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Preface 

Natural hazard mitigation is one of the most important issues facing civil 
engineers today. Many of us have experienced the feeling of helplessness when 
our homes or offices were shaken uncontrollably by earth tremors. All of us 
have witnessed through television and other news media the vast destruction 
of properties and tragic loss of lives caused by an earthquake, a hurricane, a 
fire or a flood. In structural engineering. one of the constant challenges is to 
find new and better means of protecting structures and constructed facilities 
from the damaging etTects of destruc;tive environmental forces. One avenue 
open to the researchers and designers is to introduce more conservative 
designs so that structures such as buildings and bridges are better able to 
cope with large external loads. This approach, however, can be untenable 
both technologically and economically. Another possible approach is to make 
structures behave more like machines, aircrafts, or human beings in the sense 
that they can be made adaptive or responsive to external forces. Structural 
muscles, so to speak, can be flexed when warranted, or appropriate adjustmen}s 
can be made within the structure as environmental conditions change. This 
latter approach has led to active structural control research and has opened 
up a new field of investigation. which began more as an intellectual curiosity 
in the early 1970s but now is at the stage where large-scale experimentation 
is underway and actual active control systems have been designed and 
installed in full-scale structures. 

Another reason that active structural control has been receiving an 
increasing amount of attention has to do with rapid advances that have been 
taking place in allied technologies. The development of the active control 
concept must go hand-in-hand with advances in areas such as computers, 
electronics. measurement techniques, instrumentation, controllers. actuators, 
materials, etc. Current phenomenal advances in all these areas have given 
added impetus to the development of active control technology. They also 
reflect favourably on the all-important cost factor. 

On the basis of the analytical and experimental results obtained to date, 
it appears evident that, technologically, fully automated active systems are 
within sight of becoming a reality. At the same time, however, a large number 
of serious obstacles remain and they must be overcome before active structural 
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Preface 

control can gain general acceptance by the civil engineering and construction 
professions at large. This brings us to the purpose of writing this book. It is 
intended to introduce to the interested reader basic principles involved in 
the theory o[ active structural control, to bring together in one volume a 
wealth of information documenting progress that has been made to date, 
and to address implementational issues. It is hoped that the material in this 
book will provide the reader with some added degree o[ understanding and 
maturity so that he or she may better delineate imponant issues involved 
and pursue further studies in this exciting and fast expanding field. 

X 

T T Soong 
Buffalo, New York 

August, 1989 
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1 Introduction 

It is common knowledge that civil engineering structures must wi[hstand 
ever~changing environmental loads, such as wind, earthquakes and waves, 
over the span of their useful lives. Yet, until very recently, buildings, bridges, 
and other constructed facilities have been built as passive structures that rely 
on their mass and soli.dity to resist outside forces, while being incapable of 
adapting to the dynamics of an ever-changing environment. Indeed, 'solidity' 
and 'massiveness' have often been equated to 'safety' and 'reliability'. In 
recent years.- however, a number of factors have emerged that signal the need 
for considering structures with some degree of adaptability or responsiveness. 
These factors include the following: 

Increased flexibility: With the trend towards taller. longer and more 
flexible structures, undesirable vibrational levels could be reached under 
large environmental loads, thus adversely affecting human comfort and 
even structural safety. 

2 Increased safety levels: Higher safety levels are demanded as structures 
become more complex, more costly~ an~ serve more critical functions. 
Examples are tall structures, deep-water offshore platforms, and nuclear 
power plants. In these cases, conventional reliability criteria are no longer 
adequate and failure is synonymous with disaster. 

3 lncreasiuuly stringent pe({ormance requirements: Within safety limits, 
conventional structures are allmved to deform and even sustain local 
damage if necessary. Structures are increasingly required, however, to 
operate within strict performance guidelines such as alignment or shape 
constraints. Examples in this area are radar tracking stations, radio 
telescope structures~ and aerospace structures. 

4 Better ltti/i:::ation of material and haver cost: Partly due to the considerations 
just given, and partly due to economic consideration, it is clear that 
savings in materials, weight; and cost are not only desirable but necessary. 
This is especially true for structures in space and for portable structures 
used in military applications. 

As a result, new concepts of structural protection and structural motion 
control, such as supplemental damping, passive control and active control, 
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have been advanced and are at various stages of development. In the area 
of passive systems, they include base isolation systems against earthquake 
loads, tuned mass dampers and fluid sloshing damper systems against wind, 
and a variety of mechanical energy dissipaters such as bracing systems, friction 
dampers, viscoelastic dampers and other mechanical dampers. In the active 
system area, active mass dampers, active mass drivers, active tendon systems, 
pulse thrusters, and active variable stiffness systems are some of the devices 
being developed and tested both in the laboratory, and in some cases, in 
actual structural applications. 

The operating principle of a passive protective system is now adequately 
understood; less so, however, for active systems. In structural engineering, 
'active structural control' has become known as an area of research in which 
the motion of a structure is controlled or modified by means of the action 
of a control system through some external energy supply. Active systems are 
presently under close scrutiny in terms of their future structural applicability 
stemming from a number of motivating factors. They include the following: 

1 As mentioned earlier, with the advent of new materials and new 
construction methods, structures are becoming taller, longer and more 
flexible. The application of active control is one of the options in 
safeguarding such structures against excessive vibrations. In fact, 'super­
tall' buildings with up to 500 storeys are being considered as possibilities 
in the near future, 1 •

2 for which control systems, either active or passive, 
may become an integral part 

2 Active or hybrid active-passive systems can be attractive candidates for 
retrofitting or strengthening existing structures against, for example, 
earthquake hazards. Current passive means of using interior shear walls 
or base isolation systems are structurally invasive. Active systems, on the 
other hand, can be more effective and can be incorporated into an existing 
structure with less interference. In a report prepared for the National 
Research Council addressing research issues based on lessons learned 
from the 1985 Mexico earthquake,' research on retrofit of buildings using 
devices which 'might increase damping or modify the natural period' is 
recommended. This objective can be easily achieved using active or 
active-passive systems. 

3 Civil engineering structures are not designed to withstand all possible 
external loads. However, extraordinary loading episodes do occur, 
resulting in structural damage or even failure. Active control in this context 
can mean a last resort attempt to save a structure which, without it, would 
not be able to survive. This extra protection is particularly attractive 
when one considers the high cost of some recent large structures such as 
deep-water offshore platforms, not even mentioning lives that might be 
lost otherwise. The same is true for structures which serve critical functions 
such as hospitals and nuclear power plants. 

2 
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4 Some structures house valuable and sensitive equipment or secondary 
systems. Their operating safety is of paramount importance. Active control 
can thus be applied at the substructure level to ensure proper operating 
conditions for secondary systems. 

5 Passive control devices such as base isolation systems, viscoelastic 
dampers and tuned mass dampers, have been installed in some existing 
structures, resulting in improved structural performance. Passive devices, 
however, have inherent limitations. Consider, for example, the tuned mass 
damper system installed in the Citicorp Center, New York.4

•
5

•
6 Since it 

is tuned to the first modal frequency of the structure, it is basically designed 
to reduce only the 6rst mode vibration. An active mass damper, on the 
other hand, can be effective over a much wider frequency range, Hence, 
the study of active structural control is a logical extension of passive 
control technology, 

6 Finally, the idea of active control itself is not only attractive, but 
potentially revolutionary, since it elevates structural concepts from a static 
and passive level to one of dynamism and adaptability. One can envisage 
future structures having two types of load resisting members: the 
traditional passive members that are designed to support basic design 
loads, and active members whose function is to augment the structure's 
capability in resisting extraordinary loads. Their integration in an optimal 
fashion can conceivably result in better utilization of material and lower 
cost 7- 9 

Thus motivated, there has been a flurry of research activities in the area 
of active control of civil engineering structures over the last 20 years. In this 
book, an attempt is made to provide the reader with a working knowledge 
of this exciting and fast expanding field. Moreover, current research and 
development work in active control is brought up-to-date as much as possible, 

1.1 Organization 

The material of this book flows from theoretical background to practical 
considerations to implementational'issues. Chapters 2 and 3 are concerned 
with the fundamental principles of active structural control and with the 
development of control algorithms suitable for structural control applications. 
Topics in these chapters are better understood when the reader has a working 
knowledge of elementary structural dynamics, random vibration, systems 
theory and control theory. Of the above knowledge areas, theoretical aspects 
of systems and control theory may not be familiar to some of the readers. 
Consequently, a brief introduction and a summary of results in linear control 
systems are given in Appendix A, together with a list of useful references. 

3 



Acth·e structural control: theory and practice 

Chapter 4 deals with practical considerations in control implementation. 
Issues addressed in this chapter include modelling errors, time delay in control 
execution, inelastic structural behaviour, and problems arising from hardware 
and computational limitations. 

As mentioned earlier, several control devices are being actively considered 
for structural applications. In fact, large-scale testing is underway for some 
active structural control systems and, at least in one case, full-scale structural 
implementation has taken place. Discussions in Chapter 5 centre around 
some of these feasible control schemes with emphasis on their performance 
in the laboratory. 

Actively controlled structures are a new strain of structural systems and 
their optimization takes on an added dimension in scale as well as in 
complexity. In Chapter 6, this optimization problem is addressed from one 
particular point of view. It is hoped that this brief exploration will lead to 
more serious investigations into many fascinating aspects of this challenging 
problem. 

Finally, it should be pointed out that, since many references were used in 
the development of this book, no attempt was made to unify the units of 
quantities used in the text and in the examples. It was felt that, to leave them 
in their original units, easier reference to the original publications could be 
made. For convenience, a conversion table for English-unit to SI-unit 
conversion is provided in Appendix B. 

References 

l. Supertall Structures, the Sky's the Limit. Enyineerill.lJ News Record November 
1983 . 

L Tucker 1 8 1985 Superskyscrapers: Aiming for 200 Storeys. High Tech 5 pp 50-63 
3. NRC Committee on Earthquake Engineering Research A{Jenda: Learninq from 

the 19 September 1985 Mexico Earthquake National Research Council, Washington 
DC 1986 

4. Petersen N R 1980 Design of Large Scale Tuned Mass Dampers. In Leipholz 
H HE (ed) Structural Control North Holland, Amsterdam pp 581~96 

5. Tuned Mass Damper Steady Sway of Skyscraper in Wind. Engineerino News 
Record 28~9 August 1977 

6. Wiesner K 8 1979 Tuned Mass Dampers to Reduce Building Wind Motion 
Preprint 3510 ASCE Convention Boston 

7. Soong T T and Manolis G D 1987 On Active Structures. ASCE Joumal of 
Structural En{filleering ll3 pp 2290-301 

8. Soong T T and Pitarresi J M 1987 On Optimal Design of Active Structures. In 
Jenkins D R (ed) Compwer Applications in Structural EnrJineainy ASCE NY 
pp 579-91 

9. Cha J Z, Pitarresi J M and Soong T T 1988 Optimal Design Procedures for 
Active Structures. ASCE Joumal of Structural Enyineerinq 114 pp 2710-23 
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2 Actively Controlled 
Structures 

Some early notions of an actively controlled structure are contained in work 
by Zuk " 2 in which the notion of'kinetic structures' is advanced. Zuk made 
the distinction between active controls which are designed to reduce structural 
motion and those which generate structural motion. The kinetic structures 
described by Zuk belong to the latter. Conceptually, Zuk visualizes all manner 
of buildings as being able to change form, shape, and configuration in order 
to make themselves adaptable to ever-changing forces and functional usages. 
For example, a building could be compactly prepackaged in a factory, and 
conveniently transported to the site. At the site, it would be energized, causing 
it to self-deploy or erect itself by means of control systems. Similarly, one 
can envisage structures which are self-collapsing. reversible, or are able to 
change shape. or control enclosed space through structural manipulation by 
means of control devices. 

The topic addressed in this book. however, belongs·to the first category, 
namely. controls designed to reduce structural motion. According to Zuk, 3 

the earliest attempts in this direction were made in the 1960s when Eugene 
Freyssinet proposed in 1960 to use prestressing tendons as control devices 
to stabilize tall structures. Independently, Lev Zetlin in 1965 conceived the 
idea of designing tall buildings, whereby cables arc 5xed to the structural 
frame and attached to hydraulic jacks at the base. Sensors are used to detect 
movement at the top of the structure and to signal a control device which, 
in turn, directs the action of the jacks. Unfortunately. neither structure was 
built Other early attempts include that of Kobori and Minai," who advocated 
the concept of 'dynamic intelligent buildings' capable of executing active 
response control when they arc subjected to severe earthquakes. Nordell' 
also suggested the use of active systems which can be activated to provide 
increased strength to a structure prior to any ·exceptional' overloading. Two 
examples of such systems are ,sketched in Figs 2.1 and 2.2, A movable 
diagonal bracing system is shown in Fig, 2. I, In its active state, the diagonal 
bradngs would increase the lateral resistance of the structure in resisting 
exceptional loadings. As it was conceived, the bracing scheme would be 
manually activated. Similar concepts for movable columns, walls or trusses 
could also be envisaged aad Fig. 2.2 provides such an example. The columns 
in their active state would increase both the lateral and vertical resistance. 

5 
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.{'VV, 1/1( 
'----------' ~ 

I' 
inactive 

Figure 2.1 Hinged bar bracing system5 

A systematic assault on active control research did not begin until 1972, 
when Yao laid down a more rigorous control-theory based concept of 
sfrtidural ciJntrol. 6 fn this an excessiveCres]Jonse triggered structural control 
system is suggested as an alternative approach to addressing the safety 
problem in structural engineering. 

As described by Yao and in most of the subsequent research and 
development work, an active structural control system has the basic 
configuration as shown schematically in Fig. 2.3. It consists of: 

Sensors located about the structure to measure either external excitations, 
or structural response variables, or both. 

,___ I -.-. 

.Inact~e l .. 

Active 

I .. . ··- .. 

I 

I 
;;A /,;:<:("' ~-

Figure 2,2 Movable columns5 
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Figure 2.3 Schematic diagram of active control 

2 Devices to process the measured information and to compute necessary 
control forces needed based on a given control algorithm. 

3 Actuators, usually powered by external energy sources, to produce the 
required forces, 

When only the structural response variables are measured, the control 
configuration is referred to as closed-loop control since the structural response 
is continually monitored and this information is used to make continual 
corrections to the applied control forces, An open-loop control results when 
the control forces are regulated only by the measured excitation. In the case 
where the information on both the response quantities and excitation are 
utilized for control design, the term closed-open-loop control is used in the 
literature. 

To see the effect of applying such control forces to a structure under ideal 
conditions, consider a building structure modelled by ann-degree-of-freedom 
lumped mass-spring-dashpot system. The matrix equation of motion of the 
structural system can be written as 

iiJx(t) + Ci(t) + Kx(t) = Du(t) + Ef!.t) (2.1) 

where ,'tf, C and K are, respectively, the 11 x 11 mass, damping and stiffness 
matrices, x(t) is the 11-dimensional displacement vector, fit) is an r-vector 
representing applied load or external excitation, and 11( 1) is them-dimensional 
control force vector, The n x. m· matrix D and n x r matrix E are location 
matrices which define locations of the control force and the excitation, 
respectively. 

Suppose that the closed-open-loop configuration is used in which the 
control force u(t) is designed to be a linear function of the measured 
displacement vector x(t), the velocity vector i(r) and the excitation fit). The 
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control force vector takes the form 

(2.2) 

where K1 , C 1 and E 1 are respective control gains which can be time­
dependent. 

The substitution of Eq. (2.2) into Eq. (2.1) yields 

M.i'(t) + ( C- DC1 )i(t) + (K- DK1 )x(t) = (E +DE 1 )flt) (2.3) 

Comparing Eq. (2.3) with Eq. (2.1) in the absence of control, it is seen that 
the effect of closed-loop control is to modify the structural parameters 
(stiffness and damping) so that it can respond more favourably to the external 
excitation. The effect of the open-loop component is a modification (reduction 
or total elimination) of the excitation. The choice of the control gain matrices 
K 1 , C1 and £ 1 depends on the control algorithm selected. 

We see that the concept of active control is immediately appealing and 
exciting. On one hand, it is capable of modifying properties of a structure in 
suCh'ri'Way as to react to external eXcitatio'ns in the most favourable manner. 
On the other hand, direct reduction of the level of excitation transmitted to 
the structure is also possible through active control. 

In the development of an active structural control concept, one of the first 
tasks at hand is to develop suitable control laws such as that given by 
Eq. (2.2). Some of the commonly used control algorithms for structural 
applications are discussed in Chapter 3. For readers who are versed in control 
theory, it is readily apparent that the basic concepts of active control are 
not new; they have been the staple of electrical and control engineering for 
many decades. And they have been applied successfully in a variety of 
disciplines such as aerospace engineering and mechanical engineering. More 
recentiy,'motion control of large space structures has also been a subject of 
intensive research. However, active control of civil engineering structures, as 
indicated above, has a more recent origin. While much of the theoretical 
basis is rooted in modern control theory, as we shall see, its application to 
civil engineering structures is unique in many ways and presents a host of 
new challenges. 

References 

1. Zuk W 1968 Kinetic Structures. Cit'il Enoineering 39 pp 62-4 
2. Zuk Wand Clark R H 1970 Kinetic Architecwre Van Nostrand Reinhold, New 

York 
3. Zuk W 1980 The Past and Future of Active Structural Control Systems. In 

Leipholz H H E (ed) Structural Control North Holland, Amsterdam pp 779~94 
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4. Kobori T and Minai R 1960 Analytical Study on Active Seismic Response Control. 
TI·ansacthms of the Architecturallnstitttte of.Japmz No. 66 (in Japanese) 

5 Nordell W 1 1969 Active Systems for Elascic~Resistant Structllre Technical Report 
R~611, Naval Civil Engineering Laboratory, Port Hueneme, CA 

6 Yao 1 T P 1972 Concept of Structural Control. ASCE Journal of Struclllral 
Division 98 pp 1567-74 
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3 Control Algorithms 

Research efforts in active structural control have been focused on a variety 
of control algorithms based on several control design criteria. Some are 
considered classical as they are direct applications of modern control theory. 
Others, however, are specifically proposed for civil engineering structural 
control applications due to the fact that, as mentioned earlier, they give rise 
to some unique control problems. 

To facilitate discussions, let us again use Eq. (2.!) to represent the structure 
under conside!'aticin which, using the -state-space representation as discussed 
in Appendix A, can be written in the form 

i(t) = Az(l) + Bu(t) + Hf(t), z(O) = Zo ( 3.1) 

where 

[x(t)J 
z(t) = x(t) (3.2) 

is the 2t!-dimensionai state vector, 

A [ (3.3) 

is the 2n x 2n system matrixt and 

and (3.4) 

are 2n x Ill and 211 x r location matrices specifying, respectively, the locations 
of controllers and external excitations in the state-space. In Eqs (3.3) and 
(3.4), 0 and I denote, respectively, the null matrix and the identity matrix 
of appropriate dimensions. Matrices D and E in Eq. (3.4) are defined in 
Chapter 2. 

10 
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3.1 Classical linear Optimal Control 

In classical linear optimal control, the control vector u(t) is to be chosen in 
such a way that a performance index J, defined as 

J J 1 [z(t.),z(t1),t.,t,]+ I'' J 1 (z,t,u,ri,t)dt (3.5) 
t, 

is minimized subject to the constraining equation (3J ). The performance 
index J has two terms. The first term, J 1 , is an initial~terminal stage penalty 
function, which depends only on the initial and final times of the control 
interval [t, t,] and on the states evaluated at those two time instants. The 
second term of J is an integral evaluated over the control interval [t,t,]. 

In Eq. (3.5), J is a scalar functional which is to be minimized with respect 
to u(l) while satisfying the constraint specified by the state-space equation 
(3.1 ). Other constraints, of course, can also be introduced. For example, 
bounds can be placed on the allowable range of the structure's position and 
velocity. One thus has 

!zl,.,;; b {3.6) 

as an additional (inequality) constraint. 
The form of the performance index usually chosen for study in structural 

control is quadratic in z(t) and u(t). Setting t, = 0, it is written as 

J s: [ zT(t)Qz(t) + uT(t)Ru(t) J dt (3.7) 

In the above, the superscript r indicates vector or matrix transpose, the 
time interval [0, trJ is defined to be longer than that of the external excitation, 
Q is a 2n x 2n positive semi-definite matrix, and R is an m x m positive definite 
matrix. The matrices Q and R are referred to as weighting matrices, whose 
magnitudes are assigned according to the relative importance attached to 
the state variables and to the control forces in the minimization procedure. 
The assignment of large values to the elements of Q indicates that response 
reduction is given priority over the control forces required. The opposite is 
true when the elements of R are large in comparison with those of Q. Hence, 
by varying the relative magnitudes of Q and R, one can synthesize the 
controllers to achieve a proper trade off between control effectiveness and 
control energy consumption. 

To solve the optimal control problem with J defined by Eq. (3.7) subject 
to the constraint represented by Eq. {3.1), the Lagrangian Lis first formed 
by adjoining these two equations with a time-varying Lagrange multiplier 

11 
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J.(t),I. 1 giving 

L= { z'(t)Qz(t) + uT(t)Ru(t) + ).r(t)[Az(t) + Bu(t) +Hf{t) -i(t)]) dt f
,, 
[) 

(3.8) 

The necessary conditions which define the optimal control can be found 
by taking the first variation of the Lagrangian with respect to the state and 
control variables and setting it to zero. Taking the first variation of Eq. (3.8) 
yields 

f,, [ (' . Mf" off ) J JL= -J.T(t,)c5z(t,)+J.T(O)r5z(O)+ ).1 +-.-. c5z+-;-c5u dt 
o a~ uu 

(3.9) 

where .ff" is the Hamiltonian defined as the integrand of Eq. (3.8). 
Now, ,Jz(O) = 0 since z(O) = z0 is a given constant. By requiring DL= 0, 

one must have 

with boundary condition 

D.Yf" 
-=0 011 • 

;,r(t,) = 0 

(3.1 0) 

( 3.11) 

(3.12) 

Equations (3.10-3.12) are the necessary conditions for optimal control. 
Upon carrying out the necessary partial derivatives of :it with respect to 11 

and .l:, one obtains 

\ _j_ •• ).= -ATl-2Q;;, l(t,)=O (3.13) 

(3.14) 

The system of equations given by Eqs ( 3.1 ). ( 3.13 ), ( 3.14) provides the 
optimal solution for ;;(t), u(t) and ).(t). They define a two-point boundary 
value problem since z( t) is specified at t = 0 and l( t) is specified at t = t,. 

3.1.1 Closed-loop Collfrol 

When the control vector is regulated by the state vector, one has 

l(t) = P(t)z(t) (3.15) 

11 
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The unknown matrix P(t) can be determined by substituting Eq. (3.15) into 
Eqs (3.1,), (3.13), (3.14). One can show that it satisfies 

[J'>( t) + P(t )A -1 P(t )BR- 1 BT P(t) +AT P(t) + 2Q] z(t) + P(t )Hf(t) = 0, 

P(t,)=O (3.16) 

Whenf(t) is zero, Eq. (3.16) reduces to 

P(t) + P(t)A -!P(t)BR- 1 BT P(t) +AT P(t) + 2Q = 0, P(tr)=O 
( 3.17) 

In optimal control theory, Eq. (3.17) is referred lo as the matrix Riccati 
equation and P(t) is the Riccati matrix. Since P(t) is specified at t,, Eq. (3.17) 
is solved backwards in time. Methods for solving the matrix Riccati equation 
are well documented in the literature.2 

The substitution of Eq. (3.15) into Eq. (3.14) shows that the control vector 
u( t) is linear in z( t ). The li11ear optimal co11trol law is 

u(t)=G(t)z(t)= -!R- 1 BTP(t)z(t) (3.18) 

where G(t) = -!R- 1 BT P(t) is the control gain. When z(t) is accessible 
through measurement, u(t) can be determined from Eq. (3.18) and it is known 
that the feedback controller determined in this way generates a stable 
closed-loop system. 

We remark that, strictly speaking, the Riccati matrix P(t) obtained from 
Eq. (3.17) does not yield an optimal solution unless the excitation termf(t) 
vanishes within the control interval [0, t,] as seen from Eq. (3.16), or it is a 
white noise stochastic process.1. 2 It is also mentioned that, in structurUl 
applications, numerical computations have shown that the Riccati matrix 
P(t) typically remains constant over the control interval, dropping to zero 
rapidly near r,. For example, typical elements of P(t) for an eight-storey 
building structure with arbitrarily prescribed weighting matrices Q and R 
are shown in Fig. 3.1. Therefore, P(t) can in most cases be approximated by 
a constant matrix P and the Riccati equation (3.17) reduces to 

PA -!PBR- 1 BTP+ ATP+ 2Q= 0 

The control gain G(t) is also a constant with 

G= -'!;R- 1 BTP 

(3.19) 

(3.20) 

which can be precalculated for a 'given structure and with prescribed weighting 
matrices Q and R. 

Upon substituting Eq. (3.18) into Eq. (3.1), the behaviour of the optimally 
controlled structure is described by 

i(t) =(A+ BG)z(t) + Hf(t), z(O)=z0 (3.21) 

13 
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P1 1(E) 

10 ' 

' -
Pto. H>(<) 

P:.J., u,(r) 

b-

P'J. I:.:( f) \ 

-

lO ' ' ,, 
Figure 3.1 Some elements of Riccati matrix3 

Again, we see that the effect of closed-loop control is one of structural 
modification where the system matrix is changed from A (open-loop system) 
to A + BG (closed-loop system). 

Finally, it is emphasized that the control law given in Eq. (3.18) requires 
knowledge of the entire state vector z(t) of the structure (state feedback). 
Since the entire state can rarely be measured directly, it is often necessary 
to replace Z(t) by z{t), the state estimator determined from incomplete state 
measurements (output feedback). 

Let y(t) be the p-dimensional measurement (nutput) vector (p ~ 2n) with 

y(t) = Cz(r) +'I (3.22) 

where Cis the p x 2n measurement matrix and '1 is the p-vector of possible 
output noise. The state estimator t( t) can be designed as a Luenberger 
observer when the signal-to-noise ratio for the output is sufficiently high and 

14 
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as a Kalman filter otherwise-' It is given by 

t(t) = Ai(t) + Bu(t) + G*[Ci(t)- y(t)], i(O) = Zo (3.23) 

In the above, the estimator has an internal model of the system being estimated 
as indicated by the first two terms while the third term corrects the model 
by a linear feedback of the difference between the measurement output y(t) 
and the computed output J1(t) = Ci(t). In the Luenberger version, the 
estimator gain G* is chosen so that the estimator error i(t)-z(t) decays 
exponentially at a prescribed rate. 

3.1.2 Closed-open-loop Control and Open-loop Control 

In some applications, the external excitation is also accessible to measurement. 
When this information is also used in control design, it leads to a closed­
open-loop control law which should be superior to closed-loop control. For 
this case, we replace Eq. ( 3.15) by 

l(t) = P(t)z(t) + S(t)flt) (3.24) 

Upon substituting Eq. (3.24) into Eqs (3.1 ), (3.13 ), (3.14 ), the Riccati equation 
(3.16) now takes the form 

[P(t) + P(t )A - t P(t )BR - 1 BT P(t) +AT P(t) + 2Q]z(t) 

+ S(t)flt) + S(t)j{t)- ( t P(t)BR - 1 BT- AT)S(t)flt) 

+ P(t)Hflt) = 0, P(tr) = 0, S(t,) = 0 (3.25) 

The first part of this equation, upon using approximations as was done in 
Section 3.1.1, leads to the same closed-loop Riccati equation for the gain 
matrix P(t). The remaining portiongives 

[S(t)- (tP(t)BR- 1 BT- AT)S(t)+ P(t)H]Jlt) +S(t)}lt) = 0, S(t,)=O 

(3.26) 

Unfortunately, the open-loop control gain S(t) cannot be found in general. 
This is because Eq. (3.26) must be solved backwards from the terminal time 
r,, requiring that flt) and }lt) over the entire control interval be known 
a priori. This is not possible for most structural control situations. 

For open-loop control, Eq.,(3.24) can be put in the form 

.<( t) = S( t )Jl t) (3.27) 

It can be readily seen that the same problem as encountered in closed-open­
loop control exists and thus open-loop control is generally infeasible in 
structural control applications as well. 
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Example 3.1 As a demonstration of the closed-loop control principles 
presented above, let us study active control as applied to a simple single­
degree-of-freedom structural system. Consider the horizontal motion of a 
one-storey structure subject to base acceleration x0 (t). As shown in Fig. 3.2(a), 
the control force is applied to the structure through a set of tendons connected 
to an actuator placed at the base. The objective of control is to reduce the 
horizontal displacement of the first floor relative to the base for safety reasons, 
and to reduce its absolute acceleration for comfort reasons. 

From the free-body diagram shown in Fig. 3.2(b). the equation of motion 
of the controlled system is 

5t(t) + 2Cw 0 x( r) + w~x(t) • . 4k, cos a 
-x0 (r)- ---·u(r), 

m 
x(O) = x(O) = o 

( 3.28) 

where ( and w 0 are, respectively, the damping factor and undamped natural 
frequency of the uncontrolled (open-loop) structural system. The actuator 
displacement, denotedby u(t), is considered here as the 'control force'. The 
quantities m, k, and rz denote, respectively, the system mass, tendon stiffness 
and inclination angle of the tendon with respect to the base. 

lai 

{h) 

"'=------------71.- .t(r) 

--Active 
tendon 

Figure 3.2 Structural system in Example 3,1 (a) schematic diagram; (b) free body 

diagram4 
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Introducing the state vector z(t) with z 1 (t)=x(t) and z 2 (t)=.>'(t), the 
state-space form of Eq. (3.28) is 

i(t) = Az(t) + bu(t) + hx0 (t), z(O) = 0 

where 

A= [ 0' -wo 

b= [ 4k~cosa] 
Ill 

and 

Under the quadratic performance criterion, the actuator displacement u(t) 
is to be found such that the integral J given by Eq. (3.7) is minimized. For 
simplicity, we shall use 

Q=[~ ~] and 

where k is structural stiffness as seen in Fig. 3.2(b). 
The coefficient fJ determines the relative importance of control effectiveness 

(response reduction) and economy (control force requirements). When fJ < l, 
control effectiveness is weighted more heavily and, when fJ > 1, economy is 
more important. They are equally important when fJ = 1. fJ = w represents 
the uncontrolled case. 

