
within sight of becoming a reality. At the same time, however, a large number
of serious obstacles remain and they must be overcome before active structural
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control can gain general acceptance by the civil engineering and censtruction
professions at large, This brings us to the purpose of writing this book. It is
intended to introduce to the interested reader basic principles involved in
the theory of active structural contrel, to bring together in one volume a
wealth of information documenting progress that has been made to date,
and to address implementational issues. 1t is hoped that the material in this
book will provide the reader with some added degree of understanding and
maturity so that he or she may better delineate important issues involved
and pursue further studies in this exciting and fast expanding field.

T T Soong
Buffalo, New York
August, 1989
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1 Introduction

1t is common knowledge that civil engineering structures must withstand
ever-changing environmental loads, such as wind, earthquakes and waves,
over the span of their uselul lives. Yet, until very recently, buildings, bridges,
and other constructed lacilities have been built as passive structures that rely
on their mass and solidity to resist outside forces, while being incapable of
adapting to the dynamics of an ever-changing environment. Indeed, ‘solidity’
and ‘massiveness’ have often been equated to ‘salety’ and ‘reliability’. In
recent years, however, a number of factors have emerged that signal the need
for considering structures with some degree ol adaptability or responsiveness.
These factors include the [ollowing:

1 Inereased flexibility: With the trend towards taller, longer and more

flexible structures, undesirable vibrational levels could be reached under

large environmental loads, thus adversely affecting human comfort and
even structural safety.

Increased safety levels: Higher safety levels are demanded as structures

become more complex, more costly, and serve more critical [unctions.

Examples are tall structures, deep-water offshore platlorms, and nuclear

power piants. In these cases, conventional reliability criteria are no longer

adeguate and failure is synonymous with disaster.

3 Increasingly stringent performance reguirements: Within safety limits,
conventional structures are allowed to deform and even sustain local
damage if necessary. Structures are increasingly required, however, to
operate within strict performance guidelines such as alignment or shape
constraints. Examples in this area are radar tracking stations, radio
telescope structures, and aerospace structures.

4 Better utilization of material and lower cost: Partly due to the considerations
just given, and partly due to economic consideration, it is clear that
savings in materials, weight, and cost are not only desirable but necessary.
This is especially true for structures in space and for portable structures
used in military applications,

(o]

As a result, new concepts ol structural protection and structural motion
control, such as supplemental damping, passive control and active control,
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have been advanced and are at various stages of development. In the area
ol passive systems, they include base isolation systems against earthquake
loads, tuned mass dampers and fluid sloshing damper systems against wind,
and a variety of mechanical energy dissipaters such as bracing systems, friction
dampers, viscoelastic dampers and other mechanical dampers. In the active
system ared, active mass dampers, active mass drivers, active tendon systems,
pulse thrusters, and active variable stiflness systems are some of the devices
being developed and tested both in the laboratory, and in some cases, in
actual structural applications.

The operating principle of a passive protective system is now adequately
understood; less so, however, for active systems. [n structural engineering,
‘active structural control’ has become known as an area of research in which
the motion of a structure is controlied or modified by means of the action
of a control system through some external energy supply. Active systems are
presently under close scrutiny in terms of their [uture structural applicability
stemming from a number of motivating factors. They include the [oliowing:

I As mentioned earlier, with the advent of mew materials and new
construction methods, structures are becoming taller, longer and more
fiexible. The application of active control is one of the options in
safeguarding such structures against excessive vibrations. In fact, ‘super-
tall” buildings with up to 300 storeys are being considered as possibilities
in the near future,!'? for which control systems, either active or passive,
may become an integral part.

2 Active or hybrid active-passive systems can be attractive candidates flor
retrofitting or strengthening existing structures against. for example,
earthquake hazards. Current passive means of using interior shear walls
or basg isclation systems are structurally invasive. Active systems, on the
other hand, can be more effective and can be incorporated into an existing
structure with less interference. In a report prepared for the National
Research Council addressing research issues based on lessons learned
from the 1985 Mexico earthquake,® research on retrofit of buildings using
devices which ‘might increase damping or modily the natural period’ is
recommended. This objective can be easily achieved using active or
aclive—passive systems.

3 Civil engineering structures are not designed to withstand all possible
external loads. However, extraordinary loading episodes do occur,
resulting in structural damage or even [ailure. Active controlin this context
can mean a last resort attempt to save a structure which, without it, would
not be able to survive. This extra protection is particularly attractive
when one considers the high cost of some reeent large structures such as
deep-water offshore platforms, not even mentioning lives that might be
lost otherwise. The same is true for structures which serve critical lunctions
such as hospitals and nuclear power plants.
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4 Some structures house valuable and sensitive equipment or secondary
systems. Their operating safety is of paramount importance. Active control
can thus be applied at the substructure level to ensure proper operating
conditions [or secondary systems.

5 Passive control devices such as base isolation systems, viscoelastic
dampers and tuned mass dampers, have been installed in some existing
structures, resuiting in improved structural performance. Passive devices,
however, have inherent limitations. Consider, lor example, the tuned mass
damper system installed in the Citicorp Center, New York.**® Since it
is tuned to the first modal [requency of the structure, it is basically designed
to reduce only the first mode vibration. An active mass damper, on the
other hand, can be effective over a much wider [requency range. Hence,
the study of active structural control is a logical extension of passive
control technology.

6 Finally, the idea of active control itsell is not only attractive, but
potentially revolutionary, since it elevates structural concepts from a static
and passive level to one of dynamism and adaptability. One can envisage

~future structures having two types of load resisting members: the
traditional passive members that are designed to support basic design
loads, and active members whose function is to augment the structure’s
capability in resisting extraordinary loads. Their integration in an optimal
fashion can conceivably result in better utilization ol material and lower
cost, ™

Thus motivated, there has been a flurry of research activities in the area
of active control of civil engineering structures over the last 20 years. In this
book, an attempt is made to provide the reader with a working knowledge
of this exciting and fast expanding field. Moreover, current research and
deveiopment work in active control is brought up-to-date as much as possible.

1.1 Organization

The material of this book flows [rom theoretical background to practical
considerations to implementational issues. Chapters 2 and 3 are concerned
with the [undamentai principles of active structural control and with the
development ol control algorithms suitable for structural control applications.
Topics in these chapters are better understood when the reader has a working
knowledge of elementary structural dynamics, random vibration, systems
theory and control theory. Of the above knowledge areas, theoretical aspects
of systems and control theory may not be [amiliar to some ol the readers.
Consequently, a briefl introduction and a summary ol results in linear control
systems are given in Appendix A, together with a list of uselul references.

3
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Chapter 4 deals with practical considerations in control implementation.
Issues addressed in this chapter include modelling errors, time delay in controf
execution, inelastic structural behaviour, and problems arising from hardware
and computational limitations.

As mentioned earlier, several control devices are being actively considered
for structural applications. In [act, large-scale testing is underway for some
active structural control systems and, at least in one case, full-scale structurai
implementation has taken place. Discussions in Chapter 5 centre around
some of these feasible control schemes with emphasis on their perlormance
in the laboratory.

Actively controlled structures are a new strain of structural systems and
their optimization takes on an added dimension in scale as well as in
compiexity. In Chapter 6, this optimization problem is addressed {rom one
particular point of view. It is hoped that this brief exploration will lead to
more serious investigations into many [ascinating aspects of this challenging
problem.

Finally, it shouid be pointed out that, since many references were used in
the developiiesnt ol “this book, no attempt was made to unily the units of
quantities used in the text and in the examples. It was [elt that, to leave them
in their original units, easier reference to the original publications could be
made. For convenience, a conversion table for English-unit to SI-unit
conversion is provided in Appendix B,
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2 Actively Controlled
Structures

Some carly notions of an actively controlled structure are contained in work
by Zuk!? in which the notion of “kinetic structures’ is advanced. Zuk made
the distinction between active controls which are designed to reduce structural
motion and those which generate structural motion. The kinetic structures
described by Zuk belong to the latter. Conceptually, Zuk visualizes all manner
of buildings as being able to change form, shape, and configuration in order
to make themselves adaptable to ever-changing forces and functional usages.
For example, a- building could be compactly prepackaged in a [actory, and
conveniently transporied to the site. At the site, it would be energized, causing
it to sell-deploy or erect itself by means ol conirol systems. Similarly, one
can envisage structures which are sell-collapsing, reversible, or are able to
change shape, or control enclosed space through structural manipulation by
means of control devices.

The topic addressed in this book, however, belongs'to the first category,
namely, controls designed to reduce structural motion. According to Zuk,*
the earliest attempts in this direction were made in the 1960s when Eugene
Freyssinet proposed in 1960 to use prestressing tendons as control devices
1o stabilize tall structures. Independently, Lev Zetlin in 1963 conceived the
idea of designing tall buildings, whereby cables are fixed to the structural
frame and attached to hydraulic jacks at the base. Sensors are used to detect
movement at the top of the structure and to signal a control device which,
in turn, directs the action of the jacks. Unfortunately, neither structure was
built. Other early attempts include that of Kobori and Minai,* who advocated
the concept ol *dynamic intelligent buildings® capable of executing active
response control when they are subjected to severe earthquakes. Nordell®
also suggested the use of active systems which can be activated to provide
increased strength to a structure prior to any ‘exceptional” overloading. Two
examples of such systems are ,sketched in Figs 2.1 and 2.2. A movable
diagonal bracing system is shown in Fig. 2.1. In its active state, the diagonal
bracings would increase the lateral resistance of the structure in resisting
exceptional loadings. As it was conceived, the bracing scheme would be
manually activated. Similar concepts for movable columns, walls or trusses
could also be envisaged and Fig. 2.2 provides such an example. The columns
in their active state would increase both the lateral and vertical resistance.

J
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1,
3

T
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Figure 2.1 Hinged bar bracing system®

A systematic assault on active control research did not begin until 1972,
when Yao {aid down a more rigorous control-theory based concept of

system is suggested as an alternative approach to addressing the salety
problem in structural engineering.

As described by Yao and in most of the subsequent research and
development work, an active structural control system has the basic
configuration as shown schematically in Fig. 2.3. It consists of:

1 Sensors located about the structure to measure either external excitations,
or structural response variables, or both.

\r v__'mm.<
A
Y | A—
Active Inactive

Fa

M ¢
A
N\ E—.—_—(

NN ZN

Figure 2.2 Movable columns®
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Ex}crr_ml Structure Structural
excitation response

-

-3
y Control forces 3
aiors

A

Sensars Actugtors Sensors

Computation
of control forces

Figure 2.3 Schematic diagram of active controi

2 Devices to process the measured information and to compute necessary
control forces needed based on a given control algorithm.

3 Actuators, usually powered by external energy sources, to produce the

required forces. ' -

When only the structural response variables are measured, the control
configuration is referred to as closed-loop control since the structural response
is continually monitored and this inlormation is used to make continual
corrections to the applied contirol lorces. An open-loop control results when
the control forces are regulated only by the measured excitation. In the case
where the information on both the response quantities and excitation are
utilized for control design, the term closed--open-loop control is used in the
literature.

To see the effect ol applying such control lorces to a structure under ideal
conditions, consider a building structure modelled by an #-degree-ol-lreedom
lumped mass-spring-dashpot system. The matrix equation of motion of the
structural system can be written as

ME(r)+ Ce{t)+ Kx(t)= Du(t) + Ef(1) (2.1}

where M, C and K are, respectively, the n x n mass, damping and stiflness
matrices, x(z} is the n-dimensional displacement vector, f{t) is an r-vector
representing applied load or external excitation, and #(t) is the m-dimensional
control force vector. The n x m matrix D and n x r matrix E are location
matrices which define locations of the control force and the excitation,
respectively.

Suppose that the closed—open-loop configuration is used in which the
control force w(t) is designed to be a linear function of the measured
displacement vector x(t), the velocity vector (1) and the excitation f{t). The
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conirol [orce vector takes the form
w(Y=RK, x{(t)+ C, {1} + E A1) (2.2)

where K,, C, and E, are respective control gains which can be time-
dependent.
The substitution of Eq. (2.2) into Eq. (2.1} vields

MiE(H) +(C— DC,)i(t) + (K — DK )x(t)={E+ DE)f(t)  (2.3)

Comparing Eq. (2.3} with Eq. {2.1} in the absence of control, it is seen that
the effect of closed-loop control is to modify the structural parameters
(stiffness and damping} so that it can respond more favourably to the external
excitation. The eflect of the open-loop component is a modification (reduction
or total elimination) of the excitation. The choice of the control gain matrices
K., C, and E, depends on the control algorithm selected.
We see that the concept of active control is immediately appealing and
exciting. On one hand, it is capable of modifying properties ol a structure in
“Usuch'a'way as to Tedact to external excifations in the most [Avourable hanmer. ™
On the other hand, direct reduction of the level of excitation transmitted to
the structure is also possible through active control.

In the development of an active structural control concept, one of the first
tasks at hand is to develop suitable control laws such as that given by
Eq. {2.2). Some of the commonly used control algorithms for structural
applications are discussed in Chapter 3. For readers who are versed in control
theory, it is readily apparent that the basic concepts of active control are
not new; they have been the staple of electrical and control engineering lor
many decades. And they have been applied successfully in a variety of
disciplines such as aerospace engineering and mechanical engineering. More
recently, 'motion control of large space structures has also been a subject of
intensive research. However, active control of civil engineering structures, as
indicated above, has a more recent origin. While much ol the theoretical
basis is rooted in modern control theory, as we shall see, its application to
civil engineering structures is unique in many ways and presents a host ol
new challenges.
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3 Control Al

gorithms

Research efforts in active structural control have been focused on a variety
of control algerithms based on several control design criteria, Some are
considered classical as they are direct applications of modern control theory.
Others, however, are specifically proposed for civil engineering structural
control applications due to the [act that, as mentioned earlier, they give rise
to some unique control problems.

To [acilitate discussions, let us again use Eq. (2.1) to represent the structure

"“under consideration which, using the state-space representation as discussed
in Appendix A, can be written in the form

(1) = Az(t}+ Bu(t)y + Hf(t), z(0) =z, (3.1)
where
x(t
0= 50| (32)
is the 2:3—dimensional state vector,
A= [ UM I_ ] (3.3)
-M'K —-M"IC
is the 2n x 2n system matrix, and -
7
B= [M?ID] and H= [MLE} (3.4)

are 2n x m and 2n x r location matrices specifying, respectively, the locations
ol controllers and external excitations in the state-space. In Eqgs {3.3} and
(3.4), 0 and 7 denote, respectively, the null matrix and the identity matrix
of appropriate dimensions. Matrices D and E in Eq. (3.4) are defined in
Chapter 2.

10
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3.1 Classical Linear Optimal Contro!

In classical linear optimal control, the control vector #(t) is to be chosen in
such a way that a perflormance index J, defined as

i

J = J]. [z(tn)’ z(tf)i Ios tf] + J‘ J:’.(zf ‘--r u, 1'.'5 t) dt (3‘5)

N

is minimized subject to the constraining equation (3.1). The performance
index J has two terms. The first term, J,, is an initial-terminal stage penalty
[unction, which depends only on the initial and final times ol the control
interval [t,, ;] and on the states evaluated at those two time instants. The
second term of J is an integral evaluated over the control interval [¢,7;].

In Eq. (3.5), J is a scalar [unctional which is to be minimized with respect
to #{r) while satislying the constraint specified by the state-space equation
{3.1). Other constraints, ol course, can also be introduced. For example,
bounds can be placed on the allowable range of the structure’s position and
velocity. One thus has .

lzl<b (3.6

as an additional (inequality) constraint.
The form of the perlormance index usually chosen for study in structural
control is quadratic in z(t} and #(t). Setting £, =0, it is written as

J= Jl[[zT(t)Qz(t)+uT(t)Ru(I):|dt (3.7)

0

In the above, the superscript T indicates vector or matrix transpose, the
time interval [0, t,] is defined to be longer than that of the external excitation,
Qisa2n x 2n positive semi-definite matrix, and R is an m x m positive definite
miatrix. The matrices  and R are referred to as weighting matrices, whose
magnitudes are assigned according to the relative importance attached to
the state variables and to the control forces in the minimization procedure.
The assignment of large values to the elements of ¢ indicates that response
reduction is given priority over the control [orces required. The opposite is
true when the elements of R are large in comparison with those of @. Hence,
by varying the relative magnttudes ol € and R, one can synthesize the
controllers to achieve a proper trade off between control effectiveness and
control energy consumption.

To solve the optimal control problem with J defined by Eq. (3.7} subject
to the constraint represenied by Eq. (3.1), the Lagrangian L is first formed
by adjoining these two equations with a time-varying Lagrange multiplier

11
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" l ) r I3
A(f), " giving

L= J‘ [27(0)Q2(0) + u™ () Ruft) + A7(1) [ Az(t) + Bu(e) + Hf(t) — £(1)]} dt

0
(3.8}

The necessary conditions which define the optimal control can be found
by taking the first variation of the Lagrangian with respect to the state and
control variables and setting it to zero. Taking the first variation of Eq. (3.8)
yields

SL=—iT(t,)z(t:) + AT(0)6z(0) + J‘l[ [ ()1 + al#gﬁz + 53?661{) :‘ dt

u az . 0”

(3.9)

where 4 is the Hamiltonian defined as the integrand of Eq. (3.8).
Now, dz{0)=0 since z(0)=z, is a given constant. By requiring L =0,
one must have

0
£—~=0, Ot {3.10}

on

A
)_T+0 =0 (3.11)

0z

with boundary condition

At =10 (3.12)

Equations {3.10-3.12) are the necessary cenditions for optimal control,
Upon carrying out the necessary partial derivatives of 2 with respect to
and g, one obtains

Soen T D= ATA=20z, M) =0 (3.13)
S w=-iR'Bi (3.14)

The system of equations given by Egs (3.1), (3.13), (3.14) provides the
optimal solution for g{t). #(t) and A(t). They define a two-point boundary
value problem since z(t} is specified at 1 =0 and A(¢) is specified at t =¢,.

3.1.1  Closed-loop Control

When the control vector is regulated by the state vector, one has

A(t)=P(r)z(t) (3.15)
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The unknown matrix P(t) can be determined by substituting Eq. (3.15) into
Eqgs (3.1,), (3.13), (3.14). One can show that it satisfies

[P(t)+ P()A—4P(t)BR™'BTP(t) + AT P(t) + 20]z(t) + P(t)Hf (1} = 0,
P(t;)=0 (3.16)
When f{t}) is zero, Eq. (3.16) reduces to

P(t)+ P(t)A—1P(t)BR™'B"P(1) + ATP(1) + 20 =10, Pt;)=0
(3.17)

In optimal control theory, Eq. (3.17) is referred to as the matrix Riccati
equation and P(¢) is the Riccati matrix. Since P(t) is specified at ¢, Eq. (3.17)
is solved backwards in time, Methods {or solving the matrix Riccati equation
are well documented in the literature.”
The substitution of Eq. {3.15) into Eq. {3.14) shows that the control vector
u(t) is linear in z(t). The linear optimal control law is
u(t)=G(Hz{t)= =R BTP(1)z(1) (3.18)

where G(t)= —1R~'BTP(t) is the control gain. When z{t) is accessible
through measurement, #(t} can be determined {rom Eq.{3.18) and it is known
that the feedback controller determined in this way penerates a stable
closed-loop system.

We remark that, strictly speaking, the Riccati matrix P(t} obtained [rom
Eq. (3.17) does not yield an optimal solution uniess the excitation term f{t)
vanishes within the control interval [0, ;] as secen {from Eq. (3.16), oritisa
white noise stochastic process.!'? It is also mentioned that, in structural
applications, numerical computations have shown that the Riccati matrix
P(t) typically remains constant over the control interval, dropping to zero
rapidly near t;. For example, typical elements of P(t) for an eight-storey
building structure with arbitrarily prescribed weighting matrices @ and R
are shown in Fig. 3.1. Therelore, P{¢) can in most cases be approximated by
a constant matrix P and the Riccati equation (3.17) reduces to

PA—4PBR'B'"P+ A"P+20=0 (3.19)
The control gain G{t) is also a constant with
G=—iR"'B'P (3.20)

which can be precalculated lor a'given structure and with prescribed weighting
matrices @ and R.

Upon substituting Eq. (3.18) into Eq. (3.1), the behaviour of the optimally
controlled structure is described by

£(t)=(A + BG)z(t}+ Hf(1t), (D) =zp (3.21)

13
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Figure 3.1 Some elements of Riccati matrix®

Again, we see that the effect ol closed-loop control is one of structural
modification where the system matrix is changed rom A (open-loop system)
to 4 + BG (closed-loop system).

Finally, it is emphasized that the control law given in Eq. (3.18) requires
knowledge of the entire state vector z(t) ol the structure (state [eedback).
Since the entire state can rarely be measured directly, it is olten necessary
to replace z{t) by 2(¢), the state estimator determined from incomplete state
measurements {output f[eedback).

Let p(t) be the p-dimensional measurement (output) vector (p < 2n) with

yir)=Celt)+ ¢ (3.22)

where C is the p x 2n measurement matrix and y is the p-vector ol possible
output noise. The state estimator £{t) can be designed as a Luenberger
observer when the signai-to-noise ratio for the output is sufficiently high and

14
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as a Kalman filter otherwise.? It is given by
(1) = A2(1) + Bu(t) + G*[Ci(t) — y(1)], 20)=1z¢ (3.23)

In the above, the estimator has an internal model of the system being estimated
as indicated by the first two terms while the third term corrects the model
by a linear [eedback of the diﬂ'erence between the measurement output y(t)
and the computed output 3t)= Ci(t). In the Luenberger version, the
estimator gain G* is chosen so that the estimator error (¢} z{t) decays
exponentially at a prescribed rate.

3.1.2 Closed—open-foop Conirol and Open-loop Control

In some applications, the external excitation is also accessible to measurement.
When this information is also used in control design, it leads to a closed—
open-foop control law which should be superior to closed-loop control. For
this case, we replace Eq. (3.15) by

A(z)=P(t ) (t)+S( 1) (3.24)

Upon substituting Eq. (3.24) into Eqs {3.1), (3.13), {3.14), the Riccati equation
(3.16) now takes the form

[P(¢)+ P(t)4 —$P(t)BR'BTP(t)+ ATP(t) + 2Q]z(¢})
+ S(EfT) + SOty — (3 P(t)BR ™ BT — AT)S(1)A(1)
P(tYHf(t) =0, P(t;)=0,5(t;)=0 (3.25)

The first part of this equation, upon using approximations as was done in
Section 3.1.1, leads to the same closed-loop Riccati equation for the gain
matrix P(t). The remaining portion gives

[S(6)—($P(t)BR™' BT — AT)S(t)+ P(t)HIA) + S(HA =0,  S(t)=0

(3.26)
Unlortunately, the open-loop control gain S(¢) cannot be [ound in general.
This is because Eq. (3.26) must be solved backwards [rom the terminal time
t;, requiring that f{t) and f(t) over the entire control interval be known

a priori. This is not possible for most structural control situations.
For open-loop control, Eq. (3.24) can be put in the [orm

A(t) = S(t)ft) - (3.27)

It can be readily seen that the same problem as encountered in closed—open-
loop control exists and thus open-loop control is generally infeasible in
structural control applications as well.

15
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Example 3.1 As a demonstration of the closed-loop control principles
presented above, let us study active control as applied to a simple single-
degree-of-freedom structural system. Consider the horizontal moticn of a
one-storey structure subject to base acceleration %4(t). As shown in Fig. 3.2{a),
the control force is applied to the structure through a set of tendons connected
to an actuator placed at the base. The objective of control is to reduce the
horizontal displacement of the first floor relative to the base [or safety reasons,
and to reduce its absolute acceleration for comfort reasons.

From the free-body diagram shown in Fig. 3.2(b), the equation of motion
of the controlled system is

4k, cosa

() + 2w x (1) + wix(t) = —Xo{t) — Tu(r), x(0)=x(0)=0

(3.28)

where { and w, are, respectively, the damping factor and undamped natural
[requency of the uncontroiled (open-loop) structural system. The actuator
_ displacement, denoted by u(t}, is considered here as the ‘control force’. The
quantities m, k. and « denote, respectively, the system mass, tendon stiflness
and inclination angle of the tendon with respect to the base.

et (1)

Active
tendon

Actuator

A 7
(1
———an(f)

@)

mi(ry a———-oF e 11E0{1}

—_— k()

— ()

e L 2 £)COS0

(b}

Figure 3.2 Structural system in Example 3.1 {a) schematic diagram; (b} free body
diagram®
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Introducing the state vector z(t) with z,(t)=x(¢) and z,(¢} = x(2), the
state-space form of Eq. (3.28) is

(1) = Az(t) + bu(t) + hig(1), z{0)=10
where
e
A= el v
—wy —2m,
0
b 4k, cos a
m
and

=[]

Under the quadratic performance criterion, the actuator displacement u(z)
"'is to be found such that the integral J given by E¢."(3.7} is minimized. For
simplicity, we shall use

= ko d R=fk
Q""|i0 O:I 4an _ﬁc

where k is structural stiffness as seen in Fig. 3.2(b).

The coefficient  determines the relative importance of control effectiveness
(response reduction) and economy (control force requirements). When f < 1,
control effectiveness is weighted more heavily and, when f > 1, economy is
more important. They are equally important when §=1. f# = < represents
the uncontrolled case.

Let the system parameters take values as those given in Table 3.1. The
computed control parameters and control effect on the structural behaviour
are summarized in Table 3.2. It is seen that, as discussed earlier, substantial
structural modification takes place as reflected by the changes in the natural
[requency and the damping factor. In this case, there is a minor change in

Table 3.1 System parameter values in

Example 3.1

Mass - m = 16.69 Ib-sec?/in
Structure stiffness k= 7934 1b/in
Tendon stiffness k_=2124 1b/in
Tendon angle o =367

Natural frequency wy =347 Hz.
Damping factor {=124%

17
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Table 3.2 Control parameters and controlled system behaviour

Parameter = =5 f=1

Riccai P — 1926 16.15 1035 14.51
iccati matrix — 16.45  3.780 1451 1.660

Natural frequency (Hz) 147 31,58 396

Damping factor {%) 1.24 17.8 34.0

natural frequency from uncentrolled to the controlied cases. The damping
factor, however, is substantially increased from 1.25% in the uncontrolled
case (ff = o0) to 34.0% in one of the controlled cases (§ = 1). This is also
demonstrated graphically in Fig. 3.3 by observing the change in magnitude
of the input—output transfer function, the input being %,(t) and the output
()

Consider the case in which %,(t) is a sample of a nonstationary stochastic
process resembling an earthquake record as shown in Fig. 3.4. Numerical
‘structure under uncontroiled as weil as controlled conditions.

The control effect in the time domain can be observed in Figs 3.5-3.7.
Figure 3.5 shows reduction in the relative displacement for §= 5 and f = 1.
As indicated earlier, a larger reduction is achieved for a smaller value of 8
as more weight is assigned to the control eflectiveness. Corresponding
reduction in the absolute acceleration is shown in Fig. 3.6. Fipure 3.7 shows
the required control force in the tendon which is obtained by multiplying
tendon displacement u(t) by tendon stiffness k.. As expected, larger control
forces are required for smaller values of f.

40~
30
5
% ool
=5 “'“*-"——-—B ==
=
5
10
1
T I J
0 2 4 6 8
w (Hz)

Figure 3.3 Magnitude of transfer function Hz:{)
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Figure 3.4 Base acceleration in Example 3.1

Example 3.2 Most of the environmentai loads, such as wind and earthquakes,
to which civil engineering structures are subjected are random in nature.
Hence, the analysis of the behaviour of an actively controlled as well as an
uncontrolled structure is based on the theory of random vibrations. We shall
use this example to demonstrate some steps involved in such an analysis.
Also, by using a two-degree-ol-freedom structural system, relative merits of
several different control configurations can be examined in an elementary
way.