Let the system parameters take values as those given in Table 3.1. The 
computed control parameters and control effect on the structural behaviour 
are summarized in Table 3.2. It is seen that, as discussed earlier, substantial 
structural modification takes place as reflected by the changes in the natural 
frequency and the damping factor. In this case, there is a minor change in 

Table 3.1 System parameter values in 
Example 3.1 

Mass 
Structure stiffness 
Tendon stiffness 
Tendon angle 
Natural frequency 
Damping factor 

m = 16.69lb-sec2 /in 
k = 7934 1b/in 

k, = 2124 lb/in 
"= 36' 

w 0 = 3.47 Hz '= 1.24% 

17 
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Table 3.2 Control parameters and controlled system behaviour 

Parameter (1 = :n [1~5 fJ=l 

Riccati matrix P [1926 
16.15 

16.15 J 
3.780 

[1035 
14.51 

14.51 ] 
1.660 

Natural frequency (Hz) 3.47 3.58 3.96 
Damping factor(%) 1.24 17.8 34.0 

natural frequency from uncontrolled to the controlled cases. The damping 
factor, however, is substantially increased from 1.25% in the uncontrolled 
case (/1 = co) to 34.0% in one of the controlled cases (/1 = 1 ). This is also 
demonstrated graphically in Fig. 3.3 by observing the change in magnitude 
of the input-output transfer function, the input being x0 (t) and the output 
x(tJ. 

Consider the case in which x0 (t) is a sample of a nonstationary stochastic 
process resembling an earthquake record as shown in Fig. 3.4. Numerical 

.·calculations can be carried out to determine the response behaviour of the 
structure under uncontrolled as well as controlled conditions. 

The control effect in the time domain can be observed in Figs 3.5-3.7. 
Figure 3.5 shows reduction in the relative displacement for {1 = 5 and {1 = 1. 
As indicated earlier, a larger reduction is achieved for a smaller value of {1 
as more weight is assigned to the control effectiveness. Corresponding 
reduction in the absolute acceleration is shown in Fig. 3.6. Figure 3.7 shows 
the required control force in the tendon which is obtained by multiplying 
tendon displacement 11(1) by tendon stiffness k,. As expected, larger control 
forces are required for smaller values of fl. 

40 

30 

10 

0 2 4 6 8 

w (Hz) 

Figure 3,3 Magnitude of transfer function Hx~(w) 
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0,! 

t(sec} 

Figure 3.4 Base acceleration ln Example 3.1 

Example 3.2 Most of the environmental loads, such as wind and earthquakes, 
to which civil engineering structures are subjected are random in nature. 
Hence, the analysis of the behaviour of an actively controlled as well as an 
uncontrolled structure is based on the theory of random vibrations. We shall 
use this example to demonstrate some steps involved in such an analysis. 
Also, by using a two-degree-of-freedom structural system, relative merits of 
several different control configurations can be examined in an elementary 
way. 

This example is taken from Yang.' The reader is referred to Appendix A 
for a review of some basic principles in random vibration analysis. 

Consider a two-storey building as shown in Fig. 3,8, which is again excited 
by an earthquake-type ground acceleration X 0 (r). In this example, X 0 (r) is 
modelled by a nonstationary Gaussian shot noise with 

X aUl = l/J(r) W(t) (3.29) 

in which W(t) is a stationary zero-mean Gaussian white noise and 1/J(t) is a 
deterministic modulating function of the form 
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Figure 3.6 Relative displacement in Example 3.1 4 
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Figure 3.6 Absolute acceleration in Example 3.1 4 
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400 

ll 5 

-4001:----'-----"-----.L.-----'----

~=! 

50 liO 70 
t (sec) 

Figure 3.7 Control force in Example 3.1 <~ 

where I!( t) is the unit step function and g, "- and {J are constants. Accordingly, 
the mean of.\' 0 (t) is zero and its covariance is 

where Dis the power spectral density of W(t). For numerical calculations, 
we shall set a= 0.25/sec. fJ = 0.63/sec, g = 3.06 and D = 0.04 m 2 /sec4 

Since the excitation is random, the structural response is random and, as 
a consequence, the control as determined from Eq. (3.18) is also random. In 
what follows, these random quantities will be written in capital letters. 
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Figure 3.8 Structure in Example 3.2 5 

The state-space equation in this case has the form 

with 

Z( t) = AZ(t) + BU(t) +fiX 0(t), 

Z(t) = 

X1(t) 

X 2 (t) 

x 1 (t) 

x ,(t) 

Z(O) = 0 

Note from Fig. 3.8 that X 1 (t) is the relative displacement of the first floor 
with respect to the foundation and X 2 (t) is the relative displacement of the 
second floor with respect to the first floor. 

The system matrix A and vector h are 

0 0 0 

0 0 0 1 
A= 

' ' -Wj WlV -2( 1 w 1 -2( 2 w 2 v 

' -w~(l + v) 2\ 1 w 1 -2\2 w2 (1 + v) w-1 

and 

0 

0 
II= 

-I 

0 
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Let us assume that control forces are applied at both floors. We have 

0 0 

0 0 

[U,(t)J B= 0 U(t) = U ,(!) , 
11lt 

1 

ml m2 

For numerical computations, the following structural parameter values are 
used: m1 =m2 =40000 kg~ v=m 2 /m 1 =l, { 1 ( 2 =0.02, w1 =2 Hz. and 
w 2 = 1.5 Hz. 

Finally, the weighting matrices appearing in the performance index 
(Eq. 3.7) are assumed to be 

1 
Q= 

1 1 1 

1 1 1 

where '/ is a parameter representing the relative importance between the 
covariances of the response and those of the control forces. 

With the optimal control determined from Eq. (3.18), the mean of the 
controlled structural response is zero and its covariance matrix at t = s, 
defined by 

. 
satisfies the first-order matrix differential equation 2 

Rzz(t) =(A+ BG}Rzz(t) + Rzz{t)(A + BG)T + 2/tR.Y,s)r)ltT 

with initial condition 

Rzz(O) = 0 

The covariance matrix of the control vector at t =scan be obtained from 
Eq. (3.18) as 

R uu( t) = GR zz( t )G'' (3.30) 

The variance, rr}.(t), of the relative displacement between the foundation 
and the first floor under optimal control is plotted in Fig. 3.9( a) for various 
values of)'. Also plotted in Fig. 3.9(a) is u}, (t) without control. The variance, 
u.},(t), of the relative displacement between the first and second floors is 
plotted in Fig. 3.9(b ). It can be observed that a significant reduction in the 
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(a) 
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Jh) 

Figure 3.9 Variances of relative displacements in Example 3.2 (a) variance of X 1 (t); 
(b) variance of X2 {t) 5 

response variance is achieved by the use of active control. It is further observed 
that, the smaller the i' value is, the more reduction in response is ach'ieved. 
However, as }' decreases, mqre control forces are required. The standard 
deviations au,(t) and "u,(t) of the optimal control forces are computed from 
Eq. ( 3.30) and plotted in Fig. 3.10 to give an indication of required magnitudes 
of the control forces. 

From a safety standpoint, the relative displacement between the first floor 
and the second floor is important, since a},(t) is much greater than a},(t). 
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Figure 3.10 Standard deviations of control forces in Example 3.2 {a} standard deviation 
of u1 {1); {b) standard .deviation of u2 ( t) 5 

As a result, it is more important to control or reduce X 2 ( t ). Supposing that 
we can only install one controller in the building, the question of whether it 
should be placed on the first floor or on the second floor is of practical 
importance. For the first case where only one controller is placed on the 
second floor, the response variance, oi,(r), and the standard deviation, rru,(t), 
of the control force are plotted in Figs 3.11 and 3.12 as solid curves. For the 
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5.0 

--- Controller on first floor 

4.0- --- Controller on second floor 

"6 3.0 
~ 
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Figure 3.11 Variances of X2 (t) in Example 3.2- single~controller case 5 

second case where only one controller is placed on the first floor, the response 
variance, a},(t), and the standard deviation, "u,(t), of the control force are 
plotted in Figs 3.11 and 3.12 as dashed curves. 

It is observed from these figures that a controller on the second floor 
requires a smaller control force to achieve a larger reduction in the response 
variance, a;L(t), while a controller on the first floor requires a larger control 
force. Consequently, a controller installed on the second floor is more effective 
in response reduction in this case. 

50000 
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6 
3000ll 

~ 
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0 
20000 
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10000 
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Figure 3.12 Standard deviations of control forces in Example 3.2- single~controller case 5 
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3.2 Pole Assignment 

Consider again the state-space equation (3.1). The system matrix A defines 
the open-loop system dynamics and its eigenvalues provide modal damping 
and stiffness characteristics. Let the control force be determined by linear 
state feedback, i.e. 

u(t) = Gz(t) ( 3.31) 

where G is a constant gain matrix. As Eq. (3.21) shows, the closed-loop 
system thus takes the form 

i(t) =(A+ BG)z(t) + Hf(t), z(O)=z0 (3.32) 

in which the system matrix becomes A + BG. As has been observed in 
Chapter 2, this modification of the system matrix through active control 
alters modal damping ratios and frequencies. This is reflected by the fact that 
the eigenvalues of A+ BG are generally different from those of A. For 
structural systems, these eigenvalues, which we shall denote by 'I•· are related 
to the modal frequencies wi and damping ratios C in complex conjugate pairs 
by 

•i·=L·W·+J·wJI-C' ! -! !- ! -!' j=R (3.33) 

Since these closed-loop eigenvalues define the controlled system behaviour, 
a feasible control strategy is to choose the control gain Gin such a way that 
the 'I;S take a set of values prescribed by the designer. Control algorithms 
developed based on this procedure are generally referred to as pole assignment 
techniques. Successful application of these algorithms thus requires judicious 
placement of the closed-loop eigenvalues on the part of the designer as well 
as a good understanding of the uncontrolled structural modal behaviour. 

Pole.assignment algorithms have been studied extensively in the general 
control literature. 1.2 Its application to the study of civil engineering structural 
control has been fruitful when only a few vibrational modes contribute 
significantly to the response.6

·
7 In these cases, attention needs to be paid 

only to these selected modes and a more clear choice of the closed-loop 
eigenvalues can be made. 

In control design using the pole assignment approach, two questions need 
to be addressed. The first is, given the matrix pair (A, B), can one choose the 
feedback gain G so that the new (closed-loop) system matrix A + BG possesses 
the prescribed eigenvalues? The second basic question has to do with finding 
an efficient method of generating the control gain G. 

The answer to the first question is quite specific;' that is, the system must 
be completely controllable (see Appendix A). As for control design, a number 
of algorithms have been developed. The procedure described below is 
relatively simple and is due to Brogan9 
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The eigenvalues 'lis are the solutions of the determinantal equation 

I•1I-A-BGI=O (3.34) 

which can be written as 

(I•II- A I)(II- 1/J(•i)GI) = 0 (3.35) 

where 

( 3.36) 

Since 11 is not an eigenvalue of the original (open-loop) system, 

and Eq. (3.35) leads to 

(3.37) 

Making use of a determinantal identity, Eq. ( 3.37) can be written in the form 

IA(•ill =II,- GI/J(•ill = 0 (3.38) 

For the ith eigenvalue 1];, Eq. (3.38) is satisfied if a column or a row of 
A(l];) consists entirely of zeros. Thus, suppose thejth column is selected and 
let ei and 1/1)•1;) denote the jth columns of I, and 1/1(11;), respectively, then 

defines m linear equations. The procedure described above is then repeated 
for each eigenvalue 1f 1, i = 1, 2, ... , 211. The resulting equations can then be 
assembled into a single matrix equation of the form ' 

( 3.39) 

where E is made up, column by column, of the vectors ei and <ll is similarly 
made up of the vectors 1/1}•1;). Assuming that the eigenvalues 11;, i = l, 2, ... , 211, 
are distinct,(() is invertible and the control gain matrix G can be determined as 

( 3.40) 

While G can be computed from the above, let us note that it is not unique 
since it depends upon the choice of the column of A(11 ). However, the resulting 
closed-loop system is guaranteed to have the required eigenvalues. Moreover, 
the control gain G does not alt<? the controllability of the open-loop system. 

This nonuniqueness in the choice of G has also prompted many studies 
coupling pole assignment with other control objectives. 1° For example, one 
can require that a closed-loop system possess not only prescribed eigenvalues 
but also eigenvectors, thus allowing the designer to have some control over 
the influence of each eigenvalue on each state variable response. 11 Attempts 
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have also been made to use this design freedom to mmtmtze a given 
performance index, thus combining the pole placement and optimal control. 12

•
13 

3.2.I Tile Case of Output Feedback 

The procedure described above is based on state feedback as indicated by 
Eq. (3.31 ). Consider now the case of output feedback with the p-dimensional 
output vector given by 

y(t) = Cz(t) (3.41) 

where Cis the p x 2n measurement matrix. The control vector is 

u(l) = G' y(t) = G' Cz(l) (3.42) 

where G' is the output feedback gain matrix. The computational procedure 
for G' follows closely that just derived for the state feedback case14 Equations 
(3.37) and (3.38) in this case become 

1~'(>1)1 =liz,.- 1/1(>/)G' Cl = IIr- CI/J(>i)G'I =II,- G' CI/J(•ill = 0 
(3.43) 

Let 1/Jj(•i.l be thejth column of CI/J(>/), we have 

ei = G'I/Jj(>/;) 

and Eq. (3.39) becomes 

E = G'€1>' ( 3.44) 

where th'e columns of <!I' are made up of the vectors I/Jj(>i 1). If <!I' is invertible, 
the output feedback control gain is found from 

G'=£<!1'" 1 (3.45) 

It is important to point out that the number of linearly independent 
columns that can be obtained from CI/J(•il will not exceed the rank of C. It 
is shown 14 that, if the open-loop system is controllable and the rank of Cis 
p, p.; 2n, then only pout of the 2n eigenvalues of the closed-loop system can 
be specified such that matrix <!I' is invertible. Thus, the control gain G' as 
found from Eq. (3.45) ensures the existence of only m out of the 2n specified 
closed-loop eigenvalues. However, if the open-loop system is completely 
controllable and observable (see Appendix A), it is always possible to 
transform the output feedback into a state feedback through the construction 
of an observer as discussed in Section 3.1.1. 

30 



Control algorilhms 

Example 3.3 Consider a two-storey structure similar to that shown in 
Fig. 3.8. The state-space equation is of the form given by Eq. (3.1) where A 
is a 4 x 4 matrix. It is assumed that 

0 0 I 0 

0 0 0 I 
A= 

-0.5 0.25 -0.02 0.01 

0.25 -0.25 0.01 -0.01 

These numerical values are chosen to characterize a lightly damped system. 
Units for all physical quantities will not be specified since only comparative 
studies are performed here. The eigenvalues of the matrix A are 

).1.2 = -0.0019 ±j0.3098 

).,.. = -0.0134 ±j0.8089 

The uncontrolled two-storey structural system is assumed to be described 
by 

where 

and 

i(t) = Az(t) + hf(t) 

h= 

0 

0 

f(t) = 3 sin wt + 5 sin 2wt + 7 sin 3wt + 4 sin 4wt 

which is a crude representation of a wind-type excitation acting on both 
floors. In the numerical calculations, the value of w is chosen to be 0.309. 
This choice of w (which is close to the first frequency of the structure) is 
deliberate. The intent is to dramatize the effect of control. It is further 
assumed that the control objective is to change the first frequency of the 
structure from 0.3098 to 4.0. Hence, the required closed-loop eigenvalues are 

'11.2 = -0.0019 ±j4.0 

'13.4 = -0.0134 ±j0.8089 
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The control to be applied to the structure is assumed to be of the form 
bu(t), where u(t) is a scalar. The following modes of control are of practical 
interest: 

Case A: bT = [0, 0, 1, OJ, control applied at first floor only 

Case B: bT = [0, 0, 0, 1 ], control applied at second floor only 

Case C: bT = [0, 0, 1, 1 ], control applied at both floors with the same 
control force. 

The numerical results for x 1(t} and x 2 (t}, the displacements of the first 
and second floors, are given in Figs 3.13 and 3.14 for the uncontrolled case 
and under the three modes of control as described above. The relative merits 
of the three control modes are also evaluated based upon their energy 
requirements, where the energy E is calculated according to 

E= I>'(t)bTbdt, T=50 

It is interesting to note that the case for which equal control forces being 
applied to both floors proved to be the most effective in terms of controlling 
the displacements (as well as the velocities} and energy required. The energy 
required for this case (case C) is Ec = 2.236 while EA = 7.664 (first floor 
control only} and En= 2.927 (second floor control only}. Of the single­
controller cases, no significant difference in displacement reduction is noted 
between case A and case B. However, in terms of energy requirement, it is 
more efficient to place the controller on the second floor than on the first. 

200 

Uncontrolled~ 

[()()-

-[()0 

0 [() 30 

Figure 3.13 Displacement of first floor in Example 3.3 7 
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Figure 3.14 Displacement of second floor in Example 3.37 
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50 

Example 3.4 In this example, an extra dimension is added to the problem 
of pole assignment. Since exact locations of the closed-loop eigenvalues are 
not crucial, one may wish to perturb around the prescribed closed-loop 
eigenvalues so that some other control objectives can be met at the same 
time, In Wang et a/ 15 the pole assignment problem with the added 
requirement that the response be bounded by some permissible values is 
considered, To achieve this added objective, one may adopt the following 
iterative approach: 15 

The trial closed-loop eigenvalues are chosen first With these trial values, 
the gain matrix Gas well as the corresponding controlled system response 
can be computed. 

2 Since the real parts of the eigenvalues play a more significant role in 
changing the response, these real parts are allowed to change so that the 
response can be limited to be below its permissible values, Let a be the 
absolute value of the real part of a given eigenvalue and xP be the limiting 
value of a response quantity, After two successive trials, an improved 
value of a can be obtained by the approximation 

where the subscripts i -1~ i and i + 1 represent successive iterations, 

This procedure is demonstrated by considering a five-storey structure as 
shown in Fig. 3,15, The critical damping ratio and mass corresponding to 
each degree of freedom are assumed to be 3% and 750,0 k-sec 2 /in, 
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I= -x 

[::::::::::::;,:~x::::::::J 
: J.(r). H,(r) 

h(i), U;!(t} 

. I, 
{ X 

~==""""====1--- h(t). u3(t) 

Figure 3.15 The rive-storey frame Hi 

respectively. The stiffness matrix is 

7400.0 -1700.0 0.0 0.0 0.0 

1700.0 6600.0 -1600.0 0.0 0.0 

K= 0.0 -1600.0 6000.0 -1400.0 0.0 

0.0 0.0 -1400.0 4800.0 1000.0 

0.0 0.0 0.0 -1000.0 2000.0 

It is assumed that the excitation takes the form 

fit)= a cos 2o>t + b cos Ja>t + c sin 4wt + d sin 5wt 

where w,. 1.1 rad/sec and 

950.1 30.2 

11 100.5 350.6 

a= 1230.3 b= 569.0 

1400.9 750.0 

1350.9 0.6 

37.2 

1"00' 1380.3 560.0 

c= 1128.9 d= 850.0 

1310.3 l 71.0 
1471.0 361.0 

34 

k/in 



Control algorithms 

; ('>et:) 
(a I 

t(scc) 
(h) 

~~.., 

~ 

"' ~ 
c -.£< ' ~ v 
" 0 
~ 

<C 

5 7 

(cl 

Figure 3.16 Responses at the flfth floor in Example 3.4 (a) displacement; {b) velocity; 
(c) acceleration 15 
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Figure 3.17 Excitation and control force at the fifth floor in Example 3A {a) excitation; 
(b) control farce 15 

Beginning with the open-loop eigenvalues, the above-mentioned iterative 
procedure. is used to obtain closed-loop eigenvalues such that some perfonnance 
criteria are satisfied. In this case, the limit on displacement is taken to be 
1 f 500 of the structural height, and the maximum permissible values for 
velocity and acceleration are, respectively, 4 in/sec and 4 in/sec2 

The specified limitations are reached after nine iterations. The uncontrolled 
(solid line) and the controlled (dotted line) responses at the fifth ftoor are 
shown in Fig. 3.16. It is noted that the acceleration limit of 4 in/sec2 controls 
the result. Also shown in Fig. 3.17 are the excitation together with the control 
force at the fifth ftoor. 

3.3 Instantaneous Optimal Control 

We have seen in Section 3.1 that classical optimal control is not truly optimum 
because the excitation term is ignored in the derivation of the Riccati matrix 
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P(t). Recognizing the fact that, at any particular timet, the knowledge of 
the external excitation may be available up to that time instant t, this 
knowledge can be utilized in arriving at improved control algorithms. 

One of such attempts makes use of a time-dependent performance index 
J(r) defined by 3 

J(t) = Z T(t )Qz(t) + UT ( t )Ru( t) (3.46) 

Optimal control laws are derived by minimizing J(t) at every time instant t 

for all 0;:;; t;:;; r,. Hence, these control laws are referred to as instantaneous 
optimal control algorithms. 

The starting point of the derivation of instantaneous optimal control 
algorithms is to consider the evolution of the state vector z(t) over a small 
time interval l!.t. Consider again Eq. ( 3. 1). Assuming that the open-loop 
system matrix A possesses distinct eigenvalues, this system of equations can 
be decoupled through the transformation (see Appendix A) 

z(t) = Ty(t) (3.47) 

where Tis the 2n x 2n modal matrix whose columns are the eigenvectors of A. 
The decoupled slate-space equation governing y(t) has the form, upon 

substituting Eq. (3.47) into Eq. (3.1 ), 

j>( r) = Ay(r) + q(t), y(O) 0 (3.48) 

where 

(3.49) 

' is diagonal whose diagonal elements are the complex eigenvalues 2i, 
j 1, 2, ... , 2n, of matrix A and 

q(t)= r-'[Bu(r) + Hf(tl] (3.50) 

Over a small time interval Llr, the 'modal' state vector y( t) can be expressed 
as 

y( t) = Je' -M exp [A()- r )]q( r) dr + I' exp[A(t - r)]q( t) dr 
0 r-J.t 

. /l.t ' 
~ exp(AAl)ytt- At)+ :f[exp(AAt)q(r- At)+ q(tJ] 

For the state vector z(t), Eqs (3.47), (3.50) and (3.51) lead to 

At 
z(t)= Td(t-At)+ 

2 
[Bu(t)+Hj(t)] 

(3.51) 

(3.52) 
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where 

tl(t- Llt) = exp(ALH) r- 1 
{ z(t- LH) + ~~ [Bu(t- LH) + Hf(t- M)]} 

( 3.53) 

In the above, exp( Allt) is a diagonal matrix with the jth diagonal element 
being exp(J.jllt). The vector d(t- Llt) contains all the dynamic quantities at 
time t- Llt. 

With Eq. (3.52) as the motion constraint, the minimization of J(t) given 
by Eq. ( 3.46) can be carried out in a similar fashion as was done in Section 3.1. 
In this case, the Hamiltonian is 

.Yt = zT(t)Qz(t) + uT(t)Ru(t) 

+).T(l){z(t)- Td(t-M)- ~1 [Bu(t)+Hf(t)]} 

where ).(t) is the Lagrange multiplier. 
The necessary conditions for minimization are 

which yield 

a.rr 
Oz =O, 

off 
au = O, 

2Qz(t) + l(t) = 0 

M 
2Ru(t)-

2 
BTl(t)=O 

a:rt 
a;. =O 

M 
z(t)= Td(t-M)+ 

2 
[Bu(t)+Hf(t)] 

3.3.1 Clo.md-loop Coutl'ol 

(3.54) 

(3.55) 

Consider first closed-loop control when the control vector is regulated by 
the state vector. One has, as in Section 3.1.1, 

l( t) = P( t) z(t) 

The first of Eqs (3.55) immediately gives 

P(t)= -2Q 

and, using the second of Eqs (3.55), 

Llt 
u(t)=- l R- 1 BTQz(t) 
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The response state vector z(t) is, following Eqs (3.52) and (3.57), 

(3.58) 

If is of interest to compare Eq. (3.57) with Eq. (3.18), the closed-loop 
control law under classical optimal control criteria. We see that, in this case, 
LltQ plays the role of the Riccati matrix P(t). It is thus a much simpler control 
design since it does not require solution of the Riccati equation. We also 
note that the choice of Q, which is a prescribed weighting matrix associated 
with the performance index, requires more careful consideration in the context 
of instantaneous optimal control. 

3.3.2 Closed-open-loop Control 

When the control vector is regulated by both the state vector and external 
excitation, the Lagrange multiplier has the form 

l(t) = Pz(t) + p(t) (3.59) 

where the second term, p(t), represents open-loop control. 
Using the second of Eqs (3.55), the control vector u(t) in the third of 

Eqs (3.55) can be eliminated, resulting in 

M[M J z(t) = Td(t- M) + l 4 sR- 1 BT ).(t) + Hf{t) (3.60) 

Let us write the first of Eqs (3.55) in the form 

l(t) = - Q[z(t) + z(t)] (3.61) 

in which 2z(t) is somewhat arbitrarily divided into two equal parts to 
represent the closed-loop and open-loop contributions. Then, using Eq. (3.60) 
for the second z(t) term, one has 

Q{ z(t) + Td(t- Llt) + ~~[ ~~ BR- 1 BT l(t) + Hf{t) J} + l(t) = 0 

Upon substituting Eq. (3.59) into the equation above, we obtain 

(3.62) 
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The solution for the unknown quantities P and p(t) can be found from 
the above equation. Since z(t) # 0 and p(t) # 0, the desired results are 

P=- t+-[-QBR- 1 BT Q ( 
L'l ' ) -1 

(3.63) 

p(t) = P[ Td(t- L'lt) + ~~ Hflt) J (3.64) 

The substitution of Eqs (3.63) and (3.64) into Eq. ( 3.59) produces the desired 
closed-open-loop control law. It is in a recursive form in the sense that 11(t) 
is not only a function of z( t) andflt), but also a function of z(t- L'lt ), 11(t- L'lt) 
and Jl t - L'1t ). 

The closed-loop state vector is given by 

[ 
L'lt' J -t [ L'lt

2 
M J z(t)= I+-

8
-BR- 1 BTP Td(t-L'It)+-

8
-BR- 1 BTp(t)+ 

2 
Hflt) 

(3.65) 

3.3.3 Ope11-loop Contl'ol 

For open-loop control, A(t) can be simply put in the form 

A(t) = p(t) (3.66) 

Following a procedure similar to that described above for the closed-open­
loop control, one obtains 

ll(t)= _ ~~( R+ L'l~' BTQB rl BTQ[ Td(t-L'It)+ ~~ Hj(t)J (3.67) 

with z(t )'given by 

[ 
L'lt

2 (L'It' )-l ][ L'lt J z(t)= t- 4 B 4 srQB+R B1 Q Td(t-L'It)+} Hflt) 

( 3.68) 

Example 3.5 It is instructive to examine numerically the control efficiencies 
associated with instantaneous optimal control algorithms and to compare 
them with those achievable under classical optimal control. The example 
given below is taken from Yang et al. 3 

An eight-storey structure in which every storey unit is identically constructed 
is considered for illustrative purposes. It is assumed that the structure is 
subjected to an earthquake-type ground acceleration .i' 0 (t) at the base, a 
sample function of x0 (t) is shown in Fig. 3.18. The control is accomplished 
through an active mass damper system installed at the top of the structure 
as shown in Fig. 3.19. 
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Figure 3.18 Simulated ground acceleration in Example 3.5 3 

Let x,(t), j = 1. ... , 8, be the relative displacement of the jlh noor with 
respect to the ground and x.(t) be that associated with the active mass 
damper. Defining the state vector z(t) as a nine-dimensional vector with 

z T(!) = [x d t), ... , xa(t), xd(!)] 

i 
:;;);;;; 

Figure 3.19 Structure with an active mass damper3 
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it is easy to show that the corresponding state-space equation has the usual 
form 

z(O) = 0 (3.69) 

where ud(t) is the control force generated by the active mass damper. It is 
noteworthy that all elements of vector h are zero except for the last two, i.e. 

hT=(O, ... ,O, -1,1] (3.70) 

For the purpose of numerical calculations, the structural properties of each 
storey are taken to be: m = ftoor mass= 345.6 tons; k elastic stiffness of 
each storey unit= 3.404 x 10 5 kNfm; and c internal damping coefficient 
of each storey unit= 2937 tons/sec, which corresponds to a 2% damping 
for the first vibrational mode of the entire structure. The computed natural 
frequencies are 5.79, 17.18, 27.98, 37.82, 46.38, 53.36, 58.53, and 61.69 radfsec. 
For the active mass damper. "'• =damper mass= 29.63 tons, cd =damper 

0 

(c) t (sec) 

Figure 3.20 Top floor relative displacement in Example 3.5 (a) passive mass damper; 
(b} classical closed~loap control; (c) instantaneous optimal controJ:3 
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damping= 25.0 tons/sec and k, =damper stiffness= 957.2 kN/m. Thus, the 
damper mass is taken to be 2% of the first-mode generalized structural mass, 
the damper frequency is 98% of the first natural frequency of the structure, 
and the damping ratio of the damper is 7.3 %. 

The weighting matrix R in this case is a scalar and is assigned a value of 
10- 3 The dimension of weighting matrix Q is 18 x 18. In view oft he structure 
of vector bas given by Eq. ( 3.70), the active control force under instantaneous 
optimal control is influenced only by the last two rows of Q. Hence, only 
the elements in the last two rows will be assigned with some values, i.e. 

3 

2 

(c) t (sec) 

Figure 3.21 Base shear in Example 3.5 (a) passive mass damper; (b) classical closed­
loop control; (c) instantaneous optimal contro1 3 
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in which Q11 and Q22 arc 2 x 9 matrices. For illustrative purposes these two 
matrices are given by 

[ -33.5 -67 -100.5 -134 -167.5 -201 -234.5 -268 375.6] 
Qzl = -33.5 -67 -100.5 -JJ4 -167.5 -201 -234.5 -268 32.2 

Q, ~[ 67.5 135 202.5 270 338.5 405 472.5 540 32.2] 
5.S 11.6 17.4 23.2 29 34.7 40.5 46.3 5.7 

A value of 67.0 is chosen for~ such that the top floor relative displacement 
is reduced by approximately 60%. 

In the case of classical closed-loop control, the weighting matrix Q is 
considered to be diagonal with Qjj = 1.3 x 10 5

, .i = I, ... , 8 and Qjj = 0, 
j=9, ... , 18. 

Without the active control force, the mass damper is passive. The top floor 
relative displacement and the base shear are shown in Figs 3.20(a) and 
3.2l(a), respectively. The corresponding controlled results using instantaneous 

500 

250 

-250 

';i -5JJJJ,L--'----'.---L--..L __ _L_ __ 

(:1) 

500 

250 

-250 

-5llll.L---+---±-----;'c---};;--~-----} 
() 5 J() 15 20 25 30 
(b) t (sec) 

Figure 3.22 Required control force in Example 3.5 (a) classical closed-loop control; 
(b) instantaneous optimal contro1 3 
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Table 3.3 Maximum response and required control force in Example 3.5 

Top floor Base shear Active control 
displacement force force 

Control law (em) (kN) (kN) 

Uncontrolled 4.10 2506 
Classical closed M 

loop control L61 1075 250 
Instant;:meous 

control !.54 1045 232 

control algorithms and the classical closed-loop control are also shown in 
Figs 3.20 and 3.21. They indicate that instantaneous optimal control 
algorithms are slightly more efficient than the classical closed-loop control. 
We note that all three instantaneous optimal control algorithms would 
produce identical results under the same simulated conditions. 

A comparison of the required control forces is given in Fig. 3.22. The 
maximum required control forces and the maximum response quantities at 
the top floor are summarized in Table 3.3. 

3.4 Independent Modal Space Control (IMSC) 

As the name implies. control system design based on IMSC takes place in 
the modal space. To facilitate discussions, let us depart temporarily from the 
state-space representation and return to the traditional configuration space 
for this development. 

Assuming that a structure possesses normal modes, it is well known that 
the equations of motion of an It-degree-of-freedom system can be decomposed 
into a system of ll decoupled single-degree-of-freedom systems in modal 
coordinates. Thus, consider an 11-degree-of-freedom structural system 
represented by (see Eq. 2.1) 

Mi(t) + Ci(r)+ Kx(t) = Du(t) + EJlt), x(O) = x 0 , i(O) = i 0 

(3.71) 

where x(t) is the n-dimensional displacement vector and D and E are, 
respectively, appropriate n x ,; and n x r control and external excitation 
location matrices. Let Ill be the 11 x 11 modal matrix whose jth column is the 
jth mode shape vector. Then, applying the modal transformation 

x(r) = llly(t) (3.72) 
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and substituting it into Eq. (3.71 ), it is transformed into a system of 
second-order modal equations 16 

j= 1,2, ... ,n (3.73) 

where the subscript j is used to indicate quantities m the jth mode. In 
particular, the vector v(t), defined by 

vT(t) = [v 1 (t), ... , v,(t)] (3.74) 

is the control vector in the modal space and is related to the physical control 
vector u(t) through the modal participation matrix by 16 

v(t) = <J>T Du(t) = Lu(t) (3.75) 

Equations (3.73) have the appearance of a set of traditional decoupled 
modal equations except for the fact that they are in general coupled through 
the modal control forces v;(t), since each v;(t) usually depends on all the 
modal coordinates. If, however, each v;(t) is designed to depend on Y;(t) and 
S•;(t) alone, e.g. 

(3.76) 

Equations ( 3. 73) then become mutually independent, thus perm1ttmg 
independent control design of 11 second-order systems. Control algorithms 
based on this design procedure have been referred to as control by modal 
synthesis 17 or, more commonly, independent modal space control. 18 - 20 The 
procedure essentially shifts the problem of control design from a coupled 
2n-order structural system to n second-order systems, a considerably simpler 
problem with substantial savings in computational efforts. It is particularly 
attractive when only a few critical modes need to be controlled. 

The modal control forces v(t) can be determined by using any method of 
control. For example, if optimal control is desired, they can be determined 
by minimizing a quadratic performance index J of the form 

(3.77) 

where J i are the modal performance indices taking, for example, the form 

(3.78) 

Upon determination of the modal control forces, the physical controller forces 
can be synthesized subsequently via Eq. (3.75). 

Let us examine Eq. (3.75) more closely. Note that the dimension of modal 
participation matrix L is n x m, where n is the number of controlled modes 
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and m is the number of controllers, If m = n, L is a square matrix and, if it 
is invertible, the physical control vector u(t) is simply found from Eq, (3,75) as 

u(t)= L - 1 v(t) (3,79) 

If m ;" 11, the inverse of L does not exist but u(t) can be approximated by 
performing a pseudo-inverse of L or by employing a least square procedure, 
giving 

u(t) = C v(t) 

where 
c· LT(LC)-', 

= (U L)- 1 LT, 

if the indicated inverses exist 

m > n 
m <n 

(3,80) 

(3,81) 

The effect of m # 11 on the controlled system performance can be assessed 
by comparing the design modal control vector v( t) with the actual modal 
control vector v,(t) applied to the structure, As seen from Eq, (3.75), the 
actual modal control vector is 

c,(l)= Lu(t) 

with u(t) given by Eqs (lEO) and (HI), Hence, for 111 > 11, 

v,(t) Lu(t)=LL'(LLT)-'v(t)=v(t) 

and, for m < n, 

v,(t)=Lu(t)=L(LTL) 1 LTv(t) 

(3,82) 

(3,83) 

Equation (3,82) shows that, when the number of controllers is larger than 
the number of controlled modes, v,(t) = v(t) and the excess controllers result 
in redundant control forces which do not alter the controlled system 
behaviour, Thus, there is no practical purpose served by having more 
controllers than the number of modes to be controlled, On the other hand, 
it is seen from Eq, ( 3,83) that, when the number of controllers is smaller than 
the number of controlled modes v,(l) ;' v(t) and a degradation of the 
controlled system behaviour is possible, As the following example shows, 
control efficiency deteriorates as the number of controllers decreases, 

Example 3,6 Consider the control of bending vibration of a tapered bar of 
length d = 5 damped at one end, The displacement w( X, t) as a function of 
the spatial variable x and time t satisfies the partial differential equation 

iP [ 8
2 w] 0

2
w ,- El(x)-

0 
, +M(x)-

0
, =u(x,t) 

vx~ x- t~ 
(3.84) 
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where the mass and stiffness distributions are 

M(x)=EI(x)= !.0-0.2x/d 

It is assumed that the control forces are point forces equally spaced along 
the beam. 

Using the expansion theorem, w(x, t) can be represented by a linear function 
of modal coordinates yi(t ), each of which satisfying an ordinary differential 
equation similar in form to Eq. (3.73). 

We wish to control the lowest 20 modes (n = 20) based on IMSC using a 
varying number of controllers. The performance index given by Eqs (3.77) 
and (3.78) is used with 

and ri=20, j= l,2, ... ,n 

where wi is the jth modal frequency. 
The control gain for each of the modal control forces can be found by 

solving a second-order Riccati equation. Assuming a constant Riccati matrix, 
a closed form solution of the Riccati equation is available and the optimal 
modal control force vi( t) is 19 

vi(t) = wi(wi- J wJ + 1/ri )y)t)- [2wi(- wi + J wJ + 1/ri) + 1/ri] 11
2 yi(t) 

Table 3.4 Closed-loop Eigenvalues for different numbers of actuators 20 

Number of actuators 

5 10 15 19 20 

Mode no. Real part Real part Real part Real part Real part Imag. part 

-0.033 -0.116 -0.127 -0.132 -0.146 0.138 
2 -0.039 -0.106 -0.137 -0.142 -0.158 0.900 
3 -0.043 -0.107 -0.140 -0.143 -0.158 2.486 
4 -0.043 -0.073 -0.142 -0.145 -0.158 4.845 
5 -0.048 -0.075 -0.143 -0.146 -0.158 8.013 
6 -0.059 -0.073 -0.145 -0.147 -0.158 11.96 
7 -0.010 -0.076 -0.146 -0.147 -0.158 16.70 
8 -0.027 -0.077 -0.148 -0.148 -0.158 22.23 
9 -0.039 -0.080 -0.149 -0.149 -0.158 28.54 

10 -0.044 -0.088 -0.148 -0.150 -0.158 35.65 
11 -0.051 -0.122 -0.149 -0.151 -0.158 43.55 
12 -0.076 -0.022 -0.118 -0.152 -0.158 52.44 
13 -0.010 -0.056 -0.119 -0.152 -0.158 61.72 
14 -0.035 -0.064 -0.092 -0.153 -0.158 71.99 
15 -0.041 -0.068 -0.099 -0.154 -0.158 83.06 
16 -0.042 -0.070 -0.129 -0.155 -0.158 94.92 
17 -0.048 -0.072 -0.028 -0.155 -0.158 107.6 
18 -0.059 -0.073 -0.060 -0.157 -0.158 121.0 
19 -0.010 -O.D75 -0.068 -0.157 -0.158 135.3 
20 -0.027 -0.078 -0.070 -0.158 -0.158 150.4 
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Figure 3.23 Performance index for different numbers of actuators 20 

The effect of using a varying number of actuators to implement IMSC has 
been studied. 20 Table 3.4 compares the closed-loop eigenvalues as functions 
of the number of actuators. It is seen that, as the number of actuators 
decreases, the stability margin decreases due to degradation of the accuracy 
in carrying out the pseudo-inverse given by the second of Eqs (3.81). 

The value of the performance index is expected to increase as the number 
of actuators decreases. This trend is shown in Fig. 3.23 with tr = 20. It is 
noted that, when computing the performance index, one must replace v/tl 
in Eq. (3.78) by v,)t), the actual jth modal control force. Larger values of 
the performance index indicate poorer closed-loop system performance and 
lower control efficiency. 

3.5 Bounded State Control 

In general, the purpose of active control is served when a set of structural 
response variables are maintained within an allowable region determined by 
the requirements of structural safety and human comfort. Under safety 
considerations. relative displacements at selected locations of the structure 
are of central concern and, for . .human comfort, the absolute accelerations, 
Thus, active control algorithms designed to limit the state variables within 
prescribed bounds, or bounded state control. are of practical importance when 
applied to civil engineering structures. 

An approach to bounded state control is discussed 21
·" using linear state 

feedback laws. Based on an extension of the Lyapunov function methods, it 
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follows, in a sense, the pole assignment concept to achieve bounded state 
control. In addition, all pulse control strategies proposed in the literature 
fall into this category23- 34 The objective of pulse control advanced by Masri 
et af2>-z> and by Udwadia and Tabaie 32•33 is to destroy the gradual rhythmic 
build-up of the structural response in the case of resonance by means of 
short-interval high-energy pulses, A continuous monitoring of the system 
state variables is required. To conserve energy, control is activated only when 
some prespecified threshold has been exceeded. The pulse magnitudes are 
determined analytically24•32•

33 so as to minimize a non-negative cost function. 
The control procedure proposed 23

·15 consists of application of pulses every 
time a zero crossing of the response variable is detected. The magnitudes of 
the pulses are functions of the instantaneous velocities. 

In Prucz and Soong 26 and in Rein horn et a/31
, the pulse control design is 

anticipatory, namely, pulses are applied a short time interval prior to an 
anticipated threshold crossing. These algorithms require state prediction but 
cover the case of non-resonant as well as resonant response. 

Generally speaking, pulse control procedures are relatively simple to 
implement; they require less on-line computational efforts when compared 
with other modern control techniques. They are also suited for treatment of 
inelastic structures, Another advantage has to do with possible savings of 
control energy required. In the pulse control mode, since small vibrational 
levels are tolerated, control forces need to be applied only when necessary 
and a relatively small amount of energy may be sufficient for periodic 
corrective actions. 

In what follows, the development of a pulse control strategy based on 
work by Prucz et aF' is briefly described for a simple case. 

The basic idea used in pulse control design is that a train of force pulses 
applied to a structure can produce a response which matches the response 
produced by a continuous loading of arbitrary nature within specified error 
bounds. Consider a single-degree-of-freedom linear system. One pure pulse 
applied to the system will cause a free vibration with an initial velocity which 
depends on the impulse magnitude, at a frequency equal to the natural 
frequency. If the system experiences a forced vibration, its response after 
pulse application can be regarded as the resultant of the response due to the 
pulse alone and the system response to the forcing function alone. The 
response to a pulse of finite duration l'.t(l'.t = T,/10, 1~ is the natural period) 
is illustrated in Fig. 3.24, Suppose the frequency of the forcing function is 
lower than the natural frequency of the system. A pure pulse applied in the 
proper direction can reduce the response of the system during a time period 
of one half of the natural period, where maximum reduction is achieved after 
one fourth the natural period and no reduction at half the natural period. 
After a time longer than half the natural period, the response of the system 
can be increased by the pulse. Therefore, in order to control the system 
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Figure 3.24 Typical response to a rectangular pulse26 

response, a second pulse should be applied with a period M, smaller than 
half the natural period (Fig. 3.25). 

Let us consider the interpulse interval (t,, t) and choose its length to be 
of the order of one fourth the natural period. The response expected in this 
time interval has to be reduced, if necessary, to a value below the safety limit. 
Suppose the expected maximum response exceeds the allowable value and 
it is at time ti. A proper pulse applied at time t1 can reduce the response at 
time t i to any desired value. The information needed is the system state at 
time t1 which defines the' initial conditions' and contains the system response 
prior to time 11, the systen dynamic characteristics and the external forcing 
function in the time interval (1 1, ti). The block diagram of the control 
procedure is shown in Fig. 3.26. 

Next, a procedure to determine the required pulse p(t1), based only on the 
sensed system state at time t, and the system dynamic characteristics, is 
derived. The system response at time ti can be considered as a superposition 
of the contributions of the initial conditions at timet;. the pulse applied at 
timet, and the external forcing function during the time interval (t,, r j). This 
is true for nonlinear systems as well if we assume that the system characteristics 

Time 

Figure 3.25 Schematic representation of a pulse train 29 
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Figure 3.26 Block diagram of control procedure 

are constant during this time intervaL Thus, if rectangular pulses of width 
L'.t are considered, the system response to an excitation of the form 

lS 

where, for zero damping, 
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Zx = cos(w 0 t.t.) 

Zv =_!__sin( woL'.tp) 
Wo 

1 
ZP = k {cos [ro 0 (L'.tP- L'.t)]- cos( W 0 M.)) 

Z _ W0 [W0 Sin(rot;) _ sin(wt,-woL'.tp) _ sin(wt,+woL'.tp)J 
EF- k w;-w' 2(W

0
+W) 2(w

0
-W) 

(3.85) 

(3.86) 

(3.87) 
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In the above, m. and k are the natural frequency and the stiffness of the 
system, respectively, Coefficients z,, z,, ZP and Z EF define the contributions 
to the response of the displacement, velocity, pulse at time t, and of the 
forcing function, respectively. More general expressions for these coefficients 
for a damped system can be similarly derived. 

In most cases, the forcing function in the interval (t;. t;) is unknown and 
difficult to predict. Its contribution to the response in Eq. ( 3.86) may be 
significant and cannot be ignored. However, over a small time interval (r,, t J), 
the external force is not expected to change in a signif1cant way. Therefore, 
as a first approximation, the external force will be assumed to be constant 
in the interval (r,,t1) and equal to the external force at timer,, f(r,). This 
force~ in turn. can be estimated from the monitored state variab)es at time t1 as 

f(t 1) = ( ;Jx(t,) + kx(r,) (3.8&) 

With this approximation, Eq. (3.86) becomes 

(3.89 J 

where Z AF is the coefficient of the approximated forcing function 

(3.90) 

The pulse magnitude p(t1) is designed such that, if the expected response 
during interval (r,, t) exceeds a maximum permissible level xL, it will l)e 
reduced to xL and, if the expected maximum response, X max• is below the 
limiting values, no pulse is to be triggered, Thus, the required pulse magnitude 
can be expressed as 

where 

l . 
p(t;) = z xL + o:x( t,) + {Jx(t,) + Y.f(i1 ), 

p 
Xnllu:>XL 

Zx k cos(w,At,) 
a=-~=- , z, cos[ w,( 1'\t,- Ar )] cos(w.AtP) 

k sin(W0~ir)/wu /J= 
Zv 

z, cos m.(Ar, At)- cos(m.Ar,) 

ZAF 
j'=-~ z, 

cos(w,l'\t
0

) 

(3.91) 

(3.92) 
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and 

p(rJ = 0, X max ~XL (3.93) 

Coefficients rt, {J and 7 define the contribution of the initial conditions at 
timer, and of the approximated external force to the required pulse magnitude, 
respectively. They are functions of pulse width, interpulse interval and system 
dynamic characteristics only. Thus, for a linear system, "· {J and J' remain 
constant during control and can be calculated off-line. 

When the frequencies of dominant components of the forcing function are 
close to or above the system natural frequencies, the maximum response 
during interval (t,, tJ) can occur at some time within this interval and not at 
time 1;, as previously assumed. The pulse can be designed to limit 'locar 
maximum by changing At 0 used in the equations for a, {J and i' to 

(3.94) 

where 1m,,( I,,;; t mo> < tj) is the time instant at which the response to be 
reduced requires a maximum pulse magnitude, p(t1lmu· Values for"· {J, and 
)' fo~different time intervals ~~~(lit< Ai~ < ~tp) can also be calculated off-line, 
so that this improvement does not increase on line computations. Nevertheless, 
it may lead to instability. While the value of the response is decreased at 
some time within interval (1 1, 1;), the pulse may increase the value of the 
response at time ti if it is of the opposite sign. This can happen when the 
external force has a dominant high frequency component. Therefore, an 
additional condition has to be added that will exclude this possibility, but 
will still keep the response below safety limits. It is suggested that, in this 
case, the pulse p(r 1) will still be applied but the interpulse interval will be 
decreased such that the next pulse p(tj) will be applied before the response 
at the ~nd of interval (t,,t;) exceeds its permitted value, The decreased 
interpulse interval will continue to be used throughout the control period. 
No additional computations are required since values for a, {J and r for 
different time intervals At~ are already stored. Thus, the pulse algorithm 
adjusts itself to high frequency dominant loading and response, thus avoiding 
instability while controlling peak response values. 

Example 3.7 An example that illustrates the control procedure presented 
is given in Fig. 3.27 for a system with a natural frequency of 3.!4 sec - 1 and 
a damping ratio of O.Ol. The frequency of the forcing function is 0.34 sec - 1 

and the parameters At and AlP used are O.lO sec and 0.50 sec, respectively. 
A 20% reduction in the response is desired. Fig. 3.28 shows the acceleration 
of the system before and after control. The acceleration level is generally 
decreased except during time intervals when pulses are applied, and peak 
acceleration values are induced. Control of 40% of maximum response for 
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Figure 3.27 Pulse train, controlled and uncontrolled displacement response (20% 
reduction) 28 

the same system and the required pulse train are illustrated in Fig. 3.29. The 
controlled response shows that, at the beginning of the pulse train when the 
forcing function is increasing and therefore 'underestimated', the reduction 
is less than desired and, when the forcing function is decreasing and thus 
'overestimated', more reduction is achieved. The error involved is of the order 
of 3%. 
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Figure 3.28 Controlled and uncontrolled acceleration response (20% reduction) 
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3.5.1 Unidirectional Pulses 

The control algorithm is designed to reduce the response to a safety level if 
its value is expected to exceed this safety level. No pulse is applied if the 
expected response is below the limiting value. The stability check of the 
algorithm ensures that a pulse applied for correcting one direction of the 
response will not increase the response in the opposite direction above its 
safety level. Thus, the control algorithm allows the use of pulses in only one 
direction to ensure only one limit of the response. This can result in a 
considerable simplification in pulse supply hardware and its installation. 
There is no change in the algorithm, but the requirement to trigger a pulse 
only when the expected response in the direction considered exceeds its limit. 
An example of the feasibility of this procedure is given in Fig. 3.30, where a 
40% response reduction is considered. The previous system and control 
parameters are used. 

3.6 Other Control Algorithms 

Not included in the discussion above are a wide variety of sub-optimal or 
ad hoc control techniques, most of which are tailored to specific structural 
environments or specific sensor-controller specifications. More recent work 
includes discussions on predictive contro1 34•35 and fuzzy control36

•
37 as 

possible control philosophies. Simultaneous control and structural parameter 
optimization is another topic receiving increasing attention at present.39

-"
0 

This topic will be discussed in more detail in Chapter 6. 

References 

1. Sage A P und White CCIII 1977 Optimum System.'i Conrrol2nd cdn Prentice­
Hall, Englewood Cliffs NJ 

2. Kwakernaak Hand Sh·an R 1972 Linear Oruimal Co11trol Systems Wiiey, New 
York NY 

3. Yang J N, Akbarpour A and Ghaemmaghami P 1987 New Control Algorithms 
for Strm:tura] Control. ASC E Journal of Engi11eeriug Meclumics 113 pp 1369~86 

4. Chung L L, Rein hom AM and Soong T T !988 Experiments on Active Control 
of Seismic Structures. ASC £ Journal of Engineering 1\-1 echanics 114 pp 241-56 

5. Yang J N !975 Application of Optimal Control Theory ro Civil Engineering 
Structures. ASCE Jounwl of Engineering r\Jeclwnics 101 pp 818-38 

6. Abdel-Rohmnn M and Leipholz H H E 1978 Structural Control by Pole 
Assignment Method. ASCE Journal of Ellflineering Meciumics 104 pp i 157-75 

7. Martin C Rand Soong T T 1976 Modal Control of Multistorey Structures. 
ASCE Journal of Engineering Mechanics 102 pp 613~23 

57 



Active structural control: theory and pr.actice 

8. Wenham W M 1974 Linear Multivariable Control. Lecture Notes on Economics 
and Mathematical Systems No. 101 Springer-Verlag, New York 

9. Brogan W L 1974 Applications of a Determinant Identity to Pole-Assignment 
and Observer Problems, IEEE Transactions on Automatic Control AC-19 
pp 612-14 

10. Moore B C 1976 On the Flexibility Offered by State Feedback in Multivariable 
Systems Beyond Closed Loop Eigenvalue Assignment. IEEE Transactions on 
Automatic Control AC-21 pp 689-92 

ll. Kimura H 1975 Pole Assignment by Gain Output Feedback. IEEE Transactions 
on Automatic Control AC-20 pp 509-16 

12. Solheim 0 A 1972 Design of Optimal Control Systems with Prescribed 
Eigenvalues. International Journal of Control 15 pp 143-60 

13. Sebakhy 0 A and So rial N N 1979 Optimization of Linear Multivariable Systems 
with Prespecified Closed-loop Eigenvalues. IEEE Tl·ansactions on Automatic 
Control AC-24 pp 355-7 

14. Davison E 1 1970 On Pole Assignment in Linear Systems with Incomplete State 
Feedback. IEEE Transactions 011 Automatic Co11trol AC-15 pp 348-51 

15. Wang P C, Kozin F and Amini F 1983 Vibration Control of Tall Buildings. 
Engineering Structures 5 pp 282-9 

16. Clough R Wand Penzien 1 1975 Dynamics of Structures McGraw-Hill, New York 
17. Meirovitch Land Oz H 1980 Active Control of Structures by Modal Synthesis. 

In Leipholz H H E (ed) Structural Control North Holland, Amsterdam 
pp 505-21 

18. Meirovitch Land Oz H 1980 Modal Space Control of Distributed Gyroscopic 
Systems. Journal of Guidance, Control and Dynamics 3 pp 140-50 

19. Meirovitch Land Baruh H 1982 Control of Self-Adjoint Distributed Parameter 
Systems. Journal of Guidance, Colltrol and Dynamics 5 pp 60-66 

20. Baruh H and Meirovitch L 1982 Implementation of the IMSC Method by 
Means of a Varying Number of Actuators, Paper No. 82-1035, AIAA/ AAS/ 
Astrodynamic Conference, San Diego CA 

21. LeeS K and Kozin F 1986 Bounded State Control of Structures with Uncertain 
P.trameters. In Hart G C and Nelson R B (eds) Dynamic Response of Structures 
ASCE, New York pp 788-94 

22. Lee S K and Kozin F 1987 Bounded State Control of Linear Structures. 
In Leipholz H H E (ed) Structural Control Martinus Nijhoff, Amsterdam 
pp 387-407 

23. Masri S F, Bekey G A and Udwadia F E 1980 On-line Pulse Control of Tall 
Buildings. In Leipholz H HE (ed) Structural Control North Holland, Amsterdam 
pp 471-92 

24. Masri SF, Bekey G A and Caughey T K 1981 Optimal Pulse Control of Flexible 
Structures. ASME Journal of Applied l\l!echanics 48 pp 619-26 

25. Masri S F, Bekey G A and Caughey T K 1982 On-line Control of Nonlinear 
Flexible Structures. AS/\I!E Journal of Applied Mechanics 49 pp 877-84 

26. Miller R K, Masri SF, Dehghanyar T J and Caughey T K 1988 Active Vibration 
Control of Large Civil Structures. ASCE Journal of Engineering Mechanics 114 
pp 1542-70 

58 



Control algorithms 

27. Prucz Z and Soong T T 1983 On Reliability and Active Control of Tension 
Leg Platforms. In Chen W F and Lewis A D M (cds} Recent Advances in 
Eilgineering AJechanics and Their Impact orr Civif Engineering Practice 2 pp 
903-6 

28. Prucz Z, Soong T T and Reinhorn AM 1985 An Analysis of Pulse Control for 
Simple Mechanical Systems. ASlVIE Jottmal of Dy11amic Systems l'vfeasuremem 
Contro/107 pp 123-31 

29. Reinhorn AM, Soong T T and Manolis G D 1986 Disaster Prevention of Deep 
\Vater Offshore Structures by Means of Active Control. Procedures of AS/\4 E 
Fifth Internatiollal OMAE Conference Tokyo. Japan pp 39-44 

30. Reinhorn 1\ M, Manolis G D and Wen C Y 1987 Active Control of Inelastic 
Structures. ASCE Journal of Engineering j\.ledwuics 113 pp 315-33 

31. Reinhorn A M, Soong T T and Wen C Y 1987 Base Isolated Structures With 
Active Control. ProceediHfJS of ASM E P VD Conference San Diego CA pp 413-20 

32. Udwadia FE and Tabaie S 1981 Pulse Control of a Single-Degree-of-Freedom 
System. ASCE Joumal of Engineering Mecl!anics 107 pp 997-1010 

33. Udwadia F E and Tabaie S 1981 Pulse Control of Structural and Mechanical 
Systems. ASCE Journal of Engineering Afedwnics 107 pp l011~28 

34. Barbat A H, Rodellar J and Martin-Sanchez J M 1986 Pulse Control of the 
Earthquake Response of Elevated Water Tanks. PrOceedings qf 8th European 
Cmiference on Earthquake Engineering 8.5. pp 49-56 

35. Rodellar J, Barba! A H and Martin-Sanchez J M 1987 Predictive Control of 
Structures. ASCE Journul of Engineeri11g Aiedwnics 113 pp 797-812 

36. Rodel!ar J, Chung L L, Soong T T and Reinhorn A M 1989 Experimental 
Digital Predictive Control of Structures. ASCE Jounta{ of Engineering Mechanics 
115 pp 1245-61 

37, Yao J T P and Abdel-Rohman M 1987 Research Topics for Practical 
Implementation of Structural Control. In Leipholz H HE (ed) Structural Control 
Martinus Nijhotf, Amsterdam pp 762-67 

38. Yaa J T P 1987 Uncertainties in Structural Control. Proceedi11gs of AS1HE 
Vibrations Conference Boston MA 

39. Soong T T and Manolis G D 1987 On Active Structures, ASCE Journal of 
Structural Engineering 113 pp 2290-301 

40, Cha J Z, Pitarresi J M and Soong T T 1988 Optimal Design Procedures for 
Active Structures. ASCE Journal of Structural Engineering 114 pp 2710-23 

59 



4 Practical Considerations 

While most of the results reported in the preceding chapter are encouraging, 
it is important to recognize that they are largely based on idealized system 
descriptions under ideal conditions. In terms of real-time application, it has 
been pointed out that a number of important problems must be addressed 
from a practical standpoint. 1 The importance of taking these practical 
considerations into account in the algorithm development has been stressed 
and some of these issues are discussed in this chapter. 

4.1 Modelling Errors and Spillover Effects 

Civil engineering structures are distributed-parameter systems. With a very 
few exceptions, analytical and simulation control results obtained to date 
are based on greatly simplified structural models. In fact, as indicated in 
Fig. 4.1, a two-stage model reduction procedure is generally carried out 
whereby the distributed-parameter system is first reduced to a many-degree­
of-freedom system discretized in space, which we shall refer to as a full-order 
system (FOS); it is then further reduced to a discrete-parameter system with 
a small Rumber of degrees of freedom, referred to here as the reduced-order 
system (ROS). As shown in Fig. 4.1, control design is generally carried out 

Real structure ll--+---11 Control 
1 (Distrihuted-parameter system) I implemcntntion 

r 
Full-order l 

discretized system I 

1 
r Reduced-order ll-----o----< I Contrail 
1 uiscretizeu system r ! design 

Figure 4.1 Model reduction and control design 

60 



Pnu:tical considerations 

based on the reduced-order system, necessitated by practical limitations as 
well as computational considerations. 

When an ROS-based control design is synthesized and applied to a real 
structure, inevitable errors such as control and observation spillovers and 
possible instability are introduced.2

-
4 In order to see the effect of spillovers, 

let us start with an FOS represented by the matrix equation (3.1) without 
the excitation term 

t(r) = A:;(r) + Bu(t), 

with the observation equation Eg. (3.41) 

y(t) = Cz(r) 

z(O) = z, ( 4.1) 

(4.2) 

where, as before, :;(I) is the 2n-dimensional state vector of the structural 
system (large 11 ), ll( 1) is the m-dimensional control vector and y( t) is the 
p-dimensional observation vector. 