This example is taken from Yang.® The reader is referred to Appendix A
for a review ol some basic principles in random vibration analysis.

Consider a two-storey building as shown in Fig. 3.8, which is again excited
by an earthquake-type ground acceleration X ,(¢). In this example, X ,{t) is
modelled by a nonstationary Gaussian shot noise with

Xs(=w(nw() (3.29)

in which W(t) is a stationary zero-mean Gaussian white noise and {t) is a
deterministic modulating function of the form

p(t)=gle ™ —e " Mh(1)

19
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Figure 3.7 Contral force in Example 3.1¢

where hi{t) is the unit step lunction and g, # and J are constants. Accordingly,
the mean of X ,(t) is zero and its covariance is

E{1X (0 Xo(5)) =g (e ™ —e M h(t)Dé(z — 5)

where D is the power spectral density of W(t). For numerical calculations,
we shall set o =0.25/sec, f=0.63/sec, g = 3.06 and D =0.04 m?/sec*.
Since the excitation is random, the structural response is random and, as
a consequence, the control as determined from Eq. {3.18) is also random. In
what loHows, these random quantities will be written in capital letters.

3
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Figure 3.8 Structure in Example 3.25

The state-space equation in this case has the form

with

Z(t)= AZ(t) + BU(t) + hX 5(z),

Z(0)=0

Note [rom Fig. 3.8 that X ,{¢) is the relative displacement of the first floor

with respect to the foundation and X ,(t) is the relative displacement of the

second floor with respect to the first floor.
The system matrix A4 and vector & are

and

=

0 |
0 0
-] Iy -2 @y
w7 ~w3(1+v) 2wy
" ;
—1
i 0
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Let us assume that control forces are applied at both floors. We have

0 0
. 0 0
Ulz) 1
U(r) = . B=| L
o-lviol oe| e
1 1
L_;;;: "y

For numerical computations, the following structural parameter values are
used: m; =m,=40000 kg, v=m,/m, =1, {, ={,=0.02, w, =2 Hz, and
w, =15 Hz

Finally, the weighting matrices appearing in the performance index
(Eg. 3.7) are assumed to be

11

»  R=y
11 01
Pl

where 7 is a parameter representing the relative importance between the
covariances of the response and those of the control lorces.

With the optimal control determined from Eq. (3.18), the mean ol the
controlled structural response is zero and its covariance matrix at t=s,
defined by

— e =

Rty = E{Z(1)Z7(1)}
satisﬁe; the first-order matrix differential equation®
Ryz(t)=(A+ BG)R zz(t) + Rzz(1)(A + BG) +2hRy ¢ (1)h"
with initial condition
Rzz(0)=0

The covariance matrix of the control vector at ¢t = s can be obtained from
Eq. (3.18) as

Ryult) = GRzz(1)G" (3.30)

The variance, 0% (1}, of the relative displacement between the foundation
and the first floor under optimal control is plotted in Fig. 3.9(a) for various
values of y. Also plotted in Fig. 3.9(a) is 0% () without control. The variance,
o%.(t), of the relative displacement between the first and second foors is
plotted in Fig. 3.9(b). It can be observed that a significant reduction in the
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Figure 3.9 Variances of relative displacements in Example 3.2 {a) variance of X, {z);
(b} variance of X, (z}°

response variance is achieved by the use of active control. It is further observed
that, the smaller the y value is, the more reduction in response is achieved.
However, as y decreases, more control forces are required. The standard
deviations ay; (¢) and o (¢) of the optimal control forces are computed from
Eq.(3.30) and plotted in Fig. 3.10 to give an indication of required magnitudes
of the control lorces.

From a safety standpoint, the relative displacement between the first floor

and the second floor is important, since o3 {¢) is much greater than o (1).
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Figure 3.10 Standard deviations of control forces in Example 3.2 (a) standard deviation
of Uy {t); (b) standard deviation of U,(t)3

As a result, it is more important to control or reduce X ,(t). Supposing that
we can only install one controller in the building, the question of whether it
should be placed on the first floor or on the second foor is of practical
importance. For the first case where only one controller is placed on the
second floor, the response variance, o3 (t), and the standard deviation, o, (¢),
of the control [orce are plotted in Figs 3.11 and 3.12 as solid curves. For the
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Figure 3.11 Variances of X5(¢) in Exampie 3.2 - single-controller case®

‘$écond case Whiéié dnly one controller is placed of the first floor, the response
variance, 6% (1), and the standard deviation, ay,{t), of the control force are
plotted in Figs 3.11 and 3.12 as dashed curves.

It is observed from these figures that a controller on the second floor
requires a smalier control force to achieve a larger reduction in the response
variance, cri»:(t), while a controller on the first floor requires a larger control
force. Consequently, a controller installed on the second floor is more effective
in response reduction in this case.

50000
v = 107" == 7y {t), Controller on first Aloor

T
~
e

40000 ——— @y (t). Controller on second floor

30000

20000

ay(f) er ay 1) (N}

[0aow

Figure 3.12 Standard deviations of control forces in Example 3.2 - single-controlfer case®
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3.2 Pole Assignment

Consider again the state-space equation (3.1). The system matrix A defines
the open-loop system dynamics and its eigenvalues provide modal damping
and stiffness characteristics. Let the control force be determined by linear
state [eedback, l.e.

u{ty=Gz(r) (3.31)

where G is a constant gain matrix. As Eq. (3.21) shows, the closed-loop
system thus takes the [orm

ty=(4 + BG)z(t)+ Hf1), (0 =1z, {3.32)

in which the system matrix becomes A4 + BG. As has been observed in
Chapter 2, this modification of the system matrix through active control
alters modal damping ratios and [requencies. This is reflected by the lact that
the eigenvalues of A -+ BG are generally different from those of A. For
structural systems, these eigenvalues, which we shall denote by n;, are related
to.the modal frequencies cy; and damping ratios {; in complex conjugate pairs

by
m=loitjos/1-0,  j=y -1 (3.33)

Since these closed-loop eigenvalues define the controlled system behaviour,
a feasible control strategy is to choose the control gain & in such a way that
the u;s take a set of values prescribed by the designer. Control algorithms
developed based on this procedure are generally referred to as pole assignment
techniques. Successful application of these algorithms thus requires judicious
placement of the closed-loop eigenvalues on the part of the designer as well
as a good understanding of the uncontrolled structural modal behaviour.

Pole.assignment algorithms have been studied extensively in the general
control literature.’-* Tts application to the study of civil engineering structural
control has been fruitful when only a few vibrational modes contribute
significantly to the response.®” In these cases, attention needs to be paid
only to these selected modes and a more clear choice of the ciosed-loop
eigenvalues can be made.

in control design using the pole assignment approach, two questions need
to be addressed. The first is, given the matrix pair {4, B), can one choose the
[eedback gain G so that the new (closed-loop) system matrix 4 + BG possesses
the prescribed eigenvalues? The second basic question has to do with finding
an efficient method of generating the control pain G.

The answer to the first question is quite specific;® that is, the system must
be compiletely controllable (see Appendix A). As for control design, a number
of algorithms have been developed. The procedure described below is
relatively simple and is due to Brogan.?
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The eigenvalues #;s are the solutions of the determinantal equation

Inf—A— BG|{=10 {3.34)
which can be written as
(Inf = AT =4 (n)G)) =0 (3.35)
where -
Win)=(i—A)'B (3.36)
Since y is not an eigenvalue of the original {open-loop) system,
ifl— Al #£0
and Eq. (3.35) leads to
A =12, — ()G =0 (3.37)

Making use of a determinantal identity, Eq. (3.37) can be written in the form
Al =1, — G (=0 (3.38)

For the ith eigenvalue #;, Eq. (3.38) is satisfied il a column or a row ol
A(1;) consists entirely of zeros. Thus, suppose the jth column is selected and
let e; and 4 ;(#;) denote the jth columns of I,, and ¥(y,), respectively, then .

e; =G {n;)
defines m linear equations. The procedure described above is then repeated
for each eigenvalue #;, i=1,2,...,2n The resulting equations can then be

assembled into a single matrix equation of the form
E=G0 (3.39)

where E'is made up, column by column, of the vectors ¢; and @ is similarly
made up of the vectors i (77;). Assuming that the eigenvalues »,, i=1,2,..., 2n,
are distinet, @ is invertible and the control gain matrix & can be determined as

G=ED™! (3.40)

While & can be computed from the above, let us note that it is not unique
since it depends upon the choice of the column of A{x ). However, the resulting
closed-loop system is guaranteed to have the required eigenvalues. Moreover,
the control gain G does not alter the controllability of the open-loop system.

This nonuniqueness in the choice of G has also prompied many studies
coupling pole assignment with other control objectives.!® For example, one
can require that a closed-loop system possess not only prescribed eigenvalues
but also eigenvectors, thus allowing the designer to have some control over
the influence of each eigenvalue on each state variable response.'' Attempts

19



Active structoral control: theory and practice

have also been made to use this design [reedom to minimize a given

performance index, thus combining the pole placement and optimal control,**3

3.2.1 The Case of Output Feedback

The procedure described above is based on state [eedback as indicated by
Eq. (3.31). Consider now the case of output feedback with the p-dimensional
output vector given by

y(t)=Cz(¢} (3.41}
where C is the p x 2n measurement matrix. The control vector is
u(t) =Gy} =G Cz(1) (3.42)

where G’ is the output leedback gain matrix. The computational procedure
for G' follows closely that just derived [or the state feedback case.!* Equatlons
~-(3:37) and"(3:38)in this case become :

A ) = o =¥ ()G Cl =1, = CY ()G’ | =1, — G CY(y)| =0

(3.43)
Let ¢ri{#n;) be the jth column of Cif(n), we have
e;=GYin)
and Eq. {3.39) becomes
E=G® (3.44)

where the columns of @' are made up of the vectors (#;). If @’ is invertible,
the output leedback control gain is [ound from

G =EQD' ! {3.45)

It is important to point outl that the number of linearly independent
columns that can be obtained from Gy (s} will not exceed the rank of C. Tt
is shown'* that, il the open-loop system is controllable and the rank of C is
p, p < 2n, then only p out of the 2n eigenvalues of the closed-loop system can
be specified such that matrix @’ is invertible. Thus, the control gain ' as
found from Eq. (3.45) ensures the existence of only m out of the 2n specified
closed-loop ecigenvalues. However, il the open-loop system is completely
controllable and observable {see Appendix A}, it is always possible to
transform the output [eedback into a state feedback through the construction
ol an observer as discussed in Section 3.1.1.
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Example 3.3 Consider a two-storey structure similar to that shown in
Fig. 3.8. The state-space equation is of the form given by Eq. (3.1) where A
is a 4 x 4 matrix. It is assumed that

0 0 1 0

0 0 0 1
—0.5 025 —002 0.01

025 —-0.25 001 -001

A:

These numerical values are chosen to characterize a lightiy damped system,
Units for all physical quantities will not be specified since only comparative
studies are performed here. The eigenvalues of the matrix 4 are

2,2 = —0.0019 + j0.3098
J5.= —0.0134 4 j0.8089

The uncontrolled two-storey structural system is assumed to be described
by

()= Az(t) + Bf (£}

where

e = R == |

and

S(t)=3sinwt + 5sin 2wt + 7 sin 3wt + 4 sin dest

which is a crude representation ol a wind-type excitation acting on both
foors. In the numerical calculations, the value of w is chosen to be 0.309.
This choice of w (which is close to the first [requency of the structure) is
deliberate. The intent is to dramatize the eflect of control. It is further
assumed that the control objéctive is to change the first [requency of the
structure from 0.3098 to 4.0. Hence, the required closed-loop eigenvalues are

712 = —0.0019 + 4.0
Ha.0= —0.0134 +j0.8089
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The control to be applied to the structure is assumed to be ol the lorm
bu{t), where u(t) is a scalar. The following modes of control are of practical
interest:

Case A; b7 =[0,0, 1, 0], control applied at first floor only
Case B: b7 =[0,0,0, 1], control applied at second foor only

Case C: 8" =[0,0, 1, 1], control applied at both foors with the same
control force.

The numerical results for x,(¢) and ~,(t), the displacements of the first
and second Aoors, are given in Figs 3.13 and 3,14 for the uncontrolled case
and under the three modes of control as described above. The relative merits
of the three control modes are also evaluated based upon their energy
requirements, where the energy E is calculated according 1o

T
E= J w* ()b b dt, T=50
0

-It-is-interesting-to-note-that-the case for which equal-control-forces being
applied to both floors proved to be the most effective in terms of controlling
the displacements (as well as the velocities) and energy required. The energy
required for this case (case C} is E;=2.236 while E, =7.664 (first floor
control cnly) and Ep=2927 (second floor control only). Of the single-
controller cases, no significant difference in displacement reduction is noted
between case A and case B. However, in terms of energy requirement, it is
more efficient to place the controller on the second foor than on the first.

200~

pl Uncontrofled —

i

100

— 100

0 i 30 50

Figure 3.13 Displacement of first floor in Example 3.37
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Figure 3.14 Displacement of second floor in Example 3.37

Example 3.4 In this example, an extra dimension is added to the problem
of pole assignment. Since exact locations of the closed-loop cigenvalues are
not crucial, one may wish to perturb around the prescribed closed-loop
eigenvalues so that some other control objectives can be met at the same
time. In Wang et al'® the pole assignment problem with the added
requirement that the response be bounded by some permissible values is
considered. To achieve this added objective, one may adopt the following
iterative approach;!®

| The {rial closed-loop eigenvalues are chosen first. With these trial values,
the gain matrix G as well as the corresponding controlled system response
can be computed.

Since the real parts of the eigenvalues play a more significant role in
changing the response, these real parts are allowed to change so that the
response can be limited to be below its permissible values. Let o be the
absolute value of the real part of a given eigenvalue and x|, be the limiting
value of a response quantity. Alter two successive trials, an improved
value ol o can be obtained by the approximation

-

X, —X
T - Pl — i)

Xy Xy

where the subscripts i — 1, { and [ + 1 represent successive iterations.

This procedure is demonstrated by considering a five-storey structure as
shown in Fig. 3.15. The critical damping ratio and mass corresponding to
each degree of freedom are assumed to be 3% and 750.0 k-sec?/in,
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Figure 3.15 The rive-storey frame*®
respectively. The stiffness matrix is
[ 74000 —1700.0 0.0 0.0 0.0 |
—1700.0 6600.0 —1600.0 0.0 0.0
K= 0.0 —16000 6000.0 —1400.0 0.0 | k/in
0.0 0.0 —14000 4800.0 —1000.0
0.0 0.0 0.0 —10000 2000.0

It is assumed that the excitation takes the [orm

flty=acos 2wt + b cos 3wt + ¢ sin 4ot + d sin 5wt

where o = 1.1 rad/sec and
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Figure 3.16 Responses at the fifth floor in Example 3.4 (a) displacement; {b) velocity;
(c) acceleration’®
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Figure 3.17 Excitation and control force at the fifth floor in Example 3.4 (a) excitation;
(b) control §orce®

Beginning with the open-loop eigenvalues, the above-mentioned iterative
procedurais used to obtain closed-loop eigenvalues such that some performance
criteria are satisfied. In this case, the limit on displacement is taken to be
1/500 of the structural height, and the maximum permissible values [or
velocity and acceleration are, respectively, 4 in/sec and 4 in/sec?.

The specified limitations are reached after nine iterations. The uncontrolled
{solid line} and the controlled (dotted line) responses at the fifth floor are
shown in Fig. 3.16. It is noted that the acceleration limit of 4 in/sec? controls
the result. Also shown in Fig. 3.17 are the excitation together with the control
force at the filth floor.

3.3 Instantaneous Optimal Control

We have seen in Section 3.1 that classical optimal control is not truly optimum
because the excitation term is ignored in the derivation of the Riccati matrix
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P(t). Recognizing the fact that, at any particular time ¢, the knowledge of
the external excitation may be available up to that time instant ¢, this
knowledge can be utilized in arriving at improved control algorithms.

One of such aitempts makes use ol a time-dependent performance index
J(t) defined by?

Jty=z"(00z(tY+ u" (e} Ru(t) (3.46)

Optimal control laws are derived by minimizing J(¢) at every time instant ¢
for ali 0t < ¢t,. Hence, these control laws are referred to as instanianeous
optimal control algorithms.

The starting point of the derivation of instantaneous optimal control
algorithms is to consider the evolution of the state vector z{t} over a small
time interval At. Consider again Eq. (3.1). Assuming that the open-loop
system matrix A possesses distinct eigenvalues, this system of equations can
be decoupled through the transformation (see Appendix A)

z(t)= Ty(1) (3.47)

where Tis the 2n x 2n modal matrix whose columns are the eigenvectors ol A,
The decoupled state-space equation governing p(t) has the form, upon
substituting Eq. (3.47) into Eq. (3.1),

Jy=Ap(t) +4(t),  y(0)=0 (3.48)
where
A=T AT (3.49)

F
is diagonal whose diagonal elements are the complex eigenvalues Z,
j=12,...,2n, of matrix 4 and

g(t)= T~ [ Bu(t) + Hf(1)] (3.50)

Over a small time interval Ar, the ‘modal’ state vector y(f) can be expressed
as

! '

= Ar ¢ .
J’{f)=j eXp[Mfwr)]q{f)dﬂrj exp[A(z—1)]g(7)dz

L] Al
At
exp{AA) p(t — At} + w_;lu[cxp(AAt)q(! — Aty +g{t)] (3.51}
For the state vector z{¢), Egs (3.47), (3.50) and (3.51) lead to

()= Td(:—m)Jr%i[Bu(t)JrHﬂ:)] (3.52)
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where
At
dit— At) =exp{AAN) T™! {z(r —At)+ —,)—[Bn(r: — Aty + Hf(t — AE)]}

(3.53)

In the above, exp(AAt) is a diagonal matrix with the jth diagonal element
being exp(Z4;Ar). The vector d(t — At) contains all the dynamic quantities at
time t — At.

With Eq. (3.52) as the motion constraint, the minimization of J(z) given
by Eq. (3.46) can be carried out in a similar fashion as was done in Section 3.1.
In this case, the Hamiltonian is

M= zT()Qz(t) + u"(t)Ru(t)
+ﬂ.T(I){z(I)-—— Td(t—At)—%—t[Bu(t)+Hﬂt)]} {3.54)

where A(t) is the Lagrange multiplier.
The-necessary- conditions-for minimization- are ..

oA _, B _ oAt

az . am i
which yield
20z(t) + 4(1)=0
’?_Rn(t)—%EBTl(I)=O (3.55)

()= Td(t - At} + g [Bu(t)+ Hf(t)]

3.3.1 Closed-lpop Control

Consider first closed-loop control when the control vector is regulated by
the state vector. One has, as in Section 3.1.1,

Ae)=P(t)z(t) {3.56)
The first of Egs (3.55) immediately gives
P(I) ] —2Q -
and, using the second of Egs (3.55),
At
w{t)= — TR”‘BTQZ(E) (3.57)
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The response state vector z{t) is, following Egs (3.52) and (3.57),

2 -
z(r)=|:I+é;—BR“1BTQ:| 1|:Td(twAt)+SA:i£Hﬂt):| {3.58)

If is of interest to compare Eq. {3.57) with Eq. (3.18), the closed-loop
control law under classical optimal control criteria. We see that, in this case,
AtQ plays the role of the Riccati matrix P(¢). [t is thus a much simpler control
design since it does not require solution of the Riccati equation. We also
note that the choice of @, which is a prescribed weighting matrix associated
with the performance index, requires more careful consideration in the context
ol instantaneous optimal control.

3.3.2  Closed—open-loop Control

~ When the control vector is regulated by both the state vector and external
excitation, the Lagrange multiplier has the form

A(t) = Pz(t) + p(t) (3.59)

where the second term, p(t), represents open-loop control.
Using the second of Egs (3.55), the control vector #(¢) in the third of
Eqgs (3.55) can be eliminated, resulting in

z(t) = Td(t—At)+—Az~t|:—i—tBR'1BTJ.(r)+HﬂI):| {3.60)

Let us write the first of Egs (3.55) in the lorm
At)=—0[z(t)+z(e)] {3.61)

in which 2z(t) is somewhat arbitrarily divided into two equal parts to
represent the closed-loop and open-loop contributions. Then, using Eq. (3.60)
lor the second z(t) term, one has

Q{z(t) + Td(t — At) + %E[%EBR”BTF.(U + Hf[t):| } FA(N) =0

Upon substituting Eq. (3.59) into the equation above, we obtain

[Q+ (I—I—%iQBR“BT)P]z(IH— Q|: Td(t-—At)+%£Hj(t):|
Ar? _
+(I+—§—QBR 1BT)p(t)=0 (3.62)
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The solution for the unknown quantities P and p{t) can be found [rom
the above equation. Since z{t} # 0 and p(r) # 0, the desired results are

A2 _ -1
P= |1+ OBR 'B") @ (3.63)

p(r)=P[Td{raAf)+5‘j—tHf(:)} (3.64)

The substitution of Egs {3.63) and {3.64) into Eq. (3.59) produces the desired
closed—-open-loop control law. It is in a recursive form in the sense that #(t)
isnot only a function of z(t) and f{t), but also a function of z(r — Ar), u(t — At)
and flt — Ar).

The closed-loop state vector is given by

Ar? -1 At? At
z(r)=|:l+~8r—BR“1BTP} [Td(t-Az)+—;—BR-IBTp(z}+-9—er(z)]

(3.65)

3.3.3  Open-loop Control

For open-loop control, A(¢) can be simply put in the [orm
Aty =p(1) (3.66)

Folliowing a procedure similar to that described above lor the closed—open-
loop control, one obtains

u(t) = —éf(RJr?;BTQB)_IBTQ[ Td(t~At)+é;Hﬂt):| (3.67)

with z(¢)'given by

Z{t) = [l~%—23(éi—lBTQB+ R)HB"'Q:|[ Td(t —Ar}+%£Hj(r):|
(3.68)

Example 3.5 It is instructive to examine numerically the control efficiencies
associated with instantaneous optimal control algorithms and to compare
them with those achievable under classical optimal control. The example
given below is taken from Yang et al.3

An eight-storey structure in which every storey unit is identically constructed
is considered [or illustrative purposes. It is assumed that the siructure is
subjected to an earthquake-type ground acceleration %,(t) at the base, a
sample [unction of £,{7) is shown in Fig. 3.18. The control is accomplished
through an active mass damper system installed at the top of the structure
as shown in Fig. 3.19.
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-
-

!
10 15 a0 25 30
Figure 3.18 Simulated ground acceleration in Example 3.53

Let-x,(t}, j= L;..., 8, be the relative displacement of the jth foor with
respect to the ground and x4(¢) be that associated with the active mass
damper. Defining the state vector z(¢) as a nine-dimensional vector with

zT(t)’: [-\:l(f)s"'1'\:8(8)!xd{t)]

IR

2% i

Figure 3.19 Structure with an active mass damper®
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it is easy to show that the corresponding state-space equation has the usual
form

#t) = Az(t) + buy(6) + hio (1), 2(0)=0 (3.69)

where u4{?} is the control force generated by the active mass damper. It is
noteworthy that all elements of vector b are zero except for the last two, ie.

BT =[0,...,0, ~1,1] (3.70)

For the purpose of numerical calculations, the structural properties of each
storey are taken to be: m=floor mass =345.6 tons; k = clastic stiffness of
each storey unit = 3.404 x 10° kN/m; and ¢ = internal damping coefficient
of each storey unit=2937 tons/sec, which corresponds to a 2% damping
for the first vibrational mode of the entire structure. The computed natural
frequencies are 5.79, 17.18, 27.98, 37.82, 46.38, 53.36, 58.53, and 61.69 rad/scc.
For the active mass damper, my = damper mass = 29.63 tons, c, = damper

xufn) {em)

i 1 I { L i

(e) t (sech

Figure 3.20 Top floor relative displacement in Example 3.5 {a) passive mass damper;
(b} classical closed-loop control; (c) instantaneous optimal control®
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damping = 25.0 tons/sec and k, = damper stiffness = 957.2 kN/m. Thus, the
damper mass is taken to be 2% of the first-mode generalized structura] mass,
the damper [requency is 98 % of the first natural frequency of the structure,
and the damping ratio of the damper is 7.3 %.

The weighting matrix R in this case is a scalar and is assigned a value of
10 ~2. The dimension of weighting matrix Q1is 18 x 18. In view of the structure
of vector b as given by Eq. (3.70), the active control force under instantaneous
optimal control is influenced only by the last two rows of {. Hence, only
the elements in the last two rows will be assigned with some values, i.e.

0 i 0
Q=o | ———-----
Qx| Qa
3..-
:l‘_....
1= f
H
_1— H
-2
_3 ' L 1 5 [
(a)

Base shear (10° kN)

(c) 1 (sec)

Figure 3.21 Base shear in Example 3,5 (a) passive mass damper; (h) classical closed-
loop control; {¢) instantanecus optimal control®
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in which @,, and Q. are 2 x 9 matrices. For illustrative purposes these two
matrices are given by

0. = ~335 —67  —1005 —134  —16735 —201 235 —268 3756
U335 —67 —1005 —134  —1675 201 =235 268 322
0= 67.5 135 025 270 3385 405 4725 540 322
= 58 116 174 232 29 34,7 405 463 57

A value of 67.0 is chosen for « such that the top foor relative displacement
is reduced by approximately 60 %.

In the case of classical closed-loop contrel, the weighting matrix @ is
considered to be diagonal with Q;=13x10° j=1,...,8 and 0;=0,
j=9...,18

Without the active control force, the mass damper is passive. The top floor
relative displacement and the base shear are shown in Figs 3.20(a) and
3.21(a), respectively. The corresponding controlled results using instantaneous

—230-

~500 : 1 ' * : ;

300

ty(r) (KN}

1 ! : : ;
16 i3 20 25 30

(h) I (sec)

LA

Figure 3,22 Required control force in Example 3.5 (a) classicat closed-loop control:
{b) instantaneous optimal control?
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Table 3.3 Maximum response and required control force in Example 3.5

Top floor Base shear Active control
displacement force force
Control law {cm) {(kN) {kN}
Uncontrolled 4.10 2506 —
Classical closed-
loop control 1.61 1075 250
Instantaneous
optimal control 1.54 1045 232

control algorithms and the classical closed-loop control are also shown in
Figs 3.20 and 3.21. They indicate that instantaneous optimal control
algorithms are slightly more efficient than the classical closed-loop control.
We note that ali three instantaneous optimal control algorithms would
produce identical resuits under the same simulated conditions.

A comparison of the required control forces is given in Fig. 3.22. The
maximum required control forces and the maximum response guantities at

" the top floor are summarized in Table 3.3.

3.4 Independent Modal Space Control {IMSC)

As the name implies, control system design based on IMSC takes place in
the modal space. To facilitate discussions, let us depart temporarily from the
state-space representation and return to the traditional configuration space
for this development.