A reduced-order model (ROS) can be generated through aggregation or 
modal eigenfunction expansion techniques by retaining only the controlled 
modes of the system, giving 

t,(r) = A,z,(r) + B,u( t) + E,(r) 

with the observation equation 

(4.3) 

( 4.4) 

In the above, z,(r) is the controlled portion of the state vector z(t) whose 
dimension is in general much smaller than that of z(t). E,(t) and R,(t) are 
error terms introduced through the truncation process; they can be 
represented by 

and (4.5) 

where z,(t) is the state vector associated with the residual (or uncontrolled) 
modes of the FOS. It is governed by 

z,(t) = A,z,( t) + B,u(t) + £,(1) 

The error term E,(t) in the residue equation has the form 

E,(t) =A"z,(t) 

(4.6) 

(4.7) 

The error term E,(t) in Eq. (4.3) represents the modelling error due to the 
model reduction process. The. term B,u(t) in Eq. (4.6) shows the elfeet of 
controlu(t) entering the residue subsystem, or control spillover to the residual 
modes. The contamination of observations in Eq. (4.4) with residue 
information R,( t) produces observation spillover. Thus, the controller imparts 
energy to the residual modes through the interaction term B,u(t) and the 
resulting residual mode excitation is in turn detected by the sensors through 
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Figure 4.2 Interaction among model reduction, spillover, and sensor and controller 
placement 

the term R,(t) for control design, resulting in an escalating performance 
degradation. These interactions are shown graphically in Fig. 4.2. It can be 
sliown that spillovers can reduce stability margins of the actual structure and 
are at the heart of the control problem based on the reduced-order models. 2• 3 

Clearly, the magnitude of control and observation spillover is a function 
of the model reduction process. It is also a function of controller and sensor 
locations and their effects on the residual modes. We are interested in the 
spillover effect when the control design is carried out based on the ROS by 
assuming that E,(t) = 0 and R,(t) = 0, butis applied to the full-order system 
given by Eqs (4.1) and (4.2). 

4.1.1 l!ffect of Spillover 

Let z,(t) be an estimate of the state vector z,(t) based on the sensor 
measurement y(t) and designed either as a Luenberger observer or as a 
Kalman filter (see Section 3.1.1). Using a Luenberger observer, for example, 
the state estimator bas the form [see Eq. (323)] ,- · 

r 

(4.8) 

z,(O) = Zo 

Following a linear control law, the control design based on the error-free 
ROS gives 

(4.9) 
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where the control gain G is determined as though the true state z,(t) were 
available instead of io(t). The substitution of Eq. (4.9) into Eq. (4.1) yields 

i(t) = Az(t) + BGz,(t) 

= Az(t) + BGz,(t) + BG[i,(t)- z,(t)] (4.10) 

Let 

and ( 4.11) 

We then have 

i(t) =(A+ BGD)z(t) + BGe(t) (4.12) 

For the error term e(t), the derivative of the first of Eqs (4.11) leads to 

e(t) = G*(£=~<=:,D~ +(A,- G*C,)e(t) 

Define the composite closed~loop system state by 

Then, 

with 

w(t) = [z(t)J 
e(t) 

w(t) = Qw(t) = [ ~:: ~::Jw(t) 

Q11 =A+BGD 

Q12 =BG 
Q21 = G*(C- C,D) 

Q22 = Ac- G*Cc 

( 4.13) 

(4.14) 

(4.15) 

(4.16) 

It is seen that the sensor output is contaminated by the residue modes 
through the term (C- C,D)z(t), which can be identified as C,z,(t), the 
observation spillover. Thus, while the poles of A+ BGD and A,- G*C, can 
be designed with substantial stability margin, the presence of observation 
spillover can lead to instabilities in the residue modes. This is especially true 
in the lightly damped system. 

4.1.2 Spillover Compensation 

In view of the fact that spillover can cause serious system performance 
degradation, it is important that conventional design procedures be modified 
in order to eliminate or minimize spillover effects. The most obvious method 
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of spillover reduction is to locate the controllers and sensors at or very near 
the zeros of the affected modes. However, this is difficult if not impossible 
to do as the freedom of locating sensors and controllers is rarely available 
to the control designer. Other attempts include the introduction of a 'comb' 
filter between the sensor output and state estimator for the purpose of 
"combing out' the residue modes,2

· 
3

• 
5 implementation of an orthogonal filter 

in an attempt to counteract spillover as an unmodelled disturbance,6
· 

7 and 
addition of measurements for more complete state feedback. 8 However, these 
procedures are indirect and can become ineffective when the residue modes 
are closely spaced or when it becomes impractical to add the required number 
of sensors. 

The control design procedure proposed by Soong and Chang4 is a direct 
modification of the spillover-free control Jaw as indicated in Chapter 3 by 
requiring that the controlled modes of the system stay close to the designed 
values and that the stability of the uncontrolled modes be preserved. This 
procedure is briefly described below. 

Let the dimension of z,(t) in Eq. (4.3) be 2n' and consider the 2(n + n') 
x 2(n + n') matrix Q defined in Eqs ( 4.15) and ( 4.16). For structural systems, 

the eigenvalues of Q consist of complex conj.ugate pairs (i. 1 , ).i), (!.2 , !.f), 
... , U-n + 11·, ).~ + 11·) and, for convenience, we shall assume that they are distinct 
at least in the controlled modes. Using pole assignment, for example, the 
control objective is to affect changes in the controlled modes so that they 
take prescribed eigenvalue pairs ('1 1 , 11!), (11 2 , •J!), ... , (•J.,·, '1~·). 

In the absence of spillover, it is straightforward to determine the control 
gain Gas indicated in Eq. (4.9). In the presence of spillover, the proposed 
procedure calls for a modification of the value of G by minimizing the cost 
function 

where 

and 

,. 
1= L rjl).j-1ljl 2 =wJRw: 

j:=l 

w = 
' 

R = diag.[r 1 , ... , r.,.] 

(4.17) 

( 4.18) 

(4.19) 

while a set of inequality constraints is satisfied. These inequality constraints 
arise from stability requirements in the uncontrolled modes and can be written 
in the form 

j=n'+ f, ... ,II (4.20) 

where ei are some prescribed small positive numbers. 
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The optimization problem with the cost function defined by Eq. ( 4.17) and 
inequality constraints given by Eq. (4.20), although highly nonlinear, can be 
numerically carried out using the method of Lagrange multipliers with the 
help of carefully defined slack variables. It can be shown that the problem 
reduces to that of finding the solution of a set of (r + 11-11') simultaneous 
nonlinear equations, where r is the number of unknown parameters in the 
optimization problem. While the dimension (•· + 11-11') is in general large 
due to large 11, the procedure can be facilitated by seeking the control gain 
G sequentially by incorporating into the solution procedure the inequality 
constraints given by Eq. (4.20) sequentially. Numerical simulations show that 
the solution for control gain stabilizes at a rate proportional to the number 
of inequality constraints considered at each stage. 

Example 4.1 Let us illustrate the procedure presented above with a simple 
example in which all modal data are readily obtained. Consider a structural 
system whose FOS is described by Eqs (4.1) and (4.2) with 11 = 5, p = 1, m = 1 
and 

A=[A~ 1 A:J 
BT = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0] 

c = [0, 0, 0, 0, 1, 0, 0, 0, 0, 20.0] 

( 4.21) 

( 4.22) 

( 4.23) 

in which the matrices A21 and A22 take values so that FOS represents a 
lightly damped five-degree-of-freedom mass-spring-damper system. Equation 
(4.22) indicates that a single controller is applied at the fifth mass and 
Eq. ( 4.23) shows that a single sensor is located at the same mass with its 
displacement and velocity observed. The eigenvalues of A are 

).1, i.f =- 0.0036 ± j12.679 

).1, i.! = -0.0055 ± j37.011 

).,, ).! =- 0.0012 ± j58.344 

) .• , i.! = -0.0458 ± j74.950 

)., , i.~ = - 0.0941 ± j85.484 

In this example, the critical modes are taken to be the first three structural 
.modes (the first three pairs of eigenvalues) and the fourth and fifth modes 
are the residue modes. Thus, the reduced-order system is one of order six 
(11'=3) with 

s; = [O, o, o, o.12, -0.16, o.86J 

C, = [0, 0, 1, 0, 0, 20.0] 
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The control objective is to apply active control to the uncontrolled system 
so that the three controlled modes take the following desired values: 

lfp Iff= - 1.370 ± jJ6.679 

>lz, 'l~ = - 1.888 ± j40.011 

113, 11~ = - 2.583 ± j61.344 

In the control design, the follov.ing cases are of interest: 

Case A: The conventional modal control design based upon the ROS while 
ignoring the uncontrolled modes. 
Case B: The modified modal control design where the control gain is 
determined by minimizing the cost function given by Eq. ( 4.17) with inequality 
cnnstraints given by Eq. ( 4.20). The matrix R in Eq. ( 4.17) is taken to be I 
and e1 = e, = 0.00001 in Eq. ( 4.20). 
Case C: The same as Case B but with c1 = e2 = 0.1. 

The pole shifting characteristics for all three cases are summarized in 
Table 4.1. It is shown that conventional modal control design (Case A) can 
lead to instabilities in the residue modes in the presence of spillover. On the 
other hand, the modified procedure (Cases Band C) ensures stability in the 
residue modes while the controlled modes are kept close to their desired 

Table 4.1 Pole shifting characteristics' 

Controlled Controlled 
without with 

Mode Uncontrolled spillover spillover 
Case A 
1 -0.0036±jl2.68 -1.370 ±jl6.68 -1.376 ±)16.67 
2 -0.0055 ±j37.01 -1.888 ±j40.0! -1.876 ±j39.93 
3 -0.00!2 ±j58.34 -2.583 ±j61.34 -2.107 ±}60.91 
4 -0.0458 ±}74.95 -0.0458 ±]74.95 +0.189 ±}75.61 
5 -0.0941 ±}85.48 -0.0941 ±j85.48 -0.033 ±)85.59 

Case B 
I -!.404 ±)16.68 1.410 ±)16.67 
2 -1.974 ±j40M 1.971 ±)39.97 
3 Same as -4.118 ±}61.27 -3.038 ±}60.79 
4 Case A -0.046 ±)74.95 -0.00001 ±)75.8! 
5 -0.094 ±)85.48 -0.054 ±}85.64 

Case C 
I -2.105 ±)16.32 -2.109 ±)16.29 
2 -3.143 ±j38.24 -2.937 ±}38.26 
3 Same as -0.807 ±j58.84 -0.778 ±)58.85 
4 Case A -0.046 ±]74.95 -0.100 ±)75.26 
5 -0.094 + j85.48 -O.!OO+j85.55 
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25 

Uncontrolled 
Controlled (Cnse A) 

-25~--------------------~--------------------~ 
36 41 48 

Time 

Figure 4.3 Displacement As(l) ( CQse A} 4 

values. Results for Cases B and C also show that varied stability margins in 
the residue modes can be achieved but modal accuracy in the controlled 
modes is somewhat sacrificed. 

A more dramatic difference in results between Cases A and B is shown in 
Figs 4.3 and 4.4 when the system is subjected to a somewhat arbitrary forcing 

25 

-25~----------------~~----------------~. 36 42 48 
Time 

Figure 4.4 Di.splacement x5 (t} (Case 8) 4 
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function. Figure 4.3 shows x 5 (t), the displacement of the fifth mass, as a 
function of time under uncontrolled conditions and under conventional 
control (Case A). While a reduction of displacement magnitude is affected 
by Case A control, instabilities in the residue modes cause oscillation with 
increasing magnitude. In contrast, Case B leads to stable results as shown 
in Fig. 4.4. 

4.2 Time Delay 

In treating ideal systems, the assumption is made that all operations in the 
control loop as shown in Fig. 2.1 can be performed instantaneously. In reality, 
however, time has to be consumed in processing measured information, in 
performing on-line computation, and in executing the control forces as 
required. Thus, time delay causes unsynchronized application of the control 
forces and this unsynchronization can not only render the control ineffective, 
but may also cause instability in the system. 9

•
10 

In order to see the effect of time delay on control effectiveness, let us 
consider a simple single-degree-of-freedom structural system with active 
control as represented by the equation of motion 

111.i'(t) + d(t) + kx(t) = u(t) + f(t), x(O) = 0, :i(O) = 0 ( 4.24) 

where all the quantities in Eq. ( 4.24) are defined as usual. Assuming a linear 
control law, we write 

( 4.25) 

It is easy to show that the frequency response function of the closed-loop 
system is (see Appendix A) 

• 

in which 

II"(jw) = [ -mw2 +jew+ kr 1 

is the open-loop transfer function and 

v(jw)=g 1 + jg 2 w 

( 4.26) 

is the transfer function associated with the feedback gain. As discussed in 
Appendix A, the magnitude of h(jw) gives a measure of the dynamic reduction 
of the system response and thus a measure of control efficiency. 

Suppose now that time delay exists in the execution of control with an 
amount equal to T. The modified equation of motion takes the form 

m.i'(t) + d(t) + kx(t) = u(t- T) + f(t), x(O) = 0, .x(O) = 0 (4.27) 
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2.0 

Figure 4,5 Time delay effect on control eftlciency10 

and Eq. (4.26) becomes 

h(jm) = [ 1 + e-J'"'ho(jw)v(jw )r 1 h,(jw) ( 4.28) 

Typical time delay effects on the magnitude of h(jw) can be seen in Fig. 4.5, 
where w, is the undamped natural frequency of the system with arbitrary 
values assigned to m, c, k, g1 and g,. It clearly shows deterioration of th<> 
controlled system response as a function of time delay. 

As mentioned earlier, time delay can also lead to instability in the controlled 
system. The stability problem can be investigated by sketching the Bode plot 
of the loop transfer function l!,(jm )v(jw ). It is noted from Eq. ( 4.28 ), however, 
that time delay enters in the loop transfer function as a coefficient in the 
form of exp(- jrw). Since !exp(- jrw)l = 1 for all w, the time delay affects 
the phase but not the magnitude of the Bode plot. The control system can 
thus become unstable when rw takes such values as to cause the phase margin 
to become negative. A more detailed discussion of this phenomenon can be 
found in Pu10 

4.2.1 Time Delay Compen.mti011 

Equation (3.1) gives the state-space representation of the basic controlled 
system dynamics, i.e. 

i(t) = Az(r) + Bu( r) + Hf!t) (4.29) 
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When time delays are taken into account, time retardations can occur in 
both z(t) and u(t) appearing on the right-hand side of Eq. (4.29). LetT,, be 
the time delay in z1(t), the ith component of z(t) and T,, be that associated 
with u,(t), the ith component of u(t). Equation (4.29) now becomes a 
differential-difference matrix equation of the form 

2n m 

i(t)= I A,z,(t-T,,)+ I B,u,(t-T,.,)+Hf(t) ( 4.30) 
i"" l i == 1 

where A, and B, are, respectively, the ith columns of A and B. 
The problem of control design for systems represented by Eq. ( 4.30) has 

been studied extensively in the control literature and, more recently, in 
connection with control of civil engineering structures. In what follows, two 
simple methods are described which have shown success in structural control 
applications. 

Taylor Series Expansion One of the simple methods of time delay compen­
sation, 11 - 14 is based on Taylor series expansion of time-retarded variables 
in Eq. ( 4.30). Consider, for example, z,(t T,1). Its Taylor series expansion 
about t gives 

rz. 
z1(t-T,1)=z,(t)-T,,z,(t)+ 

2
'; z,(t)- ... ( 4.31) 

For practicality, the series is truncated after a few terms and the truncation 
error depends upon whether the time delay is small as compared with the 
system's natural periods. 

One can also use the Taylor series in reverse, namely, 

z1(t) = z1(t- T,1 + T,1) = z1(t- T,1) + T,1z1(t- T,1) 

( 4.32) 

Upon substituting either Eq. (4.31) or Eq. (4.32) into Eq. (4.30), one can 
then form an augmented state-space system containing the state variables 
z,(t), z,(t- T,,), u,(t), u,(t- T,1), ..•• The state-space equation of the 
augmented system again takes the standard form of Eq. (4.29) except that 
the dimension of the state vector is increased. Conventional control design 
algorithms such as those described in Chapter 3 can again be applied. 

As an example, consider Eq. (4.27) again. Time delay compensation in u(t) 
can be accomplished in this simple case using the Taylor series expansion 
approach in the form given by Eq. ( 4.32). Retaining only the first three terms, 
we have 

T2 

u(t) = u(t- T) + ni(t- T) + 2 ti(t- T) ( 4.33) 
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which is another second-order differential equation governing u(t- T). The 
augmented system encompassing Eqs (4.27) and (4.33) can be established by 
defining a four-dimensional state variable z(t) as 

z(t) = 

x(t) 

x(t) 

u(t-T) 

ti(t- T) 

with the associated state-space equation 

i(t) = Az(t) + Bu(t) + Hf(t) 

where 

0 0 

k c 

m m m 
A= 

0 0 0 

0 0 
2 -., 
T" 

0 

0 

B= 0 

2 -., 
T" 

and 
0 

H= m 

The additional initial conditions are 

0 

0 

0 

0 

1 

2 

T 

( 4.34) 

( 4.35) 

Equation ( 4.34) now has the state-space form for a structural system free 
of time delays and conventional control algorithms can be used for control 
design. 
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The application of the Taylor series expansion technique to the study 
of distributed-parameter structures with time delay can be found in 
Abdel-Rohman. 15 

Phase Compensation Consider a linear control law such as that given by 
Eq. ( 4.25). Due to time delays, the displacement feedback control and the 
velocity feedback control can be resolved into displacement and velocity 
components as shown in Fig. 4.6, where c1nx and wrx are the phase lags for 
displacement delay time r., and velocity delay time r.,, respectively, w being 
the dominant system frequency. 

Possible detrimental effect of time delay on the controlled system 
behaviour can also be seen from this phase space interpretation. With the 
phase shift, the displacement feedback vector may be resolved to produce 
positive active stiffness but negative active damping while the velocity 
feedback vector may be resolved to produce positive active stiffness and 
positive active damping. Due to the existence of negative active damping, 
control effects are diminished for the real system as compared to the ideal 
one. Even worse, time delay will cause instability if the resultant damping 
force is negative. Since phase lags are proportional to the delay time and 
dominant frequency, the effect of time delay can be serious for higher modes 
even with small amounts of time delay. This phenomenon has been observed 
earlier when the Bode plot of the loop transfer function was discussed. 

:( 

Velocity 
feedback fOrce 

Displacement 
feedback force 

Figure 4.6 Displacement and velocity feedback vectors in phase space 17 

72 



Practi(;td considerations 

The idea behind phase compensation, first discussed by Roorda, 16 is to 
modify the time-delay-free control gains, g1 and g0 in Eg. (4.25), in order to 
take into account these rotations in the phase space. Let g; and be the 
modified displacement and velocity control gains, respectively. The relation­
ship between (g;, g;) and (g 1, g 2 ) can be established as follows. 

As seen from Fig. 4.6, the displacement feedback vector can be resolved 
into two components, g; xcoswr x and g ~ .isinoYrs/ wt in the displacement and 
velocity directions, respectively. Similarly, the velocity feedback vector has 
component g2mxsinr!)t_,. in the displacement direction and g;Xcoswtx in the 
velocity direction. On the other hand, for the ideal case with no time delay, 
the displacement and velocity feedback vectors are simply g 1x and g2 ."i: in 
the displacement and velocity directions, respectively. Hence 

giving 

g 1 x = ()~ xcos( rut x) + g2 mxsin( wr x) 

g2 .X = gj Xsin(mr)J/w + g_2Xcos( Wtx} 

[g,]·· [ cos(w<x) 
!h = sin(rur.<)/w 

wsin(wr,)J [g~ J 
cos(wr,) g2 

The modified control gains are thus 

[g;J [ cos(wt,) 
g~ = sin((Otx)/m 

wsin( wr,)J -l 

cos(wrx) 

( 4.36) 

( 4.37) 

For multi-degree-of-freedom structural systems, the control gain correction 
as indicated in Eq, ( 4.37) can be applied to each mode in the modal domain 
and, through modal transformation to the physical domain, the necessary 
modification to the control gain matrix due to time delays can be 
determined. 1 ' 

The technique of phase compensation has been applied to the study of 
active structural control and it has been shown to be effective in both 
computer simulation and in laboratory experiments. 16

-
19 Some of these 

results will be discussed in Chapter 5 where these experiments will be 
described. 

4.3 Structural Non!inearities 

Our development of active structural control has been restricted to the 
consideration of linear structures. In reality, however. many civil engineering 
structures may undergo large deformation or yielding when subjected to 
strong environmental loads, and hence exhibit inelastic or nonlinear 
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behaviour. Consequently, active control systems may operate in the nonlinear 
range of structural motion, and it is of practical interest to extend active 
control concepts to the case of nonlinear or inelastic structures. 

Several control algorithms developed in Chapter 3 have been studied in 
the context of control of nonlinear structures. For example, the application 
of several pulse control strategies discussed in Section 3.5 to the control of 
nonlinear systems has been investigated.20

-
23 Similar extensions have also 

been made of the instantaneous control algorithms derived in Section 3.324· 25 

We shall follow Yang et a/25 in our development, showing only one possible 
procedure in treating structural control problems involving structural 
nonlinearities. 

Consider an 11-degree-of-freedom nonlinear structural system described by 
(see Eq. 2.1) 

Mi(t)+/,(t)+/,(t)=Dil(t)+Ef(t), x(O)=x, i(O)=i, (4.38) 

where x(t) is the It-dimensional displacement vector and D and E are, 
respectively, appropriate n x m -and n x r control and external excitation 
location matrices. The structural nonlinearities are reflected in the damping 
and stiffness terms in which /d(t), the It-dimensional damping force vector 
and/,(t), the It-dimensional stiffness force vector, are nonlinear functions of 
i(t) and x(t), respectively, i.e. 

/,(t)=/d[i(t)] and /,(t)=/,[x(t)J. ( 4.39) 

For a sufficiently small step size !!.tin the step-by-step numerical integration 
procedure, the nonlinear terms in Eq. ( 4.38) can be approximated by 

/,(t) = /,(t- !!.t) + C*(t- !!.t)[-i(t)- i(t- !!.t )] } 
f,(t) = f,(t- !!.t) + K*(t- !!.t)[x(t)- x(t- !!.t)] 

( 4.40) 

in which C*(t- !!.t) and K*(t- !!.t) are influence coefficient matrices whose 
ijth elements are given26

·
27 as 

afd,(t- M) cW- !!.t) 
a:i)t- !!.t) 

k~(t- !!.t) = aJ,,(t- !!.t) 
'
1 axj(t-!!.t) 

( 4.41) 

where /d1(t- !!.t) and /,,(t- !!.t) are the ith components of j,(t- !!.t) and 
/,( t- !!.t ), respectively, whereas ij(t !!.t) and xi( t - !!.t) are jth components 
of the response vectors i( t- !!.t) and x( t - !!.t ), respectively. In Eqs ( 4.41 ), 
the influence coefficients c1)(t- !!.t) and kt(t- !!.t) represent the tangent 
damping and tangent stiffness at t- !!.t, respectively. 
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Upon substituting Eqs (4.40) into Eq. (4.38), the equation of motion for 
the nonlinear structural system can be expressed in the form 

Mi(t) + /,(t-llt) + C*(t -lit )[i(tl- .i:(t t!.t)] 

+ _t;(t -Lit)+ K*( t t!.t )[x(t)- x(r -Lit)] = Du(t) + EJlt) 

(4.42) 

whose solution can be found following. for example, the Wilson-B numerical 
procedure. 27 Let z( t) be the 2n-dimensional state vector with 

[
x(t )] 

:;(t)= i(t) (4.43) 

It can be expressed in terms of the response state vector z(t -Lit), damping 
force vector fu( t -lit), stiffness force vector/.,(!- tl.t), external excitation 
Jl t - t!.t) and the control vector u( t - t!.t ), all at time t -lit, as well as the 
control vector u(t) and the excitation fit) at timet. It can be written as 

where 

z(t) = d*(t -Lit)+ A 111(t) + A:J(t) 

d*(t- t!.t) = A 3 x(t -Lit)+ A 4 [fct(t- M) + J;(t -lit)] 

+ A 5 u(t -llr) + AJ(t -lit) 

In the above, A i• j = 1, ... , 6, are matrices defined by 

A, e-'[O'I FT3 J 
0 02l+FT4 

A,=e·'{~:J 

A 5 =0-'F[~:JD 

A6 = o-'F[ ~:JE 

( 4.44) 

( 4.45) 
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with li > L3 7 and 

T 1 =FE 

T1 =FD 

T, =(6/!lt)M + 30C* +!it(01 -1 )K* 

T, - 3K* 

T5 = -(3/+S,) 

T6 = -(6/!l1)/-S2 

T, = 21 + S1 

T8 (3j!it)I+S2 

[ 
6/'•f 3C* ]-' 

F= (llat) 2 + li!it + K* 

S, =[At( 1.511- 1 JC* + 0.5!it 1 (0 2 -li)K*]M- 1 

S1 = [3(11-l )C* + O!it(O- L5)K*]Ar' 

In the above, 0 is the parameter defined in Lhe Wilson-0 procedure. The 
argument t- !it for C* and K* has been omitted for simplicity. Thus, all 
A is• being functions of C* and K*, are also functions evaluated at t- M. 

Equation (4A4) for the state vector z(t) is seen to have the same form as 
Eq. (3.52) for a linear structure when the following replacements are made: 

Td(t-!it)->d*(t-M), !itB/2->.4 1 , !itH/2->A2 

Hence, instantaneous optimal control design for the nonlinear structure can 
be determined from the linear results with appropriate substitutions indicated 
above. Fbr example, for closed-loop instantaneous optimal control, it follows 
from Eqs ( 3.57) and ( 3.58) that, for the nonlinear structure under 
consideration, 

u(t) =- R- 1 .4T Qz(l) 

and the controlled response state vector z(t) is 

z(t) [I+A 1 R-'ATQr'[d*(t-!it)+A:J(t)] 

( 4.46) 

( 4.47) 

Two numerical examples using the closed-loop instantaneous optimal 
control law given in Eq. (4.46) are discussed below. 

Example 4.2 Following an example discussed in Yang el a/, 25 a single­
degree-of-freedom structure similar to the one presented in Example 3.1 is 
considered. The stiffness is now assumed to be bilinear elastic-plastic with 
an elastic translational stiffness k1 = 8.53 x 104 kN/m and a post elastic 
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Figure 4. 7 Nonlinear stiffness characteristics 

translational stiffness k1 = 9.75 x 103 kN/m as shown in Fig. 4.7, where x 
denotes the lateral relative displacement and ];(x) is the stiffness restoring 
force. The floor mass m is 345.5 tons and the linear viscous damping coefficient 
is 54.29 kN-sccfm which corresponds to a damping ratio of0.5 %. The natural 
frequency of the structure is 2.5 Hz and yielding occurs at a lateral relative 
displacement of 2.4 em. The angle of inclination of active tendons with respect 
to the ground is " 25" (see Fig. 3.2 ). A simulated earthquake ground 
acceleration time history shown in Fig. 4.8 is considered as the input 
excitation, where the maximum ground acceleration is 0.4 g. 

25 30 

r (sec) 

Figure 4.8 Ground acceleration 
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Without active control, the relative displacement of the top floor and the 
base shear force are displayed in Figs 4,9(a) and 4,10(a), respectively, The 
hysteresis loop of the inelastic restoring force is shown in Fig, 4,ll(a), in 
which significant yielding occurs in the structure, With an active tendon 
control system, the structural response and active control force depend on 
the weighting matrices Q and R, In this example, Q is a 2 x 2 matrix and R 
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Figure 4.9 Relative displacement (a) without control; (b) q/r=0.15 x 106; 
(c) q/,~0,8 x 108 

78 



Practical considerations 

-2 

(o) 

c 

s 2 
X 

z 
~ 

0 

~ 0 

"' " 0 
0 _, 
~ -2 
~ 

(b) 

2 

-2~----~------~----~~----~----~~----~. 
0 5 10 15 w ~ 30 
(c) t (sec) 

Figure 4.1 a Base shear (a} without control; {b) q/r= a.15 X 1 as; {c) q/ r= 0.8 X 1 as 

z 
~ 

0 
u 

" "' "" c 

1250 

0 

-~ -1250 
0 
0: 

v 
r-1 

-O.J 0 

(a) 
Relative displacement (em) 

(b) (c) 

Figure 4.11 Hysteresis loop of inelastic restoring force {a) without control; 
(b) qfr~0.15 x 108 ; (c) qfr~o.a x 108 

0.5 

79 



Active structural control: theory and practice 

is a scalar. For simplicity, we shall assume that 

Q=[~ ~] R=r 

Numerical results on relative displacement, base shear, the hysteresis loop 
of inelastic restoring force, and the required control force are presented in 
Figs 4.9-4.12 for qjr=O.IS x 108 and qfr=0.8 x 10'- In the first case, the 
maximum relative displacement is reduced by 27%, whereas the maximum 
base shear force is reduced by 5 °/o. In the second case, it is seen that these 
reductions increase to 63.8 °/o and 38.5 °/o, respectively, and the response is 
entirely well within the elastic range. To examine the effect of weighting 
matrices on active control, the maximum floor relative displacement and 
maximum control force in the entire earthquake episode of 30 seconds are 
presented in Fig. 4.13 as functions of qjr. It is observed that, as the ratio qjr 
increases, the structural response quantities decrease with a corresponding 
increase of the required active control force. The structural oscillation is 
completely within the elastic range when qjr > 0.35 x 108 • Thus, the active 
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tendon control system is capable of preserving the structural response within 
the elastic range provided that the level of the required control force is 
achievable. 

Example 4.3 The eight-storey structure with an active mass damper installed 
on the top floor, first discussed in Example 3.5, is reconsidered here when 
the stiffness of each storey unit is assumed to be bilinear elastic- plastic. Again, 
the results presented here are extracted from Yang et a/25 

All the structural and control parameters used in this example are the 
same as those given in Example 3.5 except for the following: 

Elastic stiffness (each storey): 3.404 x 10 5 kN/m 
Post elastic stiffness (each storey): 3.404 x 104 kN jm 
Yielding level: 2.4 em 
First mode damping ratio: 0.5% 
Damper mass: 36.3 tons 
Damper damping: 31.0 kN-sec/m 
Damper stiffness: 1173 kN /m 
r: 105 

a: 5.12 
Excitation: Fig. 4.8 modified to 0.3 g maximum 

Without any control system, the top floor relative displacement with respect 
to the ground and the base shear force of the structure are shown in 
Figs 4.14(a) and 4.15(a), respectively. Hysteresis loops for the shear force in 
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Figure 4.14 Top floor relative displacement (a) without control; (b) with passive mass 
damper; (c) with active mass damper 

each storey unit are displayed in Fig. 4.16(a), in which 'i' signifies the ith 
storey unit. As observed from Fig. 4.16, yielding occurs in the lower three 
storey units. 

Without the active control force but with the mass damper in place, the 
mass damper is passive. In this case, the response quantities, including the 
top floor relative displacement with respect to the ground and the base shear 
force, are shown in Figs 4.14(b) and 4.15(b), respectively. It is observed from 
these two figures that the passive mass damper is not effective. 
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Figure 4.16 Hysteresis loops for shear force in each storey unit (a) without control; 
(b) with active mass damper 

With the active mass damper, the response quantities and the required 
active control force from the controller are presented in Figs 4.14(c), 4.15(c) 
and 4.17(a). The relative displacement of the mass damper with respect to 
the top floor is displayed in Fig. 4.17(b). Also, hysteresis loops for the shear 

Table 4.2 Maximum response quantities25 

Floor Without control Passive mass damper Active mass damper 
no. y,=0.60 m Unua = S2QJ kN 
( i) y,= 1.64 m 

x, Yt s, xi y, s, x, Y; S; 

(em) (em) (kN) (em) (em) (kN) (em) (em) (kN) 

I 3.89 3.89 8677 2.99 2.99 8369 1.62 1.62 5529 
2 7.04 3.22 8447 5.32 2.47 8195 3.11 1.48 5042 
3 9.26 2.49 8200 7.44 2.21 7509 4.41 1.32 4497 
4 11.16 2.30 7812 9.22 1.79 6089 5,52 1.27 4310 
5 12,84 2.11 7184 10.49 1.48 5026 6.55 Ll4 3877 
6 14.28 1.84 6274 11.30 1.30 4426 7.45 0.93 3169 
7 15.36 1.45 4951 11.82 0.99 3360 8.11 0.68 2327 
8 16.00 0.80 2722 12.26 0.53 1810 8.46 0.60 2043 
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Figure 4.17 Required active control force and relative displacement of mass damper 

force in each storey unit are depicted in Fig. 4.16(b). Within 30 seconds 
of the earthquake episode, the maximum response quantities, including 
the relative displacement of each floor with respect to the ground, 
x,(i= I, 2, ... , 8), the interstorey drift, y;(i= 1, 2, ... , 8), and the shear force 
S,, in each storey unit are presented in Table 4.2 for comparison. The 
maximum control force is 820.7 kN. It is observed from Figs 4.14-4.17 that, 
with the active mass damper, the response of the entire building is well within 
the elastic range. 
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4.4 Uncertainties in Structural Parameters 

We have seen in Chapter 3 that the control laws and the resulting controlled 
system performance are in general functions of structural parameters such 
as masses, stiffnesses and damping ratios. In reality, structural parameters of 
as-built structures cannot be identified precisely and the parameter values 
used in control design may deviate significantly from their actual values. 
Thus, parameter uncertainties are another practical concern. More recent 
work in structural control has begun to address the problem of control 
sensitivity to structural parameter uncertainties,28 - 30 

The effect of parameter uncertainties on control effectiveness can be 
investigated at several levels. At a fundamental level, the problem is one of 
robustness of control. 31 An important feature in feedback control theory, a 
rohust control design is one which satisfactorily meets control specifications 
even in the presence of parameter uncertainties and other modelling errors. 
Two aspects of control specifications can be discussed: stability robustness 
and performance robustness. Most of the work on stability robustness has 
been done in the frequency domain using singular value decomposition. while 
many of the recent results on performance robustness were obtained using 
sensitivity approaches in the time domain. A more detailed discussion of 
stability robustness is beyond the scope of this book. In what follows, an 
elementary sensitivity approach is described which addresses the performance 
robustness issue. 

Consider again the basic controlled system dynamics described by 
Eq. ( 3.1 ), i.e. 

i(t) = A(p)z(t) + B(p)u(t) + H(p)f(t) ( 4.48) 

with a• linear control law given by 

u(l)=G(p)z(t) ( 4.49) 

In the above, the dependence of the coefficient matrices on a set of parameter 
values, denoted by p, is explicitly noted. Let the actual parameter values be 
represented by p,. It is expected that u(t) and z(t) as given by Eqs (4.48) 
and (4.49) will be adversely affected when p deviates from p,. In order to 
study control sensitivity to parameter variations, let us write u(t) as 11(p, t) 
to show its dependence on p. Then, assuming small parameter variations, 
11(p, t) can be expanded in a Taylor series around p, retaining only first-order 
terms, giving 
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where au;apJ is the Jacobian defined by 

Ou 1 au I 

au(p, t) 
Opal Opa2 

OpJ 
Gum 

( 4.51) 

ap,l 

In the above, m and s are, respectively, the dimensions of u(t) and p,. The 
quantities rti and Pai are the ith elements of u(t) and Pa• respectively. 

Equation ( 4.51) defines the sensitivity matrix associated with the feedback 
control design with respect to parameter variations. The magnitudes of its 
elements dictate the degree of control sensitivity to parameter variations. 
These elements can be derived directly if the solution u(p, t) is known 
explicitly, or they can be determined by solving the sensitivity matrix equation 

~. [ au(p, t) J = A ( ) au(p, t) + B( ) 
dt a T Pa a T Pa ' Pa Pa 

with the initial condition 

au(p, 0) 
aT =O p, 

Another approach to addressing the parameter variation problem for a 
specific control design is one of direct numerical simulation. The values of 
z(t) and u(t) as given by Eqs (4.48) and (4.49) can be numerically generated 
and they can be compared with those obtained when pis replaced by possible 
values of Pa.· This type of simulation permits an estimate of the amount of 
parameter variability that can be tolerated for a prescribed level of 
performance robustness. This approach is followed by Yang and 
Akbarpour29

• 
30 and possible information that can be derived from it is 

illustrated numerically in the following example. 30 

Example 4.4 Consider again the eight-storey structure with an active mass 
damper as discussed in Example 3.5. All structural and control parameters 
stay unchanged but various degrees of variability in stiffness and damping 
are introduced here to illustrate the effect of structural parameter uncertainties 
on control system performan-ce. The variations in stiffness and damping in 
every storey unit are expressed as percentages of their actual values and 
denoted by Ilk and !lc, respectively. The variations in the fundamental 
frequency and in the first-mode damping ratio, denoted respectively by !lw 
and 11(. arc similarly defined. 
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Table 4.3 Maxirnum response and control force under parameter uncertainties 

Base 
Estimation error Top floor Difference shear Difference 

displacement in °/o of force in% of 
!J.k (%) !J.w ('Yo) IJ.c ('Yo) !J.(' (%) (em) 1.61 em (kN) 1070 kN 

0 0 0 0 1.61 - 1070 --·--

40 18.3 0 0 L71 6.2 1047 -2.1 
20 9.6 () () 1.65 2.5 1052 1.7 

-20 10.5 0 () 1.59 1.2 1096 2.4 
-40 22.6 0 0 !.58 -1.8 1096 2.4 

0 0 40 40 1.64 1.8 1085 1.4 
() 0 --40 ·-·40 !.59 -1.2 1054 -1.4 

Control Difference 
force in °!IJ of 
(kN) 20 kN 
250 
254 1.6 
255 2.0 
253 1.2 
278 I 1.2 
240 -4.0 
259 3.6 

i 
" ;! 
" 2 
!!. 
g , 
~ 
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·'-
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The system response and control force for various values of t!.k . .6.c, t!.w 
and t!.' can be calculated based on Eqs (4.48) and (4.49). Using the classical 
closed-loop control as an example. the maximum values of these quantities 
are tabulated in Table 4.3 for several parameter variation combinations. It 
is seen that the classical closed-loop control algorithm is rather insensitive 
to parameter variations. A variation of 40o/o in stiffness leads to a maximum 
of 5.1 'Yo change in the maximum top-floor relative displacement and base 
shear. Moreover. damping variations have a negligible effect on the control 
force and the response quantities. 

In closing. let us remark that. as seen in Section 3.3.!, a special property 
possessed by the instantaneous closed-loop control is that its control gain 
is not a function of the structural parameters. Hence, the control efficiency 
in this case is not affected by structural parameter variations. 

4.5 limited Number of Sensors and Controllers 

From the viewpoint of practicality and economy, the number of sensors and 
controllers will be severely limited for real structural applications, and this 
is particularly true in the case of controllers. To be sure, the development of 
control algorithms in Chapter 3 has been based on an arbitrary number of 
controllers and has included the case of an arbitrary number of sensors 
(output feedback) as long as the structural system is completely controllable 
and observable. However. there are still a number of pertinent questions that 
remain. They include (a) what are the minimum numbers of sensors and 
controllers required for the structure to be completely controllable and 
observable? and (b) where should these sensors and controllers be positioned 
to produce maximum control benefit? 

The answer to the first question can be obtained by testing the ranks of 
the controllability matrix [Eq. ( A.60) in Appendix A] and the observability 
matrix [Eq. (A.62) in Appendix A]. It can be shown that, for structural 
systems with no repeated modal frequencies, they can be made controllable 
and observable by a single properly located sensor and a single properly 
located controller8

·
31

•
33 It should be emphasized, however, that practical 

considerations and computational requirements often require more sensors 
and controllers to be used than these minimum numbers. 

4.5.1 Optimal Placeme11t of Se11sors atul Co11f1·ol/e•·s 

Given the number of sensors to be placed, the problem of determining their 
optimal locations can be formulated relatively easily. Conceptually, a criterion 
of optimality should be related to maximum state information, i.e. sensor 
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locations should be chosen in such a way that they produce maximum 
information on the state of the structural system. For example, this approach 
is taken by Juang and Rodriguez" where the optimal sensor locations are 
defined as those points where the absolute minimum of the state estimation 
error occurs. Let us recall that the state estimator t(r) is defined in Eq. (3.23 ). 
When the observation error 17 in Eq. (3.22) is random, z(t) is also random. 
Denoting the random state estimator by 2( t ), a plausible definition of the 
state estimation errorE is 

c = E { [.l(r)- z(r )] T[Z(r)- z(r)]} (453) 

Thus, one possible approach is to determine sensor locations so that the 
error s is minimized. 

The following example, discussed by Juang and Rodriguez," is presented 
here in order to gain insight into the minimization problem of state estimation 
error and optimal sensor locations. It also serves to show the interesting 
relationship that exists between optimal sensor locations and structural mode 
shapes. 

Example 4.5 Consider the sensor location problem associated with the free 
transverse vibration of a simply supported beam of unit length as shown in 
Fig. 4.18. The beam dynamics is governed by 

( 4.54) 

where w(x, t) is the transverse beam displacement at distance x from the left 
end point and u(t) is the control force located at x = 0.7. The modal 
frequencies for this case are 

w1=fn2, j=1,2,, .. 

and the corresponding normalized mode shapes are 

' 0.. . '-1 ? cp J '\! .!Sin )1tX, ) - , ..... , ... 

Only a single point sensor is considered and we begin with the case where 
the simply-supported beam is characterized by one mode only. 

cl .2 
,; 

~ ".1-:-------------~ 
Figure 4.18 A slmply supported beam 
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Case A (one mode only): For this case, an analytical solution is possible. Let 
the sensor location be denoted by x,, the error cas defined by Eq. (453) is 
a function of x5 w1th, under some simplifying assumptions on the control 
parameters, 

e(x,) = 2v2 (p + p 3 )cos(o:/2) 

where u1 is the variance of the measurement noise and 

p = (;r4- + w~)tf<l­

w6 = 2sin0. 7n sinnx~ 

"= cos- 1
(- n1 jp 1

) 

The optimal sensor location, denoted by x~, is then found by finding the 
absolute minimum of c(x,), 0,;:; x,,;:; L It is easy to show that it occurs in 
this case at the midpoint o[ the beam, i.e, 

x;=0.5 

which, as shown in Fig. 4,l9(a), coincides with the peak ofthe mode shape. 
Figure 4J9(b) shows the state estimation error as a function o[ the sensor 
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Figure 4.19 Sensor location for one-mode case (a} mode shape; (0) stare estimation error 
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location. Infinite estimation error occurs at the end points which correspond, 
in fact, to the case of nonobservability. 

Case B (two modes): For this case, the best sensor location is found to be 

x;" = 0.3 or 0.7 

It is seen from Fig. 4.20(a) that the peaks of the mode shapes occur at 
x = 0.25, 0.5 and 0.75. Intuitively, we can interpret the best sensor location 
as a result of a compromise between the peaks of the mode shapes. 

The state estimation error as a function of the sensor location is shown 
in Fig. 4.20( b), which shows nonobservability at the midpoint as well as 
at the ends since the second mode is not observable at these points. It also 
shows two relative minima at x = 0.3 and 0.7 due to anti-symmetry of the 
second mode relative to the middle of the beam. 

Case C (three modes): The best sensor location in this case is 

x;" = 0.25 or 0.75 
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Figure 4.20 Sensor location for two-mode case (a) mode shapes; (b) state estimation 
error 
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Figure 4.2l(b) shows that there exist four relative minima of the state 
estimation error resulting from additional peaks of the mode shapes 
considered as shown in Fig. 4.21(a). 

The problem of optimal controller placement has received considerable 
attention. In comparison with the sensor location problem, this topic is more 
complex since a number of issues must be addressed to arrive at a meaningful 
optimality criterion. These include not only structural and control parameters 
but also the type of controllers and external excitations. 

A wide variety of optimality criteria have been considered. An energy 
performance index is used.34• 35 Another method developed" uses a scalar 
measure, the degree of controllability, as a criterion for controller placement 
on large structural systems. The use of a controllability index is another 
possible criterion.37•38 Other criteria that have been considered include those 
based on actual control effort, 39 structural failure modes"0 and structural 
mode shapes!' In what follows, the methodology developed by Cheng and 
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Figure 4.21 Sensor location for threeHnode case (a) mode shapes: {b} state estimation 
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Pantelides37
·
38 will be briefly described. Based on a scalar measure of 

controllability, the basic idea behind the method is that a controller is 
optimally placed where the displacement response of the uncontrolled 
structure is largest due to the action of an externally applied disturbance, 
In this study, an earthquake-type load is considered, 

The controllability index criterion developed 37
·
38 for seismic structures is 

based on the following considerations, 

Lower modes are dominant in the response of earthquake excited 
structures. 

2 The control objective is to reduce the structural response and stabilize 
the seismic structure. 

3 The control effort in terms of control power available is limited, 
4 The structural response should not exceed certain thresholds for safety 

and serviceability of the structure. 

Based on these premises, a controllability index can be defined as 

where 

x =percent of total height of structure (0 ~ x ~I) 

11 =number of modes considered 

¢j(x) = jth mode shape 

Yi{maxJ(t) =maximum jth modal response spectrum 

(4,55) 

The funotional form of g[ J depends upon the type of controllers considered, 
For example, for active tendons, it may take the form 

where 1'1</>i(x) is the jth mode-shape difference over a height increment of 
!>.x, The algebraic difference of the mode shapes is taken in this case since 
the relative displacement between Roars is a critical parameter for active 
tendons. 

In Eq, (4,55), the modal contributions are weighted in a root-mean-square 
fashion since the modal response maxima do not occur at the same time. It 
is also noted that the modal response spectra are functions of the applied load, 

According to the stipulations outlined above, the optimal controller 
location is defined to be the value of x for which p(x) is maximum, The next 
best location is one for which p(x) has the second largest value, etc, 
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Example 4.6 A 15-storey shear building, as shown in Fig. 4.22, is studied 
for optimal location of active tendon controllers on two of its floors. The 
structural properties of the building are assumed to be as follows: 
floor stiffness k = 3000 k/in and floor mass m = 2 k-sec2 /in for all floors; 
damping= 3% critical. The first two natural frequencies of the uncontrolled 
structure are 3.92 radfsec and 11.73 rad/sec; these frequencies correspond to 
periods of 1.60 sec and 0.54 sec, respectively. 

The instantaneous closed-loop control algorithm as discussed in Section 
3.3 is used for control design. The weighting matrix Q is assumed to be 
diagonal with q, = 15 000 and the R matrix is varied in order to achieve 
different levels of control forces. 

The controllability index of Eq. ( 4.55) is used to establish optimal locations 
of the two active tendons. Using response spectra for the 1940 N-S El-Centro 
earthquake record, the first two maximum modal response values are 
YHmo.J = 0.439 ft and Yz<mo.J = 0.265 ft. The first two modes are considered in 
evaluating Eq. (4.55) and the values for each term of the controllability index 
are given in Table 4.4. 

A plot of p(x) for the present example is shown in Fig. 4.23. It is seen that 
the two largest values of p(x) occur at the first and second floors. Hence, 
according to the controllability index criterion, they are optimal locations 
for the active tendon controllers. 

L 

X 

Figure 4.22 The 15-storey structure38 
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Table 4.4 The controllability index 

lst mode 2nd mode 
Floor X 1> 1 (x) </>' (x) !J.rjJJifJ.x 

0.067 0.026 -0.076 0.390 
2 0.133 0.051 -0.145 0.375 
3 0.200 0.076 -0.201 0.375 
4 0.267 0.100 -0.238 0.360 
5 0.333 0.123 -0.254 0.345 
6 0.400 0.145 -0.246 0.330 
7 0.467 0.165 -0.216 0.300 
8 0.533 0.184 -0.165 0.285 
9 0.600 0.201 -0.100 0.255 

10 0.667 0.216 -0.026 0.225 
II 0.733 0.228 0.051 0.180 
12 0.800 0.238 0.123 0.150 
13 0.867 0.246 0.184 0.120 
14 0.933 0.251 0.228 0.075 
15 1.000 0.254 0.251 0.045 

Floor Controllnbilitv index p(x) 
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Figure 4.23 Optimal locaf1ons of active tendons 38 
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4.6 Discrete Time Control 

Another important consideration in real-time control implementation is the 
discrete-time nature in the application of a control algorithm. Strictly 
speaking, continuous-time control algorithms such as those developed in 
Chapter 3 can only be executed in discrete time since a digital computer 
is usually used for on-line computation and control execution. Digital 
computers are better suited for real-time control because of their flexibility, 
reliability and speed. As a consequence, response measurements are digitized 
as feedback signals and control forces are applied in the form of piecewise 
step functions through the use of analogue-digital converters. Hence, they 
are not continuous functions as called for by continuous-time control 
algorithms. 

With this in mind, discrete time formulation of active structural control 
has been a topic of some recent investigations•'-"" As shown by Chung 
and Soong;.j.2 there are actually some inherent advantages in using discrete 
time formulations. For example, time delay can be compensated in a 
straightforward fashion by modifying only the feedback gain without 
demanding extra on-line computation. Output feedback can also be accom­
modated with resulting savings in the number of sensors required. Moreover, 
it is shown43

·
44 that predictive control can be easily developed using the 

discrete time approach. 
We shall first develop in this section a discrete-time analogue of the 

continuous version of the classical optimal control algorithm given in 
Chapter 3, into which time delay will be incorporated. This will be followed 
by a derivation of predictive control developed by Rodeller et al..,44 

Consider again structural systems governed by Eq. (3.1 ). The solution of 
z(t) at some time t1 (t 2 ~ td can be written as 

z(t,) = exp[A(t,- td]z(t 1 ) 

+l'' exp[A(t,-t)][Bu(t)+Hf(t)]dt (4.56) 
'• 

Suppose that the state vector z(t) and the external excitationf(t) are sampled 
with period r for on-line calculation. Between two consecutive sampling 
instants kr and (k + 1 )r, the best available information about the excitation 
is f( kr ). Thus, excitation is sampled as zero-order hold and is thus assumed 
to be constant between two., consecutive sampling instants. In real-time 
control, the calculated diScrete-time control signal is converted into a 
zero-order-hold analogue signal, which is a piecewise step function over 
sampling intervals. Therefore, the system can be described in a discrete-time 
fashion by 

z(k+ l)=A'z(k)+B'u(k)+H'f(k), k=O, 1, ... ( 4.57) 

97 



Acthe structurnl tontrol: theory nnd practice 

where 

A'=exp(Ar), B'=A 1(A'-l)B, H'=A 1(A'-l)H 

The discrete-time system is also shift-invariant and stability of the 
uncontrolled system is preserved under sampling. Provided the sampling rate 
is two times larger than the highest controlled modal frequency, the 
discrete-time system given by Eq. ( 4.57) is controllable if and only if the 
corresponding continuous-time system is controllable.45 

Inevitable time delay in control execution makes it necessary to consider 
appropriate modifications to the control algorithm. In the presence of time 
delay mr, Eq. (4.57) becomes 

z(k + l) =A' z(k) + B'u(k- m) + H'f{k) ( 4.58) 

Under classical optimal control criteria, the active control force, u(t), is found 
such that the summation 

1 n-1 

1=:; :L [zT(k)Qz(k)+uT(k-m)Ru(k-m)] (4.59) 
...... ~:=m --- --- --

is minimized, where 11 is defined such thatf{k)=O for k>n, and Q and R 
are weighting matrices as before. By introducing the costate vector l(k), the 
constraint equation ( 4.58) can be incorporated into the performance index as 

J 'f {~zT(k)Qz(k)+~uT(k-m)Ru(k m) 
k""'m ...... 2 

+ A1 (k + 1 )[A'z{k) + B' u(k- m) + H'f(k)~ z(k + l )] } (4.60) 

The solution of the optimization problem described above can be obtained 
using vari'ational procedures as described in Section 3.1. In addition to the 
constraint equation ( 4.58 ), the Euler- Lagrange equations are 

A(k) Qz(k)+ A'T A(k + 1) ( 4.61) 

and 

u(k -m) = - R- 1 B'T l(k + 1), k = m, ... , 11 (4.62) 

Under linear optimal feedback control, the costate vector, A(k), has the form 

J.(k+I) P(k+l)z(k+!) (4.63) 

and the control force vector is linearly related to the state variables as 

u(k-m)= R- 1 B'TP(k+ !)z(k+ I), k m, ... , lt-1 (4.64) 

where P(k) satisfies the discrete-time matrix Riccati equation 

P(k)=Q+A'TP(k+ l)[l+ B'R-'B''P(k+ llr'A' (4.65) 
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with boundary condition 

P(n)=O ( 4.66) 

As discussed in Section 3.1, P(k) can in most cases be approximated by a 
constant matrix P. 

With Eqs (4.61) and (4.63), the state variables over a sampling period are 
related by 

z(k+ I)= Tz(k) (4.67) 

where 

(4.68) 

By repeated application of Eq. ( 4.67), the control force under linear state 
feedback with time delay compensation can be expressed as 

u(k -111) = G(m)z(k -111) ( 4.69) 

where 

( 4. 70) 

As we have seen in Section 4.2, the dynam'ie equation of a continuous-time 
system with time delay becomes a differential-difference one which makes 
the stability problem of feedback control difficult. However, the dynamic 
equation of a discrete-time system remains a difference one in the presence 
of time delay. The stability problem is just the eigenvalue problem of the 
augmented effective system matrix. The effect of time delay without 
compensation can be investigated through the corresponding poles and 
frequency response functions with G = G(O). How well time delay is 
compensated can be studied with G = G(111 ). 

Example 4.7 In this example, the discrete-time control algorithm developed 
above is applied to the study of the structural system discussed in Example 
3.1 with special attention paid to the time delay effect. The poles of the 
controlled system transfer function with uncompensated and compensated 
time delay are listed in Table 4.5 for different amounts of delay. For the 
uncompensated case, it is seen that one of the poles is approaching a unit 
circle of the complex plane as time delay increases. If time delay is further 
increased, the control system will become unstable. The corresponding 
relative displacement frequency response functions are plotted in Fig. 4.24. 
The peak amplitude increases rapidly as a function of time delay and it shifts 
to the right as time delay increases. 

For the compensated case, the pole that is closest to the unit circle in the 
complex plane remains the same for different time delays (Table 4.5), but the 
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Table 4.5 Poles of system transfer function 

delay 
(m) 

0 

2 

3 

4 

Poles of uncompensated 
transfer function 

0.8940±}0.2!30 

0.8841 ±}0.2357 
0.1792 
0.0 

0.8865 ±}0.2722 
0.5!38 

-0.3395 
±3.765 x w· 9 

0.9164 ±}0.3016 
0.6792 

-0.2823 ±}0.397! 
( J.l989 ±)2.077) X !0. 6 

o.n9s x w·• 
0.9508 :t}0.3068 
o:1495 

-0.56!9 
-0.07087 ±}0.5933 

( ±3.599 ±}3.599) X J0' 5 

Poles of compensated 
transfer function 

0.8940 ±}0.2! 30 

0.8940 ±}0.2!30 
0.1595 
0.0 

0.8940 ±}0.2130 
0.4558 

-0.2963 
±}2.5 X 10 ~· 9 

0.8940 ± j0.2! 30 
0.6359 

-0.2382 ±}0.3334 
( J.75Q ±)3,031) X 10' 6 

3.50x 10' 6 

0,8940 :::)0.2130 
0.7348 

-0.06197 ±)0.4774 
-0.4514 
±l.J68 X to·• 
-3,4 X lO-lO X 10-..t 

number of poles increases by two as time delay increases by one time intervaL 
Although the effect of time delay cannot be perfectly compensated. the peak 
amplitude is now less sensitive to time delay and system stability is ensured 
(Fig. 4.24 ). The peak frequency shifts slightly to the left as time delay increases. 

The effect of time delay compensation is illustrated by comparing the 
frequency response functions for various values of m (Fig. 4.24 ), When m = I 
and 2, the delay uncompensated case is even slightly better than the delay 
compensated case as far as peak amplitude is concerned. But when m = 3 
and 4, the contribution of time delay compensation becomes apparent. 

In order to gain more insight into the problem in time domain, results of 
a computer simulation are presented in Figs 4.25-4.29 with the north-south 
component of the 1940 El Centro earthquake acting as the base excitation. 
When no time delay is introduced, the uncontrolled and controlled relative 
displacements are shown in Fig. 4.25. From Fig. 4.29, it is seen that the 
control effect without time delay compensation is even worse than the 
uncontrolled case when m = 4. By comparing Figs 4.26-4.29, it is found that 
the uncompensated case is slightly better than the compensated one form= I 
and 2 as far as peak response is concerned, but it is much worse for m = 4. 
The results match those obtained from the frequency response functions. 
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Um:ompcnsated 

Compensated 

w(Hz) 

Figure 4.24 Relative displacement frequency transfer functions 

4.6.1 P1·edictive Control 

The basic issues in formulating a discrete-time predictive control algorithm 
can be summarized as follows:43•

44 
( l) at each sampling instant kr, 

·a prediction horizon is defined over a finite number of steps ahead and a 
discrete-time model is used to predict the response over this horizon as a 
function of the control sequence; and (2) the control computed at instant kr 
is a part of the control sequence that produces a desired response trajectory 
over the prediction horizon; this trajectory verifies a performance criterion. 

Consider here the predictive horizon [kr, (k + ).)r] over which the response 
can be predicted by a state-space model of the form 

z(k+ jikJ=Az(k+ j-tlk)-c!M(k+i-!lkl ( 4.71) 

where i(k + j- Ilk) is the state vector predicted at instant k for instant 
k + j- !, ti( k + j- 11 k) is the corresponding control sequence, and A. and fJ 
are the discrete-time system and control matrices, respectively. This model is 
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Figure 4.25 Relative displacement (m =0) 

fi 

redefined at each sampling instant kin the form 

z(klk) = z(k)} 
il(klk) = u(k) 

8 10 

( 4.72) 

where z(k) and u(k) are the state vector and the control signal at instant k. 
A general performance criterion to define the desired trajectory and the 

control vector u(k) may consist of minimization of the cost function 

1 ' 
J =- I: [Z(k+ jl k)- z,(k+ jl k)J T Q(j) [z( k + jl k)- z,(k+ jl k)J 

2 j=O 

+! 't' 1l(k + jlk)T R(j)fi(k + jik) 
2 j=O 

( 4.73) 

where the weighting matrices Q(j)(j = 0, 1, ... , !,) and R(j)(j = 0, 1, ... , 
), - 1) are real positive semi-definite and R(j) is also non-singular. z, is a 

reference trajectory which may be redefined at each sampling instant k starting 
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from the current output and evolves towards a target state according to a 
chosen dynamics. 

This cost function can be minimized by following standard optimization 
techniques like those described in Chapter 3. Within the predictive control 
strategy, a more intuitive and direct solution can be found which requires 
less computational effort This solution is based on imposing some specified 
shapes to the control sequence on the prediction horizon, which allows a 
reduction in the number of unknowns in the minimization of the cost function. 