Assuming that a structure possesses normal modes, it is well known that
the equations of motion of an n-degree-of-freedom system can be decomposed
into a system of n decoupled single-degree-of-freedom systems in modal
coordinates. Thus, consider an n-degree-of-freedom structural system
represented by (see Eq. 2.1)

ME(t) + C(1) + Kx(t) = Du(t) + Efit),  x(0)=x,,  £(0)=i,
(3.71)

where x(t) is the n-dimensional displacement vector and D and E are,
respectively, appropriate # X m and n x r control and external excitation
location matrices. Let @ be the n x n modal matrix whose jth column is the
Jth mode shape vector. Then, applying the modal transformation

x(t) = Dy(1) (3.72)
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and substituting it into Eq. (3.71), it is transformed into a system of
second-order modal equations'®

mie)+ey;(e) + ky ey =uv(t)+q,t), i=L2,...,n  {373)

where the subscript j is used to indicate quantities in the jth mode. In
particular, the vector v(r), defined by

vT(t)=[v,(2),....0,(1)] (3.74)

is the control vector in the modal space and is related to the physical control
vector u{t) through the modal participation rmatrix by?!®

v(t)=DTDu(t)= Lu(t) {3.75)

Equations (3.73) have the appearance of a set of traditional decoupled
modal equations except for the fact that they are in general coupled through
the modal control forces v,(t), since each v,(t) usually depends on all the
modal coordinates. If, however, each v;(t} is designed to depend on y(¢) and
.]:,J('t) alone,.e'g;. S S . e

vty =g1;3;(t) + g2;7 (1) (3.76)

Equations (3.73) then become mutually independent, thus permitting
independent control design of n second-order systems. Control algorithms
based on this design procedure have been referred to as control by modal
synthesis*” or, more commonly, independent modal space control.!3-2? The
procedure essentially shifts the problem of control design from a coupled
2n-order structural system to » second-order systems, a considerably simpler
problem with substantial savings in computational efforts. Tt is particularly
attractive when only a lew critical modes need to be controlled.

The modal control forces v(t) can be determined by using any method of
control. For example, if optimal control is desired, they can be determined
by minimizing a quadratic performance index J of the lorm

J= 3 J; (3.77)
i=1
where J; are the modal performance indices taking, [or example, the form
I
J,-=J [q1;¥i(t) +q2;93 (e) +rwi ()] dr {3.78)
+]
Upon determination of the modal control forces, the physical controller forces
can be synthesized subsequently via Eq. (3.73).

Let us examine Eq. (3.75) more closely. Note that the dimension of modal
participation matrix L is n x m, where n is the number of controlled modes
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and m is the number of controllers. If m=n, L is a square matrix and, il it
is invertible, the physical control vector #(¢}is simply found from Eq. (3.75} as

u(t)= L™ u(t) (3.79)

Il m +# n, the inverse of L does not exist but #{t) can be approximated by
performing a pseudo-inverse of L or by employing a least square procedure,
giving

u(ty=L*o(t) {3.80)

where
LY =LY (LL") ™}, m>n
=(LTLY"'LT,  m<n (3.81)

il the indicated inverses exist.

The effect of m # n on the controlled system performance can be assessed
by comparing the design modal control vector v{¢) with the actual modal
control vector v (t) applied to the structure. As seen [rom Eq. {3.75), the
actual modal control vector is

v,(t)= Lu(t)
with u(¢) given by Eqs (3.80) and (3.81). Hence, for m > n,
0, (0)=Le(ty=LLT(LLT) "o(t) = (1) (3.82)
and, for m < n,
v(¢)=Lu(r)=L(LYL)" " LV o(¢) {3.83)

Equation {3.82) shows that, when the number of controllers is larger than
the number of controlled modes, v,(¢) = #(¢) and the excess controllers result
in redundant control lorces which do not alter the controlled system
behaviour. Thus, there is no practical purpose served by having more
controllers than the number of modes to be controlled. On the other hand,
it is seen [rom Eq. (3.83) that, when the number ol controliers is smaller than
the number of controlled modes v (¢t} v{t) and a degradation ol the
controlled system behaviour is possible. As the following example shows,
control efficiency deteriorates as the number of controllers decreases.

Example 3,6 Consider the control ol bending vibration of a tapered bar of
length d =5 clamped at one end. The displacement w(x, ¢) as a [unction of
the spatial variable x and time ¢ satisfies the partial differential equation

Z

* 6w 9w
3}?[“""5;2‘} M5

=u{x,t) (3.84)
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where the mass and stiffness distributions are
M{x)=EI(x)=10-02x/d

It is assumed that the control forces are point {orces equally spaced along
the beam.

Using the expansion theorem, w(x, ) can be represented by a linear function
of modal coordinates y;(t), each of which satis{lying an ordinary differential
equation simiiar in form to Eq. (3.73).

We wish to control the lowest 20 modes (n = 20) based on IMSC using a
varying number of controllers. The performance index given by Eqs (3.77)
and (3.78} is used with

i .
gy =w3i, ga;=1, and =20, j=1L2,...,n

where w, is the jth modal [requency.

The control gain for each of the modal control forces can be found by
solving a second-order Riccati equation. Assuming a constant Riccati matrix,
a closed form solution of the Riccati equation is available and the optimal

~modal-control-force-v;(t} is'?

Uj(t)=wj(mj—‘/wf+ l/rf-)yj(f)—[2wj(—wj+,/mf +1/r))+ l/r'j]l"zjij(t}

Table 3.4 Closed-loop Eigenvalues for different numbers of actuators®’

Number of actuators
5 10 15 19 20
Mode no. Real part Real part Real part Real part Real part Imag. part

I —-0.033 —0.116 —0.127 —0.132 —0.146 0.138
2 —0.039 --0.106 —-0.137 —0.142 —0.158 0.900
3 ., —0.043 —0.167 —0.140 —0.143 —0.158 2486
4 —0.043 —0.073 —0.142 —0.145 —0.158 4,845
5 —0.048 —0.075 —0.143 —0.146 —0.158 8013
6 —0.059 —-0.073 —0.145 -0.147 —0.158 11.96
7 —-0.010 —0.076 —0.146 —0.147 —0.158 16.70
B —0.027 —0.077 —0.148 —0.148 —0.158 22.23
9 —-0.039 —0.080 —0.14% —0.149 —0.158 28.54
10 —-0.044 —0.088 —0.148 —0.150 —0.158 35.65
11 —0.051 —0.122 —0.149 —0.151 —0.158 43.55
12 —0.076 ~0.022 ~0.118 —0,152 —0.158 52.44
13 —0.010 —-0.056 —-0.119 —{.152 —0.158 61,72
14 —0.035 —0.064 —0.092 —0.153 —0.158 71.99
15 —0.041 —0.068 —0.095 —0.154 -0.158 §3.06
16 —0.042 —0.070 —0.12% —0.155 —0.158 94.92
17 —0.048 —0.072 —0.028 —0.155 —0.158 107.6
18 —0.05% —0.073 —0.060 —0.157 —0.158 121.0
19 —0.010 —0.075 —0.068 —~0.157 —0.158 135.3
20 —-0.027 —0.078 —0.070 —0.158 —0.158 150.4
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'Figure 3.23 Perfarmance index for different numbers of actuators®®

The efect of using a varying number of actuators to implement IMSC has
been studied.?® Table 3.4 compares the closed-loop eigenvalues as functions
of the number of actuators. It is seen that, as the number ol actuators
decreases, the stability margin decreases due to degradation of the accuracy
in carrying out the pseudo-inverse given by the second of Egs (3.81).

The value of the performance index is expected to increase as the number
of actuators decreases. This trend is shown in Fig. 3.23 with ;=20. It is
noted that, when computing the performance index, one must replace v;(t)
in Eq. (3.78) by v,;{t), the actual jth modal control force. Larger values of
the performance index indicate poerer closed-loop system performance and
lower control efficiency.

3.5 Bounded State Control

In general, the purpose of active control is served when a set of structural
response variables are maintained within an allowable region determined by
the requirements of structural salety and human comfort. Under safety
considerations, relative displacements at selected locations of the structure
are of central concern and, for human comfort, the absolute accelerations.
Thus, active control algorithms designed to limit the state variables within
prescribed bounds, or bounded state control, are of practical importance when
applied to civil engineering structures.

An approach to bounded state control is discussed*!** using linear state
feedback laws. Based on an extension of the Lyapunov [unction methods, it
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follows, in a sense, the pole assignment concept to achieve bounded state
control. In addition, ali pulse control strategies proposed in the literature
fall into this category.?3~>* The objective of pulse control advanced by Masri
et al*¥2% and by Udwadia and Tabaie®?3? is to destroy the gradual rhythmic
build-up of the structural response in the case of resonance by means of
short-interval high-energy pulses. A continuous moenitoring of the system
state variables is required. To conserve energy, control is activated only when
some prespecified threshold has been exceeded. The pulse magnitudes are
determined analytically2*-3**? so as to minimize a non-negative cost function.
The control procedure proposed®*-** consists of application of pulses every
time a zero crossing of the response variable is detected. The magnitudes of
the puises are functions of the instantaneous velocities.

In Prucz and Soong?® and in Reinhorn et al*!, the pulse control design is
anticipatory, namely, pulses are applied a short time interval prior to an
anticipated threshold crossing. These aigorithms require state prediction but
cover the case of non-resonant as well as resonant response.

Generally speaking, pulse control procedures are relatively simple to

with other modern control techniques. They are also suited for treatment of
inelastic structures. Another advantage has to do with possible savings of
control energy required. In the pulse control mode, since small vibrational
fevels are tolerated, control forces need to be applied only when necessary
and a relatively small amount of energy may be sufficient for periodic
corrective actions.

In what follows, the development of a pulse control strategy based on
work by Prucz et al*¥ is briefly described for a simple case.

The basic idea used in pulse control design is that a train of force pulses
applied to a structure can produce a response which matches the response
produced by a continuous loading of arbitrary nature within specified error
bounds. Consider a single-degree-ol-freedom linear system. One pure pulse
applied to the system will cause a free vibration with an initial velocity which
depends on the impulse magnitude, at a [requency equal to the natural
[requency. If the system experiences a [orced vibration, its response after
pulse application can be regarded as the resultant of the response due to the
pulse alone and the system response to the forcing function alone. The
response to a pulse of finite duration At{Ar = T,/10, T, is the natural period)
is illustrated in Fig. 3.24. Suppose the {requency of the forcing [unction is
lower than the natural frequency of the system. A pure pulse applied in the
proper direction can reduce the response of the system during a time period
ol one haif of the natural period, where maximum reduction is achieved after
one fourth the natural period and no reduction at half the natural period.
After a time longer than half the natural period, the response of the system
can be increased by the pulse. Therefore, in order to conirol the system
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Figure 3.24 Typical response 1o a rectangular pulse®

response, a second pulse should be applied with a period At smaller than
half the natural period (Fig. 3.25).

Let us consider the interpulse interval (t;,¢;) and choose its length to be
of the order of one fourth the natural period. The response expected in this
time interval has to be reduced, il necessary, to a value below the safety limit.
Suppose the expected maximum response exceeds the allowabie value and
it is at time t;. A proper pulse applied at time ¢, can reduce the response at
time ¢; to any desired value. The information needed is the system state at
time ¢; which defines the ‘initial conditions’ and contains the system response
prior to time ¢,, the systen dynamic characteristics and the external forcing
function in the time interval (t;,t;}. The block diagram ol the control
procedure is shown in Fig. 3.26.

Next, a procedure to determine the required pulse p(t;), based only on the
sensed system state at time ¢, and the system dynamic characteristics, is
derived. The system response at time ¢; can be considered as a superposition
of the contributions of the initial conditions at time ¢;, the pulse applied at
time ¢; and the external forcing function during the time interval (¢;, ;). This
is true for nonlinear systems as well il we assume that the system characteristics

A L\tr, Ar

e e

Pulse train/response

Figure 3.26 Schematic representation of a pulse train?®
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are constant during this time interval. Thus, if rectangular pulses of width
At are considered, the system response to an excitation of the form

. f(ty= f,sinwt

x(t;)=Zxx{t;) + Zyi(t;) + Z,p{t) + Zer fs

where, for zero damping,

Zy =cos{w,At)

1
Zy=—sin{w,At,)

p

Zeg=—

Z, = [cos 0, (A1, — At)] —cos(w,Ar,)}

(3.85)

(3.86)

> (3.87)

k| o!-o? 2w, + w)
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In the above, w, and k are the natural frequency and the stifiness ol the
system, respectively. Coefficients Zy, Zy, Z, and Zgg define the contributions
to the response of the displacement, velocity, pulse at time ¢; and of the
forcing function, respectively. More general expressions {or these coefficients
[or a damped system can be similarly derived.

In most cases, the {orcing [unction in the interval {t, t;) is unknown and
difficult to predict. Its contribution to the response in Eq. (3.86) may be
significant and cannot be ignored. However, over a small time interval (t;, ¢;},
the external force is not expected to change in a significant way. Therefore,
as a first approximation, the external force will be assumed to be constant
in the interval (¢, ;) and equal to the external force at time t;, f(¢;). This
force, in turn, can be estimated from the monitored state variables at time ¢; as

fl)= (aéfg)i"(t,-H kx(t;) (3.88)

With this approximation, Eq. {3.86) becomes

x(t)=Zyx(t)+ ZyX(t) + Zopltd) + Zarf (1) (3.89}

where Z . is the coefficient of the approximated {orcing function
1
Z,\F=E[l —cos{w,At}] {3.90)

The pulse magnitude p(z,) is designed such that, if the expected response
during interval (¢;,t;) exceeds a maximum permissible level x,, it will be
reduced to x; and, if the expected maximum response, x,,,, is below the
limiting values, no pulse is to be triggered. Thus, the required pulse magnitude
can be expressed as

P(E)= x4 ) +FEED (1), am>xe (39

n

where
o Zx_ k cos(m, Af,) 3
N Z, B cos[w,(At, — Ar}] —cos(w,Atp)
f= _Zy_ ksin(mgAt,)/ o, > (392)
Z, cos w,(Ar, — At) — cos{w,Af)
_ Zap 1 —cos(w, At}
v zZ, B cosf w,(Ar, — At)] —cos{w,Ar,)
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and
p(ﬁl-)=0, xmnxéxl_‘ (393)

Coeificients «, # and y define the contribution of the initial conditions at
time t; and of the approximated external force to the required pulse magnitude,
respectively. They are functions of pulse width, interpulse interval and system
dynamic characteristics only. Thus, for a linear system, «, f and y remain
constant during control and can be calculated off-line.

When the frequencies of dominant comnponents of the forcing function are
close to or above the system natural frequencies, the maximum respounse
during interval (¢;, t;) can occur at some time within this interval and not at
time ¢;, as previously assumed. The pulse can be designed to limit ‘local’
maximum by changing A, used in the equations for «, ff and y to

t. (3.94)

"y lor different time intervals Az’ (At <At <At )can also be calculated off-line,
so that this improvement does not 1ncrease on lme computations. Nevertheless,
it may lead to instability. While the value ol the response is decreased at
some time within interval (¢, ¢;), the pulse may increase the value ol the
response at time ¢; if it is of the opposite sign. This can happen when the
external [orce has a dominant high [requency component. Therelore, an
additional condition has to be added that will exclude this possibility, but
will still keep the response below salety limits. It is suggested that, in this
case, the puise p(r;) will still be applied but the interpulse interval will be
decreased such that the next pulse p{¢;) will be applied before the response
at the end of interval (t;.t5) exceeds its permitted value. The decreased
mterpulse interval will continue to be used throughout the control period.
No additional computations are required since values [or «, f and y for
different time intervals At} are aiready stored. Thus, the pulse algorithm
adjusts itself to high frequency dominant loading and response, thus avoiding
instability while controlling peak response values,

Example 3.7 An example that illustrates the control procedure presented
is given in Fig. 3.27 for a system with a natural frequency of 3.14 sec~! and
a damping ratio of 0.01. The [requency of the forcing lunction is 0.34 sec™!
and the parameters At and At used are 0.10 sec and 0.50 sec, respectively.
A 20% reduction in the response is desired. Fig, 3.28 shows the acceleration
of the system before and after control. The acceleration level is generally
decreased except during time intervals when pulses are applied, and peak
acceleration values are induced. Control of 40% ol maximum response [or
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Figure 3.27 Pulse train, controlied and uncontrolled displacement response (20%
reduction )8

the same system and the required pulse train are illustrated in Fig. 3.29. The
controlled response shows that, at the beginning of the pulse train when the
forcing function is increasing and therefore ‘underestimated’, the reduction
is less than desired and, when the forcing function is decreasing and thus
‘overestimated’, more reduction is achieved, The error involved is of the order
of 3%.
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Figure 3.28 Controlled and uncontrolled acceleration response {20% reduction)
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3.5.1 Unidirectional Pulses

The control algorithm is designed to reduce the response to a safety level il
its value is expected to exceed this safety level. No pulse is applied if the
expected response is below the limiting value. The stability check of the
algorithm ensures that a pulse applied for correcting one direction of the
response will not increase the response in the opposite direction above its
safety level. Thus, the control algorithm allows the use ol pulses in only one
direction to ensure only one limit of the response. This can result in a
considerable-simplification in pulse supply hardware and its instaliation.
There is no change in the algorithm, but the requirement to trigger a pulse
only when the expecied response in the direction considered exceeds its limit.
An example of the leasibility of this procedure is given in Fig. 3.30, where a
40% response reduction is considered. The previous system and control
parameters are used.

.3.6.. Other.Contro! Algorithms

Not included in the discussion above are a wide variety of sub-optimal or
ad hoc control techniques, most of which are tailored to specific structural
environments or specific sensor-controller specifications. More recent work
includes discussions on predictive control®*3% and [uzzy control®®?7 as
possible control philosophies. Simultaneous control and structural parameter
optimization is another topic receiving increasing attention at present.?®:+°
This topic will be discussed in more detail in Chapter 6.
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4 Practical Considerations

While most of the results reported in the preceding chapter are encouraging,
it is important to recognize that they are largely based on idealized system
descriptions under ideal conditions. In terms of real-time application, it has
been pointed out that a number of important problems must be addressed
from a practical standpoini.'! The importance of taking these practical
considerations into account in the algorithm development has been stressed
and some of these issues are discussed in this chapter.

41 Modelling Errors and Spillover Effects

Civil engineering structures are distributed-parameter systems. With a very
few exceptions, analytical and simulation control results obtained to date
are based on greatly simplified siructural models. In fact, as indicated in
Fig. 4.1, a two-stage model reduction procedure is generally carried out
whereby the distributed-parameter system is first reduced to a many-degree-
ol-freedom system discretized in space, which we shall refer to as a full-order
system (FOS); it is then further reduced to a discrete-parameter system with
a small rumber of degrees of freedom, referred to here as the reduced-order
system {ROS). As shown in Fig. 4.1, control design is generally carried out

Real structure Control
(Distributed-parameter system) implementation
Full-order \

diseretized system

3

Reduced-arder Control
discretized system design

Figure 4.1 Model reduction and control design
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based on the reduced-order system, necessitated by practical hmxtat:ons as
well as computational considerations.

When an ROS-based control design is synthesized and applied to a real
structure, inevitable errors such as control and observation spillovers and
possible instability are introduced.” ™? In order to see the effect of spillovers,
let us start with an FOS represented by the matrix equation (3.1) without
the excitation term

Z(ty=Az(t} + Bu(t), Z(0y=1z, (4.1)
with the observation equation Eq. (3.41)
y(t)= Cz(1}) (4.2)

where, as before, z(1) is the 2n-dimensional state vector of the structural
system (large n), #(t) is the m-dimensional coniro] vector and y(t) is the
p-dimensional observation vector.

A reduced-order model (ROS) can be generated through aggregation or
modal eigenlunction expansion techniques by retaining only the controlled
modes of the system, giving

L) =dA.z () + Bult)+ E (1) (4.3)
with the observation equation
Pt} =C.z.(t) + R.(1) (4.4)

In the above, z.(t) is the controlled portion of the state vector z(t) whose
dimension is in general much smaller than that of z{t}. E.{t} and R_(t} are
error terms introduced through the truncation process; they can be
represented by

Eft)=A.,z(t) and  R(1)=Cz(1) (4.5)

where z,(t) is the state vector associated with the residual (or uncontrolled)
modes of the FOS. It is governed by

ilt)=dA. g (1) + Bu(t) + E(1) (4.6}
The error term £,(t) in the residue equation has the form
E(t)=A..z.(t) (4.7}

The error term £,.(t} in Eq. (4.3) represents the modelling error due to the
model reduction process. The,term B u(¢} in Eq. (4.6) shows the effect of
control (¢} entering the residue subsystem, or control spillover to the residual
modes. The contamination ol observations in Eq. (4.4) with residue
information R {t) produces observation spillover. Thus, the controller imparts
energy to the residual modes through the interaction term B,u(t) and the
resulting residual mode excitation is in turn detected by the sensors through
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the term R_(¢) for control design, resulting in an escalating performance
degradation. These interactions are shown graphically in Fig, 4.2. It can be

shown that spillovers can reduce stability margins of the actual structure and
are at the heart of the control problem based on the reduced-order models.* 2

Clearly, the magnitude of control and observation spillover is a [unction
of the model reduction process. It is also a function of controller and sensor
locations and their eflects on the residual modes. We are interested in the
spillover effect when the control design is carried out based on the ROS by
assuming that E (¢} =0 and R_(t}= 0, bui is applied to the full-order system
given by Eqgs (4.1} and (4.2).

4.1.1 Effect of Spillover

Let £.(¢t) be an estimate of the state vector z.(t) based on the sensor
measurement p{t) and designed either as a Luenberger observer or as a
Kalman filter (see Section 3.1.1). Using a Luenberger observer for example,
the state estimator has the form [see Eq. (3.23)] P

e Tl AL

rfc(t)=f4=fc(t)+Bcu(f):FG*[Ccfc(f)—J;zf)] (4.8)

Following a linear control law, the control design based on the error-Iree
ROS gives

u(t)=Gi (1) {4.9)
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where the control gain & is determined as though the true state z.(t) were
available instead of Z.(r). The substitution of Eq. (4.9} into Eq. (4.1) yields

(1) = Az{t) + BGZ (1)

= Az(t) + BGz (1) + BG[Z.(1) — z.(t)] (4.10)
Let
e(t)=Z.(t)—z.(¢) and Z.(t)=Dz(t) (4.11)
We then have
(ty=(4 + BGD)z(t) + BGe(t) (4.12)
For the error term ¢(t), the derivative of the first of Eqs (4.11) leads to
é(t)=G*HC—C.D)z+ (4, —G*C,)e(r) (4.13)
Define the composite closed-loop systc;r;;s-t-afé' by r 7
{4
wo=| 20 (4.14)
Then,
()= Ow(t)= [g:i g:]w(t) (4.15)
with
0,,=A+BGD
0~ Gc-CD) (316
0Q:,=4.-G*C

It is seen that the sensor output is contaminated by the residue modes
through the term {C— C,D)z(t). which can be identified as C,z.(t), the
observation spillover. Thus, while the poles of A + BGD and 4, — G*C, can
be designed with substantial stability margin, the presence of observation
spillover can lead to instabilities in the residue modes. This is especially true
in the lightly damped system.

4.1.2 Spillover Compensation
In view of the fact that spillover can cause serious system performance

degradation, it is important that conventional design procedures be modified
in order to eliminate or minimize spillover eflects. The most obvious method
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of spillover reduction is to locate the controllers and sensors at or very near
the zeros of the affected modes. However, this is difficult if not impossible
to do as the [reedom of locating sensors and controllers is rarely available
to the control designer. Other attempts include the introduction of a ‘comb’
filter between the sensor output and state estimator for the purpose of
‘combing out’ the residue modes,* 7 implementation of an orthogonal filter
in an attempt to counteract spillover as an unmodelled disturbance,® 7 and
addition of measurements [or more complete state feedback.® However, these
procedures are indirect and can become ineffective when the residue modes
are closely spaced or when it becomes impractical to add the required number
of sensors.

The control design procedure proposed by Soong and Chang* is a direct
modification of the spillover-free control law as indicated in Chapter 3 by
requiring that the controlled modes of the system stay close to the designed
values and that the stability of the uncontrolled modes be preserved. This
procedure is briefly described below.

Let the dimension of z.(r} in Eq. (4.3) be 2r’ and consider the 2(n +n")

- 2(m4+n’) matrix @ defined-in Eqs {(4:15) and (4.16). For structural systems,.
the eigenvalues of @ consist of complex conjugate pairs {4,, A¥), (4,, A¥),
oo {dy s A¥Lw) and, for convenience, we shall assume that they are distinct
at least in the controlled modes. Using pole assignment, [or example, the
control objective is to aflect changes in the controlled modes so that they
take prescribed eigenvalue pairs (i7,, #F), (72, #%5) ..., (s 05

In the absence of spillover, it is straightforward to determine the control
gain G as indicated in Eq. (4.9). In the presence of spillover, the proposed
procedure calls for a modification of the value of & by minimizing the cost
function

n

. J= _Z} il i) = ol RoX (4.17)
=
where
Ay —ny
w, = : {4.18)
Ay =y
and
R=diag.[r,, ..., r,] (4.19)

while a set of inequality constraints is satisfied. These inequality constraints
arise from stability requirements in the uncontrolled modes and can be written
in the form

Re(i;)+£;<0, J=n"+1...,n (4.20)

where ¢; are some prescribed small positive numbers.
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The optimization problem with the cost function defined by Eq. {(4.17) and
inequality constraints given by Eq. (4.20), aithough highly nonlinear, can be
numerically carried out using the method of Lagrange multipliers with the
help of carefully defined slack variables. [t can be shown that the problem
reduces to that of finding the solution of a set of (r + n — #’} simultaneous
nonlinear equations, where r is the number of unknown parameters in the
optimization problem. While the dimension (r +n—#n'} is in general large
due to large n, the procedure can be facilitated by seeking the control gain
G sequentially by incorporating into the solution procedure the inequality
constraints given by Eq. (4.20) sequentially. Numerical simulations show that
the solution for control gain stabilizes at a rate proportional to the number
of inequality constraints considered at each stage.

Example 4.1 Let us illusirate the procedure presented above with a simple
exampie in which all modal data are readily obtained. Consider a structural
system whose FOS is described by Eqs (4.1} and (4.2) withu=35,p=1,m=1

and
0 PR
A= 4.21
1 |:A21 Azz] ' { )
=[0,0,0,0,0,0,0,0,0,10] {4.22)
C=[0,0,0,0,1,0,0,00 200] (4.23)

in which the matrices 4,, and 4,, take values so that FOS represents a
lightly damped five-degree-ol-reedom mass-spring-damper system. Equation
(4.22} indicates that a single controiler is applied at the fifth mass and
Eq. (4.23) shows that a single sensor is located ai the same mass with its
displacement and velocity observed. The eigenvalues of A are

Ay, iF = —0.0036 + j12.679
2y, A% = —0.0085 + j37.011
Ay, A% = —0.0012 + j58.344
Jqs AF = —0.0458 + j74.950
Ao, ¥ = —0.0041 + j85.484

[n this exampie, the critical modes are taken to be the first three structural
Jmodes (the first three pairs of eigenvalues) and the fourth and filth modes
are the residue modes. Thus, the reduced-order sysiem is one of order six
{n'=3) with

B =[0,0,0,0.12 —0.16 0.86]
C.=[0,0,1,0,0,20.0]
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The control objective is to apply active control to the uncontrolied system
so that the three controlled modes take the lollowing desired values:

1. 1f =~ 1370 + j16.679
N, 5= — 1.888 + j40.011
iy, B3 = — 2.583 4 j61.344
In the control design, the following cases are of interest;

Case A: The conventional modal control design based upon the ROS while
ignoring the uncontrolled modes.
Case B: The modified modal control desipn where the control gain is
determined by minimizing the cost function given by Eq.{4.17) with inequality
constraints given by Eq. (4.20). The matrix R in Eq. {4.17} is taken to be [
and g, =&, =0.00001 in Eq. (4.20).
Case C: The same as Case B but with g, =¢, =0.1.
The pole shilting characteristics for alf three cases are summarized in
Table 4.1. It is shown that conventional modal control design (Case A) can
" lead to instabilities in the residue modes in the presence of spillover. On the
other hand, the modified procedure (Cases B and C) ensures stahility in the
residue modes while the controlled modes are kept close to their desired

Table 4.1 Pole shifting characteristics®

Controlled Controtfled
without with
Mode Uncontrolled spillover spillover
Case A
1 —0.0036 +12.68 —1.370 +j16.68 -1.376 + j16.67
2 —0.0055 +j37.01 —1.BBR +j40.0T —1.876 +39.93
3 —0.0012 4+ j58.34 —~2.583 +j61.34 —2.107 +j60.91
4 —~0.0458 +74.95 —0.0458 £ j74.95 +0.189 +75.61
5 —0.0941 + j85.48 —0.0941 + j85.48 —0.033 + j85.59
Case B
1 ~1.404 +j16.68 —1410 +j16.67
2 —1.974 +40.05 —1.971 +j39.97
3 Same as —4.118 +j61.27 —3038 +;60.79
4 Case A —0.046 £ 74.95 —0.00001 +j75.81
5 ~0.094 4+ j85.48 —0.054 48564
Case C
1 —2.1054/16.32 ~2.109 + j16,29
2 —3.1434 3824 —29374j38.26
3 Same as —0.807 +j58.84 —0.778 +j58.85
4 Case A —0.046 +74.95 —0.100 +j75.26
5 —0.094 +j85.48 —0.100 + jB5.55
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Uncontrolled
rControlled (Case A)

xs{1)

36 42 48
Time

Figure 4.3 Displacement xg{¢) {Case A}

values. Results for Cases B and C also show that varied stability margins in
the residue modes can be achieved but modal accuracy in the controlled
modes is somewhat sacrificed.

A more dramatic difference in results between Cases A and B is shown in
Figs 4.3 and 4.4 when the system is subjected to a somewhat arbitrary forcing

25
Uncontralled
Controlled (Case B)

xs(7)

-25 i 1
6 42 a8

Time
Figure 4.4 Displacement x5(¢) (Case B)*
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function. Figure 4.3 shows x(¢), the displacement ol the filth mass, as a
function of time under uncontrolled cenditions and under conventional
control {Case A). While a reduction ol displacement magnitude is affected
by Case A control, instabilities in the residue modes cause oscillation with
increasing magnitude, In contrast, Case B leads to stable results as shown
in Fig, 4.4.

4.2 Time Delay

In treating ideal systems, the assumption is made that all operations in the
control loop as shown in Fig. 2.1 can be performed instantanecusly. In reality,
however, time has t¢ be consumed in processing measured information, in
petforming on-line computation, and in executing the control forces as
required. Thus, time delay causes unsynchronized application of the control
forces and this unsynchronization can not only render the control ineffective,
but may also cause instability in the system,? !?

In order to see the effect of time delay on control eflectiveness, let us
consider a simple single-degree-of-freedom structural system with active
control as represented by the equation of motion

mE(e)+ex(t) + kx(t) = u(t) + f(1), x(0)=0, %(0)=0 (4.24)

where all the quantities in Eq. (4.24) are defined as usual. Assuming a linear
control law, we write

u(t)=gyx(t) + g, x{1) (4.25})

It is easy to show that the [requency response function of the closed-loop
system is {see Appendix A)

. hijo)=[1+ h{jo)o(jw)]™ h,(jo) {4.26)
in which
h(jw)=[—mw® + jew + k]!
is the open-loop transfer [unction and
v(jw) =g, + jg@

is the transfer [unction associated with the leedback gain. As discussed in
Appendix A, the magnitude ol /i( jw) gives a measure of the dynamic reduction
of the system response and thus a measure ol controel efficiency.

Suppose now that time delay exists in the execution of contrel with an
amount equal to . The modified equation of motion takes the [orm

mE(t) + ex()y+kx(t)y=u(t — 1)+ f(1), x(0)=0, x(0)=0 (4.27)
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W jos )t

whwy

Figure 4.5 Time delay effect on control efficiency®

and Eq. (4.26) becomes
h(jw)=[14e""h (jw)v( jo)] th,( jo) (4.28)

Typical time delay effects on the magnitude of i{ jo) can be seen in Fig. 4.5,
where w, is the undamped natural frequency of the system with arbitrary
values assigned to m, ¢, k, g, and g,. It clearly shows deterioration of the
controlled system response as a function of time delay.

As mentioned earlier, time delay can also lead to instability in the controlled
system. The stability problem can be investigated by sketching the Bode plot
ol the loop transfer [unction /1, ( jm)v( jw). It is noted [rom Eq. (4.28), however,
that time delay enters in the loop transler [unction as a coefficient in the
form of exp{ — jrw). Since jexp( — jtw)l=1 for all w, the time delay aifects
the phase but not the magnitude of the Bode plot. The control system can
thus become unstable when 7w takes such values as to cause the phase margin
to become negative. A more detailed discussion ol this phenomenon can be
found in Pu.l®

4.2.1 Time Delay Compensation

Equation (3.1) gives the state-space representation of the basic controlled
system dynamics, i.e.

2(t) = Az(1) + Bu(r) + Hflt) (4.29)
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When time delays are taken into account, time retardations can occur in
both z({t) and u(t) appearing on the right-hand side of Eq. {(4.29). Let 1., be
the time delay in z,(t}), the ith component of z(t) and t,; be that associated
with u,(t}, the ith component of w{t). Equation (4.29) now becomes a
differential-difference matrix equation of the form

(]

n

=S Azlt-1.0+ Y Bt — ) + HI(D) (430)
i=1

3

i=1

where A; and B, are, respectively, the ith columns of 4 and B.

The problem of control design [or systems represented by Eq. (4.30) has
been studied extensively in the control literature and, more recently, in
connection with control of civil engineering structures. In what lollows, two
simple methods are described which have shown success in structural control
applications.

Taylor Series Expansien One of the simple methods of time delay compen-
sation,!! 7+ is based on Taylor series expansion ol time-retarded variables
--in-Eq.-{4.30)..Consider, for example,z;{t — ;).-Its-Taylor-series expansion ...
about t gives

2

2t = ) = (0 — T )+ = B0~ (431)

For practicality, the series is truncated alter a few terms and the truncation
error depends upon whether the time delay is smali as compared with the
systemn’s natural periods.

One can also use the Taylor series in reverse, namely,

at)=zilr—tu+ ) =zdt — 1) + 18t — 1)

ot .
+§!'-"E(I_T:i)+"- (4.32)

Upon substituting either Eq. (4.31) or Eq. (4.32) into Eq. (4.30), one can
then form an augmented state-space system containing the state variables
z(t), z{t — ), wt), ult—1,), .... The state-space equation of the
augmented system again takes the standard [orm of Eq. (4.29) except that
the dimension of the state vector is increased. Conventional control design
algorithms such as those described in Chapter 3 can again be applied.

As an example, consider Eq. (4.27) again. Time delay compensation in u(z)
can be accomplished in this simple case using the Taylor series expansion
approach in the form given by Eq. (4.32). Retaining only the first three terms,
we have

u(ty=u(t —t)+ it — )+ — f(t — 1) (4.33)

i
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which is another second-order differential equation governing u(t — ). The
augmented system encompassing Eqs (4.27) and (4.33} can be established by
defining a four-dimensional state variable z(t) as

u(t—1t)
it —t})

with the associated state-space equation

&(t) = Az(¢) + Bu(z) + Hf(1) (4.34)
where
0 1 0 0
k 1
_E 8 2 )
moom w e
A:
0 0 0 1
2 2
0 0 e ==
b T‘ t —
- 0
0
B= 0
2
__:E-z"—
and
-0
i
H=| m
0
L 0.
The additional initial conditions are
() =z2,(0)=0, r<1 (4.35)

Equation (4.34) now has the state-space form for a structural system free
of time delays and conventional control algorithms can be used [or control
design.
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The application of the Taylor series expansion technique to the study
of distributed-parameter structures with time delay can be found in
Abdel-Rohman.'?

Phase Compensation Consider a linear control law such as that given by
Eq. (4.25). Due to time delays, the displacement [eedback control and the
velocity feedback control can be resolved into displacement and velocity
components as shown in Fig. 4.6, where wr, and wr; are the phase lags for
displacement delay time t, and velocity delay time 14, respectively, & being
the dominant system [requency.

Possible detrimental eflect of time delay on the controlled system
behaviour can also be seen [rom this phase space interpretation. With the
phase shift, the displacement [eedback vector may be resolved to produce
positive active stiflness but negative active damping while the velocity
feedback vector may be resolved o produce positive active siiffness and
positive active damping. Due to the existence of negative active damping,
control effects are diminished for the real system as compared to the ideal

“one. Even worse, time delay will cause instability il the resuitant damping
force is negative. Since phase lags are proportional to the delay time and
dominant [requency, the effect of time delay can be serious for higher modes
even with small amounts ol time delay. This phenomenon has been observed
earlier when the Bode plot of the loop transfer function was discussed.

Velocity
feedback force

Displacement
feedback force

Figure 4.6 Displacement and velocity feedback vectors in phase spacs’”
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The idea behind phase compensation, first discussed by Roorda,®® is to
modily the time-delay-free control gains, ¢; and g, in Eq. (4.23), in order to
take into account these rotations in the phase space. Let g, and g} be the
modified displacement and velocity control gains, respectively. The relation-
ship between (g}, g3) and {g,, g.) can be estabiished as [ollows.

As seen from Fig. 4.6, the displacement feedback vector can be resolved
into two components, ¢; xcoswT, and g; Xsinwt,/w, in the displacement and
velocity directions, respectively, Similarly, the velocity feedback vector has
component ghmxsinmt, in the displacement direction and g3 Xcoswr, in the
velocity direction. On the other hand, for the ideal case with no time delay,
the displacemnent and velocity feedback vectors are simply g, x and g, % in
the displacement and velocity directions, respectively. Hence

g, x =g xcos{wt, ) + grwxsin{wty)

ga % =g ¥sin{wr,)/m + g5 ¥cos{wt,)

giving
ge | 'cos(cur_t) msin{wt,) gé' (4.36)
4z sin{wt,)/w cos(wty) ga
The modified control gains are thus
g:l _ ‘cos(wt,‘) wsinfowt) |7 |4, (437)
g5 sin{wt,)/w  cos(wry) g

For multi-degree-ofl-lreedom structural systems, the control gain correction
as indicated in Eq. (4.37) can be applied to each mode in the modal domain
and, through modal transformation te the physical domain, the necessary
modification to the control gain matrix due to time delays can be
determined.!’

The technique of phase compensation has been applied to the study of
active structural control and it has been shown to be eflective in both
computer simulation and in [aboratory experiments.'S™!? Some of these
results will be discussed in Chapter 5 where these experiments will be
described.

4.3 Structural Nonlinearities

Our development of active structural control has been restricted to the
consideration of linear structures. In reality, however, many civil engineering
structures may undergo large deformation or yielding when subjected to
strong environmental loads, and hence exhibit inelastic or nonlinear
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behaviour. Consequently, active control systems may operate in the nonlinear
range of structural motion, and it is of practical interest to extend active
control concepts to the case of nonlinear or inelastic structures.

Several control algorithms developed in Chapter 3 have been studied in
the context of control of nonlinear structures. For example, the application
of several pulse control strategies discussed in Section 3.5 to the control of
nonlinear systems has been investigated.2®~2? Similar extensions have also
been made of the instantaneous control algorithms derived in Section 3.3.7%%3
We shall follow Yang et al?? in our development, showing only one possible
procedure in treating structural control problems involving structural
nonlinearities.

Consider an n-degree-of-freedom nonlinear structural system described by
(see Eq. 2.1)

Mx(e)+ (1) + f,(t) = Du(t) + Efit), x(0)=1x, x(0)=x, (4.38)

where x(t} is the n-dimensional displacement vector and D and E are,

--respectively;-appropriate % m-and-n-x-r-control-and-external-excitation
focation matrices. The structural nonlinearities are reflected in the damping
and stiffness terms in which f,(t), the n-dimensional damping force vector
and f{1}, the n-dimensional stiffness force vector, are nonlinear functions of
x(t) and x(t), respectively, ie.

Suty=F[2(t)] and [ (t}=Lf[x(1)]. (4.39)

For a sufficiently small step size At in the step-by-step numerical integration

procedure, the nonlinear terms in Eq. (4.38) can be approximated by
Sty =L — A+ C¥(t — At)[£(t) — x(t — At)]}

Ly=L0 Aty + K*{t — At} x(t) — x(t — A1)] {4.40)

in which C*(t — At} and K*(t — At) are influence coefficient matrices whose

ijth elements are given®®?7 as
af gt — At
ety =0
ax,{1 — Al) (4a1)
i T oax(t— A1)

where f;(t —At) and f,;(t —At) are the ith components of f,(t — At) and
Ji(t — At), respectively, whereas X,{t — At) and x;(t ~ At) are jth components
of the response vectors %(t — Atr) and x(t — At), respectively. In Eqgs (4.41),
the influence coeflicients cX(t — Ar) and &%(t — At) represent the tangent
damping and tangent stiffness at : — At, respectively.
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Upon substituting Egs (4.40) into Eq. (4.38), the equation of motion for
the nonlinear structural system can be expressed in the form

ME(E) + fult — At) + C*(t — Ar)[ 2(2) — %(t — At}]
it — At + K1 — An)[x(t) — x(¢t — At)] = Du(t) + Ef(z)
(4.42)

whose solution can be found folfowing,ﬂ for example, the Wilson-# numerical
procedure.?” Let z{t) be the 2n-dimensional state vector with

e | X(8)
«(r)-[i(t)] (4.43)

It can be expressed in terms of the response state vector z{t — At}, damping
force vector f(r — At), stiffness force vector f (¢ -- At), external excitation
STt — At} and the control vector u(r — At), all at time ¢ — A¢, as well as the

control vector u(t) and the excitation f{¢) at time . It can be written as

2lt) = d*(t — At) + A u(t) + A1) (4.44)

where
d*(t ~ Aty = A x(t — At)+ A, [fylt — At) + fi(t — At)]
+ Asu(t — At) + Agflt — At) (4.45)

In the above, 4;, j=1, ..., 6, are matrices defined by

01 FT
Ay=0"2 3
3 0 021+FT4:|

.

A4=6_2F|:T5

T, |

7
Ag=07F| 7

e
A6=0‘2F[ TE
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with # > 1.37 and

T, =FE
T, =FD

Ty = (6/A0)M + 30C* + At(6* — 1) K*
T,= —3K*

T,=~(31+S5,)

To= —(6/A)— S,

T,=2+S8,

To=(3/A0)1+ S,

6M  3C* -1
F=| M K*
[((JA:y TV }

S, = [At( L350 —~ 1)C* + 0.5A2(9 —~ MK+ ]M ™}
S, =[3(0—1)C* + DAL(0 — 1.5} K*]M 1

In the above, 8 is the parameter defined in the Wilson-0 procedure. The
argument ¢ — Ar for C* and K* has been omitted lor simplicity. Thus, all
A;s, being functions of C* and K*, are also functions evaluated at t — Ar.
Equation (4.44) [or the state vector z(t} is seen to have the same form as
Eq. (3.52) for a linear structure when the foliowing replacements are made:

Td(t — At)—d* (1 — A1), AtBj2—A,, AtH/2— A,

Hence, instantaneous optimal control design [or the nonlinear structure can
be determined from the linear results with appropriate substitutions indicated
above. Fbr example, for closed-loop instantaneous optimal control, it follows
from Eqs {3.57) and (3.58) that, for the nonlinear structure under
consideration,

u(t)= — R™14] Qz(1) (4.46)
and the controlled response state vector z(t} is
D()=[I+ A, R ATQ] [d*(t — At} + A ()] (4.47)

Two numerical examples using the closed-loop instantaneous optimal
control law given in Eq. {4.46) are discussed below.

Example 4.2 Following an example discussed in Yang et al>® a single-
degree-ol-freedom structure similar to the one presented in Example 3.1 is
considered. The stiffness is now assumed to be bilinear elastic—plastic with
an elastic translational stiffness k, =8.53 x 10* kN/m and a post elastic
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Figure 4.7 Nonlinear stiffness characteristics

translational stiffness k, = 9.75 x 10* kN/m as shown in Fig. 4.7, where x
denotes the lateral relative displacement and f,(x) is the stiffness restoring
force. The floor mass m is 345.5 tons and the linear viscous damping coefficient
is 54.29 kN-sec/m which corresponds to a damping ratio of 0.5 %. The natural
frequency of the structure is 2.5 Hz and yielding occurs at a lateral relative
displacement of 2.4 cm. The angle of inclination of active tendons with respect
to the ground is &« =25° (see Fig. 3.2). A simulated earthquake ground
acceleration time history shown in Fig. 4.8 is considered as the input
excitation, where the maximum ground acceleration is 0.4 g.

40
7 Wk
E
=
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E 0
o
9
1
e
E
3 =20
D A
—4.0 1 1 i 1 1 J
0 5 10 15 20 23 30

r (sec)
Figure 4.8 Ground acceleration
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Without active control, the relative displacement of the top Roor and the
base shear force are displayed in Figs 49(a} and 4.1((a}, respectively. The
hysteresis loop of the inelastic restoring [orce is shown in Fig. 4.11{a}, in
which significant yielding occurs in the structure. With an active tendon
control system, the structural response and active control lorce depend on
the weighting matrices @ and R. In this example, @ is a 2 x 2 matrix and R

50¢

E
2
E -5.0 | I 1 ¢ I J
E (o}
g2 23r
&
=
2
5 0
4]
24
L]
—-3.5
; !
(b}
2.5
0 e
—-2.5 1 1 1 1 ! J
0 3 10 15 20 25 30
(c) t {sec)

Figure 4.9 Relative displacement (a) without contral; (b) g/r=0.15 x 108;
(c) gfr=08x107
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Figure 410 Base shear (a} without control; {b) g/r=0.16 x10%; (c) g/r=0.8x 108
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Figure 4.11 Hysteresis loop of inelastic restoring force {a) without control;
{b} g/r=015x10% {c) g/r=0.8 x 108
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is a scalar. For simplicity, we shall assume that

qg 0 )
Q_[O q} - K=

Numerical results on relative displacement, base shear, the hysteresis loop
of inelastic restoring force, and the required control force are presented in
Figs 4.9~4.12 for g/r =0.15 % 10% and ¢/r =0.8 x 10%. In the first case, the
maximum relative displacement is reduced by 27 %, whereas the maximum
base shear lorce is reduced by 5%. In the second case, it is seen that these
reductions increase to 63.8% and 38.5 %, respectively, and the response is
entirely well within the elastic range. To examine the effect of weighting
matrices on active control, the maximum Hfoor relative displacement and
maximum control [orce in the entire earthquake episode of 30 seconds are
presented in Fig. 4.13 as [unctions of g/r. [t is observed that, as the ratio g/r
increases, the structural response quantities decrease with a corresponding
increase of the required active control force. The structural oscillation is

completely within the elastic range when g/r > 0.35 x 10% Thus, the active

300 —~
0
300 1 1 1 1 J
{a)
Z 600
=
o
8 [
2
T 300
E
o
4]
0
—300
—600 1 1 ' I ] )
i} 5 10 15 20 25 30
(h) 7 {sec)

Figure 412 Required active control force (a) q/r=0.15 x 10%; (b) g/r=0.8x 108
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Figure 4.13 Maximum relative displacement and maximum control force as functions of
q/r

tendon control system is capable of preserving the structural response within
the elastic range provided that the level of the required control force is
achievable.

Example4.3 Theeight-storey structure with an active mass damper installed
on the top floor, first discussed in Example 3.5, is reconsidered here when
the stiffness ol each storey unit is assumed to be bilinear elastic—plastic. Again,
the results presented here are extracted from Yang et al.*?

All the structural and control parameters used in this example are the
same as those given in Example 3.5 except for the following:

Elastic stiflness (each storey): 3.404 x 105 kN/m
Post elastic stiflness (each storey): 3.404 x 10* kN/m
Yielding level: 2.4 cm

First mode damping ratio: 0.5%

Damper mass: 36.3 tons

Damper damping: 31.0kN-sec/m

Damper stiflness: 1173 kN/m

r: 10°

x: 5.12 .

Excitation: Fig. 4.8 modified to 0.3 g maximum

Without any control system, the top floor relative displacement with respect

to the ground and the base shear force of the structure are shown in
Figs 4.14(a) and 4.15(a), respectively. Hysteresis loops [or the shear force in
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Figure 414 Top floor relative displacement {a) without contro}; (b) with passive mass
damper; {c) with active mass damper

each storey unit are displayed in Fig. 4.16(a), in which ‘i’ sipnifies the ith
storey unit. As observed from Fig. 4.16, yielding occurs in the lower three
storey units.

Without the active control lorce but with the mass damper in place, the
mass damper is passive. In this case, the response quantities, including the
top floor relative displacement with respect to the ground and the base shear
force, are shown in Figs 4.14(b) and 4.15(b), respectively. It is observed [rom
these two figures that the passive mass damper is not effective.
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Figure 4.15 Base shear (a) without control; (b) with passive mass damper; (c} with
active mass damper .
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Figure 4,16 Hysteresis loops for shear force in each storey unit (a) without contraol;
(b} with active mass damper

With the active mass damper, the response quantities and the required
active contro] force from the controller are presented in Fips 4.14(c), 4.15(c)
and 4.17(a). The relative displacement of the mass damper with respect to
the top fioor is displayed in Fig. 4.17(b). Also, hysteresis loops for the shear

Table 4.2 Maximum response quantities®

Floor Without control Passive mass damper  Active mass damper
. ya=0.60 m U, = 8207 kN
(i) ¥e= 164 m
X Y 5 X Yi 5; Xy ¥i 5

(cm) (cm} (kN} f{em) (em) {kN) ({em) (cm) (kN)

3.89 389  B677 299 299 8369 162 1.62 5529
704 322 8447 532 247 8195 311 148 5042
926 249 8200 744 221 7509 441 132 4497
L6 230 7812 9.22 179 6089 552 1.27 4310
1284 211 7184 1049 148 5026 655 114 3877
1428 184 6274 1130 130 4426 745 093 3169
1536 145 4951 11.82 099 3360 8.1l 068 2327
1600 080 2722 1226 053 1810 Bd46 060 2043

DO -1 Lh B W bD e
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Figure 417 Required active control force and relative displacement of mass damper

force in each storey unit are depicted in Fig. 4.16(b). Within 30 seconds
ol the earthquake episode, the maximum response quantities, including
the relative displacement of each floor with respect to the ground,
x{i=1,2,...,8), the interstorey drift, yi(f=1,2 ..., 8), and the shear force
S;, in each storey unit are presented in Table 4.2 {or comparison. The
maximum control force is 820.7 kN, Tt is observed [rom Figs 4.14-4.17 that,
with the active mass damper, the response of the entire building is weil within
the elastic range.
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4.4 Uncertainties in Structural Parameters

We have seen in Chapter 3 that the control laws and the resulting controlled
system performance are in general functions of structural parameters such
as masses, stiffnesses and damping ratios. In reality, structural parameters of
as-built structures cannot be identified precisely and the parameter values
used in control design may deviate significantly [rom their actual values.
Thus, parameter uncertainties are another practical concern. More recent
work in structural control has begun to address the problem of control
sensitivity to structural parameter uncertainties.?® 3%

The eflect of parameter uncertainties on control eflectiveness can be
investigated at several levels. At a fundamental level, the problem is one of
robustness of control.?! An important feature in feedback control theory, a
robust control design is one which satisfactorily meets control specifications
even in the presence of parameter uncertainties and other modelling errors.
Two aspects of control specifications can be discussed: stability robustness
and performance robustness. Most of the work on stability robustness has
“beeén done’in the frequency domain using singular value decomposition, while
many of the recent results on performance robustness were obtained using
sensitivity approaches in the time domain. A more detailed discussion of
stability robustness is beyond the scope of this book. In what follows, an
elementary sensitivity approach is described which addresses the performance
robustness issue.

Consider again the basic controlled system dynamics described by
Eq. (3.1), i.e.

i{t)=A(p)z{t) + B(p}u(t) + H(p)fi1) {4.48)
with asinear control {aw given by
u(t) = Gip)z(t) (4.49}

In the above, the dependence of the coefficient matrices on a set of parameter
values, denoted by p, is explicitly noted. Let the actual parameter values be
represented by p,. It is expected that u(¢) and z(t) as given by Eqgs (4.48)
and {4.49) will be adversely affected when p deviates from p,. In order to
study control sensitivity to parameter variations, let us write u(t} as u(p, ¢)
to show its dependence on p. Then, assuming small parameter variations,
u(p,t) can be expanded in a Taylor series around p, retaining only first-order
terms, giving

a W1
uip. 1) =ulpy, 0+ L2 () (450)
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where du/dpY is the Jacobian defined by

B duy;  duy duy
apn 1 51732 apus
du(p,, 1} . )
M T 4.51
o : (451)
du,, o,
_apul apasn

In the above, m and s are, respectively, the dimensions of #{z) and p,. The
quantities u; and p,; are the ith elements of u(¢) and p,, respectiveiy.
Equation (4.51) defines the sensitivity matrix associated with the leedback
control design with respect to parameter variations. The magnitudes of its
elements dictate the degree of control sensitivity to parameter variations.
These elements can be derived directly i the soluiion u(p,, t) is known
explicitly, or they can be determined by solving the sensitivity matrix equation

d I:Eiu(pa, ”:[:A( | au(p,, t}
* a

il L 4.5
R o+ B, (4.52)

with the initial condition

du(p,. 0) _
opy

Another approach to addressing the parameter variation problem for a
specific control design is one of direct numerical simulation. The values of
z(t) and u(t) as given by Eqgs (4.48) and (4.49) can be numericailly generated
and they can be compared with those obtained when p is replaced by possible
values of p,. This type ol simulation permits an estimate of the amount of
parameter variability that can be tolerated for a prescribed level of
performance robustness. This approach is followed by Yang and
Akbarpour®®?° and possible information that can be derived from it is
iilustrated numerically in the following example.*®

Example 44 Consider again the cight-storey structure with an active mass
damper as discussed in Example 3.5. All structural and control parameters
stay unchanged but various degrees of variability in stiffness and damping
areintroduced here to illustrate the effect of structural parameter uncertainties
on control system performance. The variations in stifiness and damping in
every storey unit are expressed as percentages of their actual values and
denoted by Ak and Ac, respectively. The variations in the fundamental
[requency and in the first-mode damping ratio, denoted respectively by Aw
and A{, are similarly defined.
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Table 4.3 Maximum response and control foree under parameter uncertaintics

Base
Estimation error Top floor Difference  shear Dillerence  Control  Diflerence
displacement  in % of ! [orce in % of force in % of
Al (%) Aw (%) Ac (%) AL (%) {cm) 1.61 cm - (kN) 1070 kN (kN) 20 kN
0 0 0 0 .61 e © 1070 — 250 ——
40 18.3 0 0 1.71 6.2 L1047 —-2.1 254 1.6
20 9.6 0 0 1.65 2.5 - 1052 — 1.7 255 20
—20 —10.3 0 0 1.59 —~1.2 - 1096 24 253 1.2
—40 —22.6 0 0 1.58 —1.8 . 1096 24 278 112
0 0 40 40 1.64 1.8 1083 14 240 —4.0
0 0 -~ 40 —40 1.59 —1.2 —1.4 259 3.6

. 1054
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The system response and control force for various values of Ak, Ac, Aw
and A{ can be calculated based on Eqs (4.48) and (4.49). Using the classical
closed-loop control as an example, the maximum values of these quantities
are tabulated in Table 4.3 for several parameter variation combinations, It
is seen that the classical closed-loop control algorithm is rather insensitive
to parameter variations. A variation of 40% in stiffness leads to a maximum
of 5.2% change in the maximum top-floor relative displacement and base
shear. Mereover, damping variations have a negligible effect on the control
force and the response quantities.