A particular choice of the shape of the control sequence may be that of a 
step or of a pulse. One may co~ider. as an example, the following index: 

J I ' 
1 L: [z(k + jjlc) z,(k + ilk)]r Q(j)[W< + jlk)- z,(k + jlk)] 
- ]"" l 

+~ ri(klklr Ru(klk) (4.74) 
2 
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Figure 4.27 Relative displacement (m = 2) 

In the case of a step-shaped control sequence, the minimization of index 
(4.74) is performed by using the condition 

zl(k + jlk) = zl(klk) = u(k), j = I, ... , ). -I (4.75) 

By using Eqs (4.71 ), ( 4.72) and (4.75), the process output predicted at instant 
k for consecutive instants k + j(j =I, ... , ).) can be expressed as a function 
of the current state vector z(k) and the control vector u(k) as 

t(k + jlk) = T(j)z(k) + S(j)u(k) ( 4.76) 

where T(j) and S(j) are matrices given by 

( 4.77) 
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Figure 4.28 Relative displacement (m = 3) 

The substitution of Eq. (4.76) into Eq. (4.74) gives 

Uncompensated 

Compcn~atcd 

l ;. 
1=;:;}.: [T(j)z(I,)+S(j)u(k)-z,(k+ jikWQU) 

- }""' l 

10 

x[T(j)z(k)+S(j)u(k) z.(k+j)]+~uT(k)Ru(k) (4.78) 

Since u(k) is the only unknown in Eq. (4.78), it can be obtained by imposing 
the following condition on the gradient of J: 

fJJ 
-- 0 
iJu(k) 

The application of condition ( 4.79) to Eq. ( 4.78) results in 

A' z(k) + B' u( k) = p(k) 

( 4.79) 

(4.80) 
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Figure 4.29 Relative displacement (m=4) 

where A' and B' are matrices given by 
• 

A'= j~l S
1 
(j) Q(j) T(j) } 

B' = L sr(f)Q(j)S(j) . 
j=l 

and p(k) is a vector defined by 

!. 

p(k) = 2: S1 (j)Q(j)z,(k+ jlk) 
j=:-t 

( 4.81) 

( 4.82) 

which represents a weighted average of the reference trajectory in [k, k + ).]. 
The control vector is finally reduced from Eq. ( 4.80), resulting in the following 
control law: 

u(k) = - B'- 1 [A' z(k)- !•(k)] ( 4.83) 
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The computation of the control gain matrix n•-t A' is significantly simpler 
than that of the gain matrix in the optimal control law which requires the 
solution of a Riccati equation. A particular choice of weighting matrices Q( j) 
and R which further simplifies the computation of matrices A' and B' is 

R=O 

Q(j)=O, j= I, ... , i.-1 

Q(i.) = Q 

In this case. the control law reduces to 

where now 

11(kl= -B' 1A'z(k)+B'- 1 C'z,(k+i.lk) 

A:= S'(J.)QT(I.) } 

B = S'(,.)QS(J.) 

C' = S1(1.)Q 

(4.84) 

(4.85) 

With this particular choice of matrices Q(j) and R, index ( 4. 74) is reduced to 

J ~ [t(k+i.jk) z,(l<+l.jk)FQ[t(k+l.lk)-z,(k+2ik)] (4.86) 

The minimization of this index implies that the desired output at instant 
k + ), will be as close as possible to the reference trajectory. In the special 
case in which the input and output vectors have the same dimension, the 
minimum value for J is zero. This case means imposing the criterion that 
the desired output at instant k + hhould be equal to a given value z,( k + X(k). 

Example 4.8 To illustrate the main features of predictive control, it is applied 
to a one-degree-of-freedom system subjected to the horizontal ground 
acceleration x,(t) shown in Fig. 4.30 and to a horizontal control force 11(1). 
The equation of motion takes the form 

m:X(I) + c:i:(t) + kx(t) =- mx,(t) + u(t) 

with m 866.5 tons, c = 346 tons/sec and k = 128 x 106 N/m. The matrices 
.4 and Bin Eq. ( 4.71) are defined through the discretization procedure using 
a sampling period r = 0.05 sec. The predictive control law (4.84) is used to 

compute the control force at each sampling instant. The value of the reference 
trajectory z,(l< + j) is obtained by the discrete-time equation 

z,(k+jik) A,z,(k+j-ljkj, j=l, ... ,l ( 4.87) 

where A, is chosen in such a way that Eq. (4.87) represents the free vibration 
of a harmonic oscillator with critical damping and frequency w. The initial 
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Figure 4.30 Seismic ground acceleration in Example 4.8 

condition is z,(klkl = z(k) where z(k) is the state vector measured at sampling 
instant k. 

As illustrated in 4.31, a faster trajectory corresponds to a higher 
frequency. In a limiting case, a null trajectory may be considered, thus 
resulting in adisco.11.tinuous jump fr()m the displacement x,(k)to a null value. 
The weighting matrix Q reduces. in this single-degree-of-freedom case, to a 
positive scalar and it has been fixed as equal to one. Consequently. the 
parameters to be chosen in each application are the value of ;_ defining the 
prediction horizon and that of frequency w of the referenced trajectory. 

Numerical simulations were carried out in which the predictive control 
was used by varying the value of}. for different values of w. In Fig. 4.32, the 
maximum displacement and the control force are shown for these cases. For 
the purpose of comparison. the maximum displacement without control is 
9.7 ern. 

Figure 4.31 Reference displacement trajectories 
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Figure 4.32 Numerical simulation43 (a) maximum displacement; (b) maximum control 
force 

Some important features of predictive control can be observed from 
Fig. 4.32. For a given reference trajectoryt a decrease in parameter). results 
in a decrease in the displacement together with an increase in the control 
force. At the same time, by comparing the graphs for different reference 
trajectories, it can be seen that, for a larger value of w, displacements are 
smaller and control forces are greater. These comments may be interpreted 
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according to the physical significance of parameters i. and w. A smaller value 
of ;, implies a shorter prediction horizon and, according to the strategy of 
predictive control, it determines a desired output closer to the equilibrium 
position. On the other hand, a higher value of w results in a faster reference 
trajectory, which also imposes a desired output closer to equilibrium. 
Consequently, the smaller the value of!. or the greater the value of w is, the 
more demanding the control action is. 

4.7 Reliability 

While reliability is of central importance in all areas of system analysis, design 
and synthesis, it takes on an added dimension of complexity, both 
technologically and psychologically, when an active control system is relied 
upon to ensure safety of a structure. First of all, when active control is only 
used to counter large environmental forces, it is likely that the control system 
wilL be infrequently activated. The reliability of a system operating largely 
in a standby mode and the related problems of maintenance and performance 
qualification become an important issue. Furthermore, active systems rely 
on external power sources which, in turn, rely on all the support utility 
systems. These systems, unfortunately, are most vulnerable at the precise 
moment when they are most needed. The scope of the reliability problem is 
thus considerably enlarged if all possible ramifications are considered. 

Not to be minimized is the psychological side of the reliability problem. 
There may exist a significant psychological barrier on the part of the 
occupants of a structure in accepting the idea of an actively controlled 
structure, leading to perhaps perceived reliability-related concerns. 

The r&liability problem can be addressed by identifying important factors 
influencing the control system performance. Methodologies are well 
developed and one of the approaches is discussed here for a simple case. 9 

For the sake of simplicity, only the effect of time constant, i.e. time required 
for generation of the required full control force, on the reliability of structural 
control is considered. 

Example 4.9 Consider a single-degree-of-freedom structural system des­
cribed by 

i(t) = [- 1~.67 - :.67 }(r) + [~}(r) + [~Jf(t) ( 4.88) 

and suppose the control law is given by 

u(t) =- [5.0 O]z(t) (4.89) 
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With the presence of a random time constant T in the control loop, the 
transfer function of the controller, H,(s), has the form 

g 
HJs)= 1 + Ts (4.90) 

where g is a constant gain which is determined by the control law. Let us 
assume a uniform distribution in the interval [0, 0. I] for T. The effect of this 
time constant on the reliability of structural control can be important since 
the displacement of the controlled system can increase significantly with 
increasing values of the time constant. Hence, the failure probability at a 
given limiting displacement will be increased. 

For the purpose of this study, failure is said to occur when the maximum 
displacement of the structural system exceeds a certain leveL To study the 
time constant effect, 12 sample values of T are chosen from the assumed 
uniform distribution. For each sample, the maximum displacements to 20 
artificial earthquakes are computed. These data points are then plotted on 
an extreme-value probability paper as shown in Fig. 4.33. These results show 
that, while ideal control systems (with zero time constant) are effective in 
reducing the structural response, relatively large values of T may cause 
adverse effect. 

(J.l() 

c:: 0.20 ... 
. :2 0.30 
~ 0.40 ~ 
2 0.50-
.g 0.60 ~ 
0 ll.71J 
-" 
·~ O.HU-

'ii 

B 0.90 ·;: 
·c. 
~ IJ.95 

With control 
time constJnt = (1.099 

With control 
time constJnt = 0.0 

0.99 '-c---~--~'-o---~---.f~--=" 
0.5 1.0 1.5 2.0 2.5 3.0 

Maximum displacement response (in) 

Figure 4.33 Empirical distribution function of maximum displacement 9 
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Assuming that the distribution function for the maximum displacement 
conditional upon the time constant has the extreme-value form 

Fx1Axlt)=exp( -exp[a(l)x+b(l)]}, x;;,O ( 4.91) 

the parameters of the distribution can be estimated based on the data 
generated above, resulting in 

a(t) = -4.87 + 10.911 + 121.21 2 

h(t) = 4.92 + 18.041-227.712 

The probability distribution function of the maximum displacement may be 
found from 

where fr(t) is the probability density function of T. In this case, 

fr(t)= 10, o.;r.;O.l 

= 0, elsewhere 

( 4.92) 

It can be seen from Fig. 4.33 that F,(x) lies to the right of that for the 
structure with an ideal control system. In other words, for a given limiting 
displacement value, the probability of failure is higher in the presence of time 
constant than that for ideally controlled structures. By increasing the 
distribution interval of the time constant or by changing the shape of frU ), 
it is even possible to obtain a higher failure probability for the controlled 
structure than for an uncontrolled structure. 

4.8 Other Considerations 

We have touched upon only a few topics which may become important from 
the point of view of control implementation. In addition, eventual imple­
mentability of an active control system will depend on the solution or 
resolution of a number of key problems dealing with hardware development 
and its cost-effectiveness when compared with other means of structural 
control. Active control requires the generation of large control forces, for 
which a new generation of actuators and control systems will be required. 
Furthermore, appropriate control devices must be developed not only based 
on technological considerations, but also on economic, aesthetic and 
structural integration grounds. Above all, cost-eiTectiveness must be carefully 
assessed for various specific structural applications. 
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5 Control Mechanisms and 
Experimental Studies 

As in all other new technological innovations, experimental verification 
constitutes a crucial element in the maturing process as active structural 
control progresses from conceptualization to actual implementation. 
Experimental studies are particularly important in this area since hardware 
requirements for the fabrication of a feasible active control system for 
structural applications are in many ways unique. As an example, control of 
civil engineering structures requires the ability on the part of the control 
device to generate large control forces with high velocities and fast reaction 
times. Experimentation on various designs of possible control devices is thus 
necessary to assess the implementability of theoretical results in the laboratory 
and in the field. 

In order to perform feasibility studies and to carry out control experiments, 
investigations on active structural control have focused on several control 
mechanisms. In this chapter, some of these control schemes arc introduced 
with emphasis on their performance in the laboratory. 

5.1 Active Tendon Control 

Active control using structural tendons, proposed as early as 1960 by 
Freyssinet, has been one of the most studied mechanisms both on paper and 
in the laboratory. The system generally consists of a set of prestressed tendons 
connected to a structure whose tensions are controlled by electrohydraulic 
servomechanisms. One of the reasons for favouring such a control mechanism 
has to do with the fact that tendons are already existing members of many 
structures. Thus, active tendon control can make use of existing tendons and 
thus minimize extensive additions or modifications of an as-built structure. 
This is attractive, for example, in the case of retrofitting or strengthening an 
existing structure. Another attractive feature is that active tendons can operate 
in the pulsed mode as well as in the continuous-time mode. Thus, active 
tendon control can accommodate both continuous-time and pulse control 
algorithms. 
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Active tendon control has been studied analytically in connection with 
control of slender structures,u tall buildings,'~ to bridges 11~ 13 and offshore 
structures, 14-

16 Early experiments involving the use of tendons were performed 
on a series of small-scale structural models,17 which included a simple 
cantilever beam, a king~ post truss and a free-standing column while control 
devices varied from tendon control with manual operation to tendon control 
with servovalve-controlled actuators. Actuator dynamics and placement of 
sensors and controllers were studied. The influence of time delay was 
demonstrated by varying the phase of the feedback control force. 

More recently, a comprehensive experimental study was designed and 
carried out in order to study the feasibility of active tendon control using a 
series of carefully calibrated structural models. As Fig. 5.1 shows, the model 
structures increased in weight and complexity as the experiments progressed 
from stage 1 to stage 3 so that more control features could be incorporated 
into the experiments. Figure 5.2( a) shows the model structure studied during 
the first stage. It is a three-storey steel frame modelling a shear building by 
the method of mass simulation; the top two floors are rigidly braced to 
simulate a single-degree-of~freedom system." The model is similar in 
geometry, material properties and boundary conditions to a structural model 
extensively tested in several laboratories 19•20 and it is approximately a 1:4 
scaled model of a prototype structure (I :2 scaled model), which has also 
been extensively tested. 

The model was mounted on a shaking table which supplied the external 
load. The control force was transmitted to the structure through two sets of 
diagonal prestressed tendons mounted on the side frames as indicated in 
Fig. 5.2(b). In the experiment, the classical optimal closed~loop contr<>l 
algorithm. discussed in Section 3.1, was employed with time delay compensation 
bused on the procedure developed in Section 4.2. 

Stage 1: 

Stnge 2: 

Stag.;: 3: 

i SDOFModcl 
~OOJbsl 

Figure 5.1 Active tendon control experiments 
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(•) 

(b) 

Figure5.2 Stage 1 modal structure (a) view of the model: (b) tendon arrangement 26 

118 



Control mechanisms and experimental studies 

Results obtained from this series of experiments are reported.2 1. 22 Several 
significant features of these experiments are noteworthy. First, they were · 
carefully designed in order that a realistic structural control situation could 
be investigated. Efforts made towards this goal included making the model 
structure dynamically similar to a real structure, working with a carefully 
calibrated model, using realistic base excitation, and requiring more realistic 
control forces. 

Secondly, these experiments permitted a realistic comparison between 
analytical and experimental results, which made it possible to perform 
extrapolation to real structural behaviour. Furthermore, important practical 
considerations such as time delay, robustness of control algorithms, modelling 
errors and structure-control system interactions could be identified and 
realistically assessed. 

At stage 2, rigid bracings on the top two floors of the model structure 
shown in Fig. 5.2(a) were removed in order to simulate a three-degree-of­
freedom system. This multi-degree-of-freedom model provided opportunities 
for study and verification of a number of control features which were not 
possible in the earlier stage 1 study. These included modal control, time delay 
in the modal space and control and observation spillover compensation. 
Moreover, further verification of simulation procedures could be carried out 
which gave added confidence in using simulation for extrapolating active 
control results to more complex situations. The control algorithms tested in 
this series of experiments included instantaneous optimal control and 
discrete-time control algorithms as well as the classical closed-loop optimal 
control. 23~25 Experimental results compared favourably with analytical 
results obtained under the same conditions, and they showed that the motion 
of all three floors can be effectively controlled using a single actuator when 
control design is carefully carried out by taking into account the above­
mentioned practical considerations. 

As a further step in this direction, a substantially larger and heavier 
six-storey model structure was fabricated for stage 3 of this experimental 
undertaking. As shown in Fig. 5.3, it is also a welded space frame utilizing 
artificial mass simulation. Some of the model's properties are given in 
Table 5.1. 

Multiple tendon control was possible in this case and the following 
arrangements were included in this phase of the experiments: 

A single actuator is placed at the base with diagonal tendons connected 
to a single floor. 

2 A single actuator is placed at the base with tendons connected simultaneously 
to two floors, thus applying proportional control to the structure. 

3 Two actuators are placed at different locations of the structure with two 
sets of tendons acting independently. 
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Figure 5.3 

120 

Table 5.1 Properties of Stage 3 model 
structure 

Height {ft) 

Weight (kips) 

Modal frequency (Hz) 

~fodal damping factor (%) 

18 

42 

2.34 
7.71 

13.28 
19.04 
24.80 
28.91 

1.3 
0.5 
0.7 
u 
0.2 
0.4 
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Figure 5,4 Examples of tendon ammgements 26 

Severa! typical actuator-tendon arrangements are shown in Fig. 5.4. 
Attachment details of the tendon system are similar to those shown in 
Fig. 5.2(b). 

Another added feature at this stage was the testing of a second control 
system, an active mass damper, on the same model structure, thus al!owing 
a performance comparison of these two systems, The active mass damper 
will be discussed in more detail in the next section. 

For the active tendon systems, experimental as wei! as simulation results 
have been obtained based upon the tendon configurations stipulated above. 
Using the N-S component of the El-Centro acceleration record as input, but 
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Figure 5,5 Reduction of maximum response normalized to uncontrolled top displacement 
{a) experimental results; {b) simulation results 
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scaled to 25% of its actual intensity, control effectiveness was demonstrated. 
For example, in terms of reduction of maximum relative displacements, results 
under all actuator-tendon arrangements tended to cluster within a narrow 
range as shown in Fig. 5.5. At the top floor, a reduction of 45% could be 
achieved. Figure 5.5 further shows that there was reasonably good agreement 
between experimental and simulation results. Control force and power 
requirements were also found to be well within practical limits when 
extrapolated to the full-scale situation26 

It is instructive to give more details of the experimental set-up, results 
obtained and their implications with regard to all the experiments described 
above. To conserve space, however, this will be done only for the experiments 
performed at stage 2. 

• 
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Figure 5.6 Configuration of model structure for MDOF system (total weight 6250 lbs) 
(a) front view; (b) side view 
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5.1.1 Stage 2 Expe1·iments 

As described above, the basic experimental set-up used in this study consisted 
of a three-storey 1:4 scale frame with one tendon control device implemented 
to the first floor (Fig. 5.6). The control was supplied by a servocontrolled 
hydraulic actuator through a system of tendons. 

The state variable measurements were made by means of strain gauge 
bridges installed on the columns just below each floor slab. For each set of 
the strain gauge bridges, the signal from one strain gauge bridge was used 
as the signal of measured storeydrift displacement between adjoining storeys, 
while the signal from the second set was further passed through an analogue 
differentiator to yield measured storeydrift velocity. The base acceleration 
and the absolute acceleration of each floor were directly measured by the 
use of accelerometers installed at the base of the structure and on the floor 
slabs. The transducers and instrumentation system are shown in Fig. 5.7. A 

o Accelerometer 

H Strain gauge 

=-LVDT 

o Load cell 

Figure 5.7 Transducers used in instrumentation system 
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block diagram showing the measurement system and the control procedure 
is given in Fig. 5.8. 

The model was shaken by means of a shaking table with banded white 
noise and an earthquake accelerogram. Under white noise excitation, modal 
properties were identified from the frequency response functions for system 
identification. Moreover, it provided a preliminary examination of the system 
performance including structural. sensor and controller dynamics for more 
realistic inputs that were to follow. The N-S component of the EI-Centro 
acceleration record \Vas used in the experiment; however, it was scaled to 
25% of its actual intensity to prevent inelastic deformations in the model 
structure during uncontrolled vibrations. The reproduced time history and 
the frequency distribution of the scaled down El Centro excitation are shown 
in Fig. 5.9. 

The classical closed-loop optimal control with time delay compensation 
was first studied with all three modes under control. After carrying out the 
variational procedure, it was found that there was only a slight increase in 
natural frequencies (stiffness) but damping factors were increased from 1.62 %, 
0.39% and 0.36% to 12.77%, 12,27% and 5.45% (Tables 5,2 and 5.3). 

Acti·ve 
tendons"",.....- -+--"' 

Servo valv~ 
controlkr 

Figure 5.8 Block diagram of control system 
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Figure 5.9 Scaled-down El Centro excitation 

The spillover was investigated by selecting the first fundamental mode as 
the controlled critical mode. The critical modal quantities were reconstructed 
from the measurements at all floors. The effect of spillover to the residual 
modes was studied. When fewer output measurements were available, the 
estimated critical modal quantities were actually affected by the observation 
spillover to the residual modes, Even worse, time delay was compensated as 
if the outputs were contributed by the critical modes alone. The combined 
effect of observation spillover and time delay made the system unstable. 

When the first fundamental mode was the only controlled critical mode. 
the modal quantities were recovered from measurements at all three floors. 
In the presence of modelling errors (mode shapes were not exactly orthogonal) 
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Table 5.2 Parameters of the model structure 

Mass matrix M (lb-sec 1 fin) 

Stiffness matrix K (lbjin) 

Damping matrix C (lb-secjin) 

Modal frequency w (Hz) 

Modal damping factor' (%) 

Tendon stiffness k, (lbjin) 

Tendon inclination !Y.. ('") 

Modal matrix <I» 

[ 15649 -9370 

-9 370 17250 

2107 -9274 

[ 2.185 -0.327 

-0.327 2.608 

0.352 -0.015 

[ 224] 6.83 
11.53 

[ 162] 0.39 
0.36 

2124 

36 

[:0262 
0.743 

0.568 0.373 

0.780 -0.555 

2107 J 
-9274 

7612 

0.35:] -0.015 

2.497 

0583] 
-0.728 

0.360 

and measurement noise, the first modal quantities could not be reconstructed 
perfectly and a small contribution of the residual modes to the feedback 
signal was unavoidable. Because of small stability margins (small damping 
factors) for the second and third modes, the model structure was very sensitive 
to these errors. To circumvent this problem, the command control signal 
was passed through a low-pass filter before driving the actuator in order to 
eliminate the effect of the residual modes. However, no perfect filter exists; 
the higher the order of the filter, the sharper is the cutoff frequency, but the 
longer is the time delay. As a compromise, a third-order Butterworth filter 
with a cutoff frequency of 5 Hz was selected, but time delay was increased 
from 35 msec to 88 msec. 

Acceleration frequency response functions as shown in Figs 5.10-5.12 were 
constructed by using banded white noise excitation. For the three controlled 
modes, significant damping effect (large active damping) was reftected from 
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Table 5.3 Parameters of control system 

Parameters 

Response weighting matrix Q[tJ 

Control weighting matrix Rrz1 

Modal frequency w (Hz) 

Modal damping factors (%) 

Time delay rx, rx (msec) 

Feedback gain matrix GT 

[ 1] K is structural stiffness matrix 
[2] kc is tendon stiffness 

Three 
controlled 
modes 

[ 2.28] 6.94 
11.56 

[ 12.77] 12.27 
5.45 

35 

0.1857 
-0.1571 

0.0641 
0.0171 
0.0021 
0.0055 

One 
controlled 
mode 

tf-!-ij 
20 kc 

[ 2.28] 6.83 
11.53 

[ 162] 0.39 
0.36 

88 

0.0056 
0.0123 
0.0157 
0.0027 
0.0059 
0.0076 

a decrease in peak magnitudes, but peak frequencies shifted to the right due 
to small active stiffness. It was shown that all three modes were under control 
with one controller in the presence of time delay. For the case of one controlled 
mode, the peak of the first mode was decreased but the peaks of the second 
and third modes were increased. Due to the effect of control spillover, the 
performance of the controlled system was not better than that of the 
uncontrolled one. 

Under El Centro excitation, significant reduction in acceleration was 
achieved with three controlled modes. In addition to the reduction in 
peak magnitudes, the effect of active damping was clearly evident due to 
control execution but the exdtation frequency was distributed over all three 
modes. Due to control spillover, the control effect was greatly degraded 
(Figs 5.13-5.15). 

The instantaneous optimal control algorithms were also studied with all 
three modes under control using the seismic excitation. With carefully chosen 
weighting matrices, similar control effects could also be achieved. 
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Figure 5.10 First-floor acceleration frequency response functions 
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Figure 5.11 Second-floor accele_ration frequency response functions 
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Figure 5.12 Third~floor acceleration frequency response functions 
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Figure 5.13 First~floor acceleratiOns under El Centro excitation 
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Figure 5.14 Second~floor accelerations under El Centro excitation 
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Figure 5.15 Third-floor acceler<!tions under El Centro excitation 
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Good agreement was achieved between analytical and experimental results. 
The discrepancies were larger in the uncontrolled test due to the servocontrolled 
system. The actuator was kept stationary by this system during uncontrolled 
tests. However, slight actuator movement was induced by the structural 
motion and the actuator movement was continuously corrected to reduce 
the error to zero. This interaction between the controller and the structure 
made the damping force a complicated function of the structural response. 
For the case of El Centro excitation, some discrepancies resulted from the 
fact that the equivalent viscous damping was different from the calibrated 
one measured in the banded white noise tests. However, [or the controlled 
cases, most of the damping was contributed by the feedback force. Therefore, 
the influence or actuator-structure interaction was negligible and excellent 
agreement was observed. With one controlled mode, the control force was 
of a lower magnitude and of a lower frequency, leading to a better performance 
of the actuator and hence excellent agreement between experimental and 
analytical results. 

The results presented above are encouraging in that they show simple 
control systems can- be effective for response control of complex structures. 
In addition, extrapolations show that tendon control can be feasible for 
full-scale structural applications in terms of force and power requirements. 

2.5 m 

2.5 m 

f.---~lO~m~---1 
Elevation 

Figure 5.16 Full¥scale test structure (courtesy of Taken aka Corporation, Tokyo, Japan) 
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5.1.2 Full-scale Testi11g 

In closing, it is noted that plans are underway for full-scale testing and 
demonstration of an active tendon system. A sixMstorey, 600Mton symmetric 
building as shown in Fig. 5.16 has been erected in Tokyo, Japan. In fact, two 
control systems will be tested on the structure: a biaxial active mass damper 
system and a biaxial active tendon system. 

As shown in Figs 5.17 and 5.18, the active tendon system consists of four 
actuators attached to bracings on the first floor. It is designed to provide 
motion control in either of the two directions. 

The planned research tasks upon completion of the installation are: 

Calibration of the control systems by using one of the systems as motion 
inducer and the other as motion controller. Even without actual seismic 

Figure 5.17 Active tendon configuration (isometric view of test structure) 
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Figure 5.18 Plane view of active tendon system 

motion, much of the performance characteristics can be assessed using 
this calibration method_ During the calibration period, several feasible 
control algorithms will be evaluated and control parameters refined on 
the basis of knowledge gained in the laboratory. 

2 One of the systems will be deactivated for a period of six months in order 
to allow the assessment of the other system under actual ground excitation. 
Thi; activation-deactivation phase will be rotated between the two 
control systems. A total five-year observation period is planned. 

5.2 Active Mass Damper and Active Mass Driver 

The study of this control mechanism was in part motivated by the fact that 
tuned mass dampers for motion control of tall buildings, operating in a 
passive mode, are already in existence.27

-
29 Passive tuned mass dampers are 

in general tuned to the first fundamental frequency of the structure, thus only 
effective for building control when the first mode is the dominant vibrational 
mode. This may not be the case, however, when a structure is subjected to, 
for example, earthquake-type loads when vibrational energy is spread over 
a wider frequency band. It is thus natural to ask what additional benefits 
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can be derived when they function according to active control principles. 
Indeed, a series of feasibility studies of active and semi-active mass dampers 
has been made along these Jines00

-
33 and they show, as expected, enhanced 

effectiveness for tall buildings under either strong earthquakes or severe wind 
loads. 

Recently, experimental studies of active tuned mass damper systems have 
been carried out in the laboratory using scaled-down building models. 3•-

36 

In the work by Kuroiwa and Aizawa34 an active mass damper (AMD) was 
placed on top of a four-storey model frame as shown in Fig. 5.19. The moving 
mass was a variable, ranging from approximately 1% to 2% of the structural 
weight. The model structure, 1m (width) x 1m (depth) x 2m (height) and 
weighing 970 kg, was placed on a shaking table which provided simulated 
earthquake-type base motion. The overall experimental set-up is shown in 
Fig. 5.20 and a schematic diagram of the AMD is shown in Fig. 5.21. Following 
the closed-loop control algorithm and using three representative earthquake 
inputs, experimental results show that the maximum relative displacement 
reduction at the top floor could be as high as 50%; however, only 5-7% 
reduction was possible for the mmdmum absolute acceleration of the lop floor. 

The control strategy used in Kobori et a/35 •36 is based on expressing the 
acceleration vector .i'( t) in the incremental form 

where 

E(t) = i1tl + 0.5Ct + 0.25Kt 2 

gdt) = ~~ao(t) 

( 5.1) 

g 2 (t- 81) = [M- E(t)].i'(t- ~c)-( C + 0.5Kt)i(t- ~r)- Kx(t- M) 

where .~f, C and K are, respectively, the mass, damping and stiffness matrices. 
Considering x(l) as a function of a 'transfer function', E- 1(r), and an 
'instantaneous force', g 1 (r) + g 2(t- ~t), the control objective using a moving 
mass is to minimize .i(t) by adjusting the transfer function and by reducing 
the instantaneous force. The moving mass, termed an 'active mass driver', 
is then designed to generate the necessary counter force in order to reduce 
the resonant force. In the experimental study, the active mass driver was 
placed on a 0.5 m (width) x 3m (height) three-storey steel frame as shown 
in Fig. 5.22. The structure was mounted on a shaking table while an 
electro-magnetic force generator was adopted as the active controller. 
Experimental results indicated that a two-thirds reduction of the maximum 
acceleration and displacement could be achieved. 

At a much larger scale, an active mass damper system was tested in 
conjunction with an active tendon system as described in Section 5.1. Using 
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(a) 

(b) 

Figure 5.19 The four-storey model frame with AMD (courtesy of Takenaka Corporation, 
Tokyo, Japan) (a) model structure; (b) close-up view of AMD 
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F--==[Q![}-~ 
~ >\ 

Exciting Table 

Figure 5.20 Experimental set~up 

the same six-storey 42 000-lb structure as shown in Fig. 5.3, the AMD system 
was placed on top of the structure as shown in Fig. 5.23, which could be 
operated under different conditions by changing its added mass, its stiffness 
and the state of the regulator. A total of 12 cases were performed in the 
experiment. 

Extensive experimental results were obtained under various simulated 
earthquake excitations. A summary of results obtained under the 25%­
intensity El Centro excitation is given below: 

Percent Reduction of Maximum Top~ floor Relative Displacement: 
Percent Reduction of Maximum Top-floor Acceleration: 
Percent Reduction or Maximum Base Shear: 
Maximum Control Force Required (kips): 
Maximum Mass Peak-to-Peak Stroke (in): 
Maximum Control Power Required (Kw): 

43.3-57.2 
5.5-30.7 

31.4-44.4 
0.68-2.56 
3.23- iO.! 
0.82-5.73 
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(•) 

(b) 

Figure 5.22 The three-storey model frame with active mass driver (courtesy of Kajima 
Corporation, Tokyo, Japan) (a) model structure; (b) close-up view of active 
mass driver 
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(b) 

Figure 5.23 The six-storey model structure with AM D (a) model structure; (b) close-up 
view of AMD 
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5.2.1 A.A--ID vs. ActiL,e Tendon System 

One of the advantages of testing two different active systems using the same 
model structure is that their performance characteristics can be realistically 
compared. Extensive simulation and experimental results obtained based on 
the six-storey, 42 000-lb model structure show that both AMD and tendon 
systems display similar control effectiveness in terms of reduction in maximum 
top-floor relative displacement, in maximum top-floor absolute acceleration, 
and in maximum base shear. They also have similar control requirements 
such as maximum control force and maximum power. Other information 
which may shed more light on their relative merits but is not considered here 
includes cost, space utilization, maintenance and other practical observations. 