In closing, let us remark that, as seen in Section 3.3.1, a special property
possessed by the instantaneous closed-loop control is that its control gain
is not a [unction of the structural parameters. Hence, the control efficiency
in this case is not aflected by structural parameter variations.

4.5 Limited Number of Sensors and Controllers

From the viewpoint of practicality and economy, the number of sensors and
controllers will be severely limited for real structural applications, and this
is particularly true in the case of controllers. To be sure, the development of
control algorithms in Chapter 3 has been based on an arbitrary number of
controllers and has included the case ol an arbitrary number of sensors
{output {eedback ) as long as the structural system is completely controllable
and observable. However, there are still a number of pertinent questions that
remain. They include (a) what are the minimum numbers of sensors and
controllers required lor the structure to be completely controliable and
observable? and (b) where should these sensors and controllers be positioned
to produce maximum control benefit?

The answer to the first question can be obtained by testing the ranks of
the controliability matrix [ Eq. (A.60) in Appendix A] and the observability
matrix [Eqg. (A.62) in Appendix A]. It can be shown that, for structural
systems with no repeated modal [requencies, they can be made controllable
and observabie by a single properly located sensor and a single properly
located controller.®-**33 It should be emphasized, however, that practical
considerations and computational requirements often require more sensors
and controllers to be used than these minimum numbers.

4.5.1 Optimal Placement of ‘Sensors and Controllers
Given the number of sensors to be placed, the problem of determining their

optimal locations can be lormulated relatively easily. Conceptually, a criterion
of optimality should be related to maximum state information, i.e. sensor
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locations should be chosen in such a way that they produce maximum
information on the state of the structural system. For example, this approach
is taken by Juang and Rodriguez*®? where the optimal sensor locations are
defined as those points where the absolute minimum of the state estimation
error occurs. Let us recall that the state estimator £{¢) is defined in Eq. (3.23}.
When the observation error # in Eq. (3.22) is random, #(¢) is also random.
Denoting the random state estimator by Z{t), a plausible definition of the
state estimation error € is

e=E{[Z(n)—z(t)]"[Z{t)~2(1)]} (4.53)

Thus, one possible approach is to determine sensor {ocations so that the
error ¢ is minimized.

The following example, discussed by Juang and Rodriguez,*® is presented
here in order to gain insight into the minimization problem of state estimation
error and optimal sensar locations. It also serves to show the interesting
relationship that exists between optimai sensor locations and structural mode
shapes.

Example 4.5 Consider the sensor location problem associated with the free
transverse vibration of a simply supported beam of unit length as shown in
Fig. 4.18. The beam dynamics is governed by

dtw 0w
'a-?'i'*é}"f,_"—é(l—o.’?)ll(t) (4.54)

where w(x, t}is the transverse beam displacement at distance x from the left
end point and u(t) is the control force located at x=0.7. The modal
frequencies for this case are

wy= it j=12,...

and the corresponding normalized mode shapes are

qﬁ_jm\/ﬁsinjrrx, j=12 ..

Only a single point sensor is considered and we begin with the case where
the simply-supported beam ts characterized by one mode only.

Deflection

A

Figure 4.18 A simply supported beam

;ZDJ
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Case A (one mode only}): For this case, an analytical solution is possibie. Let
the sensor location be denoted by x,, the error ¢ as defined by Eq. (4.53) is
a function of x, with, under some simplifying assumptions on the control
parameters,

e(x.)=26>(p + p?)cos(=/2)
where ¢ is the variance of the measurement noise and
p=(r*+wp)'"
@ = 2sin0.77 sinnx,
a=cos Y —mn?/p?)

The optimal sensor location, denoted by x*, is then found by finding the
absolute minimum of &(x,), 0 € x, < 1. Tt is easy to show that it occurs in
this case at the midpoint of the beam, i.e.

x}=05
which, as shown in Fig. 4.19(a}, coincides with the peak of the mode shape.

Figure 4.19(b) shows the state estimation error as a function of the sensor

A

First made

Deflection

(a}
A
) ! 1
b=t 1 ! 1
5 |
g 1
2 \
= 1
£ !
FH 1
b !
= l
7]
1
b 1 I 1 ! Z_‘l
0.1 0.3 0.5 0.7 0.9
BRI RN

Sensar locatioo

(b}

Figure4.19 Sensorlccation forone-mode case (a} mode shape: (b) state estimation error
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location. Infinite estimation error occurs at the end points which correspond,
in fact, to the case of nonobservability.

Case B {two modes): For this case, the best sensor location is found to be
xF=03 or 07

It is seen [rom Fig. 4.20{a} that the peaks of the mode shapes occur at
x=0.25, 0.5 and 0.75. Intuitively, we can interpret the best sensor location
as a result of a compromise between the peaks ol the mode shapes.

The state estimation error as a function of the sensor location is shown
in Fig. 4.20(b), which shows nonobservability at the midpoint as well as
at the ends since the second mode is not observable at these points. It also
shows two relative minima at x=20.3 and 0.7 due to anti-symmetry of the
second mode relative to the middle of the beam.

Case C (three modes): The best sensor location in this case is

v F=025 or LR

4 Secand mode
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Figure 4.20 Sensor focation for two-mode case {a) mode shapes; (b) state estimation
error
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Figure 4.21{b) shows that there exist {our relative minima of the state
estimation error resulting [rom additional peaks of the mode shapes
considered as shown in Fig. 4.21(a}.

The problem of optimal controller placement has received considerable
attention. In comparison with the sensor location problem, this topic is more
complex since 4 number of issues must be addressed to arrive at a meaningful
optimality criterion. These include not only structural and control parameters
but also the type of controllers and external excitations.

A wide variety of optimality criteria have been considered. An energy
performance index is used.®* 3% Another method developed?® uses a scalar
measure, the degree of controllability, as a criterion for controller placement
on large structural systems. The use of a controllability index is another
possible criterion, 738 Other criteria that have been considered include those
based on actual control effort,?® structural failure modes*® and structural
mode shapes.*' In what follows, the methodology developed by Cheng and

- First mode
2 Third mode
(=]
=
]
]
[EN]

| W

ta) Second maode

20F

State estimation error
—_
o
T

3
[N [

) |
01 03 05 ‘ 0.7 G.QQ
Sensor location

(L)

Figure 4.21 Sensor location for three-mode case (2) mode shapes; (b) state estimation
rror
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Pantelides®” 3% will be briefly described. Based on a scalar measure of
controllability, the basic idea behind the method is that a controller is
optimally placed where the displacement response of the uncontrolled
structure is largest due to the action of an externally applied disturbance.
In this study, an earthquake-type load is considered.

The controllability index criterion developed3™ 32 for seismic structures is
based on the [ollowing considerations.

1 Lower modes are dominant in the response ol ecarthquake excited

structures.

The control objective is to reduce the structural response and stabilize

the seismic structure.

3 The controf effort in terms of control power available is limited.

4 The structural response should not exceed certain thresholds for safety
and serviceability of the structure.

1~

Based on these premises, a controllability index can be defined as

-

n

B . B
P(-\')=|:.Z {g[qu(-\:)]yj(mnx](r)}l:| (4.55)
1

=1
where
X = percent of total height of structure (0<x<1)
n = number ol modes considered
¢h;{x) = jth mode shape

Yimax(t) = maximum jth modal response spectrum

The [unetional form of g[ ] depends upon the type of controilers considered.
For example, for active tendons, it may take the form

glx)] = Adx)/Ax

where A¢{x) is the jth mode-shape difference over a height increment of
Ax. The algebraic difference of the mode shapes is taken in this case since
the relative displacement between Aoors is a critical parameter for active
tendons.

In Eq. (4.55), the modal contributions are weighted in a root-mean-square
[ashion since the modal response maxima do not occur at the same time. It
is also noted that the modal response spectra are functions of the applied load.

According to the stipulations outlined above, the optimal controller
location is defined to be the value of x for which p(x} is maximum. The next
best location is one [or which p{x) has the second largest value, etc.
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Example 4.6 A 15-storey shear building, as shown in Fig. 4.22, is studied
for optimal location of active tendon controllers on two of its floors. The
structural properties of the building are assumed to be as [ollows:
floor stiffness k=3000k/in and floor mass m=2k-sec?/in [or all floors;
damping = 3% critical. The first two natural frequencies of the uncontroiled
structure are 3.92 rad/sec and 11.73 rad/sec; these [requencies correspond to
periods of 1.60 sec and 0.54 sec, respectively.

The instantaneous closed-loop control algorithm as discussed in Section
3.3 is used for control design. The weighting matrix @ is assumed to be
diagonal with g; = 15000 and the R matrix is varied in order to achieve
different levels of control [orces.

The controllability index ol Eq. {4.55) is used to establish optimal locations
of the two active tendons. Using response spectra for the 1940 N--8 El-Centro
earthquake record, the first two maximum modal response values are
Vimax = 04391t and y,.,, = 0.265 ft. The first two modes are considered in
evaluating Eq. (4.55) and the values [or each term of the controilability index
are given in Table 4.4,

A plot of p{x) for the present cxample is shown in Fig. 4.23. It is seen that
the two largest values of p{x) occur at the first and second floors. Hence,
according to the controllability index criterion, they are optimal locations
for the active tendon controllers.

vy
L L7
e s
L f'} fJ
X
3
AT SRS

Figure 4.22 The 15-storey structure™®
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Table 4.4 The controllability index

Ist mode 2nd mode
Floor X B, {x) 1 {x) Adr/Ax Ag,/Ax g (x)
1 0.067 0.026 —0.076 0.390 1.140 10.60
2 0.133 0.051 —0.145 0.375 1.035 9.76
3 0.200 0.076 —-0.201 0.375 0.840 8.45
4 0.267 0.100 ~(.238 0.360 0.555 6.59
5 0.333 0.123 -.254 0.345 0,240 5.01
6 0.400 0.145 -0.246 0.330 0.120 4,52
7 0.467 0.165 —0.216 0.300 0.450 542
8 0.533 0.184 —0.165 0.285 0.765 7.27
9 0.600 0.201 —0.100 0.255 0.975 8.60
10 0.667 0.216 —0.026 0.225 1.110 947
11 0.733 0.228 0.051 0.180 1.155 8.65
12 0.800 0.238 0.123 0.150 1.080 8.97
i3 0.867 0.246 0.184 0.120 0915 1.57
14 0.933 0.251 0,228 0.075 0.660 543
13 1.000 0.254 0.251 0.045 0.345 286
Floor Controllability index p(x)

Figure 4.23 Optimal jocations of active tendons®®
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4.6 PDiscrete Time Control

Another important consideration in real-time control implementation is the
discrete-time nature in the application of a control aigorithm. Strictly
speaking, continuous-time control algorithms such as those developed in
Chapter 3 can only be executed in discrete time since a digital computer
is usualily used [or on-line computation and control execution. Digital
computers are better suited for real-time control because of their fexibility,
reliability and speed. As a consequence, response measurements are digitized
as feedback signals and control [orces are applied in the form of piecewise
step [unctions through the use of analogue-digital converters. Hence, they
are not continuous [unctions as called for by continuous-time control
algorithms.

With this in mind, discreie time [ormulation of active structural control
has been a topic of some recent investigations.*?~** As shown by Chung
and Soong,** there are actually some inherent advantages in using discrete
time [ormulations, For example, time delay can be compensated in a
straightforward fashion by modilying only the feedback gain without
demanding extra on-line computation. Output feedback can aiso be accom-
modated with resulting savings in the number of sensors required. Moreover,
it is shown*¥** that predictive control can be easily developed using the
discrete time approach.

We shall first develop in this section a discrete-time analogue of the
continuous version of the classical optimal control algorithm given in
Chapter 3, into which time delay will be incorporated. This will be [ollowed
by a derivation of predictive control developed by Rodeller et al.****

Consider again structural systems governed by Eq. (3.1). The solution of
z(t) at some time 7,(t, = t,) can be written as

z(ta) =exp[A(t: —1)]z(z,)

ts
+ J. expLA(t, — ) ][ Bu(t)+ Hf(t)]dt (4.56)
L3

Suppose that the state vector z(¢) and the external excitation f¢) are sampled
with period 1 for on-line calculation, Between two consecutive sampling
instants kt and (k + 1}z, the best available information about the excitation
is fTkt}. Thus, excitation is sampled as zero-order hold and is thus assumed
to be constant between two, consecutive sampling instants. In real-time
control, the calculated discrete-time control signal is converted into a
zero-order-hoid analogue signal, which is a piecewise step [unction over
sampling intervals. Therefore, the system can be described in a discrete-time
fashion by

k+D)=A'z(k)+ B'w(k)+ HAAk), k=0,1,... (4.57)

97



Active structural control: theory and practice

where
A =exp{Ar), B =AY A'-NB, H=A"YA'-DNH

The discrete-time system is also shift-invariant and stability of the
uncontrolled system is preserved under sampling. Provided the sampling rate
is two times larger than the highest controlled modal [requency, the
discrete-time system given by Eq. (4.57) is controllable il and only il the
corresponding continuous-time system is controllable.*3

Inevitable time delay in control execution makes it necessary to consider
appropriate modifications to the control algorithm. In the presence of time
delay mt, Eq. (4.57) becomes

(k+1)y=A'g(k}+ B'ulk - m}+ H' flk) (4.58)

Under classical optimal control criteria, the active control force, u(t), is found
such that the summation

[ZT(K)Qz{k) + u™(k —m)}Ru(k — m)]

2 K F

(4.59)

is minimized, where n is defined such that f{k)=0 for k> #n, and Q and R
are weighting matrices as belore. By introducing the costate vector A(k), the
constraint equation (4.58) can be incorporated into the performance index as

J= "f {% 2T (k)Qz(k) +—12- uT(k —m)Ru(k —m)

k=m
+ AT (k+ DA 2(k)+ B'ulk—m)+ Hf(k)— z(k + 1)]} (4.60)
The solution of the optimization problem described above can be obtained

using varfational procedures as described in Section 3.1. In addition to the
constraint equation (4.58), the Euler-Lagrange equations are

AlkY= Qz(k)+ ATk +1) (4.61)

and
ulk—m)=—R"'BTik+1), k=m, ...,n (4.62)
Under linear optimal feedback control, the costate vector, 4(%), has the form
M+ 1D)=Plk+Diz(k+1) (4.63)

and the control force vector is linearly related to the state variables as
uk—m)=R'BTP(k+ )z(k+1), k=m,...,n—1 (4.64)
where P(k) satisfies the discrete-time matrix Riccati equation

P(k)=Q+ATP(k+1)[I+BR'BTP(k+ 1)]714"  (465)
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with boundary condition
Pimy=10 (4.66)

As discussed in Section 3.1, P(k) can in most cases be approximated by a
constant matrix P.

With Egs (4.61) and (4.63)}, the state variables over a sampling period are
related by

Wk +1)=Tz(k) (4.67)
where
T=(ATP)"Y{P-Q) (4.68)

By repeated application of Eq. (4.67), the control force under linear state
feedback with time delay compensation can be expressed as

a{k—m)=G{m)z(k —m) {4.69)
where
G(m)=—R™'BTPT"! {4.70)

As we have seen in Section 4.2, the dynamie equation of a continuous-time
system with time delay becomes a differential-difference one which makes
the stability problem of [eedback control difficult. However, the dynamie
equation of a discrete-time system remains a difference one in the presence
of time delay. The stability problem is just the eigenvalue problem of the
augmented cffective system matrix. The effect of time delay without
compensation can be investigated through the corresponding poles and
frequency response [lunctions with G=G(0) How well time delay is
compensated can be studied with G = G(m).

Example 4.7 [n this example, the discrete-time control algorithm developed
above is applied to the study of the structural system discussed in Example
3.1 with special attention paid to the time delay effect. The poles of the
controlled system transfer function with uncompensated and compensated
time delay are listed in Table 4.5 [or different amounts ol delay. For the
uncompensated case, it is seen that one of the poles is approaching a unit
circle of the complex plane as time delay increases. If time delay is further
increased, the control system will become unstable. The corresponding
relative displacement frequency response functions are plotted in Fig. 4.24.
The peak amplitude increases rapidly as a function of time delay and it shilts
to the right as time delay increases.

For the compensated case, the pole that is closest to the unit cirele in the
complex plane remains the same for different time delays (Table 4.5), but the
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Table 4.5 Poles of system transfer function

Time
delay Pales ol uncompensated Poles of compensated
{m) transfer function transfer function
0 0.8940 + j0.2130 0.8940 £ j0.2130
1 0.8841 1 j0.2357 0.8940 +j0.2130
0.1792 0.1595
0.0 0.0
2 0.8865 &+ j0.2722 0.8940 + j0.2130
0.5138 0.4558
-0.3395 —0.2963
+3.765 % 10°° +i25%x 107"
3 0.9164 +0.3016 0.8940 + j0.2130
0.6792 0.6359
—0.2823 +j0.3971 —0.2382 +j0.3334
{—1.1989 + 2.077) x 10 ~© (1.750 4 j3.031) x 1078
0.2398 % 107°¢ 350 x 1075
4 0.9508 + j0.3068 08940 +j0.2130
T 07465 07348
—0.5619 —0.06197 +j0.4774
—0.07087 +j0.5933 -0.4514
(43.599 +3.599) x 10~ +1.168 x 107

—34x 10710 41168 x 10~*

number of poles increases by two as time delay increases by one time interval.
Although the effect of time delay cannot be perfectly compensated, the peak
amplitude is now less sensitive to time delay and system stability is ensured
(Fig. 4.24). The peak frequency shifts slightly to the leflt as time defay increases.

The eflect of time delay compensation is illustrated by comparing the
frequency response functions for various values of m (Fig. 4.24), When m = 1
and 2, the delay uncompensated case is even slightly better than the delay
compensated case as far as peak amplitude is concerned. But when m=3
and 4, the contribution of time delay compensation becomes apparent.

In order to gain more insight into the problem in time domain, results of
a computer simulation are presented in Figs 4.25--4.29 with the north-south
component of the 1940 El Centro earthquake acting as the base excitation.
When no time delay is introduced, the uncontrolled and controlled relative
displacements are shown in Fig. 425, From Fig. 4.29, it is seen that the
control eflect without time delay compensation is even worse than the
uncontrolled case when m = 4. By comparing Figs 4.26-4.29, it is found that
the uncompensated case is slightly better than the compensated oneform=1
and 2 as far as peak response is concerned, but it is much worse lor m=4.
The results match those obtained [rom the frequency response [unctions.
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Figure 4,24 Relative displacement frequency transfer functions

4.6.1 Predictive Control

The basic issues in formulating a discrete-time predictive control algorithm
can be summarized as follows:**** (1) at each sampling instant kz,
-a prediction horizon is defined over a finite number of steps ahead and a
discrete-time model is used to predict the response over this horizon as a
function of the control sequence; and (2) the control computed at instant kt
is a part of the control sequence that produces a desired response trajectory
over the prediction horizon; this trajectory verifies a performance criterion.

Consider here the predictive horizon [ k1, {k + A)t] over which the response
can be predicted by a state-space model of the form

k4 jlky= Ak + j— 1k} + Ba(k+ j— 1|k) (4.71)
where Z(k + j— 1]k) is the state vector predicted at instant & for instant

k+j—1,@(k+ j— 1]k} is the corresponding control sequence, and A and B
are the discrete-time system and control matrices, respectively. This model is
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redefined at each sampling instant k in the form
' £kIk)=z(k)
2
H(f\”\) = H(k) (47‘_)

where z{k) and u(k) are the state vector and the control signal at instant &.
A general performance criterion to define the desired trajectory and the
control vector u(k) may consist of minimization of the cost function

z [ath + 1K) =0k + k)] @UILE(k + 1K) = 5,0k + /16)]

l\JE

Z (k+ jllYTR() itk + jlk) (4.73)

where the weighting matrices @(j)(j=0, 1, ..., A) and R(j{j=0, 1, ...,
A — 1) are real positive semi-definite and R() is also non-singular. ¢, is a
reference trajectory which may be redefined at each sampling instant & starting
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from the current output and evolves towards a target state according to a
chosen dynamics.

This cost [unction can be minimized by following standard optimization
techniques like those described in Chapter 3. Within the predictive control
strategy, 2 more intuitive and direct solution can be found which requires
less computational effort. This selution is based on imposing some specified
shapes to the conirol sequence on the prediction “horizon, which allows a
reduction in the number of unknowns in the minimization of the cost function.

A particular choice of the shape ol the control sequence may be that of a
step or of a puise. One may consider, as an example, the following index:

1 A
J=3 _Zl L&k + jll) — 2 (k + jIK)TTQUILE(K + jlk) — 2, (k + jIk)]
2 4
+% Ak k)T Ra(k|k) (4.74)

103



Active structural controf: theory and practice

0.8~

Uncompensated

—.4|

—().8 3 : 4 1 H 1 | 1 |
0.8

x{1) (in)

—0.4

~{.8 1 ] ! | : ] ] i ] i

i 2 4 6 8 10
1 {sec)

Figure 4.27 Relative displacement (m=2)

In the case of a step-shaped control sequence, the minimization of index
{4.74) is performed by using the condition

wlk+ jlk)=da{kik)=u(k), j=1,..., -1 (4.75)

By using Eqs (4.71), (4.72) and (4.75), the process output predicted at instant
k for consecutive instants K+ j{j=1, ..., 4) can be expressed as a function
of the current state vector 7{k) and the control vector u(k) as

2k + Jll)=T(j)z(k) + S(Hul(k) {4.76)
where T(j} and S{j) are matrices given by

T(j)=A4' }

S(f)=u+ri+33+__.+jf—2+gj—1)3 (4.77)
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The substitution of Eq. (4.76) into Eq. (4.74) gives

1

J=5 ¥, LTS+ SU(k) =50k + 1K1 QL)

(S

1
X LT)atk) + S(ulk) =z (k+ )]+ 5 u'{(k)Ru(k) (4.78)

Since w{k) is the only unknown in Eq. (4.78), it can be obtained by imposing
the lollowing condition on the gradient of J:

aJ
Fulk) =0 (4.79)
The application of condition (4.79) to Eq. {4.78) results in
A z(kY+ B'u(k) = pi{k) (4.80)
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where A" and B’ are matrices given by

and p{k) is a vector defined by

2
uik)= ; z.(k+ jlk)

o
]
—
=

{4.81)

(4.82)

which represents a weighied average of the reference trajectory in [k, k 4+ A].
The control vector is finally reduced from Eq. (4.80), resulting in the [ollowing

contro law:
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The computation of the control gain matrix B'~ A4’ is significantly simpler
than that of the gain matrix in the optimal control law which requires the
solution of a Riccati equation. A particular choice of weighting matrices Q{ j)
and R which further simplifies the computation of matrices 4’ and B’ is

R=10
O(j)=0, j=1..4i-1
0(1)=Q
In this case, the control law reduces fo
ulhy= —B' " A'z(ky+ B C' g {k + k) {4.84)

where now
A =S 4)0T(4)
B = ST(A)QS(4) (4.85)
C'=5"(20

With this particular choice of matrices Q) and R, index (4.74) is reduced to

J =% [E(k 4+ Alk)— 2. (k + AlK)TT QLA + A1k) — 2. (k+ A1k)] (4.86)

The minimization of this index implies that the desired outpul at instant
k+ 4 will be as close as possible to the reference trajectory. In the special
case in which the input and output vectors have the same dimension, the
minimum value for J is zero. This case means imposing the criterion that
the desired output atinstant & + 2 should be equal to a given value g, (k + A}k).

Example 4.8 Toillustrate the main features ol predictive control, it is applied
to a one-degree-of-freedom system subjected to the horizontal ground
acceleration % (t} shown in Fig. 4.30 and to a horizontal control force u(r).
The equation of motion takes the form

mE()+ ex(e)+ kx(t)= — m3(t) + u(t)

with m = 866.5 tons, ¢ = 346 tons/sec and & = 128 x 10% N/m. The matrices
A and B in Eq. (4.71) are defined through the discretization procedure using
a sampling period t = 0.05sec. The predictive control law (4.84} is used to
compute the control force at each sampling instant. The value of the reference
trajectory z.(k + j) is obtained by the discrete-time equation

glk+jlk)=Aztk+ -1k, j=1,..,2 (4.87)
where A, is chosen in such a way that Eq. (4.87) represents the [ree vibration

of a harmonic oscillator with critical damping and frequency w. The initial
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Figure 4.30 Seismic ground acceleration in Example 4.8

condition is z.(k| k) = z(k) where z{k) is the state vector measured at sampling
instant k.

As illustrated in Fig. 4.31, a faster {rajectory corresponds to a higher
frequency. In a limiting case, a null trajectory may be considered, thus
_resulting in a discontinuous jump from the displacement x,(k) 1o a null value.
The weighting matrix @ reduces, in this single-degree-of- freedom case, to a
positive scalar and it has been fixed as equal to one. Consequently, the
parameters to be chosen in each application are the value ol 4 defining the
prediction horizon and that of frequency w of the referenced trajectory.

Numerical simulations were carried out in which the predictive control
was used by varying the value of A [or different values of w. In Fig. 4.32, the
maximum displacement and the control force are shown for these cases. For
the purpose of comparison, the maximum displacement without control is
9,7 cm.

Xk

r.u|<u.13<m3

o

Null trajectory —

K E+x k+j
Figure 4.31 Reference displacement trajectaries
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Some important {eatures ol predictive control can be observed [rom
Fig. 4.32. For a given reference trajectory, a decrease in parameter A results
in a decrease in the displacement together with an increase in the control
force. At the same time, by comparing the graphs for different reference
trajectories, il can be seen that, for a larger value ol w, displacements are
smaller and control forces are greater. These comments may be interpreted
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according to the physical significance of parameters 2 and w. A smaller value
of A implies a shorter prediction horizon and, according to the strategy of
predictive control, it determines a desired output closer to the equilibrium
position. On the other hand, a higher value of e results in a faster reference
trajectory, which also imposes a desired output closer to equilibrium.
Consequently, the smaller the value of A or the greater the value of o is, the
more demanding the control action is.

4.7 Reliability

While reliability is of central importance in all areas of system analysis, design
and synthesis, it takes on an added dimension of complexity, both
technologically and psychologically, when an active control system is relied
upon to ensure salety ol a structure. First of all, when active control is only
used to counter large environmental forces, it is likely that the control system
.will_be_infrequently activated. The. reliability ol a system operating largely
in a standby mode and the related problems of maintenance and performance
qualification become an important issue. Furthermore, active systems rely
on external power sources which, in turn, rely on all the support utility
systems, These systems, unfortunately, are most vulnerable at the precise
moment when they are most needed. The scope of the reliability problem is
thus considerably enlarged if all possible ramifications are considered.

Not to be minimized is the psychological side of the reliability problem.
There may exist a significant psychological barrier on the part of the
occupants of a structure in accepting the idea of an actively controlled
structure, leading to perhaps perceived reliability-related concerns.

The reliability problem can be addressed by identifying important factors
influencing the control system perlormance. Methodologies are well
developed and one of the approaches is discussed here for a simpie case.®
For the sake of simplicity, only the effect of time constant, i.e. time required
for generation of the required full control {orce, on the reliability of structural
control is considered.

Example 4.9 Consider a single-degree-of-lreedom structural system des-

cribed by
. 0 I _ 0 0
zm:[—lG.G? _1.67}(f)+[l]ﬂ(f)-i-[l]f(f) {4.88)

and suppose the control law is given by

w(t)= —[50 0]z(1) (4.89)
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With the presence of a random time constant T in the control loop, the
transfer function of the controller, H (s}, has the form

H.(s)= (4.90)

where g is a constant gain which is determined by the control law. Let us
assume a unilorm distribution in the interval [0, 0.1] for T. The effect of this
time constant on the reliability of structural centrel can be important since
the displacement of the controlled system can increase significantly with
increasing values of the time constant. Hence, the failure probability at a
given limiting displacement will be increased.

For the purpose of this study, lailure is said to occur when the maximum
displacement of the structural system exceeds a certain level. To study the
time constant eflect, 12 sample values of T are chosen [rom the assumed
uniform distribution. For each sample, the maximum displacements to 20
artificial earthquakes are computed. These data points are then plotted on
- an extreme-value probability paper as shown in Fig: 4,33, These results show
that, while ideal control systems {with zero time constant) are effective in
reducing the structural response, relatively large values of T may cause
adverse effect.

0.10+
e 020
S 030 ]
8 (40} With conirol
S osof- time constant = {.099
5 0.60)
£ 0.70F
T 080k
wl
o
3 ook
e
g
E sk :
With control .
time constant = (1.0 \\
0.99 ; ; ; . .
0.3 1.0 1.5 10 2.5 3.0

Maximum displacement respanse (in)

Figure 4,33 Empirical distribution function of maximum displacement®
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Assuming that the distribution function for the maximum displacement
conditional upon the time constant has the extreme-value form

Fyx|t)=exp{ ~expla{t)x+b(r)]}, x=0 (4.91)

the parameters of the distribution can be estimated based on the data
generated above, resulting in

a(t)= —4.87 + 1091 + 121.2¢7
b{t)=4.92 + 18.04¢ — 227.7¢*

The probability distribution functien of the maximum displacement may be
found from

Fylx)= r Fypr(x10) fy (1)t (4.92)

0

where f7(t) is the probability density function of T. In this case,

=0{, elsewhere

It can be seen from Fig. 4.33 that F,(x) les to the right of that for the
structure with an ideal control system. In other words, lor a given limiting
displacement value, the probability of [ailure is higher in the presence of time
constant than that for ideally controlled structures. By increasing the
distribution interval of the time constant or by changing the shape of f;.(¢),
it is even possible to obtain a higher failure probability for the controlled
structure than for an uncontrolled structure,

[

4.8 Other Considerations

We have touched upon only a {ew topics which may become important [rom
the point of view of control implementation. In addition, eventual imple-
mentability of an active control system will depend on the seolution or
resolution of a number of key problems dealing with hardware development
and its cost-effectiveness when compared with other means of structural
control. Active control requires the generation of large control forces, for
which a new generation of actuators and control systems will be required.
Furthermore, appropriate control devices must be developed not only based
on technological comsiderations, but alse on economic, aesthetic and
structural integration grounds. Above all, cost-effectiveness must be carefully
assessed for various specific structural applications.
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5 Control Mechanisms and
Experimental Studies

As in all other new technological innovations, experimental verification
constitutes a crucial element in the maturing process as active structural
control progresses [rom conceptualization to actual implementation.
Experimental studies are particularly important in this area since hardware
requirements for the fabrication of a [easible active control system for
structural applications are in many ways unique. As an example, control of
civil engineering structures requires the ability on the part of the control

—device to generate-large control forces with high-velocities-and-fast-reaction

times. Experimentation on various designs of possible control devices is thus
necessary to assess the implementability ol theoretical results in the laboratory
and in the field.

In order to perform feasibility studies and to carry out control experiments,
investigations on active structural control have focused on several control
mechanisms. In this chapter, some of these control schemes are introduced
with emphasis on their performanee in the laboratory.

b1 Active Tendon Control

Active control using structural tendons, proposed as early as 1960 by
Freyssinet, has been one of the most studied mechanisms both on paper and
in the laboratory. The system generally consists of a set of prestressed tendons
connected to a structure whose tensions are controlied by electrohydraulic
servomechanisms. One of the reasons for [avouring such a control mechanism
has to do with the [act that tendons are already existing members of many
struetures. Thus, active tendon control can make use of existing tendons and
thus minimize extensive additions or modifications of an as-built structure.
This is attractive, for example, in the case of retrofitting or sirengthening an
existing structure. Another attractive [eature is that active tendons can operate
in the pulsed mode as well as in the continuous-time mode. Thus, active
tendon control can accommodate both continuous-time and pulse control
algorithms.
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Active tendon control has been studied analytically in connection with
control of slender structures,* tall buildings,>"!? bridges!'™*? and offshore
structures.**~'® Early experiments involving the use of tendons were performed
on a series of small-scale structural models,'” which included a simple
cantilever beam, a king-post truss and a free-standing column while control
devices varied from tendon control with manual operation to tendon control
with servovalve-controlled actuators. Actuator dynamics and placement of
sensors and controllers were studied. The influence of time delay was
demonstrated by varying the phase of the feedback control force.

More recently, a comprehensive experimental study was designed and
carried out in order to study the feasibility of active tendon control using a
series of carefully calibrated structural models. As Fig. 5.1 shows, the model
structures increased in weight and complexity as the experiments progressed
from stage 1 to stage 3 so that more control features could be incorporated
into the experiments. Figure 5.2{a} shows the model structure studied during
the first stage. It is a three-storey steel frame modelling a shear building by
the method of mass simuiation; the top two floors are rigidly braced to
simulate .a single-degree-of-teedom-- system, % The- model-is similar-in
geometry, material properties and boundary conditions to a structural model
extensively tested in several laboratories!®*? and it is approximately a 1:4
scaled model of a prototype structure {1:2 scaled model), which has also
been extensively tested.

The model was mounted on a shaking table which supplied the external
load. The control force was transmitted to the structure through two sets of
diagonal prestressed tendons mounted on the side frames as indicated in
Fig. 5.2(b). In the experiment, the classical optimal closed-loop contrel
algorithm, discussed in Section 3.1, was employed with time delay compensation
based on the procedure developed in Section 4.2

Stage 1: SDOF Model
{0400 Tbs)
3
Stage L IDOF Model
(6400 Tbs)
4
Stage 3: 6DOF Madel

{42000 1bs)

Figure 5.1 Active tendon control experiments
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(k)

Figure5.2 Stage 1 modal structure (a} view of the model; {b) tendon arrangement?®
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Results obtained [rom this series of experiments are reported.?’*? Several
significant features of these experiments are noteworthy. First, they were
carefully designed in order that a realistic structural control situation could
be investigated. Efforts made towards this goal included making the model
structure dynamically similar to a real structure, working with a carefully
calibrated model, using realistic base excitation, and requiring more realistic
control forces.

Secondly, these experiments permitted a realistic comparison between
analytical and experimental results, which made it possible to perform
extrapolation to real structural behaviour. Furthermore, important practical
considerations such as time delay, robustness of control algorithms, modelling
errors and structure-conirel system interactions could be identified and
realistically assessed.

At stage 2, rigid bracings on the top two floors of the model structure
shown in Fig. 5.2(a) were removed in order to simulate a three-degree-of-
freedom system. This multi-degree-of-freedom model provided opportunities
for study and verification of a number of control features which were not
possible in the earlier stage I study. These included -modal control, time delay
in the modal space and conirol and observation spillover compensation.
Moreover, further verification of simulation procedures couid be carried out
which gave added confidence in using simulation for extrapolating active
control results to more complex situations. The control algorithms tested in
this series of experiments included instantaneous optimai control and
discrete-time control algorithms as well as the classical closed-loop optimal
control.?*"** Experimental results compared favourably with analytical
results obtained under the same conditions, and they showed that the motion
of all three floors can be effectively controlled using a single actuator when
control design is carelully carried out by taking into account the above-
mentioned practical considerations.

As a further step in this direction, a substantially larger and heavier
six-storey maodel structure was [abricated for stage 3 of this experimental
undertaking. As shown in Fig. 5.3, it is also a welded space [rame utilizing
artificial mass simulation. Some ol the model’s properties are given in
Table 5.1.

Multiple tendon control was possible in this case and the [ollowing
arrangements were included in this phase of the experiments:

1 A single actuator is placed at the base with diagonal tendons connected

to a single floor.

A single actuator is placed at the base with tendons connected simultaneously

to two floors, thus applying proportional control to the structure.

3 Two actuators are placed at different locations of the structure with two
sets of tendons acting independently.

-
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Figure 5.3 Stage 3 mode! structure?®

Table 5.1 Properties of Stage 3 model
structure

Height ({t) 18
Weight (kips) 42

Modal frequency (Hz)

Modal damping factor (%) 11
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Figure 5.4 Examples of tendon arrangements=®

Several typical actuator—-tendon arrangements are shown in Fig. 5.4.
Attachment details of the tendon system are similar to those shown in
Fig. 5.2{b).

Another added feature at this stage was the testing of a second control
.system, an active mass damper, on the same model structure, thus allowing
a performance comparison ol these two systems, The active mass damper
will be discussed in more detail in the next section.

For the active tendon systems, experimental as well as simulation results
have been obtained based upon the tendon configurations stipulated above,
Using the N-S component of the El-Centro acceleration record as input, but
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O G-
/ /
/ /
sk / 5t /
/ /
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& s [ /
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{a) {n

Figure 5.5 Reduction of maximum response normalized to uncontroiled top displacement
(a) experimental results; {b) simulation resuits
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scaled to 25% of its actual intensity, control effectiveness was demonstrated,
Forexample, in terms of reduction of maximum relative displacements, results
under all actuator—-tendon arrangements tended to cluster within a narrow
range as shown in Fig. 3.5. At the top floor, a reduction of 45% could be
achieved. Figure 5.5 [urther shows that there was reasonably good agreement
between experimental and simulation resuits. Control force and power
requirements were also found to be well within practical limits when
extrapolated to the full-scale situation.?®

It is instructive to give more details ol the experimental set-up, results
obtained and their implications with regard to all the experiments described
above. To conserve space, however, this will be done only for the experiments
performed at stage 2.

e

Lumped masses
balast steel —
block a

1"

2'-f

Pretensioned active
control cables 1/4" 4

il N =

)
/ B
I
; ™
fomted Hydraulic [5] ¥
[ Foundation | actuator ‘ I LI
Shaking table Shaking table
a) (b}

Figure 5.6 Configuration of model structure for MDOF system (total weight 6250 Ibs)
{a) front view; (b) side view
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5.1.1 Stage 2 Experiments

As described above, the basic experimental set-up used in this study consisted
ol a three-storey 1:4 scale [rame with one tendon control device implemented
to the first floor (Fig. 5.6). The control was supplied by a servocontrolled
hydraulic actuator through a system of tendons.

The state variable measurements were made by means of strain gauge
bridges installed on the columns just below each floor slab. For each set of
the strain gauge bridges, the signal from one strain gauge bridge was used
as the signal of measured storeydrift displacement between adjoining storeys,
while the signal [rom the second set was further passed through an analogue
differentiator to yield measured storeydrift velocity. The base acceleration
and the absolute acceleration of each Aoor were directly measured by the
use of accelerometers installed at the base of the structure and on the floor
slabs. The transducers and instrumentation system are shown in Fig. 5.7. A

Channel beam
Cancrete biock

T

o Accelerometer
H Strain pauge
= LVDT
0 Load cell
Figure 5.7 Transducers used in instrumentation system
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block diagram showing the measurement system and the control procedure
is given in Fig. 5.8,

The model was shaken by means of a shaking table with banded white
noise and an earthquake accelerogram. Under white noise excitation, modal
properties were identified from the frequency response functions for system
identification. Moreover, it provided a preliminary examination of the system
performance including structural, sensor and controller dynamics for more
realistic inputs that were to follow. The N--§8 component of the El-Centro
acceleration record was used in the experiment; however, it was scaled to
25% of its actual intensity to prevent inelastic deformations in the model
structure during uncontrolled vibrations. The reproduced time history and
the frequency distribution of the scaled down El Centro excitation are shown
in Fig. 5.9.

The classical closed-loop optimal control with time delay compensation
was first studied with all three modes under control. After carrying out the
variational procedure, it was found that there was only a slight increase in
natural frequencies (stiffness) but damping [actors were increased from 1.62 %,
-0.39% and 0.36% to-12.77%;-12:27%-and-5.45 % (Tables-3.2 and 5.3):

Active J
tendons
T /w————Ac{uator
I? — 4 v
REC T
Xn Conditioner
l g
v
) * Analogue
differentiator

43
¥ Yo
Servavalve | o IBM-PC with  jge—d ¥
controller A/D & DYA board

Figure 5.8 Block diagram of contral system
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Figure 5.9 Scaled-down El Centro excitation

The spillover was investigated by selecting the first fundamental mode as
the controlled critical mode. The critical modal quantities were reconstructed
from the measurements at ali floors. The eflect of spillover to the residual
modes was studied. When lewer output measurements were available, the
estimated critical modal quantities were actually affected by the observation
spillover to the residual modes, Even worse, time delay was compensated as
if’ the outputs were contributed by the critical modes alone. The combined
effect of observation spillover and time delay made the system unstable,

When the first fJundamental mode was the only controlled critical mode,
the modal quantities were recovered from measurements at all three floors.
In the presence ol modelling errors {mode shapes were not exactly orthogonal)
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Table 5.2 Parameters of the model structure

56 0O 0
Mass matrix M {Ib-sec”/in) 0 56 0
L0 0 56
15649 —0370 2107 |
Stiffness matrix K (1b/in) —-9370 17250 -—9274

2107 —9274 7612 |
2185 —0327 0352
Damping matrix C {lb-sec/in) —-0327 2608 -0.015
0.352 —0015 2,497

224 ]
Modal lrequency w (Hz) 6.83
11.53
162 ]
Maodal damping factor £ (%) T 0039
0.36
Tendon stiffness k_ {Ib/in) 2124
Tendon inclination & {°} 36

0.262 0.743 0.583
Modal matrix & 0.568 0.373 —-0.728
0.780 ~0.553 (.360

and measurement noise, the first modal quantities could not be reconstructed
perfectly and a small contribution of the residual modes to the [eedback
signal was unavoidable. Because of small stability margins (small damping
factors) for the second and third modes, the model structure was very sensitive
to these errors. To circumvent this problem, the command control signal
was passed through a low-pass filter before driving the actuator in order to
eliminate the effect of the residual modes. However, no perfect filter exists;
the higher the order of the filter, the sharper is the cutoff {requency, but the
longer is the time delay. As a compromise, a third-order Butterworth filter
with a cutofl frequency of 5 Hz was selected, but time delay was increased
from 35 msec to 88 msec.

Acceleration frequency response functions as shown in Figs 5.10-5.12 were
constructed by using banded white noise excitation. For the three controlled
modes, significant damping effect (large active damping) was reflected [rom
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Table 5.3 Parameters of control system

Three One
controlled controlled
Parameters modes mode
o . Kin
Response weighting matrix Q! [iﬂd‘j
Control weighting matrix R[*1 200k,
228 | [ 2.28 ]
Modal frequency w (Hz) 6.94 6.83
11.56 | | 11.53 |
12.77‘.] 1.62
Modal damping factor § (%) 1227 0.39
| 545 | | 0.36 |
Time delay 1., t; (msec) 35 LY
. 0.1857 .1. 0.0056
—0.1571 0.0123
. . 0.0641 0.0157
Feedback gain matrix G7 0.0171 0.0027
0.0021 0.005%
0.0055 0.0076

[1] K is structural stifness matrix
[2] k. is tendon stiffness

a decrease in peak magnitudes, but peak frequencies shifted to the right due
to small active stiffness, It was shown that all three modes were under control
with one controller in the presence of time delay. For the case of one controlled
mode, the peak of the first mode was decreased but the peaks of the second
and third modes were increased. Due to the effect of control spillover, the
performance of the controlled system was not better than that of the
uncontrolled one.

Under El Centro excitation, significant reduction in acceleration was
achieved with three controlled modes. In addition to the reduction in
peak magnitudes, the effect of active damping was clearly evident due fo
control execution but the excitation frequency was distributed over all three
modes. Due to control spillover, the control effect was greatly degraded
(Figs 5.13-5.15).

The instantanecus optimal control algorithms were also studied with all
three modes under conteol using the seismic excitation. With carefully chosen
weighting matrices, similar control effects could also be achieved.
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Figure 5.10 First-floor acceleration frequency response functions
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Good agreement was achieved between analytical and experimental results,
The discrepancies were larger in the uncontrolled test due to the servocontrolled
system. The actuator was kept stationary by this system during uncontrolled
tests. However, slight actuator movement was induced by the structural
motion and the actuator movement was continuously corrected to reduce
the error to zero. This interaction between the controller and the structure
made the damping force a complicated function of the structural response,
For the case of El Centro excitation, some discrepancies resulted [rom the
[act that the equivalent viscous damping was different [rom the calibrated
one measured in the banded white noise tests. However, lor the controlled
cases, most of the damping was contributed by the leedback force. Therelore,
the influence of actuator—structure interaction was negligible and excellent
agreement was observed. With one controlled mode, the control force was
ofalower magnitude and of a lower [requency, leading ta a better performance
of the actuator and hence excellent agreement between experimental and
analytical results.

The results presented above are encouraging in that they show simple
control-systems-can-be-eflective [or response-control-of complex-structures.
In addition, extrapolations show that tendon control can be {easible {or
full-scale structural applications in terms of [orce and power requirements.

25m
" L}
25m
2.3 m C‘{mcrcte stab 100 ton
25m
25m
235 m
- 1'--; r™

10m
Elevation

Figure5.16 Full-scale test structure {courtesy of Takenaka Corperation, Tokya, Japan)
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5.1.2  Full-scale Testing

In closing, it is noted that plans are underway lor [ull-scale testing and
demonstration of an active tendon system. A six-storey, 600-ton symmetric
building as shown in Fig. 5.16 has been erected in Tokyo, Japan. In fact, two
contro] systems will be tested on the structure: a biaxial active mass damper
system and a biaxial active tendon system.

 As shown in Figs 5.17 and 5.18, the active tendon system consists ol four
actuators attached to bracings on the first floor. It is designed to provide
motion control in either of the two directions.

The planned rescarch tasks upon completion of the installation are:

1 Calibration of the control systems by using one of the systems as motion
inducer and the other as motion controller. Even without actual seismic

Figure 5.17 Active tendon configuration {isometric view of test structure)
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Figure 5.18 Plane view of active tendon system

motion, much of the performance characteristics can be assessed using
this calibration methed. During the calibration period, several feasible
control algerithms will be evaluated and control parameters refined on
the basis of knowledge gained in the laboratory.

2 One of the systems will be deactivated for a peried of six months in order
toallow the assessment of the other system under actual ground excitation.
This activation—deactivation phase will be rotated between the two

control systems. A total five-year observation period is planned.

b.2 Active Mass Damper and Activé Mass Driver

The study of this control mechanism was in part motivated by the fact that
tuned mass dampers for motion control of tall buildings, operating in a
passive mode, are already in existence.?” 2% Passive tuned mass dampers are
in general tuned to the first fundamental [requency of the structure, thus only
effective for building control when the first mode is the dominant vibrational
mode. This may not be the case, however, when a structure is subjected to,
for example, earthquake-type loads when vibrational energy is spread over
a wider frequency band. It is thus natural to ask what additional benefits
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can be derived when they function according to active control principles.
Indeed, a series of feasibility studies of active and semi-active mass dampers
has been made along these lines**°~** and they show, as expected, enhanced
effectiveness for tall buildings under either strong earthquakes or severe wind
loads.

Recently, experimental studies of active tuned mass damper systems have
been carried out in the laboratory using scaled-down building models,3#-36
In the work by Kuroiwa and Aizawa?* an active mass damper (AMD) was
placed on top of a four-storey model frame as shown in Fig. 5.19. The moving
mass was a variable, ranging from approximately ! % to 2% of the structural
weight. The model structure, 1 m {(width) x I m (depth) x 2 m (height) and
weighing 970 kg, was placed on a shaking table which provided simulated
earthquake-type base motion. The overail experimental set-up is shown in
Fig. 5.20 and a schematic diagram of the AMD isshown in Fig. 5.21. Following
the closed-loop control algorithm and using three representative earthquake
inputs, experimental results show that the maximum relative displacement
reduction at the top floor could be as high as 50%; however, only 5-7%
~reduction was possible for the maximum absolute-acceleration of the top floor.

The control strategy used in Kobori et al**3% is based on expressing the
acceleration vector (¢} in the incremental form

(1) =E7 (1)[g.(1) +g,(t — At}] (5.1)

where

E(ty=M+0.5Ct + 0.25K¢?
g1(8)=Mzy(1)
gt —ADY=[M— E(t)]%{t — At)—{C+ 0.5Kt)x{t — At) ~ Kx(t — At)

where M, C and K are, respectively, the mass, damping and stiffness matrices.
Considering #(t) as a function of a ‘transfer function’, E~!{t}), and an
‘instantaneous force”, g, (¢) + g.(t — At), the control objective using a moving
mass is to minimize (t) by adjusting the transfer function and by reducing
the instantaneous force. The moving mass, termed an ‘active mass driver’,
is then designed to generate the necessary counter force in order to reduce
the resonant force. In the experimental study, the active mass driver was
placed on a 0.5 m (width) x 3 m (height) three-storey steel frame as shown
in Fig. 5.22. The structure was mounted on a shaking table while an
electro-magnetic force penerator was adopted as the active controller.
Experimental results indicated that a two-thirds reduction of the maximum
acceleration and displacement could be achieved.

At a much larger scale, an active mass damper system was tested in
conjunction with an active tendon system as described in Section 5.1, Using
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{n)

(b)

Figure 5.19 The four-storey model frame with AMD (courtesy of Takenaka Corporation,
Tokyo, Japan) (a) model structure; {b) close-up view of AMD
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Figure 5.20 Experimental set-up

the same six-storey 42 000-1b structure as shown in Fig. 5.3, the AMD system
was placed on top of the structure as shown in Fig. 5.23, which could be
operated under different conditions by changing its added mass, its stiffness
and the state of the regulator. A total ol 12 cases were performed in the
experiment.

Extensive experimental results were obtained under various simulated
carthquake excitations. A summary of results obtained under the 25%-
intensity EI Centro excitation is given below:

Percent Reduction of Maximum Top-floor Relative Displacermnent: 43.3-57.2
Percent Reduction of Maximum Tep-floor Acceleration: 5.5-30.7
Percent Reduction of Maximum Base Shear: 31.4-44.4
Maximum Control Force Required (kips): 0.68-2.56
Maximum Mass Peak-to-Peak Stroke (in): 3.23-101
Maximum Control Power Required (Kw}: 0.82-3.73
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Specification "
I. Dimension Pistondia,  4t{.6mm
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Figure 5.21 Schematic diagram of AMD
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{a)

(b)

Figure 5.22 The three-storey model frame with active mass driver (courtesy of Kajima
Corporation, Tokyo, Japan) (a} model struciure; (b) close-up view of active
mass driver :
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Figure 5.23 The six-storey model structure with AMD (a) model structure; (b) close-up
view of AMD
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5.2.1 AMD vs. Active Tendon System

One of the advantages of testing two different active systems using the same
model structure is that their performance characteristics can be realisticaily
compared. Extensive simulation and experimental results obtained based on
the six-storey, 42000-Ib model structure show that both AMD and tendon
systems display similar control effectiveness in terms of reduction in maximum
top-floor relative displacement, in maximum top-floor absolute aceeleration,
and in maximum base shear. They also have similar control requirements
such as maximum control force and maximum power. Other information
which may shed more light on their relative merits but is not considered here
includes cost, space utilization, maintenance and other practical observations.

It should be noted that a number of analytical comparative studies have
been carried out concerning relative merits associated with active tuned mass
dampers and active tendons for specific applications.*>78:37:3% Ag indicated
in Yang?® one of the inherent limitations associated with an active mass
damper is that, since only one is likely to be used [or economical reasons, it
provides only a single point of control action-and it usually acts at the top
of a structure. Simulation results show that, under practical constraints, its
eflectiveness is mostly felt at the st fundamental frequency but less so at
higher [requencies. A comparative study was made between an active tendon
system and an active mass damper using the eight-storey structure described
in Example 3.5 under an earthguake-iike ground excitation. Figure 5.24 shows
their respective spectral densities of top-floor relative displacement. It is seen
that, while the active tendon system is capable of suppressing peak amplitudes
at several model [requencies, the effect of the active mass damper is only lelt
at the first frequency.

Ne control
wH- b e Active tendon system
——— Active mass damper

Spectral density (m¥fradfsec)

1 1 1 I 1 oo, 1 1 1 1 L i

62 4 6 8 10 12 14 16 18 20 22 24 36 28 30
Frequency {rad/sec)

Figure 5.24 Spectral densities of tap-floor relative displacement®
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5.2.2 Full-scale Testing and Implementation

As described in Section 5.1.2, plans for testing a [ull-scale AMD system
together with an active tendon system are underway. The AMD system,
shown in Fig. 5.25, has been placed at the top of the dedicated test structure
depicted in Fig. 5.16. The biaxial AMD system is of the pendulum type with
a fail-sale regulator. It weighs 6 tons, approximatety 1/100 of the structural
weight, and has a maximum stroke of 4+ 1.0 m with a maximum control force
of 10 tons.

Additionally, a full-scale active mass driver system has been installed on
the top floor of the eleven-storcy Kyobashi Seiwa building in Tokyo, Japan
(Fig. 5.26). The active mass driver, shown in Fig. 5.27, is a pendulum-type
dual-mass system capable of controlling torsional as well as lateral vibration
of the siender structure due to strong wind or moderate earthquakes. The
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Figure 6.26 Kyobashi Seiwa Building with AMD (courtesy of Kajima Corporation,
Tokyo, Japan) {(a} Kyobashi Seiwa Buiiding; {b) AMD system
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Figure 5.27 View of active mass driver in Kyobashi Seiwa building {courtesy of Kajima
Corporation, Tokyo, Japan)

first mass, weighing approximately four tons, is used for lateral motion control
and the second mass, weighing approximately one ton, is used for torsional
control. The system represents one of the first active control systerns installed
in an actual structure in the world.

5.3 Pulse Generators
Puise control, discussed in Section 3.5, has also been a subject of experimental

study in the laboratory. The experimental work was based on a simple control
strategy described below.3%#9
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Consider a vibrating structural system. Assuming that relative motions at
several locations within the structure are to be limited in magnitude, a simple
control procedure is to have pulse generators positioned at these locations;
a control pulse is applied at a given location whenever the relative velocity
at this location reaches a maximum, but in the direction which oppaoses this
velocity, Thus, an actuator is triggered each time a zero-crossing of the relative
displacement at a point of interest is detected. The magnitude of the control
pulse at location i, p,(¢), is given by

pilt) = —csgnivg o™, Lo, ST <tg + Aty (5.2)

=0, otherwise

where ¢; is a pulse scaling coefficient at location i, sgn{ ) indicates the
algebraic sign of its argument, v, is the relative velocity at location i, ¢, is the
zero-crossing time at location i, and At; is the pulse width at location i. The
exponent #; in Eq. (5.2) is to be chosen appropriately. When #,=0, the
control force acts as a Coulomb [riction force with-magnitude +¢;. Then; =1
case corresponds to active viscous damping with coefficient ¢, and, when
n; > 1, nonlinear velocity damping is introduced.

This control algorithm was tested in the laboratory using a six-storey frame
weighing approximately 159 kg and measuring six [eet in height*%+!
Figure 5.28 shows the model structure together with the test apparatus which
includes vibration exciter, instrumentation, pneumatic power supply, and the
minicomputer used for digital control. As shown in Fig. 5.29, the electrodynamic
exciter, sensor, and pneumatic actuators were located at the top of the
structure. The actuators consisted ol two solenoids which metered the flow
ol compressed air at 125 psi through eight nozzles, thus generating the
required control pulses. A sample measurement from a thruster is shown in
Fig. 5.30, showing delay time elapsed between the control signal and the
actuator response and inevitable deviations [rom an ideal rectangular pulse
shape.