It should be noted that a number of analytical comparative studies have 
been carried out concerning relative merits associated with active tuned mass 
dampers and active tendons for specific applications.-~.· 5 · 7 · 8 • 37 • 38 As indicated 
in Yang,8 one of the inherent limitations associated with an active mass 
damper is that, since only one is likely to be used for economical reasons, it 
provides only a single point of control action and it usually acts at the top 
of a structure. Simulation results show that, under practical constraints, its 
effectiveness is mostly felt at the first fundamental frequency but less so at 
higher frequencies. A comparative study was made between an active tendon 
system and an active mass damper using the eight-storey structure described 
in Example 3.5 under an earthquake-like ground excitation. Figure 5.24 shows 
their respective spectral densities of top-floor relative displacement. It is seen 
that, while the active tendon system is capable of suppressing peak amplitudes 
at several model frequencies, the effect of the active mass damper is only felt 
at the first frequency. 

-- No control 
------- Active tendon system 
--- Active mass damper 

·. 
·. 

0 2 -l- 6 8 10 12 14 10 18 :20 22 2-l- 26 28 30 

Frequency (rad/scc) 

Figure 5.24 Spectral densities of top-floor relative displacement 8 

143 



t 

(n) 

Figure 5.25 Full-scale AMD (courtesy of Tokaneka Corporation, Tokyo, Japan} 
In structure 

N 

r 
y 

[ 

- :,:~ 

CC_ITJ] 

lOrn 

6-Floor 

ib) 

view of AMD on top of structure; (b) AMD placement 

(1: 
~· . 
I 
~ 

1 
f 
.;! 

!. 

l. 
0 



Control mcchunisms and experimental studies 

5.2.2 Fuff-sca{e Testi:1g and Implementation 

As described in Section 5.1.2, plans for testing a full-scale AMD system 
together with an active tendon system are underway. The AMD system, 
shown in Fig. 5.25, has been placed at the top of the dedicated test structure 
depicted in Fig. 5.16. The biaxial AMD system is of the pendulum type with 
a fail-safe regulator. It weighs 6 tons, approximately 1/100 of the structural 
weight, and has a maximum stroke of± 1.0 m with a maximum control force 
of 10 tons. 

Additionally, a full-scale active mass driver system has been installed on 
the top floor of the eleven-storey Kyobashi Seiwa building in Tokyo, Japan 
(Fig. 5.26). The active mass driver, shown in Fig. 5.27, is a pendulum-type 
dual-mass system capable of controlling torsional as well as lateral vibration 
of the slender structure due to strong wind or moderate earthquakes. The 

(o) ( h~ 

/ 

Observation 
sys1cm 

Figure 5.26 Kyobashi Seiwa Building with AMD (courtesy of Kajima Corporation, 
Tokyo, Japan) (a) Kyobashi Seiwa Building; (b) AMD system 
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Figure 5.2l View of active mass driver in Kyobashi Seiwa building (courtesy of Kajima 
Corporation, Tokyo, Japan) 

first mass, weighing approximately four tons, is used for lateral motion control 
and the second mass, weighing approximately one ton, is used for torsional 
control. The system represents one of the first active control systems installed 
in an actual structure in the world. 

5.3 Pulse Generators 

Pulse control, discussed in Section 3.5, has also been a subject of experimental 
study in the laboratory. The experimental work was based on a simple control 
strategy described below. 39

•
40 
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Consider a vibrating structural system. Assuming that relative motions at 
several locations within the structure are to be limited in magnitude, a simple 
control procedure is to have pulse generators positioned at these locations; 
a control pulse is applied at a given location whenever the relative velocity 
at this location reaches a maximum, but in the direction which opposes this 
velocity. Thus, an actuator is triggered each time a zero-crossing of the relative 
displacement at a point of interest is detected. The magnitude of the control 
pulse at location I, p,(t). is given by 

=0, 

t\), < t < tn. + llt 1 

otherwise 
( 5.2) 

where c; is a pulse scaling coefficient at location i, sgn( ) indicates the 
algebraic sign of its argument1 I\ is the relative velocity at location i, t0. is the 
zero-crossing time at locution i. and !J.t 1 is the pulse width at location' i. The 
exponent ll; in Eq. (5.2) is to be chosen appropriately. When n,=O, the 
control force acts as a Coulomb friction force with magnitude ± C;. The"'= I 
case corresponds to active viscous damping with coefficient c1 and, when 
11; > 1, nonlinear velocity damping is introduced. 

This control algorithm was tested in the laboratory using a six-storey frame 
weighing approximately 159 kg and measuring six feet in height:'"'"' 
Figure 5.28 shows the model structure together with the test apparatus which 
includes vibration exciter, instrumentation, pneumatic power supply, and the 
minicomputer used for digital control. As shown in Fig. 5.29, the electrodynamic 
exciter, sensor, and pneumatic actuators were located at the top of the 
structure. The actuators consisted of two solenoids which metered the flow 
of compressed air at 125 psi through eight nozzles, thus generating the 
required control pulses. A sample measurement from a thruster is shown in 
Fig. 5.30, showing delay time elapsed between the control signal and the 
actuator response and inevitable deviations from an ideal rectangular pulse 
shape. 

Figure 5.31 shows sample measurements of the control pulse train and 
top-floor relative displacement when the structure was subjected to a 
harmonic excitation at a frequency close to the fundamental frequency. It is 
seen that, within ten periods of onset of control, the response is reduced to 
approximately 15% of its uncontrolled value. The control pulse magnitude 
used in the experiment correspond to that given in Eq. (5.2) with n1=0. 
Thus, it is not surprising to see that the oscillation decay at control initiation 
follows that associated with Coulomb friction, i.e. straight-line decay envelope. 
On the other hand, at the end of control duration, the envelope of free 
vibration approximates an exponential decay curve, which corresponds to 
the well-known viscously damped behaviour. 
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(u) 

Figure 5.28 

(b) 

LEG EN De 
I- FRAME; 2- EXCITER; 3- RHS THRUSTER; 4" LHS THRUSTER; 
5- COMPRESSED GAS; 6- ACCELEROMETER; 7- DISPLACEMENT 
FOLLOWER; 8- MICROCOMPUTER; 9- VIDEO TERMINAL; 10- PNEUMATIC 
SUPPLY LINE; II -NOZZLE 

Model structure and test apparatus'10 (a) model structure with test apparatus; (b) close~ up view of pneumatic actuators 40 
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Figure 5.29 Schematic diagram of control configuration41 (a) control configuration; 
(b) pneumatic active control 

2.0 

Control signal 

Thruster response 

Figure 5.30 Experimental control pulse41 
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Figure 5.31 Experimental results on control pulse and top-floor relative displacement'11 

Discussions on some of the recently developed cold-gas generators having 
potential structural control applications can be found in 4 2.43 In addition, 
pulse control experiments involving hydraulic and electromagnetic actuators 
have also been conducted in the laboratory.'H.42 

Finally, suggestion has been made to use semi-active auxiliary mass 
dampars as an alternate pulse-control mechanism.44 Hence, instead of using 
cold-air jets or other mass ejection techniques to provide directly the required 
control forces, control objectives are accomplished through internal momentum 
transfer between the structure and the auxiliary masses. An on-line control 
procedure is used to optimize the parameters of the auxiliary mass dampers 
located about the structure. 

5.4 Aerodynamic Appendages 

The use of aerodynamic appendages as active control devices to reduce 
wind-induced motion of tall buildings was first proposed by Klein et a/45 

and by Klein and Salhi46 Its main attractive feature is that the control 
designer is able to exploit the energy in the wind to control the structure, 
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which is being excited by the same wind. Thus, it eliminates the need for an 
external energy supply to produce the necessary control force; the only power 
required is that needed to operate the appendage positioning mechanism. 

Additional analytical studies of aerodynamic appendages using optimal 
control algorithms were carried out'P..+s as well as a wind-tunnel experimenta] 
study.'" The experiment was conducted using an elastic model at a geometric 
scale of roughly l :400. This is schematically presented in Fig. 5.32(a). Its 
stiffness was provided by a steel plate fixed at the structure core, as shown, 
and its length was adjusted so that under planned wind conditions in the 
wind tunnel used in the experiment, the first mode was dominant and was 
observed to be approximately 5 Hz. 

The full-scale (prototype) building frequency corresponding to 5 Hz in the 
model depends on the scaling of frequency, or time, between model and 
prototype. If the ground roughness and building are scaled in the same ratio, 
then a characteristic frequency of the wind eddies can be written in terms of, 
say, the geostrophic wind speed and a characteristic length. Thus, 

( 5.3) 

in which w =frequency; ii =mean wind velocity (say geostrophic); and 
J. characteristic length. The subscripts p and m denote, respectively, 
prototype and model. The model data were taken with tim= 2.0 mfsec. With 
the scale at I :400, the building frequency corresponding to, say, iiP 
160 kmph would be 0.26 Hz. Thus, this is a realistic representation of the 
phenomenon. 

For simplicity, the control algorithm used in the experiment is a suboptimal 
one,45.46 i.e, 

u(l)= I, 

=0. 

v(t)<;O 

F(r) > o 
(5.4) 

In other words, it is on-off control with the appendage fully extended when 
the velocity at the top of the model structure is opposite to the wind, and 
fully retracted otherwise. 

The aerodynamic appendage consisted of a metal plate. It was controlled 
by means of a 24 VDC solenoid, activated by the sign of structural velocity 
as sensed by a linear differential transformer, followed by appropriate carrier 
and signal amplifications and a dilferentiator. The appendage area normal 
to the wind direction was roughly 2% of the structural frontal area when 
fully extended. 

A boundary layer wind tunnel was used to generate the necessary wind 
forces. An inside view, looking upstream and with the model in place, is 
shown in Fig. 5.32(b ). 
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Figure 5.32 Model structure and test apparatus 49 (a) schematic diagram of model 
structure; (b) inside-tunnel view of model structure 
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r lOsee 4 
I 

Figure 5.33 Typical displacement record (arbitrary scale) (a) without control; (a) with 
control 49 

The active control experiment was performed under various wind conditions. 
Some typical structural response characteristics are shown in Figs 5.33 and 
5.34. Figure 5.33 gives the structural displacement without and with control; 
the corresponding velocities are shown in Fig. 5.34. Both show a peak 
amplitude reduction of approximately 50%. 

More recent publications related to appendages include a comparative 
study of appendages, active mass dampers and active tendons for wind-excited 
tall building control," a more detailed design study of optimal appendage 
mechanisms on the basis of force or power needed for their operation, 50 and 
a discussion on their aesthetic aspects when appendages are deployed in an 
urban setting. 51 

f<- lO sec ----ej 

f-- 10 sec ---1 

Figure 5.34 Typical velocity record (arbitrary scale) (a) without control; (b) with control 
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(a) (b) 

Figure 5.35 Examples of appendage design (a) venetian blind-type appendage; (b) 
symmetrically placed appendages 

Two examples of appendage design are shown in Fig. 5.35. Figure 5.35(a) 
shows a venetian blind-type appendage whose elements can be operated 
independently or in a synchronized fashion by means of an electro-hydraulic 
control system. A system of appendages situated on opposite sides of a 
structl(re is shown in Fig. 5.35(b ); they can be used for translational-motion 
control when both sides move in phase and for rotational-motion control 
when they move out-of-phase. 

It should be mentioned that aerodynamic appendages can also serve useful 
secondary functions. For example, those in the form of venetian blinds as 
depicted in Fig. 5.35{a) can be used as solar panels for power generation. 
The system shown in Fig. 5.35(b) is ideally suited for use as sun screens with 
great effectiveness since their orientation can be controlled as a function of 
time. 

5.5 Other Control Mechanisms 

Discussed in the preceding sections are some of the most studied control 
mechanisms for structural applications. Many others have been proposed. 
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These include the use of a gyroscope for reducing wind-induced vibration of 
a suspension bridge,52 the development of a variable stiffness controller 
capable of steering the natural frequencies of a structure away from resonant 
frequencies, 36 and the use of actively controlled air chambers for controlling 
wave-induced motion of an offshore platform. 53 In Sir! in et a/53 an 
open-bottom structural model floating in a water-filled tank was used to 
simulate the response of a floating platform under wave loads. The air pressure 
in the air chamber trapped between the water and the platform was actively 
servocontrolled to reduce the structural response under simple harmonic 
waves. Experiments gave encouraging results in correcting heave motion of 
the platform. 

Finally, the combined use of two active control systems and hybrid 
active-passive systems have also been suggested for some specific structural 
applications.4 ' 54- 56 
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6 Optimization of Actively 
Controlled Structures 

Much of the discussion presented in the preceding chapters has been 
concerned with structures equipped with active control devices. While not 
explicitly stated. active structural control has been addressed on the premise 
that, given a conventionally designed structure, it is supplemented by an 
active control device which is activated whenever necessary in order to 
enhance structural safety and serviceability under extraordinary loads. Thus, 
the structure and the active control system are individually designed and 
optimized; 

To extend this concept further, it is of practical interest to view an actively 
controlled structure as an integrated whole and consider its related 
optimization problems. This consideration has led to the concept of 'active 
structures', 1 and this topic is briefly explored in this chapter. 

We shall define an active structure as one consisting of two types of load 
resisting members: the traditional static (or passive) members that are 
designed to support basic design loads, and the dynamic (or active) members 
whose function is to augment the structure's capability in resisting extra­
ordinary dynamic loads. Their integration is done in an optimal fashion and 
produces a structure that is adaptive to changing environmental loads and 
usages. As one can see, an active structure is conceptually and physically 
different from a structure that is actively controlled. Rather than 
individualized optimization of structure and control systems as in the case 
of an actively controlled structure, an active structure is one whose active 
and passive components are integrated and simultaneously optimized to 
produce a new strain of structural system. This important difference makes 
the concept of active structures exciting and potentially revolutionary. 

The earliest germs of such an idea appear to be contained in Kirseh 2 and 
Kirsch and Moses.3 In this study, a continuous beam is actively controlled 
by allowing the redundant supports to settle vertically. Actually, there is a 
one-to-one correspondence between redundants and controllers. The objec­
tive is either reduction in magnitude of the internal forces or minimization 
of the cross-sectional area under a given loading condition. A flexibility 
method of analysis that satisfies compatibility and equilibrium is used. Explicit 
stress constraints are satisfied, and an objective function that penalizes 
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cross-sectional dimensions, internal forces, and redundants is minimized. The 
basic limitation of their work is that it is a static approach. 

Some aspects of simultaneous optimization of structure and control system 
have been considered in the design of space structures. In the work of Haftka 
et a/,,·5 the central thesis is that small changes in the configuration of a 
structure result in nontrivial changes in the control force requirements. The 
focus of their work, however, is on the sensitivity of control requirements 
for spacecraft to inadvertent variations in the spacecraft's dimensions. 
Nevertheless, they convincingly show that the magnitude of the control forces 
in a system that has been optimized can be substantially reduced either by 
minor changes in the thickness of key structural components or by adding 
small lumped masses to key locations. 

The objective of this chapter is to lay down comprehensively the 
foundations of active structures so that this novel subject can be rigorously 
explored.L 7 We begin by using two examples to demonstrate that the theory 
behind active structures is sound and that it can lead to truly optimal 
structures. 

Example 6.1 Can substantial changes in structural configuration be realized 
by allowing some members of a structure to become active? To answer this 
question, consider first the design of a simple ste~l frame supporting a static 
load and subject to a horizontal base acceleration .t,(l), as shown in 
Fig. 6.1 (a). The frame consists of four identical columns with two sets of 
pretensioned diagonal tendons; it has dimensions L = 48.0 in, h = 40.0 in, and 
its mass m = 16.70 slugs. 

Case A passive structure: Consider first the case of determining k", the 
stiffness in the columns, necessary to limit the relative displacement x( t) to 
Xnm = i1.06 in when 

x,( l) = 0.2gsin5rrt (6.1) 

The equation of motion is 

m.\'( t) + d(t) 7 k,x(t) = -mx,( t) (6.2) 

By taking a damping coefficient that corresponds to a damping factor of 
1.24%, it is easy to show that the design value fork, is equal to 32 667lbjin. 
It is noted that the required stiffness k., simply for supporting the static load, is 

k, = 0.0006k, ( 6.3) 

Case B acrive structure: Consider now possible reduction in kP by making 
the diagonal tendons active members while maintaining the original 
performance level. Both mass and damping remain unchanged. Active 
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(ll) 

I I 

Figure 6.1 Passive and active steel frames under ground motions (a} passive; (b) active 1 

tendons imply that forces in the tendons can be generated and controlled by 
means of an external energy supply such as an electrohydraulic actuator. 
A possible structure configuration is shown in Fig. 6.l(b). 

For the active structure, the equation of motion becomes 

mx(l) + d(t) + k,x(t) =-m.i'.(t) 4u(t)cosa (6.4) 

where k, is achievable stiffness in the columns of the active structure; and 
u(t) is the control force in each tendon, which can be determined by using 
one of the control algorithms discussed in Chapter 3. For example, employing 
classical open-loop optimal control, Fig. 6.2 shows the value ofk, as a function 
of achievable maximum 1 x( t )I and .of corresponding required maximum I u( r )1. 
These results show that, without exceeding X,;m, the column stiffness can be 
reduced to an arbitrarily low level provided that the required control force 
is realizable. In particular, Fig. 6.2 shows that it is possible to fix 1<, at a 
value equal to 1<, for the passive case, while the dynamic requirements are 
satisfied entirely through activation of the tendons. In this particular case, 
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Figure 6.2 Normalized maximum displacement and maximum control force versus 
normalized structural stiffness 1 

the maximum lu(t)l is 398lb, and its time-dependent behaviour is shown in 
Fig. 6.3. 

Example 6.2 An analysis of active control of cable-stayed bridges is given 
in Yang and Giannopoulos, 8

•
9 Some of the results presented in this study 

can be discussed in the context of active structures. 

Case A - passive structure: As a more realistic example, consider the Sitka 
Harbor Bridge at Sitka, Alaska as the base passive structure. Design 
information on this suspension bridge"· 9 gives the fundamental natural 
frequency in flexure w. = 5.083 radfsec, the fundamental natural frequency 
in rotation w, = 8.589 rad/sec, and the critical wind speed 11, = 155.5 mph. 
For s;mplidty, the critical wind speed is considered here as the performance 
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Figure 6,3 Control force in Example 6.1 1 
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criterion, Wind speeds higher than the critical will cause aerodynamic 
instability in the bridge, 

Case B- active stmcture: It is of interest to ask whether the value of iir can 
be maintained or surpassed using a less conservative design when the existing 
suspension cables operate in an active mode. Specifically, a reduction in 
stiffness is considered in terms of a reduction in both the flexural and torsional 
frequencies, The reduced frequencies are now w, = 3.365 rad/sec and 
w, 5,686 radjsec. It is mentioned that the ratio w,fwr remains the same as 
before, i.e, w,{ w, = 0.60, 

As a possible configuration for active tendons, the bridge cables can be 
connected to electrohydraulic servomechanisms located at the points of 
anchorage, One transducer is installed at each anchorage point to sense the 
motion at that point The sensed motion, in the form of electric voltage, is 
used to regulate the motion of a hydraulic ram, thus generating the required 
control force in each cable, For this configuration, the ram displacement s(t) 
is related to the feedback voltage v(t) by 

R 1 v(t) 
.i(t) + R1 s(t)=-R- (6.5) 

where R 1 is the loop gain; and R is the feedback gain of the servomechanisms. 
The feedback voltage v(t) is in turn proportional to the sensed motion. 
Suppose that the sensed motion is the flexure velocity 1v(t) at the anchorage. 
We then have 

v(t) = p1v(t) 

Let the two nondimensional control parameters be defined by 

R, 
e=-

w, 

and 

pwf 
T=--

R 

(6,6) 

The critical wind speed ii, for the active structure thus becomes a function 
of e and r; the results are shown in Fig. 6.4. The case of e = 0 corresponds 
to the passive structure. It is <ib~erved that the value of tlr increases as e and 
1: increase, and this increase can be rather dramatic when certain values of 
e and r are chosen, Indeed, the critical wind speed for the active structure 
can be raised to any desirable level provided that the required control forces 
are realizable, 
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Figure 6.4 Critical wind velodty for active cable-stayed bridge 1 

6.1 Basic Equations 

The basic state-space equation governing the optimal design of an active 
structure is again described by Eqs (3.1 ). However, it is now written in the form 

i(t)= A(~)z(t) + B(~)u(t) + HWJlt), z(O) = z, (6.7) 

in which the structural parameters to be simultaneously optimized. denoted 
by~. are explicitly shown. In the above, z(t) is defined as before by 

[
x( t)J 

z(t) = .t(t) 

and [see Eqs (3.3) and (3.4)] 

A(~) [ 
B(.;} = [w '(~)D(~) J 
H(.;) = [ M-'(~JEWJ 

(6.8) 

( 6.9) 

(6.10) 

( 6.11) 

The basic problem of active structural design is to determine ~ and u(r) 
such that an appropriate objective functional is minimized. Follov.ing 
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classical quadratic performance criteria, for example, the performance index 
function J can be written in the form 

J(z, i;, u) [' [zTQz+urRu+ W(-;)]dr 
.u 

(6.12) 

where W( ~)represents a non-negative cost function depending on~ but not 
on t in general. The matrices Q and R are the usual weighting matrices with 
appropriate dimensions. The structural parameter vector ~ satisfies 

{ 6.13) 

in which i;, represents values of the structural parameters corresponding to 
the base passive structure. 

Extremization of the performance index function J given by Eq. {6.12) 
subject to the constraining Eqs (6.7) and (6.13) can be accomplished through 
the use of variational calculus. First, it will be noticed that the inequality 
constraints are simple enough to be handled explicitly. The differential 
equation constraint is included by forming a Lagrangian functional J* as 

J*(z. e. u)= D {zTQz+uTRu+ W(~) 
+ i.(t)[A( ~)z(t) + B( ~)u{t) + H( ~)f(t)- i{t)] )dt { 6.14) 

where l(t) is the Lagrange vector multiplier. Note that the constraint has 
been integrated over time. 

The conditions for minimizing J* are 

o'1'J* = o 
b'1 'J* >0 

( 6.1 j) 

( 6.16) 

where JOl and o"' are, respectively, first and second variations. It is 
mathematically very difficult to ensure satisfaction of the condition on the 
second variation 6'2

'. It can, however, be satisfied by arguing on physical 
grounds. Since Eq. (6.12) essentially is a composite quadratic performance 
index that contains a minimum error criterion. a minimum energy criterion 
and a minimum cost criterion, the first variation 01ll is with respect to z, u, 
and e. The Lagrange multiplier is also allowed to vary. Instead, the equation 
of motion ( Eq. 6.7) must be retained. Taking the first variation of the 
Lagrangian functional results in 

J'UJ•= {' (2(ozTQ~+ourRu)+lT(Aaz+Bi5u-Oi) 

+ 'i'; Wli~ + I.T('i';Az+ 'i'1Bu + 'i' 0 Hj){J~ 
+ (Az + Bu + Hf- i)o). }dt ( 6. I 7) 
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In the above, V, is a gradient operator with respect to the parameter vector 
;;. Integrating the ).T r5t term by parts and rearranging, Eq. (6.17) gives 

L {r5zT(2Q;;+ATJ.+i)+,)uT(2Ru+BTi.) 

+ [i.T(V;Az + V,Bn + V,Hf) + V; W]/li; 

+(Az+Bu+Hf-i)/l,\}dt+,!Tr)zl: =0 (6.18} 

where the symmetry of M, C, and K has been taken into account. Since the 
variations in z, 11, and ~ can take place independently of each other and in 
order to satisfy the necessary condition for minimizing J*, i.e. oJ* = 0, we 
have the following system of equations: 

A;;+ Bu+ HJ- i=O, z{O) =II 
2Qz +AT;,+;:= II, i.(t,) =II 
2Ru + BT }, = 0 

.<.T(V(Az+V,Bu+ v,HJ)+ v,w= o 

(6.19) 

over the time period (0, r,). The equations above represent a system of 
differential equations with four unknowns, namely, z(t), n(t), ;;, and ,\(t). 
Their solution determines the optimal configuration for the active structure. 

6.2 Solution Procedure 

Equations (6.19) represent, in general, a system of coupled nonlinear 
equations. Note that this nonlinearity is present even when the equations of 
mot'ion represent linear elastic response, as is assumed here. (Material andior 
geometric nonlinearities may be included, however, at the expense of making 
the system of equations computationally more involved.) Due to the complex 
nature ofthese equations, numerical techniques <lfe usually required to obtain 
a solution. 

An iterative sequential search procedure is studied 10 in which, at each 
iteration, the structural parameters are held constant until the performance 
index defined by Eq. (6.12) is minimized. The structural parameter 'alues 
are then altered and the process is repeated until the global optimum is 
achieved. It is clear that, in terms of efficiency and convergence properties, 
a more desirable procedure is one in which the controller parameters and 
the structural parameters are optimized simultaneously. Simultaneous search 
procedures work in the full design space and update the structural and 
controller parameters simultaneously towards the final optimum design. 
Hence, these procedures not only can deal with high dimensional spaces with 
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fast convergence rates, but they may also avoid possible degeneracy into 
sub-spaces caused by sequential search methods. 

Starting from prescribed initial values, the structural and controller 
parameters are updated at the kth iteration by (k = 0, I, 2,, .) 

( 6,20) 

In the above, </i and <f. denote search directions in the scalar space and the 
functional space, respectively, whereas ri is a unified scalar amplitude for 
both updating formulae and is selected so that the objective functional 
(Eq. 6.12) decreases with a' along the search directions. 

The search directions can be determined by, for example, the use of the 
conjugate gradient method11 In this case, the search direction calculations 
are based only upon the gradient information provided by 

II VI*' II' 
cf=VJ*'+ VJ*'- 1 

IIVJ*' 'II' 
(6.2I) 

The algorithm following this approach proceeds as follows: 

Select initial values ll0 and ~o· 
2 Solve the state and co-state equations (the first two of Eqs 6.19) for z' 
and J.k, k = 0, 1, .... 
3 Calculate the gradient with respect to u and ~ using 

VuJtk = Vu.Jf'(uk, ~,., zk, lk, t) 

l
,, 

V~J*' = 
0 

V~:Yt'(u', ~', z', l', r)dr 

where 

:Yt' = zT Qz + uT Ru + W(e) + ),T[A(~)z + B(~)u + H(~)J] 

4 Calculate the search directions, fork~ 1, 

II VJ*' II' 
<f.= -V.I.*'+ II VI*' 'II' V.I.*'-' 

II VI*' II' tf.=-VJ*'+ VJ*'- 1 

' ~. .. IIVJ*'-'11' ' 

and, for k = 0, 
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where 

and 

IIV.J*II'= L (V.J:JTVJ:dT 

5 Update u and~ by using Eqs (6.20). 
6 Repeat steps 2-5 until Eqs (6.19) are satisfied with prescribed accuracy. 

In the above, the state equation, the first of Eqs (6.19}, and the costate 
equation, the second of Eqs (6.19), can be numerically integrated using, for 
example, Newmark's beta method 12 and Galerkin's two-point recurrence 
method,!' respectively. The quadratic performance index, Eq. (6.12), can be 
integrated using similar procedures. 

Unlike the sequential search procedure, where structural optimization 
is performed followed by control force optimization, the simultaneous 
procedure described here directs the solution towards a single final optimum 
design. Consequently, only one global optimization is performed. Further­
more, this procedure is not limited to linear structural behaviour or linear 
control laws. 

Let us now look at some examples. 

Example 6.3 Consider again the steel frame studied in Example 6.1. If the 
frame is modelled as a single-degree-of-freedom shear building, and if it is 
assumed that the columns are of rectangular cross section with base b, 
equalling twice the depth, then the stiffness k, mass m, and damping c can 
be expressed as 

• 
k=32Eb4 /L' 

m = 8pLb 2 + 16.52 

c=2(m~ 

where E is the elastic modulus, taken as 29 x 106 psi and p is the density, 
taken as 7.35 x 10- 4 lb- s2 /in4

• The damping ratio,\, is taken as 1.24%. 
If one considers the base structure to be that which is just capable of 

supporting the static loads without assistance of the active members, then it 
is readily verified that, for a buckling mode of failure, the minimum structural 
parameter b is 0.34 in. 

Consider now the structure with active tendons in place. For a support 
acceleration of 

x"(t) = 0.15g sin4nt, ( 6.22) 
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the equation of motion has the form of Eq. ( 6.4 ). The time domain of interest 
is chosen to be 2 seconds with a step size of 0.005 sec and integration 
parameters of 1/6 for (J and 1/3 for 0, where (J and /J are the integration 
parameters for Newmark's beta method and Galerkin's method, respectively. 
The weighting matrices should be carefully chosen to reflect proper balance 
between the controlled response, input energy and structural weight (cost). 
If at all possible, the weights should reflect some physical parameter of the 
structure. In this example, the weight for the displacement response and the 
required control displacement are chosen to be proportional to the system 
stiffness. In particular, they are 3967 and 7934 for the displacement and 
control, respectively. For the velocity weight, a value of 16.52 is used which 
is proportional to the structure's dead mass. Note that these values have 
been chosen arbitrarily, consequently the minimum will be somewhat 
subjective. 

Figure 6.5 shows the performance index versus the structural parameter 
b for both the active and passive systems. The active system is minimized 
when b = 1.05 in and PI (performance index)= 124.15 while the passive 
system is minimized when b = 1.10 in and PI= 131.92. For values of bin the 
range from 0.34 in to I A in, it is clear from the reduced performance index 
that the active structure (active members and passive members) is superior 
to an equivalent passive structure (passive members only). As b is increased 
above 1.40 in, the required control force approaches zero. Clearly, no benefit 
is gained from having the active members in this range. Figure 6.6 shows the 
displacement response for the optimum b of 1.05 in. It is noted that the active 
members successfully reduce the response. The required control force in the 
tendons is shown in Fig. 6.7. l"ote that the stipulation on the final condition 
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Figure 6.5 Performance index for steel trame7 
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Figure 6.6 Displacement of steel frame7 
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of the co-state equation requires that the control force be driven to zero at 
the end of the time domain. 