Figure 3.3} shows sample measurements of the control pulse train and
top-floor relative displacement when the structure was subjected to a
harmonic excitation at a frequency close to the lundamental [requency. It is
seen that, within ten periods ol onset of control, the response is reduced to
approximately 15% of its uncontrolled value. The control pulse magnitude
used in the experiment correspond to that given in Eq. (5.2) with n,=0.
Thus, it is not surprising to see that the oscillation decay at control initiation
follows that associated with Coulomb [riction, i.e. straight-line decay envelope.
On the other hand, at the end of control duration, the envelope of [ree
vibration approximates an exponential decay curve, which corresponds to
the well-known viscously damped behaviour.
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Figure 5.31 Experimental results-on control pulse and top-floor relative displacement®

Discussions on some of the recently developed cold-gas generators having
potential structural control applications can be found in ***3. In addition,
pulse control experiments involving hydrauiic and electromagnetic actuators
have also been conducted in the laboratory.*1+#2

Finally, suggestion has been made to use semi-active auxiliary mass
dampars as an alternate pulse-control mechanism.** Hence, instead of using
cold-air jets or other mass ejection techniques to provide directly the required
control [orces, control objectives are accomplished through internal momentum
transfer between the structure and the auxiliary masses. An on-line control
procedure is used to optimize the parameters of the auxiliary mass dampers
located about the structure.

5.4 Aerodynamic Appendages

The use of aeredynamic appendages as active control devices to reduce
wind-induced motion of tall buildings was first proposed by Klein et al**
and by Klein and Salhi*® Its main attractive leature is that the control
designer is able to exploit the energy in the wind to controf the structure,
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which is being excited by the same wind. Thus, it eliminates the need for an
external energy supply to produce the necessary control force; the only power
required is that needed to operate the appendage positioning mechanism.

Additional analytical studies of aerodynamic appendages using optimal
control algorithms were carried out*7*% as well as a wind-tunnel experimental
study.*® The experiment was conducted using an elastic model at a geometric
scale of roughly 1:400. This is schematically presented in Fig 5.32(a). Its
stiffness was provided by a steel plate fixed at the structure core, as shown,
and its length was adjusted so that under planned wind conditions in the
wind tunnel used in the experiment, the first mode was dominant and was
observed to be approximately 5 Hz.

The [ull-scale (prototype) building frequency corresponding to 5 Hz in the
model depends on the scaling of [requency, or time, between model and
prototype. If the ground roughness and building are scaled in the same ratio,
then a characteristic frequency of the wind eddies can be written in terms of,
say, the geostrophic wind speed and a characteristic length. Thus,

Wy Ypfmo _ (5.3)

in which e ={requency; ¢ =mean wind velocity (say geostrophic); and
A =characteristic length, The subscripts p and m denote, respectively,
prototype and model. The model data were taken with &, = 2.0 m/sec. With
the scale at 1:400, the building [requency corresponding to, say, #,=
160 kmph would be 0.26 Hz. Thus, this is a realistic representation of the

phenomenon.
For simplicity, the control algorithm used in the experiment is a suboptimal
one* % je.
u(t)=1, st} <0 (5.4)
=0, v{t)>0

In other words, it is on—-off control with the appendage fully extended when
the velocity at the top of the model structure is opposite to the wind, and
fully retracted otherwise.

The aerodynamic appendage consisted of a metal plate. It was controlled
by means of a 24 VDC sclenoid, activated by the sign of structural velocity
as sensed by a linear diflferential transformer, followed by appropriate carrier
and signal amplifications and a diflerentiator. The appendage area normal
to the wind direction was roughiy 2% of the structural frontal area when
[ully extended.

A boundary layer wind tunnel was used to generate the necessary wind
forces. An inside view, looking upstream and with the model in place, is
shown in Fig. 5.32(b).
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Figure 5.32 Model structure and test apparatus®® (a) schematic diagram of model
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Figure 5.33 Typical displacement record (arbitrary scale) (a} without control; (a} with
control?®

The active control experiment was performed under various wind conditions,
Some typical structural response characteristics 478 Shown in Figs 5.33 and
3.34. Figure 5.33 gives the structural displacement without and with control;
the corresponding velocities are shown in Fig. 5.34. Both show a peak
amplitude reduction ol approximately 50 %.

More recent publications related to appendages include a comparative
study ol appendages, active mass dampers and active tendons [or wind-excited
tall building control,* a more detailed design study ol optimal appendage
mechanisms on the basis of force or power needed for their operation,*” and
a discussion on their aesthetic aspects when appendages are deployed in an
urban setting.*!

SHH ‘ 1 [
T

Ll i i

(b)

Figure 5.34 Typical velocity record {arbitrary scale) (a) without contral; {b) with control
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Figure 5.36 Examples of appendage design {a) venetian blind-type appendage; (b}
symmetrically placed appendages

Two examples ol appendage design are shown in Fig. 5.35. Figure 5.35(a)
shows a venetian blind-type appendage whose elements can be operated
independently or in a synchronized lashion by means of an electro-hydraulic
control system. A system of appendages situated on opposite sides of a
structure is shown in Fig. 5.35(b); they can be used for translational-motion
control when both sides move in phase and for rotational-motion control
when they move out-of-phase.

It should be mentioned that aerodynamic appendages can also serve uselul
secondary lunctions. For example, those in the form ol venetian blinds as
depicted in Fig. 5.35(a) can be used as solar panels [or power generation.
The system shown in Fig. 5.35(b} is ideally suited lor use as sun screens with
great effectiveness since their orientation can be controlled as a lunction of
time.

B.6 Other Control Mechanisms

Discussed in the preceding sections are some ol the most studied control
mechanisms lor structural applications. Many others have been proposed.
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These include the use of a gyroscope for reducing wind-induced vibration of
a suspension bridge,’* the development of a variable stifiness controller
capable of steering the natural frequencies of a structure away [rom resonant
frequencies,®® and the use of actively controlled air chambers for controlling
wave-induced motion of an offshore platform.*® In Sirlin et al”® an
open-bottom structural model Roating in a water-filled tank was used to
simulate the response of a floating platform under wave loads. The air pressure
in the air chamber trapped between the water and the platlorm was actively
servocontrolled to reduce the structural respounse under simple harmonic
waves. Experiments gave encouraging results in correcting heave motion of
the platform.

Finally, the combined use of two active control systems and hybrid
active—passive systems have also been supgested {or some specific structural
applications.* 3436
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6 Optimization of Actively
Controlled Structures

Much of the discussion presented in the preceding chapters has been
concerned with structures equipped with active control devices. While not
explicitly stated, active structural control has been addressed on the premise
that, given a conventionally designed structure, it is supplemented by an
active control device which is activated whenever necessary in order to
enhance structural safety and serviceability under extraordinary loads, Thus,
the structure and the active control system are individually designed and
optimized: . - PR

To extend this concept further, it is of practical interest to view an actively
conirolled structure as an integrated whole and consider its related
optimization problems. This consideration has led to the concept of *active
structures”,! and this topic is briefly explored in this chapter.

We shail define an active structure as one consisting of two types of load
resisting members: the traditional static {or passive) members that are
designed to support basic design loads, and the dynamic (or active) members
whose function is to augment the structure’s capability in resisting extra-
ordinary dynamic loads. Their integration is done in an optimal fashion and
produces a structure that is adaptive to changing environmental loads and
usages. As one can see, an active structure is conceptually and physically
different from a structure that is actively controlled. Rather than
individualized optimization of structure and control systems as in the case
of an actively controlled structure, an active structure is one whose active
and passive components are integrated and simultaneously optimized to
produce a new strain of structural system. This important difference makes
the concept of active structures exciting and potentially revolutionary.

The earliest germs of such an idea appear to be contained in Kirseh” and
Kirsch and Moses.? In this study, a continuous beam is actively controlled
by allowing the redundant supports to settle vertically. Actually, there is a
one-to-one correspondence between redundants and controllers. The objec-
tive is either reduction in magnitude of the internal forces or minimization
of the cross-sectional area under a given loading condition. A flexibility
method ol analysis that satisfies compatibility and equilibrium is used. Explicit
stress constraints are satisfied, and an objective function that penalizes
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cross-sectional dimensions, internal forces, and redundants is minimized. The
basic limitation of their work is that it is a stalic approach.

Some aspects of simultaneous optimization of structure and control system
have been considered in the design of space structures. In the work of Haltka
et al*® the central thesis is that small changes in the configuration of a
structure resuit in nontrivial changes in the control force requirements. The
focus of their work, however, is on the sensitivity of control requirements
for spacecraft to inadvertent variations in the spacecraft’s dimensions.
Nevertheless, they convincingly show that the magnitude of the control forces
in a system that has been optimized can be substantially reduced either by
minor changes in the thickness of key structural components or by adding
small lumped masses to key locations.

The objective of this chapter is to lay down comprehensively the

foundations of active structures so that this novel subject can be rigorously
explored.”” We begin by using two examples to demonstrate that the theory
behind active structures is sound and that it can lead to truly optimal
structures.
Example 6.1 Can substantial changes in structural configuration be realized
by allowing some members of a structure to become active? To answer this
question, consider first the design of a simple steel frame supporting a static
load and subject to a horizontal base acceleration ¥,(t), as shown in
Fig. 6.1(a). The frame consists ol lour identical columns with two sets of
pretensioned diagonal tendons; it has dimensions L = 48.0 in, h = 40.0in, and
its mass m = 16.70 slugs.

Case A — passive structure: Consider first the case of determining k,, the
stiffness in the columns, necessary to limit the relative displacement x(¢} to
Xjjm = 06 in when

*,(t)=0.2gsin5nt (6.1}
The equation of motion is
mE(r) + cx(e) + k,x(t) = —mE, (1) (6.2}

By taking a damping coefficient that corresponds to a damping [actor of
1.24%, it is easy to show that the design value for k, is equal to 32 667 Ib/in.
It is noted that the required stiffness &,, simply for supporting the static load, is

k, = 0.0006k, (6.3)

Case B — active structure: Consider now possible reduction in k, by making
the diagonal tendons active members while maintaining the original
performance level. Both mass and damping remain unchanged. Active
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Figure 6.1 Passive and active steel frames under ground motions (a) passive: {b) active’

tendons imply that forces in the tendons can be generated and controlled by
means of an external energy supply such as an electrohydraulic actuator.
A possible structure configuration is shown in Fig. 6.1(b).

For the active structure, the equation ol motion becomes

mE{t) + cx(r) + k,x(t)= —m& (1) — du(t)cosu (6.4)

where k, is achievable stiffness in the columns of the active structure; and
u{t} is the control force in each tendon, which can be determined by using
one of the controi algorithms discussed in Chapter 3. For example, employing
classical open-loop optimal control, Fig. 6.2 shows the value of k, as a function
of achievable maximum }x(¢})} and of corresponding required maximum |u{t)|.
These results show that, without exceeding xy;,,, the column stiffness can be
reduced to an arbitrarily low level provided that the required control force
is realizable. In particular, Fig. 6.2 shows that il is possible to fix &, at a
value equal to &, [or the passive case, while the dynamic requirements are
satisfied entirely through activation of the tendons. In this particular case,
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Figure 6.2 Normalized maximum displacement and maximum control force versus
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the maximum |u(t)| is 398 1b, and its time-dependent behaviour is shown in
Fig. 6.3.

Example 6.2 An analysis of active control of cable-stayed bridges is given
in Yang and Giannopoulos.®® Some of the results presented in this study
can be discussed in the context of active structures,

Case A — passive structure: As a more realistic example, consider the Sitka
Harbor Bridge at Sitka, Alaska as the base passive structure. Design
information on this suspension bridge®® gives the fundamental natural
[requency in Aexure w, = 5.083 rad/sec, the fundamental natural frequency
in rotation ;= 8.589 rad/sec, and the critical wind speed #; = 155.5 mph.
For simplicity, the critical wind speed is considered here as the performance

A0

20

1w (bt

= 2H)

—400 ! E L i
04 1.0 2.0 3.0 i)

Figure 6.3 Control force in Example 6.11
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criterion. Wind speeds higher than the critical will cause aerodynamic
instability in the bridge.

Case B — active structure: It is of interest to ask whether the value of &; can
be maintained or surpassed using a less conservative design when the existing
suspension cables operate in an active mode. Specifically, a reduction in
stiffness is considered in terms of a reduction in both the flexural and torsional
frequencies, The reduced {requencies are now w,=3.365rad/sec and
e = 5.686 rad/sec. It is mentioned that the ratio w,/w; remains the same as
before, ie. w,/w; =0.60,

As a possible configuration for active tendons, the bridge cables can be
connected to electrohydraulic servomechanisms located at the points of
anchorage. One transducer is installed at each anchorage point to sense the
motion at that point. The sensed motion, in the [orm of electric voltage, is
used to regulate the motion of a hydraulic ram, thus generating the required
control force in each cable. For this configuration, the ram displacement s(z)
_ is related to the [eedback voltage v{t) by

5(1) + R, s(t) = R‘E(”

(6.5)

where R, is the loop gain; and R is the feedback gain of the servomechanisms.
The feedback voltage v(t) is in turn proportional to the sensed motion.
Suppose that the sensed motion is the flexure velocity v(r) at the anchorage,
We then have

sty = pwit) (6.6}
Let the two nondimensional control parameters be defined by

g
and

_pof
"R

The criticai wind speed #; [or the active structure thus becomes a function
of ¢ and t; the results are shown in Fig. 6.4. The case of e =0 corresponds
to the passive structure. It is observed that the value ol & increases as ¢ and
t increase, and this increase can be rather dramatic when certain values ol
£ and 7 are chosen. Indeed, the critical wind speed lor the active structure
can be raised to any desirable level provided that the required control forces
are realizable.
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6.1 Basic Equations

The basic state-space equation governing the optimal design of an active
structure is again described by Eqs (3.1). However, it is now written in the form

Aty =A(S)z() + B(Sul(t) + HOAL), 2(0)=23, (6.7)

in which the structural parameters to be simultaneously optimized, denoted
by &, are explicitly shown. In the above, z(t) is defined as beflore by

' T

" L‘cm] (68)
and [see Eqs (3.3) and (3.4)]
0 1

A(‘:)=[~M'l(c’)K(a) wM‘l(a)C(:)] (63)

o 0
B(G)_[M‘l(:)m:)] (6.10)
ae=| " ] 611
T LM EE) (6.11)

The basic problem of active structural design is to determine & and u(1)
such that an appropriate objective lunctional is minimized. Following
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classical quadratic performance criteria, for example, the performance index
[unction J can be written in the form

&
J(z, & u) J [4,T04, +u" Ry + W(&)]dr (6.12}
0

where W(£) represents a ncn-negative cost function depending on £ but not
on ¢ in general. The matrices @ and R are the usual weighting matrices with
appropriate dimensions. The structural parameter vector £ satisfies

24, (6.13}

in which &, represents values of the structural parameters corresponding to
the base passive structure.

Extremization of the performance index [unction J given by Eq. (6.12)
subject to the constraining Egs (6.7) and (6.13) can be accomplished through
the use of variational calculus. First, it will be noticed that the inequality
constraints are simple enough to be handled expiicitly. The differential
equatlon constraint is included by formmg a Lagrangian functional J* as

J*(z, & u) = J‘ [2'0z+u"Ru+ W(E)

+ A [AE)z(t) + B(Eu(t)+ HE) (1} —£()]}dt (6.14)

where A(t) is the Lagrange vector muitiplier. Note that the constraint has
been integrated over time.
The conditions for minimizing J* are

SUJ* = 0 (6.15)
§2J* %0 (6.16)

where &' and & are, respectively, first and second variations. It is
mathematically very difficult to ensure satisfaction ol the condition on the
second variation 82 It can, however, be satisfied by arguing on physical
grounds. Since Eq. {6.12) essentially is a composite quadratic performance
index that contains a minimum error criterion, a minimum energy criterion
and a minimum cost criterion, the first variation 6'Y is with respect to z, ,
and &. The Lagrange multiplier is also allowed to vary. Instead, the equation
of motion {Eg. 6.7) must be retained. Taking the first variation of the
Lagrangian functional results in

A Lot
S J* = j {2(8z"Qz + du' Ru) + AT (Adz + Bou — 5z)
0

4V WOE+ IT(V, Az + Ve Bu+ V Hf)SE
+(Az+ Bu+ Hf — )34} dt (6.17)
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In the above, V; is a gradient operator with respect to the parameter vector
E. Integrating the ATdZ term by parts and rearranging, Eq. (6.17} gives

iy .
J (677(2Qz + ATi+ A1)+ 5u"(2Ru + B 1)
0

+ [AT(Vedz+ V, Bu+ V Hf) + YV W16E

t
+{Az+ Bu+ Hf—3)04}dt + 176z =0 (6.18)

0

where the symmetry of M, C, and K has been taken into account. Since the
variations in z, #, and & can take place independently of each other and in
order to satisfy the necessary condition for minimizing J¥, ie. dJ* =0, we
have the lollowing system of equations:

Az+Bu+ H —i=0, z(0)=0
200+ ATA+i=0, i{t;)=0
JRu+B"i=0

AT VedAz +V Bu + VHf)+V W=0

(6.19)

over the time period (0, ). The equations abeve represent a system of
differential equations with four unknowns, namely, z{t), #(t), &, and A(z).
Their solution determines the optimal configuration for the active structure.

6.2 Solution Procedure

Equations (6.19) represent, in general, a system ol coupled nonlinear
equations. Note that this nonlinearity is present even when the equations of
motion represent linear elastic response, as is assumed here. (Material and/or
geometric nonlinearities may be included, however, at the expense ol making
the system ol equations computationally more involved.} Due to the complex
nature ol these equations, numetrical techniques are usually required to obtain
a solution.

An iterative sequential search procedure is studied!® in which, at each
iteration, the structural parameters are held constant until the performance
index defined by Eq. {6.12) is minimized. The structural parameter values
are then altered and the process is repeated until the global optimum is
achieved. It is clear that, in terms of efficiency and convergence properties,
a more desirable procedure is one in which the controller parameters and
the structural parameters are optimized simultaneously. Simultaneous search
procedures work in the full design space and update the structural and
controller parameters simultaneously towards the finai optimum design.
Hence, these procedures not only can deal with high dimensional spaces with
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fast convergence rates, but they may also avoid possible degeneracy into
sub-spaces caused by sequential search methods.

Starting [rom prescribed initial values, the structural and controller
parameters are updated at the kth iteration by (k=0, 1,2, ..)

§k+1 mfk-i-dklfé}

W = i g (6.20)

In the above, d§ and o denote search directions in the scalar space and the
functional space, respectively, whereas o is a unified scalar amplitude for
both updating formulae and is selected so that the objective functional
(Eq. 6.12) decreases with «* along the search directions.

The search directions can be determined by, lor example, the use of the
conjugate gradient method.!! In this case, the search direction calculations
are based only upon the gradient information provided by

| V=2

F=VI* o
T

VSl (6.21)
The algorithm following this approach proceeds as [ollows:

1 Select initial values «, and §,.

2 Solve the state and co-state equations (the first two of Egs 6.19) for z*
and A5, k=0,1,....

3 Calculate the gradient with respect to # and £ using

Vo J¥ =V, 00 (d", &, 25, 25 1)
ty
VeJ* = L Vo (b, &, 25 A5, )do
where
=T Qa+ " Ru+ W(E)+ ATLA(8)z + B(u+ H(2)/]

4  Calculate the search directions, for k=1,

VT2

dy=—V,J* +W‘E‘_TH“5 VI
ky2
di= —VfJf5+"i—V|,ili—,ct;i1|F Vet
and, for k=0,
&=~V ]
&=~ VeI*

167



Active structura} conirol: theory and practice

where
IVI* |2 = (VI *)TVI* + [V, J*|

and

I

Iv.J*|* =_[ (VJH) TV, JFde
a

5 Update u and & by using Eqs (6.20).

6 Repeat steps 2-5 until Eqs (6.19) are satisfied with prescribed accuracy.

In the above, the state equation, the first of Eqs (6.19), and the costate
equation, the second of Eqs (6.19), can be numericaily integrated using, for
example, Newmark’s beta method!? and Galerkin’s two-point recurrence
method,'? respectively. The quadratic performance index, Eq. (6.12), can be
integrated using similar procedures.

Unlike the sequential search procedure, where structural optimization
_is performed followed by control force optimization, the simultaneous
procedure described here directs the solution towards a single final optimum
design. Consequently, only one global optimization is performed. Further-
more, this procedure is not limited to linear structural behaviour or linear
control laws.

Let us now look at some examples.

Example 6.3 Consider again the steel [rame studied in Example 6.1, If the
frame is modelied as a single-degree-of-lreedom shear building, and if it is
assumed that the columns are ol rectangular cross section with base b,
equailing twice the depth, then the stiffness k, mass m, and damping ¢ can
be expressed as

k= 32Eb*/L}
m=8pLb* + 16.52

c=2m./kim

where E is the elastic modulus, taken as 29 x 10° psi and p is the density,
taken as 7.35 x 107*1b — s2/in*, The damping ratio, {, is taken as 1.24 %,

If one considers the base structure to be that which is just capable of
supporting the static loads without assistance of the active members, then it
is readily verified that, for a buckling mode of [ailure, the minimum structural
parameter b is 0.34 in.

Consider now the structure with active tendons in place. For a support
acceleration of

i,(ty=0.15g sindnt, {6.22)

168



Optimization of actively controlled structures

the equation of motion has the form of Eq. (6.4). The time domain of interest
is chosen to be 2 seconds with a step size of 0.005sec and integration
parameters of 1/6 for 8 and 1/3 for 8, where f§ and @ are the integration
parameters for Newmark’s beta method and Galerkin’s method, respectively.
The weighting matrices should be carefully chosen to reflect proper balance
between the controlled response, input energy and structural weight (cost).
Il at all possible, the weights should reflect some physical parameter of the
structure. In this example, the weight for the displacement response and the
required control displacement are chosen to be proportional to the system
stiffness. In particular, they are 3967 and 7934 lor the displacement and
control, respectively. For the velocity weight, a value of 16.52 is used which
is proportional to the structure’s dead mass. Note that these values have
been chosen arbitrarily, consequently the minimum will be somewhat
subjective.

Figure 6.5 shows the performance index versus the structurai parameter
b for both the active and passive systems. The active system is minimized
when b=1.03in and PI {performance index)=124.15 while the passive
-system is minimized when b = 1,10 in-and-PI =131.92. For values of & in the
range from 0.34 in to [.4in, it is clear [rom the reduced performance index
that the active structure (active members and passive members) is superior
to an equivalent passive structure (passive members only). As b is increased
above 1.40 in, the required control force approaches zero. Clearly, no benefit
is gained [rom having the active members in this range. Figure 6.6 shows the
displacement response [or the optimum b of 1.05 in. It is noted that the active
members successfully reduce the response. The required control orce in the
tendons is shown in Fig. 6.7. Note that the stipulation on the final condition

300.0

T

Passive

2500

200.0
Active

Pertarmance index

1500}

100.0 L 1 i 1 1 ! | ;
0.30 050 070 090 L1030 150 L1700 1.90

Width of cofumns {in}

Figure 6.5 Performance index for steel frame”’

169



Active structural controb: theory and practice
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m(].OSv/ U v \/
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Displacement {in}

¢ H 1 1 i
0.00 0.40 0.80 1.20 1.60 2.00
1 (sce)
Figure 6.6 Displacement of steel frame’

of the co-state equation requires that the control force be driven to zero at
the end of the time domain.

- Example-6.4--In-the preceding-example; a-relatively-simple case with. only
one degree of freedom was considered. In what lollows, a somewhat more
realistic structure is investigated. Consider the king-post beam of Fig. 6.8.
The two king-posts, serving as active members, are located along the beam
and are capable of applying point forces directly to the beam. Sufficient
pre-tensioning of the cables is assumed to allow both upward and downward
control forces. A moving ioad of constant magnitude p{x) and velocity ()
is applied to the beam.
The governing partial differential equation ol motion is
4 . 2 .

Oyl t) o)

El = p(x) + Du(t) (6.23)

, axt TP T

300.00

=Ny
e RVAVAVAY

-200.00

Force {Ib)

1 | i
0.00 0.40 .80 1.20 1.60 2.00
t (sec)

—300.00

Figure 6.7 Control force in Example 6.37
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Figure 6.8 The king-post beam’

where EI is the flexural rigidity and pA is the mass per unit length. Assuming
that

=3 dlomde (6.24)
=t
where. ¢, are the .mode shapes, Eq. (6.23).is transformed inio an infinite
number of second-order differential equations. The ith equation is expressed
as

i+ i = p; + g (6.25}

where p; and d,u; are the modal counterparts of p{x) and Du(¢). The natural
[requency w; and the mode shape ¢; are given by

Unfortunately, closed lform solutions to the transformed equations of
motion are not possible since the time variation of the control force is
unknown a priori. By considering linear elastic response, however, the
solution can be separated into two parts: (a) moving load solution, and (b)
control lorce solution, with superposition of the two providing the total
response. A closed form solution to the moving load is given in Timoshenko
and Young.!'* So the problem is now reduced to finding the response due to
the control force. -

In practice, it is common to use only a finite number of modes when
calculating the dynamic response. Letting n equal the number of modelled
modes and m equal the number of independent control forces, we can define
three classes of control: (a} n <m, (b) n > m, and (¢} n =m. In the last case,
the equations of motion can be written as n independent modal equations,
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each with its own modal control force. Transformation from modal forces
to physical [orces is direct due to the one-to-one correspondence between n
and m. As shown in Section 3.4, such an approach is referred to as independent
modal space control {(IMSC). Ol the remaining two, case (a) is not considered
here for essentially economic reasons, that is, the general trend is to have
fewer control [orces than modelled modes. Therelore, case {b) is the [ocus of
this example. Since we are considering fewer control forces than modes, the
transformation from modal to physical control forces involves the pseudo-
inverse of an 7 x m matrix. This implies that the physical control forces may
contain errors that lead to system degradation.!® To avoid this problem, the
control [orce vector is not translormed into modal space. Instead, the m x 1
physical control vector is multiplied by the n x m modal participation matrix.
The resulting modal differentiai equations ol motion are externally coupled
by the physical control force vector. The only requirement on the control
force vector is that the system must be rendered controllable.

For the numerical analysis, the first five modes are considered. The
integration parameters,  and @, are taken as 1/6 and 1/3, respectively. Four

--hundred-timc-stcps-each-of-duration- 0.0005 sec-arc-used:“The-moving load - -

has a constant magnitude of 1000 1b and a horizontal velocity of 500 in/sec.
The material and cross-sectional properties of the heam are the same as those
used in Example 6.3. The weights for the performance index are chosen as
follows: 5000 for displacements {all modes), zero for velocities (all modes)
and 1000 for control forces (for each king-post).

Inaneffort to demonstrate both the optimal search method and the concept
of an active structure, the king-post example is now investigated through a
number of different cases. Specifically, the following [our cases are identified.

Case I: The structure is passive. The only design parameter considered is
the beam width, b, subjected to the simple bounds:

0.10in < b < 10.0in

Case 2; Two active members (i.e. king-posts) iocated at x/L =0.30 and 0.70,
as well as the beam width are the design variables. The two active members
are capable of generating both up and down control forces. No bounds are
imposed on the magnitude of the control forces. The bounds on b are the
same as in Case 1.

Case 3: Identical to Case 2 except that, along with the two active members
and the width, the locations of the two active members are also considered
as design variables. Hence, five design variables are considered with bounds
on the active member locations specified by

x/L=00<XL<100
x/L=00<XR <100
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Table 6.1 Perlormance comparisons

Case PI b{in}) Yuu(in) wg,,{(1b) XL XR Iterations
1 14523 145 —0268 N/A N/A N/A 5

2 123.16  0.85 -0.108 608 0.30 0.70 27

3 10244  0.53 —0.069 450 0.44 0.56 66

4 9396 0.77 —0.036 49 Fig. 6.11 Fig. 6.11 87

which forces the two locations, X L for the left member and XR for the right,
to be along the beam.

Case 4: In this variation, the eflect of allowing the two active members to
change position with time is considered. The simple bounds are identical to
those of Case 3. Note that while this is a logical extension of the active
structure concept, the realization of such a ‘fully’ active structure may be
difficult.

... The solutions-to these four cases are obtained-using the search procedure
outlined above. The resuits are summarized in Table 6.1. The quantities listed
in this table are the performance index ( PI}, the beam width (b), the maximum
centreline deflection of the beam (y,,,,), the maximum control force (., ),
the active member location (XL and XR) and the number of iterations for
convergence. Comparison of the centreling displacement response and
required control force in the left king-post is shown in Figs 6.9 and 6.10,
respectively. Also, the moving locations of the two king-posts for Case 4 are
illustrated in Figs 6.11 and 6.12.

— Casc 4
0.04p
{—Case 3
0 !
E -0.04f
S _0.08-
£
g -0.12-
=
Z —0.16f -
~ 20k ase
—0.24 \
~1.28 L 1 !
0 0.05 0.10 .15 .20
! (sec)

Figure 6.9 Maximum displacement of king-post beam?
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Figure 6.10 Maximum contral force in Example 6.47

1t is seen from Table 6.1 and Figs 6.9 and 6.10 that Case 4, with a PI of
-93.96,.represents-the -optimum configuration-of the-king-post -beam. This.is...
expected since this case has the highest capacity to act as an active structure,

In closing, let us remark that, while a demonstration of active structure
concept feasibility has been shown through examples, there are still many
aspects that need to be examined. For instance, it is desirable {o develop
optimization procedures that not only allow time-dependent member
characteristics but also time-varying structural configurations. Only then will
they lead to truly optimal structures — optimal in geometry, in topology,
and in utilization of material. Furthermore, critical comparisons between

Paosition {x/L)

| H 1 |
0 0.05 0.10 0.15 0.20
t {sec)

Figure 6.11 Location of active members in Case 4”7
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g === e, 1= 002 sec
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W' 7777 1 = (.08 sec

o7 /W = 1= 0,10sec
77 //Wv’ w7 =012 sec
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e 4‘?77;'?)1 Ml//ﬂ = 0.16 scc

!
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Figure 6.12 King-post configuration in Case 47

active and traditional structures need to be carried out in order to establish
the economic feasibility of active structures.

The concept of an active structure is a new and exciting one. Whether or
not it can be implemented in the future depends to a great extent on parallel
advances and successes in other technical areas, such as materials, electronics,
and computers. Recent breakthroughs in all these areas are an encouraging
sign and will help bring this concept closer to reality.
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Appendix A: Elements of
Linear Control Systems

Summarized in this appendix are some basic results of modern control theory
for linear systems with time-invariant parameters, on which much of the
recent work on active structural control is based. Due to space limitation,
the presentation is brief. The reader is referred to the general references cited
at the end of this appendix for more details.

Most structural engineers are familiar with some of the results presented
here in connection with structural dynamics. However, they may not be
-familiar with the form in which they-are given. Indeed, the so-called state
space approach in systems theory does not yet occupy a prominent place in
structural dynamics. For our purposes, however, the state space approach is
important because it is central to the development ol modern control theory.
Other advantages in using this approach include (a) adaptability to computer
simulation and computation, (b) straightforward extensions [rom single
input-single cutput to multiple input-multiple output systems and [rom
low-order to high-order systems, and (c) easy generalization to more general
system deseriptions such as systems with time-varying parameters or stochastic
systems.

Hence, we begin by introducing some results on the dynamics of linear
systems using the state space [ormulation.

A1 The State Equation

Central to the formulation and solution of 2 modern control problem is the
so-called state space description of the underlying physical system. Many
systems, including structural systems, can be described by a set of simultaneous
first-order differential equations of the form

Hey=g(z(t) u(1), t) (A1)

where ¢ is time, z(1} is a time-varying vector denoting the state of the system
and #(t) is the input vector which represents externally applied forces and
disturbances, In some cases, the input may be conseciously controlled in an
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effort to guide the behaviour of the system. In other cases, they may be fixed
by the environment, but still retain an interpretation as input.

For linear systems with parametiers which do not vary with time, Eq. (A.1)
reduees to

(8= Az(t) + Bu(r)
or simply
t=At+ Bu {A2)

where 4 and B are constant matrices ol appropriate dimensions.

Equation {A.2) represents the dynamics of a time-invariant linear system
in the state-space form. Since most structurai systems considered in this book
are, when approximated by lumped-mass models, linear with time-invariant
parameters, we eonsider only the linear time-invariant case in our development.

For many systems, the choice ol the state vector z [ollows naturally [rom
the physical structure as the lollowing examples show.

structure subjected to some lateral external excitation such as wind lorces.
Using a lumped-mass model as shown in Fig. A.1, the equations ol motion
in terms of x,(t) and x,({t), the horizontal displacements of the first and
second Aoors, are

my %ty 4o X (0 = e[, () — X, (8)] + by x, (2}
—ky[xa(t) = x, (1)) =u, (1) (A.3)
Mo X {t)+ o[ Xa(t)— %)+ ka[xa{t) —x{t)] = us(r)

where m;, c; and k; are, respectively, the mass, damping and stiffness of the
jth Aopr and u{t) denotes the lateral [orce exerted on the jth Aoor.

.\':(I)

i

1 b 1¢2{1}

L{kz

5]

ET163]

|

1y(f)

Ty
s

Figure A.1 An idealized two-s{orey structure
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To write Egs (A.3) in the state-space form, we set x,(t)=y,(t) and
X,(1)=y,(t) and define the [our dimensional state vector

X3
X3 .
= (A4)
Y1
Ya
Equations {A.3) are now transformed into
X =1
.\.:‘l =¥3
- (A.5)

my V= =y ¥y teg(yr—y)—kxy +ha{x, —x ) +u,
MYy —cy(Va— ¥ )—Kka(xs—x)+u,

In vector-matrix notation, they take the standard form of Eq. (A.2), ie.

t=Az+8Bu.. .. ... . (A6]

0, I, |0 N
A—|:K C]’ B—|:M_1:|, “_I:”:] (A7)

where 0, is the 2 x 2 null matrix, I, is the 2 x 2 identity matrix,

with

ok kK
m i
K= ! ! (A.8)
k, k,
i, M,
B c,+cs Ca ]
m m,
C= 1 2 {A.9)
Cz C::_
M, M,
M =diag[m,, m,] (A1}

and M~ ! denotes the inverse of M.

We see that extension to the case of an n-storey structure is straightforward
using the similar lumped-mass approach. The state variable z in this example
has a dimension ol [eur; it is a 2n-dimensional vector in the case of an n-storey
structure.
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As the next example shows, the components of a state vector need not
represent physical displacements and velocities.

Example A.2 The deflection of a prismatic beam with flexural rigidity Ef
and mass density per unit length p is governed by the partial differential
equation

&ty  p @ty 1

'é‘;:“&‘l’ﬁ*é"ﬁ“:“ﬂw(‘c t) (A.Il)

where p(x, t) is the transverse displacement of a typical segment of the beam
located at distance x from one end and w{x, t) is the applied force distribution.
Let us assume that

wix, t}= i d{x —a;)u,(t) (A.12)
=1

where &( ) is the Dirac delta lunction,” Thus, we have a system of P pomt
[orees exerted at points a,, j="1,7.7,p; on the beam: -

Using modal coordmates it is well known that the solution to Eq. (A.11)
can be represented by

Wi, 1) = ; xX)q,(r) (A.13)

where g,(¢) are the modal amplitudes and ¢(x) are (normalized) mode
shapes. While n= o0 in theory, it is often assumed that the displacement
y(x,1) can be approximated with good fidelity by a truncated sum in which
n is large but finite.

Form the 2n-dimensional stale vector

g
d;
: (A.14)

N
fl

4"

The substitution of Eqgs. (A.12} and (A.13) into Eq. (A.11) leads to the state
equation [or the beam in the standard form

i{=Az+ Bu (A.15)
where the system matrix A is

A=diag[A;,Aas..., A,] (A.16)
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in which A;is a 2 x 2 matrix of the form

Aj=[m[:uf ﬂ (A7)
where w} =j*z*EI/b*L, L being the beam length;
B,
g | B (A.18)
B,
where B;is a 2 x p matrix given by
B,.m—l—[ o 0 } (A.19)
Ell piay) - ofa,)
and
", B
= | : (A.20)

It is seen in this example that the state vector ;7 does not represent physical
displacement or velocities but, with known mode shapes, the knowledge of
£ leads to a complete determination of y(x,t) and hence the ‘state of the
system’. We have seen that this state-space representation is useful in
structural modal control where certain criticai modes are modified through
the action of control forces.

A.2 Solution of the State Equation

Let us restrict ourselves {o the linear ime-invariant case and consider first
the homogeneous equation

#= Ag {A.21)
with initial condition

2(tg)=2o (A22)

The solution to Eq. (A.21) always exisis and it can be expressed as (see, [or
example the work by Zadeh and Desoer in the Biblicgraphy)

(=Dt t,)z,, =1y (A.23)
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The transition matrix ®{t, t,) is the solution of the matrix differential equation
B(1,10) = AD(,t5).  Dtg.10)=1 (A24)

which has the explicit [orm

Dt,19) =Dt — 1) =M= L (1 — 1) 4 +~_-}.“[(r— (A + ...
(A.25)

This series converges for all 4.

The elements ol the transition matrix can be easily written down when the
system matrix 4 is diagonalizabie through a similarity transformation. The
[ollowing result is useful (see, [or example, the work by Noble in the
Bibliography}.

Theorem A.1 Let 4 be an n x n matrix having distinct eigenvalues 4,
i=1,...,n, and corresponding normalized eigenvectors y;, j=1,....n, ie.

where the superscript T denotes vector or matrix transpose.
Define the n x n matrix T by

T=[ni.ns,..00,] (A.27)

Then
A=TAT"} {A.28)

where A is the n x n diagonal matrix
A=diag[4,, 42, ..., 4,] (A.29)
This result is useful because it allows us to write

Dt ty) =t = Feli-wA Tt (A.30)

where
gli—tlh — digg[elf~fh el —fo¥] (A.31)

Diagonalization is also possible when the transition matrix has muitiple
eigenvalues provided that the number of linearly independent eigenvectors
for each eigenvalue is equal to its multiplicity. For more complicated cases,
the transition matrix can be obtained through a reduction to the so-called
Jordan form. We omit this discussion here since this situation is rare in
dealing with structural systems.

Now, consider the state equation

i=Az+Bu,  zite)=z, (A.32)
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Il 1{¢) is piecewise continuous for all 1, we have

I

I3
z(r)rtll(r-—to)z0+j (li(rwr)Bu(r)drme“”“""zg+j ¢4 By 1) dr,

I tn

t2t, (A.33)

This result can be easily verified by substituting it into Eq. (A.32) and with
the aid of Eq. (A.25),

A.2.1  Impulse Response and Transfer Function Matrices
When z, =10, Eq. (A.33} becomes

()= J‘l K{t — t)u(t)dr, t=t, (A.34)

n

where N
Kit—1)=®(t—1t)B=e""™MB, 121 (A.35)

is called the impulse response matrix of the system, It is seen from Eq. (A.34)
that the ijth element of K(t — 7} corresponds to the response at time ¢ of the
ith component of the state vector to a unit impulse applied at the jth
component ol the input at time t 2 t,, while all other components of the
input vector and initial condition remain zero.

For linear time-invariant systems, it is often useful to seek solutions through
Laplace transformation. Let

Flz(t)]= jme"':(t)dtsi(s) {A.36)
Q
The Laplace transform of Eq. (A.32) leads to (with ¢, = 0)
(sy=(sT— A) " '2(0) + (s/ — A) " ! Bi#{s) (A.37)
When z{0) =10, we have
Z(s)= H(s)i(s) (A.38)
where
H{s)=(sf—~A)"'B (A.39)

is the transfer matrix of the system. It is noted that H(s) and K(¢) for a given
linear time-invariant system are Laplace transform pairs, i.c.

H{s)=%[K(1)], K(t)=2"1[H(s)] {A.40)
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We also point out that H{s) can be written in the [orm

H(s)= (A.41)

where D(s5} is a matrix polynomial in 5 and
dis)=|sf—A]| (A42)

is the characteristic polynomial of A4 if no cancellation occurs of factors of
the form 5~ 4, where 4; is an eigenvalue of 4. The roots ol d(s} are called
the poles of the transfer function and they are the eigenvalues of 4 il no
cancellation takes place.

A.2.2  Frequency Response Muatrix
In the frequency domain, the response of a linear time-invariant system is
characterized by the response to an input of the form

w(t)=ae™,  w(0)=0, 20 (A.43)

By direct substitution, a particular or steady-state solution of the state
equation

= Az + Bu= Az + Bae’™* (A.44)
can be shown to be
' z(t) = H{jw)ae!" (A.45)
where
H{jw)=(jwl—4)"'B (A.46)

is the complex factor relating the response to the input and is called the
frequency response matrix ol the system. Equation (A.45) shows that, with
u(t) given by Eq. (A.43), the steady-state response z{¢) oscillates with the
same [requency e but in general with a change in amplitude and a phase shift.

Since inputs can in general be represented as a sum of sinusoidal terms
and since the superposition principle applies in the linear case, the knowledge
ol the frequency response matrix leads directly to the solution to the state
equation for linear time-invariant systems.

A comparison of Eq. (A.46) and Eq. (A.39) shows that H{jw) is simply
the transfer function H(s) with s replaced by jo.
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A.2.3  The Case of Stochastic Input

Since many ol the system inpuis in the study of structural conirol are
stochastic in nature, we give in this section some results on the response of
linear time-invariant systems to stochastic inputs. The reader is referred to
the general references cited at the end of this appendix for a review of the
fundamentals in stochastic processes and for details of the derivations of the
results presented herein (see, for example, the works by Lin and Soong in
the Bibliography).

In the linear time-invariant case, Eq. {A.33) gives the general solution
representation which is also valid when the input vector #{r) is a stochastic
vector process. Using capital letters to denote stochastic quantities (except 4
and B), Eq. (A.33) can now be written as

t
Z(t)y=cltMg ¢ j ®(r —7)BU(7)d1, t=tg {A47)

s

where Z( ) being a function of the siochastic vector process (r) is a!so
at mosta determlmsuc contribution to Z(t). For expedlency, we shall assume
zp =0 in what follows.

Let the mean and correlation lunction matrix of {/{t) be denoted by,
respectively,

mp(t)= ELU(],  Ryyls,0)= E[U(S) U (1)] (A48)

We are primarily inferested in the mean and correlation [unction matrix of
the response Z(r).
Taking the expectation of Eq. (A.47) (with g, =0), we easily see that

4

my{t)=E[Z(1)] = J ®(t — 1) Bmy(z)dr, =1ty (A.49)

!(I
The correlation function matrix Rz {s, t) of Z(¢)is found in a similar fashion.
We have

Rzz(s,t)=E[Z(5)Z"(1)]

= E{[ J‘s O(u—5)U(u) du:H: 'r D —)Uv) du:lT}

= .r J" (b(u—s)R:,U(u,u)(DT(U_”dH du (A.530)

fod Iy

Equations{A.49)and {A.50) show that the knowledge of the first two moments
of U(t) leads to the determination of the first two moments of Z(¢). In theory,
the probability distribution of Z{t) can also be found in terms of the
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probability distribution of Uft); this, however, is much more involved. A
special case, however, is worth mentioning, namely, with Z(t) and U(t) related
as given by Eq. (A.47), Z(¢) is Gaussian if U(t) is Gaussian.

The integrals in Eqgs {A.49) and {A.50) can be simplified somewhat when
U{t) is second-order stationary. In this case, my(t) is a constant and

Ryy(s, t)= Ryylt —s)

and, in particular, Eq. (A.50) with t; = — o0 (input applied at time — o)
reduces to, after some change ol variables,

Ry (t—s)= J | J O(u)Ryy(t—s5s+o—uw)®T(v)dudv  {A.51)
¢ 0
which is also seen to be a function of (¢ — 5} only.

The second-order stationarity of the solution process Z(t) in this case
implies the existence of its associated power spectral density. As we recall,
the power spectral density Szz{w) of a second-order stationary process is
Ldefined by

. | e

SZZ(CU):EHJ\ B“Jerz'z(T)dT (AS?.)

T ~:wm
Applying this definition to Eq. (A.51), we obtain the [ollowing important
result:

Szz(w) = H*(jo)Syy(w)H' (jv) {A.53)

where H{jw) is the [requency response matrix of the system and H*{jw) is
its complex conjugate. Equation (A.53) gives a simple relation between the
speciral density matrix ol the input U(t) and that of the response Z(t). This
simple input-output relationship is one of the primary reasons for the use
of spectral densities in the analysis of linear time-invariant systems., We also
note that the second moments of Z{t) can be computed from Eq. (A.53) by
means of a single integral

@

E[Z()Z(1)] = Rzz(0) = J Szz{w)daw

-@

- j H*(j0)S yo() HT (o) do
T (A.54}

A.3 Stability

Stability of a dynamic system pertains to, roughly stated, the boundedness
to some degree of the solution of its state equation. It is one of the most
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important performance qualities of a system in analysis and control. For our
purposes, it is adequate to consider the homogeneous state equation of the
form

i{ty=Az(r),  =lto) =2 (A.55}
and consider its equilibrium state z.. An equilibrium state of the system
described by Eq. {A.55) is a solution satislying

Az, =10 {A.56)

clearly, z.= (0 is an equilibrium state in this case and is unique i[ A4 is
nonsingular.

Definition An equilibrium system state z, is said to be stable (in the sense
of Lyapunov}il, [or any £, and any £ > O, there exists a reai number d{g, t4) > 0
such that

fzo—zll<0
implies
e(t)—zll <&

for all t = t,. Il & does not depend on ¢4, the equilibrium state is said to be
uniformly stable.
In the above, the Euclidean norm can be used for |z |, ie.

172
lzll = [ZZ?} (A.57)

I

although other norms are also possible.

In words, the { Lyapunov) stability guarantees that the system state at any
t =t stays close to the equilibrium state by choosing the initial state close
enough to the equilibrium state, a rather weak condition of boundedness.
Stronger stability criteria are given below.

Definition An equilibrium system state z,. is asymptotically stable il it is
stable and if, for any ¢, there is a § > 0 (possibly dependent on t,) such that

leo—z.l<é
implies
fz(t) =zl =0

as t — o0, We see that, in addition to being stable, the solution in this case
always converges to z, when the initial condition is chosen close enough to
the equilibrium state.
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Definition An equilibrium system state z, is exponentially stable if there
exist real numbers % > (t and ff > 0 such that

Iz(t) =zl Sae™™%zgll, 121,

for every ©y. Thus, under exponential stability, the state converges to the
equilibrium state in an exponential [ashion independent of the initial
condition.

We have thus far addressed stability of the equilibrium state. For linear
systems, however, stability of the equilbrium state implies stability in any
other solution. To see this, let z(t) be any other solution of Eq. {A.55). Since
both z(t) and z, satisly Eq. (A.53), z(t) — z. is also a solution, Le. it satisfies
the state equation

d
Glamal=Alz—z)
Hence, stability in z, implies stability in any solution. For this reason, we
conslder stabihzy of the system to be synonymous w1th stabﬂity of the

Conditions for various forms of system stability can be easily established
for linear time-invariant systems. As already shown in Section A2, for a
system described by Eq. (A.55) whose system matrix A has distinct eigenvalues
4; and eigenvectors y;, f=1, 2,..., the solution z(t) can be written as

()= Y gen; (A.58)
i

where g, j = 1,2,..., are scalars whose values are [unctions of zo. Hence, the
stability properties are determined by the eigenvalues Z;: this is true also in
the case where A is not diagonalizable, The following theorems are direct
results ol this observation and we omit their proofs.

Theorem A.3 (Stability) The linear time-invariant system given by Eq.
(A.5353) is stable if and omniy il (a) all cigenvalues of 4 have nonpositive real
parts, and (b) to any eigenvalue of zero real part with multiplicity & there
correspond exactly & linearly independent eigenvectors. Condition (b) is
needed to ensure that no terms in the solution grow as ¢, t2,....

Theorem A.4 (Asymptotic Stability) The linear time-invariant system given
by Eq. (A.55) is asymptotically stable if and only if all eigenvalues of 4 have
strictly negative real parts.

We easily see from Eq. (A.38) that, if a linear time-invariant system is
asymptotically stable, it is exponentiaily stable, This result is [ormalized in
the [oHowing theorem.
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Theorem A.5 {(Exponential Stability) The linear time-invariant system given
by Eq. (A.55) is exponentially stable if and only if it is asymptotically stable.

A4 Controllability and Observability

Due to various reasons, a dynamic system designed to perform in a certain
fashion does not always do so in a completely satisfactory manner. As an
example, the actual load supported by a structure may exceed the design
toad. Corrective actions are thus necessary sometimes and control theory
offers one of the possible approaches to this end.

A control system is a dynamic systern which, through the action of an
external manipulatable input #(t), operates in a certain prescribed fashion as
time evolves. In design and synthesis of control systems, it is fruitful to first
pose a number of basic equations concerning their ability to perform as
required. Controllability is concerned with the question of whether or not
the state of a given system can be transferred from any given state to any
_other given state under the action of a control input. The important result
given below is stated without proof, which can be found in most of the
standard control texis.

Definition The linear time-invariant system
£(t)=Az(t)+ Bu(t), Z(ty) =2 (A.59)

is said to be completely controllable if, under the action of a piecewise
continuous input u(t), t, <t<t,, the state of the system can be brought
from any z, at any t, to any terminal state z; at time ¢, within a finite time
£y = tg.

Theorem A.6 Let the dimension of z(t) be n and the dimension of u(t)
be m. Then the system (A.59) is completely controllable il and only if the
n x nm matrix P defined by

P=[BiAB] .- | A" 'B] (A.60)
has rank #n.
The second guestion has to do with observability, namely, whether or not

a system has the property that its state can be determined from the knowledge
of the input and output informiation. We give the following definition.

Definition The linear time-invariant controf system

i(t)=Az(tr)+ Bu(t),  z{ty) =20 }

y{t) = Cz(t) + Pu(t) (A61)
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is said to be cempletely observable if the knowledge of control input #(t) and
output p(t) over a finite time interval ¢, <t <t, completely determines the
state z{t,) lor all ¢,.

Theorem A.7 Let the dimensions of z(t} and y(¢) be, respectively, » and r,
Then the system (A.61) is completely observable if and only if the ruxn
matrix @ defined by

- o
CA
Q=] -~~~ {A.62)
CAn—l_
has rank n. -
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Appendix B Conversion table: English units to SI units

To convert from To Multiply by
Acceleration
foot/second? (ft/sec?) metre/second? (m/sec?) 3048 % 1074 *
inch/second? (in/sec?) metre/second? (m,/sec?) 2.54 x 107%*

Area
foot? (1t*)
inch? (in?)

metre? {m?)
metre? {(m?)

9.2903 x 1072
64516 x 1074*

Drensily

pound mass/inch? (lbm/in?) kilogram/metre® (kg/m?) 2.7680 x 104

pound mass/foot? (Ibm/ft*} kilogram/metre® (kg/m?) . 1.6018 x 10
Energy, work

British thermal unit {Btu}) joule (1) 1.0544 = 10°

foot-pound force ({t-1bf) joule (I} 1.3558

kilowatt-hour {(kw-h} joule (I} 3,60 x 10%%
Force

kip {1000 1bf) newton (N) 44482 x 10°

pound force (1bf} newton (N) 44482
Length

foot (ft) metre (m) 3048 x 1071+

inch {in) meire (m) 2.54 x 1072+
Mass

slug (Ibf-sec?/f1) kilogram (kg) 1.4594 = 10

ton (2000 tbm) kilogram (kg) 00718 x 10°
Power

[oot-pound/minute {fi-ibf/min)  watt (W) 22597 x 1072

horsepower {550 ft-1bf/sec) watt {W) 7.4570 x 1072
Pressure, stress

atmosphere {std} {14.7 1b{/in?} newton/metre? (N/m?* or Pa)  1.0133 x 107

pound/inch? (Ibf/in® or psi) newton/metre* (N/m?* or Pa)  6.8948 x 103
Velocity

foot/minute (ft/min) metre/second (m/sec) 5.08 x 1073

foot/second (fi/sec) metre/second {m/sec) 3.048 x 1071 *

Viscosity
foot?/second ({t*/sec)
pound-mass/foot-second

metre?/second (m?/sec)

92903 x 1072

(Ibm/ft-sec) pascal-second (Pa-sec) 1.4882
pound-force-second /foot*
(Ibf-sec/ft?) pascal-second (Pa-sec) 4,788 x 10

* Exact value
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Cost function, 64
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Energy performance index, 93
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Euclidean norm, 187
Exponential stability, 188, 189

Frequency response, 184
Full-order system (FOS), 60
Full-scale testing, 135

Gain matrix, 15, 30
Gaussian random variable, 186

Hamiltonian, 12

Impulise response, 183

Input vector, 177

Independent modal space control

(IMSC), 45

Inelastic structure, 74

InfAuence coefficient, 74

Instability, 60, 68, 72

Instantaneous optimal control, 36
Closed-loop control, 38
Closed—-open-loop control, 39
Open-loop control, 40

Interpulse interval, 51

Kalman fiter, 15

Lagrange multiplier, 11
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Modal control, 28

Modal control lorce, 46
Modal coordinate, 180

Modal matrix, 45

Modal participation matrix, 43
Modal synthesis, 46

Modelling error, 60
Modulating function, 19

..Newmark’s beta.method, 168
Nonstationary Gaussian shot noise, 19

Observability, 28, 189
Observation error, 92
Observation spillover, 61
Open-loop control, 7, 15, 40
Optimal control, 12

Optimal controfler placement, 93
Optimal sensor placement, 90
Orthogonal filter, 64

Output feedback, 14, 30

Paraméter uncertainty, 86
Passive structure, 160
Performance index, 11
Performance robustness, 86
Phase compensation, 72
Phase shilt, 72

Pole assignment, 28

Power spectral density, 186
Predictive control, 97, 101
Probability distribution, 185
Pulse control, 50

Pulse generator, 146

Reduced-order system (ROS), 60
Relerence trajectory, 102, 106, 107
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Reliability, 110

Residual mode, 63

Riccati equation, 13, 5, 98
Riccati matrix, 13, 98
Robustness, 86

Second-order stationarity, 186
Semi-active mass damper, 137
Sensitivity matrix, 87

Sensor, 89

Servocontrolled hydraulic actuator, 123
Slack vanable, 65

Spillover, 60, 62

Spillover compensation, 63
Stability, 186

Stability robustness, 86
Standard deviation, 25

State, 177

State equation, 177, 181

...State estimation. error, 92.......

State feedback, 14
State-space equation, 10, 178
Stochastic input, 185
Stochastic process, 185
Strain pauge bridge, 123
Structural model, 117
Structural nonlinearity, 73
System identification, 124

Taylor series expansion, 70, 86
Time delay, 68, 97

Time delay compensation, 69
Transducer, 123

Transfer function, 68, 183
Transition mairix, 182

Tuned mass damper, 136

Unidirectional puise, 57
Unilorm stability, 187

Varijance, 24, 186
Venetian blind-type appendage, 154

Weighting matrix, t1

White noise, 124

Wilson-0 procedure, 75

Wind-tunnel experimental study, 151