Example 6.4 In the preceding example, a relatively simple case with only 
one degree of freedom was considered. In what follows, a somewhat more 
realistic structure is investigated. Consider the king-post beam of Fig. 6.8. 
The two king-posts, serving as active members, are located along the beam 
and are capable of applying point forces directly to the beam. Sufficient 
pre-tensioning of the cables is assumed to allow both upward and downward 
control forces. A moving load of constant magnitude p(x) and velocity v(t) 
is applied to the beam. 

The governing partial differential equation of motion is 

a•y(x, t) a2 y(x, t) 
EI ax• +pA atz p(x)+Du(t) ( 6.23) 

300.00 

-JOIJ.OO 0.00 0.40 0.80 1.20 1.60 1.00 
t (sec) 

Figure 6.7 Control force in Example 6.37 
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1-------··--wrr -------1 

Figure 6.8 The king-post beam 7 

where EI is the ftexural rigidity and pA is the mass per unit length. Assuming 
that 

X 

y(x, t) = I ljl,(x)llt(l) ( 6.24) 
j: l 

where c/>1 are the mode shapes, Eq. (6.23) is transformed into an infinite 
number of second-order differential equations. The ith equation is expressed 
as 

( 6.25) 

where p1 and d1u1 are the modal counterparts of p(x) and Du(r). The natural 
frequency w1 and the mode shape c/> 1 are given by 

Unfortunately, closed form solutions to the transformed equations of 
motion are not possible since the time variation of the control force is 
unknown a priori. By considering linear elastic response, however, the 
solution can be separated into two parts: (a) moving load solution, and (b) 
control force solution, with superposition of the two providing the total 
response. A closed form solution to the moving load is given in Timoshenko 
and Young14 So the problem is now reduced to finding the response due to 
the control force. 

In practice, it is common to use only a finite number of modes when 
calculating the dynamic response. Letting 11 equal the number of modelled 
modes and m equal the number of independent control forces, we can define 
three classes of control: (a) 11 < m, (b) n > m, and (c) n m. In the last case, 
the equations of motion can be written as n independent modal equations, 
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each with its own modal control force. Transformation from modal forces 
to physical forces is direct due to the one-to-one correspondence between n 
and m. As shown in Section 3.4, such an approach is referred to as independent 
modal space control (IMSC). Of the remaining two, case (a) is not considered 
here for essentially economic reasons, that is, the general trend is to have 
fewer control forces than modelled modes. Therefore, case (b) is the focus of 
this example. Since we are considering fewer control forces than modes, the 
transformation from modal to physical control forces involves the pseudo­
inverse of an n x m matrix. This implies that the physical control forces may 
contain errors that lead to system degradation15 To avoid this problem, the 
control force vector is not transformed into modal space. Instead, the m x 1 
physical control vector is multiplied by then x m modal participation matrix. 
The resulting modal differential equations of motion are externally coupled 
by the physical control force vector. The only requirement on the control 
force vector is that the system must be rendered controllable. 

For the numerical analysis, the first five modes are considered. The 
integration parameters, {3 and 8, are taken as 1/6 and 1/3, respectively. Four 
hundred time steps each of duration 0.0005 sec arc used. The moving load 
has a constant magnitude of 1000 lb and a horizontal velocity of 500 in/sec. 
The material and cross-sectional properties of the beam are the same as those 
used in Example 6.3. The weights for the performance index are chosen as 
follows: 5000 for displacements (all modes), zero for velocities (all modes) 
and 1000 for control forces (for each king-post). 

In an effort to demonstrate both the optimal search method and the concept 
of an active structure, the king-post example is now investigated through a 
number of different cases. Specifically, the following four cases are identified. 

Case I: The structure is passive. The only design parameter considered is 
the beam width, b, subjected to the simple bounds: 

0.10 in .; b .; 10.0 in 

Case 2: Two active members (i.e. king-posts) located at x/ L = 0.30 and 0.70, 
as well as the beam width are the design variables. The two active members 
are capable of generating both up and down control forces. No bounds are 
imposed on the magnitude of the control forces. The bounds on b are the 
same as in Case 1. 
Case 3: Identical to Case 2 except that, along with the two active members 
and the width, the locations of the two active members are also considered 
as design variables. Hence, five design variables are considered with bounds 
on the active member locations specified by 

17.2 
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Table 6.1 Performance comparisons 

Case PI b XL XR Iterations 
l 145.23 1.45 -0.268 N/A N/A 5 
2 123.16 0.85 -0.108 608 0.70 27 
3 102.44 0.93 -0.069 490 0.56 66 
4 93.96 0.11 -0.036 496 6.11 87 

which forces the two locations, XL for the left member and XR for the right, 
to be along the beam. 
Case 4: In this variation, the effect of allowing the two active members to 
change position with time is considered. The simple bounds are identical to 
those of Case 3. Note that while this is a logical extension of the active 
structure concept, the realization of such a 'fully' active structure may be 
difficult. 

The solutions to these four cases are obtained using the search procedure 
outlined above. The results are summarized in Table 6.1. The quantities listed 
in this table are the performance index (PI), the beam width (b), the maximum 
centreline deflection of the beam (Ym,l• the maximum control force ( um,l, 
the active member location (XL and XR) and the number of iterations for 
convergence. Comparison of the centreline displacement response and 
required control force in the left king-post is shown in Figs 6.9 and 6.10, 
respectively. Also, the moving locations of the two king-posts for Case 4 are 
illustrated in Figs 6.11 and 6.12. 

-Case J 

- 0·2\"'J ----o"'."'o,"'-----r"'J."'u"J --~r""J.7ts,.-·-----o:'2o 
1 (sec) 

Figure 6.9 Maximum displacement of king-post beam 1 
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Figure 6.10 Maximum control force in Example 6.47 

It is seen from Table 6.1 and Figs 6.9 and 6.10 that Case 4, with a PI of 
93.96, represents the optimum configuration of the king-post beam. This is 
expected since this case has the highest capacity to act as an active structure. 

In closing, let us remark that, while a demonstration of active structure 
concept feasibility has been shown through examples, there are still many 
aspects that need to be examined. For instance, it is desirable to develop 
optimization procedures that not only allow time-dependent member 
characteristics but also time-varying structural configurations. Only then will 
they lead to truly optimal structures - optimal in geometry, in topology, 
and in utilization of material. Furthermore, critical comparisons between 
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Figure 6.12 King~post configuration in Case 4 7 
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active and traditional structures need to be carried out in order to establish 
the economic feasibility of active structures. 

The concept of an active structure is a new and exciting one. Whether or 
not it can be implemented in the future depends to a great extent on parallel 
advances and successes in other technical areas, such as materials, electronics, 
and computers. Recent breakthroughs in all these areas are an encouraging 
sign and will help bring this concept closer to reality. 
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Appendix A: Elements of 
linear Control Systems 

Summarized in this appendix are some basic results of modern control theory 
for linear systems with time-invariant parameters, on which much of the 
recent work on active structural control is based. Due to space limitation, 
the presentation is brief. The reader is referred to the general references cited 
at the end of this appendix for more details. 

lV1ost structural engineers are familiar with some of the results presented 
here in connection with structural dynamics. Hmvever~ they may not be 
familiar with the farm in which they are given, Indeed, the so-called state 
space approach in systems theory does not yet occupy a prominent place in 
structural dynamics. For our purposes, however, the state space approach is 
important because it is central to the development of modern control theory. 
Other advantages in using this approach include (a) adaptability to computer 
simulation and computation, (b) straightforward extensions from single 
input-single output to multiple input-multiple output systems and from 
low-order to high-order systems, and (c) easy generalization to more general 
system descriptions such as systems with time-varying parameters or stochastic 
systems. 

Hence, we begin by introducing some results on the dynamics of linear 
systems using the state space formulation. 

A.1 The State Equation 

Central to the formulation and solution of a modem control problem is the 
so-called state space description of the underlying physical system. Many 
systems, including structural systems, can be described by a set of simultaneous 
first-order differential equations of the form 

i(t) = g(z(t ), u(t ), t) (A.!) 

where 1 is time, z( t) is a time-varying vector denoting the state of the system 
and u(t} is the input vector which represents externally applied forces and 
disturbances. In some eases, the input may be consciously controlled in an 
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effort to guide the behaviour of the system. In other cases, they may be fixed 
by the environment, but still retain an interpretation as input. 

For linear systems with parameters which do not vary with time, Eq. (A.l) 
reduces to 

i(t) = Az(t) + Bu(t) 

or simply 

i=A~+ Bu (A,2) 

where A and 8 arc constant matrices of appropriate dimensions. 
Equation (A.2) represents the dynamics of a time-invariant linear system 

in the state-space form. Since most structural systems considered in this book 
are, when approximated by lumped-mass models, linear with time-invariant 
parameters, we consider only the linear time-invariant case in our development. 

For many systems, the choice of the state vector z follows naturally from 
the physical structure as the following examples show. 

Example A. I Consider the horizontal translational vibration of a two-storey 
structure subjected to some lateral external excitation such as wind forces. 
Using a lumped-mass model as shown in Fig. A. 1, the equations of motion 
in terms of x 1 (t) and x 2 (t), the horizontal displacements of the first and 
second floors, are 

m1 .i' 1 (t)+c 1xdt)-c 2 [x 2 (t)-.x 1(t)] +k 1 x 1 (t) } 

- k2 [x 2 (t)- x 1 (t)] = 11 1 (t) 

m2 .i'2 (t) + c 2 [i 2 (t)- .x 1 (t)] + k 2 [x 2 (t)- x 1 (t)] = 11 2 (1) 

(A.3) 

where mi, ci and ki are, respectively, the mass, damping and stiffness of the 
jth llo,or and u1(t) denotes the lateral force exerted on the jth floor. 

I 
I 

x,(t) f--------1 
' r----------, 
' ' ' ' ' I 
I I 

Xt(l) :---+1 
I r-----~--~ 

' ' ' ' I 

Figure A.1 An idealized two-storey structure 
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To write Eqs (A.3) in the state-space form, we set .x 1(t)=y 1 (t) and 
x2 (t) = 5'2(1) and define the four dimensional state vector 

[

XI] x1 
z= 

Y1 

Y1 

(A.4) 

Equations (A.3) arc now transformed into 

~::~:: } (A.5) 
ml J~ 1 = - c l YJ + Cz (Yz- y 1)- k 1 xI + kz (x1- x l) + u 1 

111zY2 = -c2(Yz- YJ)- k2(x2 -xl) + H2 

In vector-matrix notation, they take the standard form of Eq. (A.2), i.e. 

i=Az+Bu 

with 

A=[i I,] 
c' 

where 0 2 is the 2 x 2 null matrix, / 2 is the 2 x 2 identity matrix, 

K= 
[

_k1 +k, 
m1 

k2 

1112 

C= [- c\:Ic, 
c, 

1112 

iH = diag[m 1 , m2 ] 

and M- 1 denotes the inverse of M. 

c, l 111z 

c1 
1112 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.lO) 

We see that extension to the case of ann-storey structure is straightforward 
using the similar lumped-mass approach. The state variable z in this example 
has a dimension of four; it is a 2n-dimensional vector in the case of an 11-storey 
structure. 
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As the next example shows, the components of a state vector need not 
represent physical displacements and velocities. 

Example A.2 The deflection of a prismatic beam with flexural rigidity El 
and mass density per unit length p is governed by the partial differential 
equation 

(A.ll) 

where y(x, t) is the transverse displacement of a typical segment of the beam 
located at distance x from one end and w(x, t) is the applied force distribution. 
Let us assume that 

p 

w(x,t)= I ~(x-ai)lli(t) 
j= 1 

(A.l2) 

where J( ) is the Dirac delta function. Thus, we have a system of p point 
fo'rces exerted at points ai, j = 1, ... , p, on the beam. 

Using modal coordinates, it is well known that the solution to Eq. (A.ll) 
can be represented by 

" y(x,t)= I rpi(x)qj(t) (A.J3) 
j=l 

where qi(t) are the modal amplitudes and rpi(x) are (normalized) mode 
shapes. While II= oo in theory, it is often assumed that the displacement 
y(x, t) can be approximated with good fidelity by a truncated sum in which 
II is large but finite. 

Form the 2n-dimensional state vector . 
q, 

q, 
z= (A.14) 

q, 

4n 

The substitution of Eqs. (A.12) and ( A.l3) into Eq. (A. II) leads to the state 
equation for the beam in the standard form 

i=Az+Bu (A.l5) 

where the system matrix A is 

A= diag[A,, A 2 , ... , A,] (A.I6) 
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in which A j is a 2 x 1 matrix of the form 

A-=[O,ol] 
J - WJ 

where CJJ = j"rc4 El /b4 L, L being the beam length; 

B, 

8= 
82 

where Bi is a 2 x p matrix given by 

and 

[
".1] U= : 

"" 

(A.l7) 

(A.l8) 

(A.l9) 

( A.20) 

It is seen in this example that the state vector z does not represent physical 
displacement or velocities but, with known mode shapes, the knowledge of 
z leads to a complete determination of y(x, t) and hence the 'state of the 
system'. We have seen that this state-space representation is useful in 
structural modal control where certain critical modes are modified through 
the action of control forces. 

A.2 Solution of the State Equation 

Let us restrict ourselves to the linear time-invariant case and consider first 
the homogeneous equation 

t=Az (A.21) 

with initial condition 

(A.22) 

The solution to Eq. (A.2l) always exists and it can be expressed as (see, for 
example the work by Zadeh and Desoer in the Bibliography) 

(A.23) 
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The transition matrix <I>( t, t 0 ) is the solution of the matrix differential equation 

•ll( t, t 0 ) = Al!l(t, t 0 ), 

which has the explicit form 

l!l(t, 10 ) = l!l(t ~ lo) 
1 

e"-t,JA = 1 +(I~ lo)A + ·-[(t 
2! 

This series converges for all A. 

(A.24) 

10 )A] 2 + ... 

( A.25) 

The elements of the transition matrix can be easily written down when the 
system matrix A is diagonalizable through a similarity transformation. The 
following result is useful (see, for example, the work by Noble in the 
Bibliography). 

Theorem A. I Let A be an 11 x 11 matrix having distinct eigenvalues 1.1, 
j = 1, ... , 11, and corresponding normalized eigenvectors •J1, j = 1, ... , 11, i.e. 

q}•~J=l, j= 1, ... ,11 (A.26) 

where the superscript T denotes vector or matrix transpose. 
Define the 11 x n matrix T by 

Then 

where A is the 11 x 11 diagonal matrix 

A= diag[i." A1 , ... , i .• ] 

This result is useful because it allows us to write 

<D(t- io) = e(1~1o).-l = Te(r-r(llA T-1 

where 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.3l) 

Diagonalization is also possible when the transition matrix has multiple 
eigenvalues provided that the number of linearly independent eigenvectors 
for each eigenvalue is equal to its multiplicity. For more complicated cases, 
the transition matrix can be obtained through a reduction to the so-called 
Jordan form. We omit this discussion here since this situation is rare in 
dealing with structural systems. 

Now, consider the state equation 

f.= A:.+ Bu, z(tol=to (A.32) 
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If u(t) is piecewise continuous for all t, we have 

z(t)=<ll(t-to)Zo+ f' <ll(t-r)Bu(r)dr=e(H")·Iz0 + f' ei<-<IABII(r)dr, 
lo 1, 

(A.33) 

This result can be easily verified by substituting it into Eq. (A.32) and with 
the aid of Eq. (A.25). 

A.2.1 Impulse Respouse and T1·amjer Functio11 Matrices 

When z0 = 0, Eq. (A.33) becomes 

z(t)= f' K(t-r)u(r)dr, 

'" 
(A.34) 

where 

t~r (A.35) 

is called the impulse response matl'ix of the system. It is seen from Eq. ( A.34) 
that the ijth element of K(t- r) corresponds to the response at timet of the 
ith component of the state vector to a unit impulse applied at the jth 
component of the input at time r ~ r0 , while all other components of the 
input vector and initial condition remain zero. 

For linear time-invariant systems, it is often useful to seek solutions through 
Laplace transformation. Let 

2'[z(t)] = J~ e-"z(t)dt=z(s) 

The Laplace transform of Eq. (A.32) leads to (with t 0 = 0) 

z(s) =(sf- A)- 1 z(O) + (.>1- A)- 1 Btl(s) 

When z(O) = 0, we have 

z(s) = H(s)tl(s) 

where 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

is the transfer matrix of the system. It is noted that H( s) and K( t) for a given 
linear time-invariant system are Laplace transform pairs, i.e. 

H(s) = 2'[K(t)], K(t)=2'- 1 [H(s)] (A.40) 
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We also point out that H(s) can be written in the form 

D(s) 
H(s) = d(s) 

where D(s) is a matrix polynomial ins and 

d(s)=ls/-AI 

( A.41) 

(A.42) 

is the characteristic polynomial of A if no cancellation occurs of factors of 
the forms- )"i' where ,!i is an eigenvalue of A" The roots of d(s) are called 
the poles of the transfer function and they are the eigenvalues of A if no 
cancellation takes place. 

A.2.2 Fl'equency Response ~fatJ•ix 

In the frequency domain, the response of a linear time-invariant system is 
characterized by the response to an input of the form 

u(O)=O, ( A.43) 

By direct substitution, a particular or steady-state solution of the state 
equation 

i = Az + Bu = Az + Baeirut (A.44) 

can be shown to be 

z(t) = HUw)ueiw• (A.45) 

where 

(A.46) 

is the complex factor relating the response to the input and is called the 
Ji"equency response matrix of the system. Equation (A.45) shows that, with 
u(t) given by Eq. (A.43), the steady-state response z(t) oscillates with the 
same frequency w but in general with a change in amplitude and a phase shift. 

Since inputs can in general be represented as a sum of sinusoidal terms 
and since the superposition principle applies in the linear case, the knowledge 
of the frequency response matrix leads directly to the solution to the state 
equation for linear time-invariant systems. 

A comparison of Eq. (A.46) and Eq. (A.39) shows that HUw) is simply 
the transfer function H(s) with s replaced by jw. 
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A.23 Tire Case of Stochastic lnpur 

Since many of the system inputs in the study of structural control are 
stochastic in nature, we give in this section some results on the response of 
linear time-invariant systems to stochastic inputs. The reader is referred to 
the general references cited at the end of this appendix for a review of the 
fundamentals in stochastic processes and for details of the derivations of the 
results presented herein (see, for example, the works by Lin and Soong in 
the Bibliography), 

In the linear time-invariant case, Eq. (A,33) gives the general solution 
representation which is also valid when the input vector u(r) is a stochastic 
vector process. Using capital letters to denote stochastic quantities (except A 
and 8), Eq, (A.33) can now be written as 

Z(l) el<-<,iAZo + j'' <l>(t- r)BU(!)d!, 

'" 
(A.47) 

where Z(t), being a function of the stochastic vector process U(t), is also 
stochastic. We see that the first term on the right-hand side of Eq. (A.47) is 
at most a deterministic contribution to Z(r). For expediency, we shall assume 
Zo = 0 in what follows, 

Let the mean and correlation function matrix of U(t) be denoted by, 
respectively, 

m 0 (t) = E[ U(l)], R uu(s, t) = E[ U(s) UT(I )] ( A.48) 

We are primarily interested in the mean and correlation function matrix of 
the response Z( 1), 

Taking the expectation of Eq. (A.47) (with z0 = 0), we easily see that 

m2 (t)=E[Z(t)]= f' <1>(1-r)Bmu(r)dr, 1;310 (A.49) 
J fu 

The correlation function matrix Ru(s, t) of Z(r) is found in a similar fashion. 
·we have 

Rzz(S, c) E E[Z(s)ZT(c)] 

=£{[( <t>(u-s)u(u)du][J:, <t><v-tJU(v)ctv r} 
f' j'' . . <l>(u- s)Ruu(u, v)<J>T(v- t)dudv 

J to tv 

(A. 50) 

Equations ( A.49) and ( A.SO) show that the knowledge of the first two moments 
of U(t) leads to the determination oftbe first two moments of Z( r), [n theory, 
the probability distribution of Z(r) can also be found in terms of the 
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probability distribution of U(t); this, however, is much more involved. A 
special case, however, is worth mentioning, namely, with Z(t) and U( 1) related 
as given by Eq. (A.47), Z(t) is Gaussian if U(t) is Gaussian. 

The integrals in Eqs (A.49) and (A.50) can be simplified somewhat when 
U(t) is second-order stationary. In this case, mu(r) is a constant and 

Ruu(s,t) R 00(r-s) 

and, in particular, Eq. (A.50) with t 0 ro (input applied at time - rJJ) 
reduces to, after some change of variables, 

Rzz(t-s)= f~ J~ <l>(u)Ruu(t-s+o-u)<J>T(v)dudv (A.51) 

which is also seen to be a function of (r- s) only. 
The second-order stationarity of the solution process Z(t) in this case 

implies the existence of its associated power spectral density. As we recall, 
the power spectral density S zz( w) of a second-order stationary process is 
defined by 

(A.52) 

Applying this definition to Eq. (A.51 ), we obtain the following important 
result: 

(A.53) 

where HUw) is the frequency response matrix of the system and H*Uw) is 
its complex conjugate. Equation (A.53) gives a simple relation between the 
spectral density matrix of the input U(t) and that of the response Z(r). This 
siml(le input-output relationship is one of the primary reasons for the use 
of spectral densities in the analysis of linear time-invariant systems. We also 
note that the second moments of Z(r) can be computed from Eq. (A.53) by 
means of a single integral 

E[Z(t)ZT(t)] := Rzz(O) J:~ Szz(w)dw 

~~ H*(jw)S0v(w)HT(jw)dw . _., (A.54) 

A.3 Stability 

Stability of a dynamic system pertains to, roughly stated, the boundedness 
to some degree of the solution of its state equation. It is one of the most 
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important performance qualities of a system in analysis and control. For our 
purposes, it is adequate to consider the homogeneous state equation of the 
form 

i(l)=Az(t), z(to) = Zo (A.55) 

and consider its equilibriulll srate z,. An equilibrium state of the system 
described by Eq. (A.55) is a solution satisfying 

(A. 56) 

clearly, z, = 0 is an equilibrium state in this case and is unique if A is 
nonsingular. 

Definition An equilibrium system state z, is said to be stable (in the sense 
ofLyapunov) if, for any 10 and any R > 0, there exists a real numberil(c, t 0 ) > 0 
such that 

implies 

liz(t)-z,ll <c 

for all t:;, t 0 • If il does not depend on 10 , the equilibrium state is said to be 
ullij'ormly stable. 

In the above, the Euclidean norm can be used for llzil, i.e. 

I!ZI=[ ~zf r (A. 57) 

although other norms are also possible. 
In words, the (Lyapunov) stability guarantees that the system state at any 

I:;, 10 stays close to the equilibrium state by choosing the initial state close 
enough to the equilibrium state, a rather weak condition of boundedness. 
Stronger stability criteria are given below. 

Definition An equilibrium system state z. is asympto!ica/ly stable if it is 
stable and if, for any t 0 , there is a ii > 0 (possibly dependent on 10 ) such that 

ll<:o-z,li "'') 

implies 

llz(t)-z.ll-0 

as 1-+ oo. We see that, in addition to being stable, the solution in this case 
always converges to ;:, when the initial condition is chosen close enough to 
the equilibrium state. 

187 



Active structural control: theory and practice 

Definition An equilibrium system state Zc is exponentially stable if there 
exist real numbers a> 0 and (i > 0 such that 

for every z0 . Thus, under exponential stability, the state converges to the 

equilibrium state in an exponential fashion independent of the initial 
condition. 

We have thus far addressed stability of the equilibrium state. For linear 

systems, however, stability of the equilbrium state implies stability in any 

other solution. To see this, let z(t) be any other solution ofEq. (A.55). Since 

both z(t) and z, satisfy Eq. (A.55), z(t)- z, is also a solution, i.e. it satisfies 

the state equation 

Hence, stability in Zc implies stability in any solution. For this reason, we 
consider stability of the system to be synonymous with stability of the 

equilibrium state. Furthermore, Zc = 0. 
Conditions for various forms of system stability can be easily established 

for linear time-invariant systems. As already shown in Section A.2, for a 
system described by Eq. ( A.55) whose system matrix A has distinct eigenvalues 

).j and eigenvectors 11 j• j = I, 2, ... , the solution z( t) can be written as 

z(t)= 'L,gje'·"•tj ( A.58) 
j 

where g j,j = 1, 2, ... , are scalars whose values are functions of z0 . Hence, the 
stability properties are determined by the eigenvalues i.j: this is true also in 
the case where A is not diagonalizable. The following theorems are direct 

result·s of this observation and we omit their proofs. 

Theorem A.3 (Stability) The linear time-invariant system given by Eq. 

(A. 55) is stable if and only if (a) all eigenvalues of A have nonpositive real 

parts, and (b) to any eigenvalue of zero real part with multiplicity k there 

correspond exactly k linearly independent eigenvectors. Condition (b) is 

needed to ensure that no terms in the solution grow as t, t 2 , .... 

Theorem A.4 (Asymptotic Stability) The linear time-invariant system given 

by Eq. (A.55) is asymptotically stable if and only if all eigenvalues of A have 

strictly negative real parts. 
We easily see from Eq. (A.58) that, if a linear time-invariant system is 

asymptotically stable, it is exponentially stable. This result is formalized in 

the following theorem. 
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Theorem A.S (Exponential Stability) The linear time-invariant system given 
by Eq. ( A.55) is exponentially stable if and only if it is asymptotically stable. 

A.4 Controllability and Observability 

Due to various reasons, a dynamic system designed to perform in a certain 
fashion does not always do so in a completely satisfactory manner. As an 
example, the actual load supported by a structure may exceed the design 
load. Corrective actions are thus necessary sometimes and control theory 
offers one of the possible approaches to this end. 

A control system is a dynamic system which, through the action of an 
external manipulatable input u(t), operates in a certain prescribed fashion as 
time evolves. In design and synthesis of control systems, it is fruitful to first 
pose a number of basic equations concerning their ability to perform as 
required. Controllabilily is concerned with the question of whether or not 
the state of a given system can be transferred from any given state to any 
other given state under the action of a control input. The important result 
given below is stated without proof, which can be found in most of the 
standard control texts. 

Definition The linear time-invariant system 

z(t) = Az(t) + Bu(t), (A.59) 

is said to be completely controllable if, under the action of a piecewise 
continuous input u(t), t 0 ,;;t,;;r,, the state of the system can be brought 
from any z0 at any t 0 to any terminal state z1 at time t 1 within a finite time 
tl- to. 

Theorem A.6 Let the dimension of z( t) be " and the dimension of u( t) 
be m. Then the system (A.59) is completely controllable if and only if the 
" x nm matrix P defined by 

p I I I 
[B I AB I ••• I A"- 1 B] 

I l < 
(A.60) 

has rank ll. 

The second question has to do with observability, namely, whether or not 
a system has the property that its state can be determined from the knowledge 
of the input and output information. We give the following definition. 

Definition The linear time-invariant control system 

i(t) = Az(t) + Bu(t), 

y( t) = Cz(t) + Du( t) 
z(to) = Zo } (A.61) 
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is said to be completely observable if the knowledge of control input u(t) and 
output y(t) over a finite time interval t 0 < t.; 11 completely determines the 
state z(t 1 ) for all t 1 . 

Theorem A.7 Let the dimensions of z(t) and y(t) be, respectively, nand r. 
Then the system (A.61) is completely observable if and only if the rn x n 
matrix Q defined by 

c 

CA 

Q= (A.62) 

has rank n. 
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Appendix B: Conversion 
Table: English Units to 
Sl Units 
Appendix B Conversion table: English units to SI units 

To convert from To Multiply by 

Acceleration 
footjsecond 2 (ftjsec 2 ) metrejsecond 2 (mjsec1 ) 3.048x 10- 1 * 
inchjsecond 2 (injsec 2

) metrejsecond 2 (mjsec 2 ) 2.54 x w- 1 * 
Area 

foot' (ft') metre 2 (m 2
) 9,2903 X 10- O 

inch 1 (in 1 ) metre 2 (m 2 ) 6.4516 x to-*• 

Density 
pound massjinch 3 (lbm/in 3

) kilogmm/metre 3 (kg/m 3
) 2.7680 X 104 

pound massjfoot 3 (lbmjft 3
) kilogramfmetre 3 (kgjm 3

) 1.6018 X 10 

Energy, work 
British thermal unit (Btu) joule (I) 1.0544 X 103 

foot-pound force (ft-lbf) joule (I) 1.3558 
kilowatt-hour (kw-h) joule (J) ),60 X }06 * 

Force 
kip ( 1000 lbf) newton (N) 4.4482 X 103 

pound force (lbf) newton (N) 4.4482 

Length 
foot (ft) metre (m) 3.048 X 10-l-. 
inch (in) metre (m) 2.54 X 10- 2 * 

Mass 
slug (!of-sec' /ft) kilogram (kg) 1.4594 X 10 
ton (2000 Ibm) kilogram (kg) 9.0718 X 10' 

Power 
foot-pound/minute (ft-lbf/min) watt (W) 2.2597 X 10- 2 

horsepower (550 ft~lbfjsec) watt (W) 7.4570 X IO' 

Pressure, stress 
atmosphere (std) (14.7lbf/in') newtonjmetre 2 (N/m 2 or Pa) 1.0133 X 10S 
pound/inch' (lbf/in' or psi) newtonfmetre 2 (N/m 2 or Pa) 6.8948 X 10 3 

Velocity 
foot/minute (ftjmin) metre/second (mjsec) 5.os x w- 3 * 
footjsecond (ftjsec) metrejsecond (mjsec) 3.048x10- 1 * 

Viscosity 
foot 2 /second (ft 2 /sec) metre 2 fsecond (m 2 /sec) 9.2903 X 10- 0 

pound-mass I foot ~second 
(lbmjft-sec) pascal~second (Pa~sec) 1.4882 

pound-force~second /foot 2 

(lbf-secjft') pascal~second (Pa~sec) 4.788 X 10 

*Exact value 
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